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ABSTRACT: Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible
improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determin-
ing the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improve-
ments. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its
application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with
multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method
developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accu-
racy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that
improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial cov-
erage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is
shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained
by HF radars operating in complex current environments.

SIGNIFICANCE STATEMENT: We identify and test a method based on the likelihood ratio (LR) for determining
the number of signal sources in observations subject to direction finding with maximum likelihood estimation (MLE).
Direction-finding methods are used in broad-ranging applications that include radar, sonar, and wireless communica-
tion. Previous work suggests accuracy improvements when using MLE, but suitable methods for determining the num-
ber of simultaneous signal sources are not well known. Our work shows that the LR, when combined with MLE,
performs at least as well as alternative methods when applied to oceanographic high-frequency (HF) radars. In some
situations, MLE and LR obtain superior resolution, where resolution is defined as the ability to distinguish closely
spaced signal sources.

KEYWORDS: Ocean; Algorithms; Data quality control; Radars/radar observations; Remote sensing; Surface
observations; Quality assurance/control

1. Introduction

In the last 20 years significant effort and expense have been
directed toward the construction of networks of oceano-
graphic high-frequency (HF) radars. These radars primarily
measure the coastal ocean surface current, though waves and
winds are also possible products (Wyatt et al. 2006; Kirincich
2016). Each of these data products relies on signal-processing
methods to extract the variable of interest and place it in
space, typically through the application of direction-of-arrival
(DOA) methods.

Oceanographic HF radars employ general-purpose DOA
methods developed for diverse applications including radar
and sonar. A review of the signal-processing literature indi-
cates many advances in DOA methods over the last few deca-
des (Krim and Viberg 1996). Much of our recent efforts have
been geared toward revisiting these methods, with the overall
goal of improving the observational capabilities of HF radars.

Our previous work in this field has identified and assessed
alternative DOA methods, while uncovering new problems in

their application. Emery (2020) used simulations to evaluate
five DOA methods, including the commonly used multiple
signal classification method (MUSIC; Schmidt 1986), finding
the most improvement when using maximum likelihood esti-
mation (MLE; Ziskind and Wax 1988). This study, combined
with the results of Kirincich et al. (2019), illustrate the inter-
dependence of DOA and the algorithm for determining of
the number of simultaneous signal source bearings in produc-
ing low-error radial component data. In the signal-processing
literature, these algorithms are known as “detection”methods
(cf. Wax and Kailath 1985; Wax 1991).

Kirincich et al. (2019) used several different methods for
detection, along with several of the most promising DOA
methods, applying these to data obtained from University of
Hawai‘i High Frequency Doppler Radars (UH-HFDR;
known colloquially as LERA). These systems are deployed
within the Martha’s Vineyard Coastal Observatory, with the
receive antennas arranged on a square grid (diagonal distance
equal to 1 radar wavelength). Receive antennas are located at
all but one of the grid locations producing an 8-element
receive array (referred to here as an RA-8 arrangement).
Detection methods employed by Kirincich et al. (2019)
include the Akaike information criterion (AIC), the minimumCorresponding author: Brian Emery, brian.emery@ucsb.edu
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descriptive length (MDL) (both described by Wax and Kai-
lath 1985), a generalization of the Barrick and Lipa (1999)
method to M . 3-element arrays (where M is the number of
receive antennas), and an empirical method first described in
Laws et al. (2000) and referred to as MUSIC-Highest.
MUSIC-Highest is based on the relationship between the
number of simultaneous signal source bearings (defined here
as N) and the number of peaks in the MUSIC spectrum. The
study found the best performance when using MUSIC for
DOA with MUSIC-Highest for detection.

Each of the detection methods used by Kirincich et al.
(2019) employ properties of the eigenvalues of the data
covariance matrix C. Typically, C is formed from the complex
antenna voltage time series; however, in oceanographic HF
radar, these have been filtered by two applications of the
FFT, first to separate the signals by range, and second to sepa-
rate them by Doppler velocity, such that C is formed for each
range-Doppler bin separately. With the exception of MUSIC-
Highest, these detection methods assume a clear break in the
eigenvalues, which can be used to partition the signal and
noise, with the noise eigenvalues having roughly equal value.
In many signal-processing situations, such as a strong signal in
white Gaussian noise, this will be a valid assumption. How-
ever, evidence suggests that this scenario does not include
ocean backscatter at HF. For example, Fig. 1 below, as well as
Fig. 8 of Kirincich et al. (2019), show a linear drop in magni-
tude, rather than a break between signal and equal-valued
noise. While the method of Barrick and Lipa (1999) and
MUSIC-Highest use additional information to improve their
detection capabilities, other studies indicate limitations inher-
ent to any DOAmethod based on the eigendecomposition.

Example limitations of DOA methods using eigendecom-
position include restrictions on resolution and poor perfor-
mance when the signal-to-noise ratio (SNR) is low. Defining
resolution as the ability to distinguish between closely spaced
signal sources, Tuncer et al. (2009) citing Amar and Weiss
(2007) suggest a theoretical limit on the minimum separation
achievable by MUSIC, as a function of the receive array
beamwidth and the SNR. Ziskind and Wax (1988) suggest
that the use of the full data covariance matrix, rather than
components of the eigendecomposition, gives MLE an advan-
tage in direction finding. While Kirincich et al. (2019) utilized
MLE-based DOA methods, eigendecomposition-based meth-
ods were used for detection. Thus, a method for detection
that is not based on the eigendecomposition is needed to real-
ize any potential advantage of using MLE.

Previous publications suggest the use of the generalized
likelihood ratio test (GLRT) for detection along with MLE
for DOA. GLRT is based on a “goodness of fit” between a
model of the data Ĉ and C in the MLE calculation (Kelly and
Forsythe 1989; Ottersten et al. 1993; Abramovich and Spencer
2004; Chandran 2006). In a typical application, the GLRT is
used in a binary hypothesis test, determining the presence or
absence of signal. In a later application, the GLRT philosophy
is applied to the problem of determining N through the
sequential calculation of the likelihood ratio (LR) (Chandran
2006; Abramovich et al. 2009). In the following we describe

the LR calculation and apply it to oceanographic data, with
the major objective of this paper being to evaluate the use
of the LR with the MLE, and potentially, to realize improve-
ments in HF radar data suggested by simulations in Emery
(2020).

The remainder of the paper is organized as follows. In sec-
tion 2 we briefly review HF radar processing including other
detection methods typically used, present the LR calculation,
and discuss the methods used for evaluating observations.
Results of our analysis are presented in section 3, these are
put into context with previous works in section 4, and our con-
clusions are presented in section 5.

2. Methods

a. Oceanographic HF radar signal processing

Here we briefly summarize signal-processing methods com-
monly used by oceanographic HF radars, as these have been
described in detail elsewhere (cf. Lipa and Barrick 1983; de
Paolo et al. 2007; Emery and Washburn 2019; Emery 2020).
Oceanographic HF radars typically transmit radio waves
swept over a range of frequencies, either interrupted briefly
or not, which are then received and digitized. The frequency
sweep associates frequency to range after FFT processing,
and subsequent sweeps produce time series at a given range.
The sweep typically spans tens or hundreds of kilohertz,
whereas the Doppler information of interest is within ∼1 Hz
of the range equivalent frequency. A second, Doppler
resolving FFT at a given range, then bins signals by Doppler
velocity. For each Doppler frequency of interest, the auto-
and cross-spectra are used to form a covariance matrix C,

FIG. 1. Mean eigenvalues (with standard deviations) from simu-
lated HF radar data for different flow conditions as quantified by
the number of emitters N. The AIC and MDL criterion rely on a
clear break between the signal and the noise eigenvalues}differ-
ences that are not often present in oceanographic HF radar data.
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specifying variance and covariance of the receive antennas.
Since a single range cell may contain signal from several
directions, the covariance matrix may contain signal from
one to several directions if the same Doppler velocity
occurs in these locations. The application of DOA methods
to C determines the most likely source direction(s), allow-
ing the known Doppler velocities to be localized on the
ocean surface. Detection methods are used to specify which
value of N is most valid.

Lipa and Barrick (1983) allude to the problem of detection
for oceanographic radars, and Barrick and Lipa (1999) later
provide a method for the 3-element SeaSonde. The SeaSonde
detection method bases the decision between N = 1 and N = 2
on three criteria, including eigenvalue characteristics and
characteristics of the signal power matrix. The method then
compares the computed parameters with empirically deter-
mined thresholds to determine whether the N = 1 or N = 2
solution is most appropriate. For example, typical recom-
mended values for the parameter set of [40 20 2] indicate that
N = 2 when the ratio of the largest eigenvalue to the second
largest is less than 40, the signal powers are within a factor of
20, and the product of the signal powers is more than a factor-
of-2 larger than the product of the off-diagonal elements of
the signal power matrix. Our implementation of this method
(cf. Emery 2021) follows Barrick and Lipa (1999), and was
used in processing SeaSonde data for this study. Note that
this method can be considered an expansion upon the AIC
and MDL techniques. We refer to the combination of direc-
tion finding with MUSIC and detection with the SeaSonde
method as MUSIC-SS.

For the SeaSonde data, sets of 11 different detection
parameters were used, as shown in Table 1. SeaSonde param-
eter sets were obtained by taking the three sets suggested by
the manufacturer (CODAR Ocean Sensors, Ltd.) and inter-
polating/extrapolating over a wider range. LR threshold val-
ues ranged from 10 to 70 in increments of 5.

The MUSIC-Highest detection method described previ-
ously (Laws et al. 2000; Kirincich 2018; Kirincich et al.
2019) requires the number of distinct peaks in the MUSIC
spectrum to match the dimension of the signal subspace N.
Kirincich et al. (2019) applied peak thresholds of 0.05, 0.25,
and 0.5 dB above background to distinguish peaks and
found that the 0.5 dB was sufficient to remove spurious
results and improve comparisons with drifters. For this
study we allowed the threshold to vary from between 0.05
and 1.3 dB.

b. The likelihood ratio

Essentially, the LR calculation compares the data covari-
ance obtained by the radar, with a model of the data formed
from the DOA solution and receive antenna pattern. The LR
calculation is performed jointly with the DOA calculation, for
sequentially increasing values of N, up to N , M. The proce-
dure for computing and applying the LR to oceanographic
radar data was assembled from several sources as described
below.

To compute the LR we first reconstruct an estimate of the
data, defined as Ĉ,

Ĉ � ASAH 1 s I; (1)

where I is the M 3 M identity matrix, H denotes the Hermi-
tian transpose, A represents the M 3 N complex-valued
antenna pattern at the N DOAs, given by A(uN), s is an esti-
mate of the noise power, computed directly from the data by
following the method of Ottersten et al. (1993):

s � 1
M

Tr I 2 AA†( )C
[ ]

; (2)

where A† is the pseudoinverse of A [defined as A† = (AHA)21AH],
Tr is the matrix trace operator, and C is the data covariance
matrix; S in (1) is the signal power matrix, also estimated from
the data:

S � A† C 2 sI( )A†H: (3)

Having computed the data model Ĉ for the NDOA solutions,
we compute the LR:

LR �22 log
det CĈ

21
( )

1
M

Tr CĈ
21

( )[ ]M
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
K

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠; (4)

where det is the matrix determinant and K is the number
of data snapshots. Abramovich and Spencer (2004) and
Abramovich et al. (2009) provide the argument to 22 log()
in (4), and Swindlehurst and Stoica (1998) suggest the 22 log()
transformation, which is useful given the very small values
for the argument to 22 log() that we obtain. Abramovich
et al. (2009) specify the requirement that K $ M, and sev-
eral properties of the LR values, which we describe below.
Other formulations for computing LR given by Ottersten
et al. (1993), Swindlehurst and Stoica (1998), Chandran
(2006), as well as an additional formulation in Abramovich
et al. (2009), either do not have these properties, or the
values we obtain do not conform to the properties they
describe.

TABLE 1. Parameter sets used for detection with the
SeaSonde method. Each rows denotes one set, with boldface
font indicating the manufacturer-recommended options.

P1 (dB) P2 (dB) P3 (dB)

80 40 0
70 35 0.5
60 30 1
50 25 1.5
40 20 2
30 15 2.5
20 10 3
15 7.5 5.5
10 5 8
5 2.5 10.5
0 0 13
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As defined in (4), the LR has several properties that enable
its use in solving the detection problem. First, the range of LR
values, and its probability density function (PDF), depend
only on K and M, with a x2 distribution [Ottersten et al.
(1993) citing Wilks (1938); Abramovich et al. (2009) states
that the LR PDF is “scenario invariant” and independent of
C]. Second, minimum and maximum values for the LR can be
found as follows. To find the minimum LR, set Ĉ � C in (4),
which produces LR = 22 log(1) or LR = 0, which would be
the case of a perfect match between the data and the model.
To find the maximum LR, set Ĉ � sI, which produces values
of LR that become “large” (observations suggest a maximum
of about 1500 with K = 13 andM = 8). Setting Ĉ � sI is equiv-
alent to modeling the data as uncorrelated noise (Ottersten
et al. 1993), suggesting a poor match between the data and
the model. The LR values computed with increasing values of
N for a fixed C have a “nested property,” where increasing N
to produce Ĉ results in decreasing values of the LR,

LRN�1 $LRN�2 $ · · · $LRN; (5)

assuming optimal DOA solutions (Chandran 2006). This
property suggests the need to determine a threshold, below
which the LR value indicates that the model–data fit is “good
enough,” and N is sufficient.

Given these properties of the LR, Abramovich et al. (2009)
suggest using the LR for detection in a sequential procedure.
For a given C, start by forming Ĉ for N = 1 and computing the
LR, forming Ĉ for N = 2, and so on, comparing the computed
LR values with a threshold, and stopping once the threshold
has been crossed. The lowest N that results in an LR value
below the threshold is determined to be the number of emit-
ters in the DOA solution. To determine appropriate thresh-
olds for oceanographic HF data, we compare independent
observations to identify and confirm threshold values as
described below.

c. Calculation of the number of snapshots, K

Calculation of LR requires a known value for K, the num-
ber of data snapshots, or as defined by Van Trees (2002), the
number of statistically independent intervals. For this study,
our SeaSonde data processing averages six independent FFTs
of 512 points each (256 s), from nonoverlapping Doppler
spectra, spanning a total of 25.6 min. For covariance matrices
derived from this processing we use K = 6. UH-HFDR sys-
tems used in this study produce averaged auto- and cross-
spectra from overlapping segments, which complicates the
calculation of K. These systems used 30 min time series seg-
ments sampled at 3.074 Hz, dividing these 5533 points into
eight separate blocks of 2048 points each (e.g., with 78% over-
lap, or 1597 overlapping points). FFTs are computed after the
application of the Hanning window to each segment. Follow-
ing Percival et al. (1993) we estimate K by following methods
for estimating the degrees of freedom for arbitrary window
overlap. Using these parameters, the computed Doppler spec-
tra have 16 degrees of freedom, suggesting K = 8 for the UH-
HFDR observational data.

d. SeaSondes and synthetic radial comparisons

To provide independent observations with spatially similar
resolution for method and threshold validation, we extend the
method for comparing radar observations along overwater
baselines (Lipa 2003; Lipa et al. 2006; Paduan et al. 2006), to
regions where overwater baselines do not exist. This approach
uses data from multiple radars to estimate the radial compo-
nent at an additional radar (cf. Kirincich et al. 2019). Indepen-
dent estimates of the radial components synthesized from
other radars, defined as synthetic radials, requires having mul-
tiple radars observing the same area of the sea surface from
different locations. Figure 2 shows an example grid located on
the ocean surface that is within the view of three SeaSonde
HF radars. Each grid point obtains orthogonal observations
from the two outer HF radars [located at Refugio State Beach
(RFG), California, and the Summerland Sanitary District
(SSD), California]. We first compute total vectors from
RFG and SSD (Kaplan et al. 2007), and then estimate the
radial velocity component vr at Coal Oil Point (COP), Califor-
nia, such that the comparisons cover similar spatial extents
over similar time intervals. This method provides a wide range
of bearings where independent estimates of vr can be com-
pared while avoiding some of the differences inherent when
comparing HF radars with in situ observations.

In this study, the time series spanning 0000UTC1October–2230
UTC 25 October 2017 was processed with both MLE-LR and
MUSIC-SS, with LR and SS parameters allowed to vary over
the full range of values as described above. We base compari-
son statistics on observations from a bearing-limited region
(relative to COP) given by 2198–3208 (dashed lines Fig. 2) to

FIG. 2. Map of the vicinity of the Santa Barbara Channel show-
ing the locations of HF radar sites used for computing synthetic
radials from Refugio State Beach (RFG) and Summerland Sanitary
District (SSD) (yellow triangles), and the grid used for total vector
calculations (blue dots) for comparison with data from the HF
radar at Coal Oil Point (COP). Gray squares show oil production
platforms, dashed lines show bearings 2198 and 3208 from COP
(counterclockwise from east), and bathymetry is in meters.
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reduce influence of significant radio-wave propagation across
land for SSD, and the influence of an oil production platform
(located 3.2 km along bearing 2198 from COP) for both RFG
and COP.

e. UH-HFDR and drifter observations

The UH-HFDR systems were located at the Long Point
Wildlife Refuge on Martha’s Vineyard, Massachusetts (desig-
nated as LPWR), and the Nantucket Wastewater Treatment
Plant on Nantucket Island, Massachusetts (designated as
NWTP) (Kirincich et al. 2019). Performance of the DOA esti-
mation and detection methods used with these systems are
assessed with data from a mass drifter release conducted
in August of 2018. The drifter release (and deployment of
LPWR) were conducted as part of an NSF-funded study of
the inner shelf off Martha’s Vineyard. During 14–22 August
2018, the release of 24 CODE–style surface drifters (Davis
1985), occurred within the LPWR coverage area, and slightly
to the west of the main NWTP coverage area. The LPWR and
NWTP radars operated at 16.1 and 16.2 MHz, respectively,
such that the 0.75-m effective depth of the HF radar measure-
ment (Stewart and Joy 1974) roughly corresponds to the 1-m
maximum drogue depth. After binning the drifter data in time

(∼30 min) and space (18 by 2 km) to coincide with the radar
observations, several hundred data points are available for
comparison over the eight days of overlapping drifter–radar
observations.

3. Results

a. SeaSonde observations: Synthetic radial comparisons

Figure 3 shows sRMS, correlation coefficient squared r2, and
the number of observations n between the RFG–SSD syn-
thetic radials and COP radials for both MUSIC-SS and MLE-
LR, plotted as a function of bearing relative to COP. To
produce this figure, data from all three SeaSondes were proc-
essed using 70 as the LR threshold and [0 0 13] as the Sea-
Sonde parameter set. For both methods, high sRMS, low r2,
and low n are found for bearings outside the range 2198–3208.
Within 2198–3208, results for both methods are similar, with
consistent sRMS, and variable r2. Figure 3b results suggest
that some bearings produce noisier current observations
than others. Results for r2 are also somewhat inversely
related to n used in the calculation. Overall, the results
with the SeaSonde observations show similar performance

FIG. 3. Comparisons between radial surface currents from RFG-SSD and COP, as a function
of bearing, for the two detection–estimation methods (MLE-LR and MUSIC-SeaSonde), with
LR = 70 and the SeaSonde parameter set [0 0 13]: (a) RMS difference sRMS, (b) r

2, and (c) the
number of radial velocity observations n used to compute sRMS in (a) at each location. The ver-
tical dashed lines are located at bearings of 2198 and 3208 as in Fig. 2.
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for both DOA–detection methods for these detection
parameters.

Figure 4 provides aggregate results of the synthetic radial
comparisons, in terms of sRMS and r2, for each of the different
detection parameters used (both LR and SS). Calculations for
this figure use observations obtained on the grid between
bearings 2198 and 3208 (Fig. 2), with Fig. 4a showing the RMS
difference versus the number of radial velocity observations
n. Figure 4b shows the spatially averaged r2 versus spatially
average n, where r2 is computed for each grid location over
the month-long time series as in Fig. 3, and then averaged
between bearings 2198 and 3208 to produce the values shown.
The results show similar overall sRMS and r2 between the
methods, with minimum values (∼15 cm s21) on the upper
end typical of previous HF radar comparisons, and r2 values
on the low end (cf. Graber et al. 1997; Emery et al. 2004; Ohl-
mann et al. 2007; Molcard et al. 2009; Liu et al. 2010; Cosoli
et al. 2010). The lowest sRMS is obtained with MLE-LR. Both
methods produce improved comparisons when detection

parameters result in more N = 1 solutions, which results in
fewer radials (n) for comparison. Taking the MLE-LR results
for example, the lowest n corresponds with the lowest sRMS

and highest r2. These results occur when the LR threshold
is set to 70. With the threshold at 70, 90% of the solutions are
N = 1 solutions}so-called single-bearing solutions. Similarly,
SeaSonde parameters that select for more single-bearing solu-
tions produce the best comparison statistics, with the three
most stringent selecting for 96%, 98%, and 100% single-bear-
ing solutions at roughly the same sRMS = 14.8 cm s21 and r2 =
0.49. In comparison, the widely used SeaSonde parameter set
[40 20 2] obtains sRMS = 15.4 cm s21 and r2 = 0.42, with 68%
single-bearings solutions. Overall, note that the approxi-
mately 65% increase in n corresponds to 15% increase in
sRMS.

b. UH-HFDR observations: Drifter comparisons

Figure 5 shows comparison statistics sRMS and r2 versus n
for variable detection thresholds, both LR and MUSIC-
Highest. The overall results for the two radar sites some-
what contradict each other, with MLE-LR producing the
best comparisons at NWTP, and MUSIC-Highest produc-
ing the best comparisons at LPWR. Furthermore, MLE-
LR results from NWTP suggest a trade-off between more
observations (n) and diminished comparison statistics, as
found with the SeaSonde results (Fig. 4), while MUSIC-
Highest at NWTP along with both methods at LPWR
show little relation between statistics and n for variable
threshold parameters. For both sites and both DOA–de-
tection methods, the best comparisons are found with
thresholds that favor lower values of N, which we discuss
further below.

Figure 6 and Table 2 show the results of drifter–radar com-
parisons for the two HF radars, with the LR threshold set to
800 and the MUSIC-Highest threshold set to 1.3, respectively.
The decreased performance for MUSIC-Highest for NWTP
(Figs. 6a,b) seems to result from a small number of outliers,
while MLE-LR performs well, though obtaining slightly fewer
observations. Figures 6c and 6d show results for LPWR, with
superior performance for MUSIC-Highest, and increased
observations away from the 1:1 line for MLE-LR, resulting in
lower r2 and higher sRMS from about 7% more observations.
To better illustrate the relative performance of the two
DOA–detection methods, Fig. 7 and Table 3 show the com-
parison data only when observations are present simulta-
neously for both radar DOA–detection methods and the
drifters. These comparisons suggest similar accuracy when
using MLE-LR for NWTP, and significantly improved accu-
racy when using MUSIC-Highest at LPWR.

4. Discussion

a. Comparison with previous studies

The simulation-based study by Emery and Washburn
(2019) provides a look at DOA performance independent of
detection methods, by obtaining the value of N used by the
DOA algorithms from the input flow field. The study suggests

FIG. 4. Comparisons between COP radials and synthetic radials
generated from RFG-SSD, in the bearing-limited region of Fig. 2,
for varying detection parameters (LR and SeaSonde): (a) sRMS vs n
and (b) r2 vs n. In (b) r2 is computed for each grid location over the
month-long time series and then averaged spatially such that (b)
shows the spatially averaged r2 vs spatially averaged n for each of
the comparison datasets.
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similar performance between DOA methods for SeaSondes
in terms of the accuracy of the observations, with potential
improvements for MLE in terms of the n returned, that is, in
terms of the percent coverage resulting from increased num-
bers of N = 2 solutions. Results here however show that
depending on the threshold criteria, improvements in coverage
can be had for both methods, though these come with increased
sRMS and lower r2 (Fig. 4). Simulations in Emery and Washburn
(2019) suggest that 20%–50% increases in n can be associated
with relatively small changes in comparison statistics. Figure 4a
similarly suggests that up to a 70% increase in coverage (as
shown by n) can be had at the cost of an approximately 15%
increase in RMS difference and 45% decrease in r2.

For RA-8 arrays, Emery and Washburn (2019) suggest
some improvement in accuracy with the use of MLE, along
with significant improvements in coverage relative to MUSIC.
However, comparisons here between drifters and the RA-
8 array radars at NWTP and LPWR found mixed results.
Increased accuracy with slightly fewer comparisons was found

by using MLE-LR at NWTP. Similar accuracy can also be
had, with an increase in n for MLE (e.g., with LR = 550 and
MUSIC-Highest set to 1.15). Comparisons at LPWR found
the opposite result (Fig. 5) with the best comparisons found
for MUSIC-Highest. At the total vector level, the extreme
values for detection parameters (e.g., LR = 400) used with the
UH-HFDR systems do increase coverage. However, the
resulting total vector maps are qualitatively noisier and, in
several instances, produce realistic-looking flow features that
our analysis strongly suggests are not real. Because of these
flow features, we would not recommend the use of the more
extreme detection parameters (e.g., LR # 600 or MUSIC-
Highest# 0.4).

While a lack of appropriate observations precludes a direct
comparison of the relative performance of the SeaSonde
versus UH-HFDR systems, a comparison with previously
published statistics is possible. Kirincich et al. (2019) per-
formed synthetic radial comparisons on the UH-HFDR
observations made at NWTP, using two adjacent SeaSondes,

FIG. 5. Comparison statistics of UH-HFDR data vs drifters for varying detection parameters (LR andMUSIC-Highest).
(left) NWTP vs drifters and (right) LPWR vs drifters for (top) sRMS vs n and (bottom) r2 vs n.
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finding RMS differences in the range 10–15 cm s21 and r2 in
the range 0.74–0.83. These results are slightly lower than the
radar-to-radar comparisons found for the Santa Barbara
Channel SeaSondes, with best RMS differences near 14.5 cm
s21 and r2 near 0.49.

b. DOA resolution

Tuncer et al. (2009) suggests a DOA performance metric
defined as the ability to resolve two or more closely spaced

signals, when considering signals present in the same covariance
matrix (i.e., the same Doppler velocity). For this definition of
resolution, the minimum value for MUSIC can be estimated in
terms of the beamwidth (BW) in degrees and the SNR:

du � BW

SNR 1=2( ) (6)

(Amar and Weiss 2007). Here du gives the minimum separa-
tion between signal sources that MUSIC can resolve at the

FIG. 6. Scatterplots of UH-HFDR data vs drifters. (top) NWTP vs drifters, radar processed with (a) MUSIC-Highest
(set to 1.3) and (b) MLE-LR (set to 800). (bottom) LPWR vs drifters, radar processed with (c) MUSIC-Highest and (d)
MLE-LR (showing only data east of 2408 bearing for LPWR). The least squares fit line is shown in red (see Table 2).

TABLE 2. Statistics of UH-HFDR-vs-drifter comparisons over 14–22 Aug 2018, as quantified by the correlation coefficient squared
(r2), the root-mean-square difference (RMS diff), mean absolute error (MAE), and slope and intersect of the least squares fit line.

Site Methods r2 RMS diff (cm s21) MAE (cm s21) Slope Intercept Obs

NWTP MUSIC-Highest 0.74 11.8 7.2 0.8 22.5 265
NWTP MLE-LR 0.88 7.3 5.5 0.9 20.9 241
LPWR MUSIC-Highest 0.71 9.3 6.7 0.9 0.4 1689
LPWR MLE-LR 0.54 11.8 8.9 0.8 4.3 1814
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given SNR. Applying this theory to the SeaSonde and RA-
8 receive arrays suggests minimum separation for MUSIC of
about 248 and 98, respectively (both at 30-dB SNR, using 1318
beamwidth for the SeaSonde and 498 for the RA-8; Van Trees
2002). Using our observations, we compute du for the systems
at COP and LPWR for MUSIC and MLE DOA methods.
Figure 8 shows histograms of the separation in degrees
between DOA solutions from the same covariance matrix

when N . 1 for the sites COP and LPWR. The COP Sea-
Sonde data shown here used LR = 25 and [50 25 1.5] for
detection, while data from LPWR used LR = 800 and
MUSIC-Highest 1.3 for detection. Figures 8a and 8b show
that the SeaSonde at COP obtained two-bearing solutions
with separations less than 248 for about 15% of two-bearing
solutions for MUSIC-SS, while MLE-LR found separations
less than 248 for about 38% of the two-bearing solutions.

FIG. 7. Scatterplots of UH-HFDR data vs drifters, for times when observations are present simultaneously for the
drifters and both radar DOA–detection methods. (top) NWTP vs drifters, radar processed with (a) MUSIC-Highest
and (b) MLE-LR. (bottom) LPWR vs drifters, radar processed with (c) MUSIC-Highest and (d) MLE-LR (showing
only data east of 2408 bearing for LPWR).

TABLE 3. As in Table 2, but based only on observations coincident to both DOA–detection methods and the drifters.

Site Methods r2 RMS diff (cm s21) MAE (cm s21) Slope Intercept Data points

NWTP MUSIC-Highest 0.89 7.1 5.2 0.9 21.6 170
NWTP MLE-LR 0.90 6.5 5.0 0.9 21.0 171
LPWR MUSIC-Highest 0.74 9.1 6.6 0.9 0.3 1240
LPWR MLE-LR 0.54 12.1 9.2 0.8 4.3 1238
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Results for LPWR are shown in Figs. 8c and 8d, with
minimum separations for MUSIC-Highest near 34.58,
well above the predicted value of 98. MLE-LR found sepa-
rations less than 98 for about 41% of the N . 1 solutions
(and separations less than 34.58 occurring for about 57%).
In Fig. 8c, MUSIC obtains separations less than the 498
beamwidth much less frequently than MLE, in about 10%
of N . 1 solutions, as compared with 69% for MLE. Reso-
lution as defined by (6) represents a significant difference
between the DOA and detection methods. These results also
demonstrate that both MUSIC and MLE are able to resolve
separations of less than the antenna beamwidths.

A substantial fraction of MLE-LR DOA solutions have a
separation of less than 108 in Figs. 8b and 8d, with the Sea-
Sonde producing about 23% and the RA8 about 44%. One
possible interpretation is that these N . 1, small separa-
tions result from the inherent uncertainty of the DOA-

detection calculations, and that the LR method fails to dis-
tinguish between, for example, the difference between a
covariance matrix constructed from a particular N = 1 solu-
tion, or a covariance matrix constructed from N = 2 closely
spaced signal sources. An alternative interpretation is that
the (e.g.) N = 2 solutions are a better fit to the data than the
N = 1, because the data result from ocean current structures
that span several degrees. Typically, ocean current struc-
tures resolved by HF radar span several kilometers, and
inspection of the radial data for these sites suggests that the
spatial extent of current structures are much larger than
length scales suggested by ,108 separations in bearing. The
results in Fig. 8 may indicate an important difference
between the DOA–detection methods. However, these
results contrast with the overall result suggested by the syn-
thetic radial and drifter comparisons (Figs. 4 and 5), which
is that the best comparisons were found with the most

FIG. 8. Histograms of separation (8) between DOA solutions from individual covariance matrices (a) from COP
with MUSIC-SS, (b) from COP with MLE-LR (the maximum of the first bin is 12.0%, which can be obtained from
the first point on the cumulative sum curve), (c) from LPWR with MUSIC-Highest, and (d) from LPWR with MLE-
LR (the maximum of the first bin is 31.9%).
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selective detection parameters, resulting in the most N = 1
solutions.

c. Threshold recommendations

Figure 9 shows histograms of all LR values computed for
HF radars at COP and LPWR, with the histograms conform-
ing to the expectation of a x2 distribution (Ottersten et al.
1993). Figure 9a illustrates that the range of LR thresholds for
the SeaSonde at COP (between 10 and 70) represent the 55th
to 100th percentile for the cumulative sum. Similarly, Fig. 9b
shows that the LR thresholds used (400–800) for LPWR rep-
resent the 15th to 95th percentiles on the cumulative sum. As
stated above, the PDFs (approximated in the figure) are a
function of K and M, such that radars with similar processing
parameters should obtain similar PDFs. Furthermore, the
thresholds used here (e.g., 70 for SeaSondes, 800 for the RA-
8 systems, Table 4) to generate Figs. 3 and 6 should produce
similar detection results, and that for SeaSondes LR = 35
would produce similar results to MUSIC with the [40 20 2]
MUSIC–parameter set. Users of systems with different proc-
essing parameters may determine a useful threshold range by
first generating the PDF and selecting the LR values at any of
the percentiles such as described above.

5. Conclusions

In this paper we describe and test the likelihood ratio for
use with the MLE DOA method, constructing a viable
method from several suggested possibilities from within the
literature. We apply the GLRT philosophy to the problem of
determining the number of signal sources N through the
sequential calculation of the LR, following Chandran (2006),
while using a combination of methods to compute LR values

(Swindlehurst and Stoica 1998; Abramovich and Spencer
2004; Abramovich et al. 2009). For SeaSonde ocean surface
current HF radars, our results find similar performance in
terms of accuracy and coverage when using MLE-LR as when
using MUSIC with MUSIC parameter tests developed for the
SeaSonde. We also find similar performance for the 8-chan-
nel, UH-HFDR systems, operated with an 8-element rectan-
gular receive array (RA-8), when using MUSIC for DOA and
MUSIC-Highest for detection as described by Kirincich et al.
(2019). Analysis of the separation in bearing between DOA
estimates from the same covariance matrix confirms that
MLE is not limited in distinguishing closely spaced signal
source areas, which may have implications for resolving ocean
current structures at scales below previously determined reso-
lutions. Comparisons between measurements, however, sug-
gests best results are found with parameters selecting for more
single-bearing solutions (low N in this paper). A further result
of this study is that improvement in radial velocity accuracy
can be obtained for SeaSonde operators by setting the Sea-
Sonde detection parameters to the lower of the manufac-
turer recommended settings, [10 5 8]. This setting produced
about 97% single-bearing solutions, with the accuracy com-
ing at the expense of a decrease in the number of radial
observations.

Given the recommendations for threshold number given
above, use of MLE-LR represents a viable alternative to
MUSIC-based direction-finding methods and has the particu-
lar benefit of detecting more closely spaced signals then is
possible for MUSIC. The present work completes the devel-
opment of MLE as a direction-finding method for HFR sur-
face current mapping use, by presenting a robust and vetted
detection method that does not suffer from the limitations of
approaches based on the eigendecomposition of the data
covariance matrix. An online software repository contains
the code used in this paper, which is generalized to work
with arbitrary receive arrays or DOA methods (Emery
2021).
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FIG. 9. Histograms of all LR values computed for (a) the SeaSonde
at COP1 and (b) the UH-HFDR RA-8 array at LPWR.

TABLE 4. Recommended LR thresholds for the number of data
snapshots K and receive antenna elements M used here.

Dataset LR threshold K M

SeaSondes 70 6 3
UH-HFDR 800 8 8
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