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A B S T R A C T

Multiple scattering from a cluster of nonlinear point attachments on a beam is formulated
and analyzed. The nonlinear equation of motion is solved using a perturbation strategy. The
analytical solution is implemented for two common mass–spring–damper systems and for either
nonlinear stiffness or nonlinear damping of power-law dependence. The nonlinearity generates
harmonic waves at frequencies that are multiples of the incident-wave frequency, and also shifts
the linear response of the fundamental frequency. In addition to asymmetric reflection, which
is also achievable using linear scatterers with damping, the cluster of nonlinear scatterers can
produce asymmetric transmission, thus breaking reciprocity of the system. Analytical results
for a single scatterer are presented and validated using Finite Element Method simulations
with perfect agreement. A two-scatterer nonlinear cluster acts as a filter that is tunable by
the incident amplitude and a three-scatterer cluster that acts as a non-reciprocal frequency
converter are considered, demonstrating the potential of the proposed framework for the design
of nonlinear scatterer clusters with more complicated scattering properties.

1. Introduction

Clusters of point scatterers of passive linear response attached to a beam can lead to special scattering behavior arising from the
nteraction of waves reflected and transmitted by each scatterer [1]. An isolated point attachment can be employed to minimize
tructural vibrations at a single frequency or at a narrow band [2–4]. Such a setup, however, displays a symmetric scattering
attern resulting in an identical response for waves incident from either direction. A cluster of two scatterers is sufficient to obtain
on-symmetric, direction-dependent reflection [5] and increased or perfect absorption [5,6]. In the latter case, the asymmetry in
eflection properties is obtained by specific distribution of damping properties in the attachments [5]. Despite different reflected
avefields generated upon waves incident from different directions, transmission characteristics remain symmetric in linear passive
ystems, due to the fundamental principle of reciprocity [7].
Enhanced dynamic performance and specific scattering patterns for a cluster of attachments is possible by employing active

ontrol and/or exploiting their nonlinear structural properties. Actively controlled properties of scatterers have been used for
dapting the system’s response to variable excitation [8] or obtaining broadband performance [9]. Exploiting the nonlinear
properties of dynamic systems, on the other hand, offers a certain degree of tunability with no external control system [10]. In
particular, wave interaction with nonlinear attachments results in energy redistribution manifesting itself in the generation of
other frequency components [10]. It is also well known that waves in nonlinear media display amplitude-dependent dynamic
characteristics [11], whose particular features, e.g. intensity and types of harmonic waves, depend on the type of nonlinearity.
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Such linear and nonlinear multiple scattering systems are of high practical interest, as these can be used as models to study the
dynamics of civil structures, e.g. bridges, offshore floating platforms or runways [12,13] and other, mechanical structures and
their components, e.g. structures with cracks [14,15], voids [16], microstructure [17] or mechanical joints, providing an analysis
framework for complex nonlinear contact and frictional phenomena [18].

In this article, we exploit the nonlinear properties of the attachment to manipulate mechanical energy flow and analyze their
influence on scattering patterns of clusters of attachments. We model an attached element as a passive impedance acting as a point
transverse force on a beam. The force consists of a linear interaction of a mass–spring–damper system and an additional contribution
of a nonlinear spring and/or damping force. As examples we use cubic dependencies for the force–displacement and force–velocity
relations. The nonlinear multiple-scattering problem is converted into a set of inhomogeneous linear multiple-scattering problems,
through a perturbation strategy. For this purpose, an expansion of the displacement field is introduced and the resulting sequence of
linear inhomogeneous multiple-scattering problems is solved for a single-frequency incident wave, generating scattered waves at both
the incident frequency and its odd-integer multiples. The respective frequency components, analogously to the fundamental wave
component, undergo multiple-scattering phenomena and result in complex, frequently non-symmetric and non-reciprocal, scattering
patterns. The proposed solution approach also indicates that higher-order perturbation problems result in correction terms to the
fundamental-frequency wave amplitude and phase and, therefore, predict amplitude dependency of the reflection and transmission
properties, and hence amplitude tunability of the system.

We illustrate the complex nonlinear scattering patterns by first describing the properties of a single scatterer, followed by
examples of clusters of two and three nonlinear scatterers. In particular, we show that in addition to the non-symmetric reflection,
non-symmetric (non-reciprocal) transmission is also possible with nonlinear scatterers. Furthermore, we demonstrate that wave
energy can be redistributed to other frequency bands, offering intriguing properties for frequency converters and other acoustic
devices. Finally, we note that the described complex dynamic properties are tunable and may be controlled by changing the incident
wave amplitude.

The paper is structured as follows. The nonlinear multiple-scattering problem is formulated and solved in Section 2, leading
to the derivation of the reflection and transmission coefficients for different harmonic wave components. Results from analytical
formulas and numerical simulations are presented in Section 3, illustrating the particular scattering properties introduced by the
onlinearity. Conclusions are summarized in Section 4.

. Scattering by multiple nonlinear point attachments

.1. Nonlinear equations of motion

The beam has bending stiffness 𝐷 (= 𝐸𝐼) and mass per unit length 𝜌′. The scatterers are located at positions 𝑥𝛼 , 𝛼 = 1,… , 𝑁 .
The transverse displacement 𝑤(𝑥, 𝑡), a real-valued quantity, satisfies

𝜕4𝑥𝑤 + 𝑘4𝜕2𝜏𝑤 =
∑

𝛼
𝑓𝛼𝛿𝛼 , (1)

where 𝑘 is the flexural wavenumber, defined by 𝑘4 = 𝜔2𝜌′∕𝐷, 𝜏 = 𝜔𝑡 is nondimensional time, and 𝜔 is the angular frequency.
Harmonic time dependence according to exp(−i𝜔𝑡) is considered throughout this article. From here on we adopt the subscript
notation indicating functions evaluated at a specific position, i.e. 𝛿𝛼 = 𝛿(𝑥 − 𝑥𝛼), 𝑤𝛼(𝜏) = 𝑤(𝑥𝛼 , 𝜏) etc. In (1), 𝑓𝛼 = 𝑓𝛼

(

𝑤𝛼(𝜏), 𝑤′
𝛼(𝜏)

)

s the force of the 𝛼th scatterer acting on the beam normalized by 𝐷 and has units of inverse area, and 𝑤′
𝛼(𝜏) denotes an additional

isplacement degree of freedom of the 𝛼th scatterer (see e.g. Appendix B). The attachment forces 𝑓𝛼 consist of two contributions,
inear, 𝑓𝛼 , and weakly nonlinear, 𝑓 ∗

𝛼 ,

𝑓𝛼 = 𝑓𝛼 + 𝜖𝑓 ∗
𝛼 , (2)

here 𝜖 is a bookkeeping perturbation parameter and all the forcing terms may depend on 𝑤𝛼 and 𝑤′
𝛼 .

We consider a solution of Eq. (1) by perturbation analysis and introduce an expansion for the displacement field as

𝑤(𝑥, 𝜏) = 𝑤0(𝑥, 𝜏) + 𝜖𝑤1(𝑥, 𝜏) + 𝜖2𝑤2(𝑥, 𝜏) +⋯ =
∞
∑

𝑛=0
𝜖𝑛𝑤𝑛(𝑥, 𝜏), (3)

where we require the asymptotic behavior at the scatterers’ locations only, since the remaining part of the system is linear. An
analogous formula holds for 𝑤′

𝛼(𝜏). As a consequence, the forcing components assume expansions

𝑓𝛼 =
∞
∑

𝑛=0
𝜖𝑛𝑓𝑛𝛼 +

∞
∑

𝑛=1
𝜖𝑛𝐶𝑛𝛼 , (4)

where 𝑓𝑛𝛼 = 𝑓 (𝑤𝑛𝛼 , 𝑤′
𝑛𝛼) and 𝐶𝑛𝛼 are, respectively, the linear and nonlinear forcing terms at the 𝑛th order and 𝛼th scatterer. The

terms 𝐶𝑛𝛼 , 𝑛 ≥ 1, will depend on the displacement solutions of the previous orders, 𝑤0, 𝑤′
0 to 𝑤𝑛−1, 𝑤′

𝑛−1, and their exact form will
depend on the scatterer configuration and the type of nonlinearity.

One note regarding the perturbation procedure. The expansion in Eq. (3) assumes |𝑤0𝛼| ≫ |𝑤1𝛼| ≫ ..., although in certain cases
it could be that 𝑤0𝛼 = 0 while 𝑤1𝛼 ≠ 0. The expansion of Eq. (4) is really the driving mechanism that produces the displacement of
Eq. (3), and in that sense could be considered the main ansatz.
2
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Using (3) and (4) in (1) yields
∞
∑

𝑛=0
𝜖𝑛𝜕4𝑥𝑤𝑛 + 𝑘4

∞
∑

𝑛=0
𝜖𝑛𝜕2𝜏𝑤𝑛 =

𝑁
∑

𝛼=1

[ ∞
∑

𝑛=0
𝜖𝑛𝑓𝑛𝛼 +

∞
∑

𝑛=1
𝜖𝑛𝐶𝑛𝛼

]

𝛿𝛼 . (5)

Collecting terms of the same powers in 𝜖 yields a system of equations for the zeroth and higher orders of expansion,

𝜖0 ∶ 𝜕4𝑥𝑤0 + 𝑘4𝜕2𝜏𝑤0 =
∑

𝛼
𝑓0𝛼𝛿𝛼 , (6a)

𝜖𝑛 ∶ 𝜕4𝑥𝑤𝑛 + 𝑘4𝜕2𝜏𝑤𝑛 =
∑

𝛼

[

𝑓𝑛𝛼 + 𝐶𝑛𝛼
]

𝛿𝛼 , 𝑛 ≥ 1. (6b)

Eq. (6a) describes a classic multiple-scattering problem, while in (6b) additional forcing terms 𝐶𝑛𝛼 – depending on the previous
order solutions – appear. The solution to (6) is therefore obtained sequentially, starting from 𝜖0.

2.2. Linear forcing

We introduce the complex displacement of order 𝜖𝑛 at the 𝑚th harmonic frequency, 𝑢(𝑚)𝑛 ,

𝑤𝑛(𝑥, 𝜏) =
1
2

∑

𝑚=1,…
𝑢(𝑚)𝑛 (𝑥)𝑒−i𝑚𝜏 + c.c., (7)

where c.c. stands for complex conjugate and the summation is restricted to 𝑚 = 1 for 𝑛 = 0. In the following we assume 𝑚 ≥ 1, that
is, time-harmonic oscillation. The zero-frequency (DC) component is a special case [19] not considered here. The specific integer
values of 𝑚 depend upon the type of nonlinear forcing considered. Appendix B discusses the particular cases of quadratic and cubic
nonlinearity, for which the solutions for 𝑚 are found sequentially. As noted before, the superscript notation (𝑚) is ignored for the
linear case 𝑚 = 1.

The linear forcing term 𝑓𝑛𝛼 of Eq. (4) is then

𝑓𝑛𝛼 = 1
2

∑

𝑚=1,…
𝜇(𝑚)
𝛼 𝑢(𝑚)𝑛𝛼 𝑒−i𝑚𝜏 + c.c., (8)

where the complex impedance 𝜇(𝑚)
𝛼 is defined by either of the two models described in Appendix A.

2.3. Linear multiple-scattering problem at 𝜖0

We first describe the solution to the zeroth-order problem [5]. The linear force for the 𝑛 = 0 solution follows from Eq. (8) as
𝑓0𝛼 = 1

2𝜇𝛼𝑢0𝛼𝑒
−i𝜏 + c.c., where 𝜇𝛼 (= 𝜇(1)

𝛼 ) depends on the choice of model 𝐴 or model 𝐵 in Appendix A. Using this and (7) in (6a)
ields

d4𝑥 𝑢0 − 𝑘4𝑢0 =
∑

𝛼
𝜇𝛼𝑢0𝛼𝛿𝛼 , (9)

ith the spatial dependence omitted. An analogous equation holds for 𝑢̄0, with 𝜇̄𝛼 instead of 𝜇𝛼 , where the overbar denotes the
omplex conjugate. The solution to (9) is assumed to be the sum of incident and scattered waves,

𝑢0 = 𝑢inc0 + 𝑢scatt0 = 𝑢inc0 +
∑

𝛼
𝜇𝛼𝑢0𝛼𝑔𝛼 , (10)

ith normalized Green’s function 𝑔(𝑚)𝛼 of the beam for harmonic 𝑚𝜔,𝑚 ≥ 1, defined by

d4𝑥 𝑔
(𝑚)
𝛼 −

(

√

𝑚𝑘
)4

𝑔(𝑚)𝛼 = 𝛿𝛼 , (11a)

𝑔(𝑚)𝛼 = 𝑔(
√

𝑚𝑘, 𝑥 − 𝑥𝛼) =
i

4
(

√

𝑚𝑘
)3

(

𝑒i
√

𝑚𝑘|𝑥−𝑥𝛼 | + i𝑒−
√

𝑚𝑘|𝑥−𝑥𝛼 |
)

. (11b)

The incident wave, 𝑢inc0 in Eq. (10) satisfies the corresponding homogeneous version of Eq. (9) (zero right hand side), whereas
the scattered wave follows directly from Eq. (9). The complex amplitude is found by solving an 𝑁 ×𝑁 system of linear equations
for {𝑢0𝛼} obtained by evaluating (10) at the scatterers’ locations,

𝑢0(𝑥) = 𝑢inc0 (𝑥) +
∑

𝛼𝛽
𝑢inc0𝛼 𝑀̂𝛼𝛽 𝑔𝛽 (𝑥), (12)

where 𝑀̂𝛼𝛽 = 𝑀̂ (1)
𝛼𝛽 , and for future reference 𝑀̂ (𝑚)

𝛼𝛽 are the elements of the inverse of the symmetric matrix with elements

𝑀 (𝑚)
𝛼𝛽 =

𝛿𝛼𝛽
𝜇(𝑚)
𝛼

− 𝑔(𝑚)𝛼𝛽 , (13)

𝛿 is the Kronecker delta and 𝑔(𝑚) = 𝑔(𝑚)(𝑥 ).
3
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2.4. Higher-order multiple-scattering problem at 𝜖𝑛, 𝑛 ≥ 1

Extra forcing terms appear at O(𝜖𝑛), 𝑛 ≥ 1 as compared to the zeroth order, specifically 𝐶𝑛𝛼 in Eq. (6b). The term 𝐶𝑛𝛼 can be
xpressed as a sum of Fourier coefficients 𝑐(𝑚)𝑛𝛼 , whose form will depend on the order of nonlinearity considered (see Appendix B).
xpanding the forcing term and the displacements in terms of harmonic components, Eqs. (6b), (7) and (8) give a set of separate
equations for the complex amplitudes at frequencies 𝑚𝜔 as

d4𝑥 𝑢
(𝑚)
𝑛 −

(

√

𝑚𝑘
)4

𝑢(𝑚)𝑛 =
∑

𝛼

(

𝜇(𝑚)
𝛼 𝑢(𝑚)𝑛𝛼 + 𝑐(𝑚)𝑛𝛼

)

𝛿𝛼 (14)

where the complex coefficients 𝑐(𝑚)𝑛𝛼 are defined in Appendix B. In the following analysis we assume 𝑚 ≥ 1, that is, time-harmonic
oscillation. The zero-frequency (DC) component forms a special case which is not considered here.

Eq. (14) can be solved analogously to (9), now assuming that the incident wave follows from the nonlinear forcing terms 𝑐(𝑚)𝑛𝛼 𝛿𝛼 ,
which depend on the previous-order solutions and are therefore already calculated. Consequently, the solution to Eq. (14) is

𝑢(𝑚)𝑛 =
∑

𝛼
𝑔(𝑚)𝛼

(

𝜇(𝑚)
𝛼 𝑢(𝑚)𝑛𝛼 + 𝑐(𝑚)𝑛𝛼

)

. (15)

As in the case of the leading-order problem, the complex amplitudes are found by solving a system of linear equations,

𝑢(𝑚)𝑛 (𝑥) =
∑

𝛼𝛽𝛾
𝑔(𝑚)𝛼 (𝑥)

(

𝑀̂ (𝑚)
𝛼𝛽 𝑔(𝑚)𝛽𝛾 𝑐

(𝑚)
𝑛𝛾 + 𝑐(𝑚)𝑛𝛼

)

=
∑

𝛼𝛽

𝑐(𝑚)𝑛𝛼

𝜇(𝑚)
𝛼

𝑀̂ (𝑚)
𝛼𝛽 𝑔(𝑚)𝛽 (𝑥), (16)

with 𝑀̂ (𝑚)
𝛼𝛽 the inverse of 𝑀 (𝑚)

𝛼𝛽 , as defined previously.
In summary, the full solution for the displacement is

𝑤(𝑥, 𝜏) = 1
2
𝑢0(𝑥)𝑒−i𝜏 +

1
2

∑

𝑚=1,…

∞
∑

𝑛=1
𝜖𝑛𝑢(𝑚)𝑛 (𝑥)𝑒−i𝑚𝜏 + c.c. (17)

with 𝑢0(𝑥) given by Eq. (12) and 𝑢(𝑚)𝑛 (𝑥) by Eq. (16).

2.5. Reflection and transmission coefficients

The nonlinear multiple-scattering problem is expected to be amplitude-dependent. The incident wave at the zeroth order, for
left-to-right (+) or right-to-left (−) propagation, is assumed as

𝑢inc0± = 𝑎 𝑒±i𝑘𝑥. (18)

Following Eq. (10), the leading-order amplitude for waves propagating at either side of the scatterer can be expressed with respect
to reflection and transmission coefficients as

𝑢0±(𝑥) =

{

𝑢inc0± + 𝑎𝑅0±𝑒∓i𝑘𝑥 for 𝑥 → −∞,
𝑎𝑇0±𝑒±i𝑘𝑥 for 𝑥 → +∞,

(19)

where [5]

𝑅0± = i
4𝑘3

∑

𝛼𝛽
𝑀̂𝛼𝛽𝑒

±i𝑘(𝑥𝛼+𝑥𝛽 ), 𝑇0± = 1 + i
4𝑘3

∑

𝛼𝛽
𝑀̂𝛼𝛽𝑒

±i𝑘(𝑥𝛼−𝑥𝛽 ). (20)

As for a linear system, the leading-order reflection coefficients may differ depending on the direction of incidence [5]. The
transmission coefficient, however, is independent of incidence, that is, 𝑇0+ = 𝑇0− [5], since the formula (20)2 for 𝑇0± is symmetric,
resulting in reciprocal transmission.

We now deduce the reflection and transmission coefficients of an 𝑚𝜔 harmonic component, generated due to the nonlinearity at
expansion order 𝑛 ≥ 1, as the complex amplitudes of the harmonics propagating in directions ∓𝑥 and ±𝑥, respectively, for incidence
towards ±𝑥. We first write the far field at the 𝑚th harmonic frequency and order 𝜖𝑛 at 𝑥 → ±∞ upon excitation by 𝑢inc0± as

𝑢(𝑚)𝑛± (𝑥)|𝑥→±∞ = 𝑎(𝑚)𝑛±±𝑒
±i
√

𝑚𝑘𝑥, (21)

where the first ± subscript of 𝑎(𝑚)𝑛 is the incident wave direction while the second refers to waves scattered towards 𝑥 → ±∞. The two
± signs in 𝑎(𝑚)𝑛 are independent of each other. As a consequence, there are four (possibly different) 𝑎(𝑚)𝑛±± coefficients — two scattered
waves for each of the two incident wave directions, which correspond to the appropriate reflection and transmission coefficients as

𝑅(𝑚)
𝑛± = 𝑎(𝑚)𝑛±∓ = i

4
(

√

𝑚𝑘
)3

∑

𝛼𝛽

𝑐(𝑚)𝑛𝛼±

𝜇(𝑚)
𝛼

𝑀̂ (𝑚)
𝛼𝛽 𝑒±i

√

𝑚𝑘𝑥𝛽 , (22a)
4
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𝑇 (𝑚)
𝑛± = 𝑎(𝑚)𝑛±± = i

4
(

√

𝑚𝑘
)3

∑

𝛼𝛽

𝑐(𝑚)𝑛𝛼±

𝜇(𝑚)
𝛼

𝑀̂ (𝑚)
𝛼𝛽 𝑒∓i

√

𝑚𝑘𝑥𝛽 . (22b)

t should be noted that the coefficients 𝑅(𝑚)
𝑛± and 𝑇 (𝑚)

𝑛± are amplitude-dependent through the amplitude-dependent forcing terms 𝑐(𝑚)𝑛𝛼±.
t is apparent that, in general, with nonlinear scatterers both the reflection and transmission coefficients at harmonic frequencies
an be different depending on the incidence direction. In particular, it may be seen that in general 𝑅(𝑚)

𝑛+ ≠ 𝑅(𝑚)
𝑛− and 𝑇 (𝑚)

𝑛+ ≠ 𝑇 (𝑚)
𝑛− , so

that, apart from non-symmetric reflection, non-reciprocal transmission can also be obtained. Of course, under certain conditions, the
reflection and transmission coefficients for different directions of incidence may also coincide, that is, it may be either 𝑅(𝑚)

𝑛+ = 𝑅(𝑚)
𝑛−

or 𝑇 (𝑚)
𝑛+ = 𝑇 (𝑚)

𝑛− , both of which for example hold for a symmetric cluster of scatterers.

3. Results from simulations

3.1. Computational scheme

The analytical model developed in Section 2 was validated with a nonlinear Finite Element Method (FEM) model. Classical linear
two-node four-DOF (two vertical and two rotational) beam elements of length 𝛥𝑥 = 0.1 m have been used for all cases reported
later. The model was long enough to avoid end reflections and the cluster was positioned at the center. The excitation was a force
applied at the left (or right) end, consisting of a continuous sine wave of a specific frequency (equivalently, wavenumber), with
the leading edge profiled by a half-Hanning window in order to minimize energy leakage in the frequency domain. The scatterers
were implemented as point force linear and nonlinear sources, following their respective definitions in Appendix A and Appendix B,
respectively. The explicit time integration scheme with the second-order central difference was adopted with the time step set
to 𝛥𝑡 = 0.001 s to ensure stability. Excitation forces were adjusted to result in desired displacement amplitudes. The single- and
multiple-scattering systems were studied for three – arbitrarily selected – amplitudes of |𝑎| = {1.00, 1.25, 1.50} × 10−3 m. The linear
and nonlinear parameters of the scatterers were selected to satisfy |𝑤0𝛼| ≫ |𝑤1𝛼| ≫ … in expansion (3). The results were acquired as
time–displacement responses at a set of nodes located 50−750 m on the left- and right-hand side of the cluster, to avoid measurement
of the near field and end-reflected waves. The acquired waveforms were subsequently postprocessed to compute the transmission,
𝑇 (1) and 𝑇 (3), and reflection, 𝑅(1) and 𝑅(3), coefficients at the fundamental and the third harmonic frequencies.

The transmission coefficients 𝑇 (1) and 𝑇 (3) were measured from the Fast Fourier Transform of the spatial profile of the
isplacement at the opposite side of the scatterer (with respect to the excitation) for a fixed time, at the respective wavenumbers
𝑘exc,

√

3𝑘exc}. Noting that the incident wave does not contain the third harmonic wave, the reflection coefficient 𝑅(3) is computed in
the same way, taking the displacement profile of the nodes at the excitation side. The fundamental frequency reflection coefficient,
𝑅(1), was computed from the Standing Wave Ratio: SWR = max|𝑤(𝑥)|∕min|𝑤(𝑥)|, as |𝑅(1)

| = (SWR − 1)∕(SWR + 1), using the
total acquired wavefield at the excitation frequency 𝜔. Numerical simulation results, obtained by employing the above-mentioned
procedures, are shown in the figures with markers.

In the following sections we present results for two impedance models (see Appendices A and B) and cubic-nonlinear stiffness and
amping elements. This particular selection follows from the fact that: (a) a cubic-nonlinear system produces 𝑚 = 1, 3 harmonics
t the first order, hence allows the study of higher harmonic wave propagation and results in a correction to the fundamental
requency; also (b) this kind of nonlinearity does not generate the zero-frequency (static offset) component that would make the
nalysis more complex. For all analytical models, we present results for up to 𝜖2 order.
It should be mentioned that the framework outlined in Section 2 is valid for |𝑤0𝛼| ≫ |𝑤1𝛼| ≫ … in the expansion, Eq. (3). A

iolation of this requirement may occur for low-damped cubic-nonlinear scatterers with linear-resonant wavenumber 𝑘𝑛 excited by
n incident wave at 𝑘𝑛∕

√

3, which may cause the third-harmonic response to be greatly amplified. A narrow band around 𝑘𝑛∕
√

3 is
therefore grayed out in Figs. 3 and 4, where the accuracy of the expansion may require further investigation, which is beyond the
scope of this article.

3.2. Single scatterer

3.2.1. Linear reflection and transmission
We consider a single nonlinear scatterer, located at 𝑥 = 0. The reflection and transmission coefficients follow as special cases of

Eqs. (20) and (22). In the presence of only one scatterer the linear reflection coefficient is, like the reciprocal linear transmission
coefficient, also independent of incidence direction, that is, 𝑅0 = 𝑅0±, as Eqs. (20) reduce to

𝑅0 =
i𝜇

4𝑘3 + 𝜇(1 − i)
, 𝑇0 = 1 + 𝑅0. (23)

Equivalently,

𝑅0 = i𝑒i𝜙 sin𝜙, 𝑇0 = 𝑒i𝜙 cos𝜙, where tan𝜙 =
(

1 + 4𝑘3∕𝜇
)−1 (24)

with 𝜙 real in the lossless case (𝜇 real valued), immediately showing energy conservation (|𝑅0|
2 + |𝑇0|

2 = 1).
The higher-order reflection and transmission coefficients, defined above as farfield amplitudes, are both independent of incidence

irection and also coincide with each other, that is, 𝑅(𝑚)
𝑛 = 𝑇 (𝑚)

𝑛 = 𝑅(𝑚)
𝑛± = 𝑇 (𝑚)

𝑛± , and are given, as follows from Eqs. (22), by

𝑅(𝑚)
𝑛 = 𝑇 (𝑚)

𝑛 = (1 + i)−1
(

1∕𝑔(𝑚)0 − 𝜇(𝑚))−1𝑐(𝑚)𝑛0 , (25)

here 𝑔(𝑚) = 𝑔
(

√

𝑚𝑘, 0
)

and 𝑐(𝑚) = 𝑐(𝑚)(0). We next present the influence of nonlinear elements on wave propagation.
5
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Fig. 1. (a) Leading-order reflection and transmission coefficients for a single scatterer (model 𝐴) with cubically nonlinear stiffness, also with higher-order
corrections at the fundamental frequency for different incident amplitudes 𝑎𝑗 = 𝑗 mm, 𝑗 = 1, 1.25, 1.5. (b) Reflected amplitudes at the third harmonic for
different incident amplitudes. The dashed vertical line corresponds to the linear resonance of the scatterer. The gray patches are centered around 𝑘𝑛∕

√

3 and 𝑘𝑛,
where 𝑘𝑛 = 1.521 m−1 is the anti-resonance wavenumber of the scatterer. The circles correspond to FEM results.

.2.2. Single scatterer with nonlinear stiffness, impedance model A
A single scatterer generates harmonics equally towards ±𝑥 regardless of incidence, according to Eq. (25). The equality follows

from the spatial symmetry of the Green’s function with respect to the scatterer’s location and expresses the fact that a single scatterer
radiates energy equally in both directions. A lossless scatterer of model 𝐴 (see Appendix A.1) with the following properties is
considered,

𝑀 = 1 kg, 𝜈 = 0 N m−1 s, 𝜅 = 5.35248 N m−1, 𝜅∗ = 104 N m−3. (26)

Parameters𝑀 , 𝜈, 𝜅 define the linear impedance via Eq. (A.2) and 𝜅∗ defines the cubic nonlinearity, see Appendix B.3. For simplicity
it is assumed that 𝐷 = 1 N m2 and 𝜌′ = 1 kg m−1 in all simulations.

The reflection and transmission coefficients at the fundamental frequency are plotted in Fig. 1a, both for a linear scatterer, where
the coefficients are independent of the incident amplitude, and for a nonlinear scatterer with the properties of Eq. (26), for three
different incident amplitudes. For simplicity, the second-order fundamental-frequency reflection and transmission coefficients are
represented by 𝑅̂(1)

2 = 𝑅0 +
(

𝑅(1)
1 + 𝑅(1)

2

)

∕𝑎 and 𝑇̂ (1)
2 = 𝑇0 +

(

𝑇 (1)
1 + 𝑇 (1)

2

)

∕𝑎, respectively. Results from FEM simulations are shown

with circular markers, also in the following plots for a single scatterer. Bands around both 𝑘𝑛 and 𝑘𝑛∕
√

3 are grayed-out in all
following plots for a single scatterer, where resonances of the fundamental or the third harmonic may cause deterioration of the
expansion accuracy, although this requires further analysis. It can be seen that the nonlinearity induces amplitude-dependent shifts
to the transmission and reflection coefficients at the fundamental frequency, as can more clearly be observed in the inset of Fig. 1a.

The amplitude of the third harmonic is plotted in Fig. 1b and is seen to be both frequency- and amplitude-dependent, with a
characteristic peak slightly above the linear resonance of the scatterer. Good agreement is observed between analytical and numerical
results both at the fundamental and at the third harmonic, apart from some discrepancy in the predicted third harmonic at a
wavenumber close to 𝑘𝑛∕

√

3, within the left grayed-out region in Fig. 1b, although the response is very small there, below 10−8 m,
hich may cause issues of accurately extracting the amplitude numerically in the FEM model.
Two main observations need to be made. First, some portion of the incident wave energy is converted into the third harmonic

ave. Second, it can be seen, more clearly in the inset of Fig. 1a, that the nonlinearity causes the reflection and transmission
oefficients to shift by different amounts depending on the incident amplitude, thus providing amplitude-dependent tunability, for
xample of the frequency at which the transmission is zero, or minimum, and the reflection accordingly maximum. Both of these
eneral observations also apply to the other configurations of a single nonlinear scatterer presented below.

.2.3. Single scatterer with nonlinear damping, impedance model A
Results for a nonlinear scatterer of model 𝐴 of Appendix A.1 with mass and linear stiffness coefficient as in Eq. (26), but without

onlinear stiffness, that is, 𝜅∗ = 0, and instead with linear damping coefficient 𝜈 = 0.04627 N m−1 s and nonlinear damping
oefficient 𝜈∗ = 500 N m−3 s3, are shown in Fig. 2. The same two effects of amplitude-dependent fundamental frequency transmission
nd reflection can be observed. However, for the case of nonlinear damping, the amplitude–frequency characteristics of the third-
armonic waves are qualitatively different. Namely, although the response peaks occur at the same wavenumbers as with nonlinear
tiffness, they are followed by an approximately flat broadband response at higher wavenumbers. The analytical and numerical
esults match well, apart from some inaccuracies in the FEM-predicted values for the third-harmonic wave when the response is

−8
6

ery small, below 10 m, which again occur at lower 𝑘.
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Fig. 2. (a) Leading-order reflection and transmission coefficients for a single scatterer (model 𝐴) with cubically nonlinear damping, also with higher-order
corrections at the fundamental frequency for different incident amplitudes 𝑎𝑗 = 𝑗 mm, 𝑗 = 1, 1.25, 1.5. (b) Reflected amplitudes at the third harmonic for
different incident amplitudes. The dashed vertical line corresponds to the resonance of the scatterer. The gray patches are centered around 𝑘𝑛∕

√

3, where
𝑘𝑛 = 1.521 m−1 is the anti-resonance wavenumber of the scatterer. The circles correspond to FEM results.

3.2.4. Single scatterer with nonlinear stiffness, impedance model B
A scatterer of model 𝐵 (see Appendix A.2) with the properties of Eq. (26) but with 𝜅∗ = 105 N m−3 is now considered. The

reflection and transmission coefficients at the fundamental frequency are plotted in Fig. 3a, for both the linear and the nonlinear
cases for three different incident amplitudes. In the case of a linear scatterer of model 𝐵, there are two characteristic points, namely,
one where the transmission is minimum and the reflection maximum and another with the inverse response, the latter corresponding
to the scatterer resonance. Therefore, by varying the incident amplitude, the frequencies at which these characteristic responses occur
can be tuned. The generated third harmonic is shown in Fig. 3b for three different amplitudes.

The frequency- and incident-amplitude-dependent third harmonic is plotted in Fig. 3b, and is now seen to have a peak below the
linear resonance of the scatterer. It follows from Eqs. (11b), (12), (18), (25), (A.2), (B.6) and (B.24)2 that the dominant contribution
to the third harmonic is proportional to the third power of the incident wave amplitude, specifically

𝑅(3)
1 = 𝑇 (3)

1 = (1 + i)−1
(

1∕𝑔(3)0 − 𝜇(3))−1(− 𝜅∗

4𝐷
)

𝑢30(0)

= −i𝜅∗𝑎3

16𝐷
(
√

3𝑘
)3

⎛

⎜

⎜

⎜

⎝

1 + (1 − i)

(

9𝑀𝜔2 − 𝜅
)

4𝐷
(
√

3𝑘
)3

⎞

⎟

⎟

⎟

⎠

−1
(

1 + (1 − i)

(

𝑀𝜔2 − 𝜅
)

4𝐷𝑘3

)−3

. (27)

This shows that |𝑅(3)
1 | = |𝑇 (3)

1 | = O(𝑎3𝑘9) for 𝑘 ≪ 1 and O(𝑎3𝑘−7) for 𝑘 ≫ 1. In this case, the response peak occurs at a wavenumber
below resonance. There is excellent agreement between the analytical and numerical models both for the fundamental frequency
response and for the generated third harmonic.

3.2.5. Single scatterer with nonlinear damping, impedance model B
A scatterer of model 𝐵 with nonlinear damping is also simulated, with mass and linear stiffness coefficient as in Eq. (26), but

with 𝜈 = 0.04627 N m−1 s, 𝜅∗ = 0 and 𝜈∗ = 104 N m−3 s3, see Appendix B.3, and the corresponding results are shown in Fig. 4.
The expression for the third harmonic reflection coefficient follows from Eqs. (27), (B.6) and (B.26) by the replacement 𝜅∗ → i𝜈∗𝜔3

in Eq. (27). Hence, |𝑅(3)
1 | = |𝑇 (3)

1 | = O(𝑎3𝑘15) for 𝑘 ≪ 1 and O(𝑎3𝑘−1) for 𝑘 ≫ 1. As for model 𝐴, the amplitude of the third
harmonic generated by the nonlinear damping, plotted in Fig. 4b, remains approximately flat over a broad frequency range beyond
the response peak. The analytical and numerical results display excellent agreement, as in the case of nonlinear stiffness for model
𝐵.

3.3. Multiple scatterers

3.3.1. A tunable filter: amplitude-dependent nearly perfect absorption at the fundamental frequency
A cluster of two scatterers is designed which display amplitude-dependent absorbing properties at the frequency of the incident

wave. We assume that the incident wave propagates from left to right, that is, towards +𝑥, interacts with the cluster and the response
is measured in the forward (+𝑥) direction. As a side effect, the cluster generates a third harmonic that propagates towards both sides
of the cluster with substantially smaller amplitude-dependency. The starting point for the design is the impedances of a pair of linear
scatterers presented in [5] (Eq. (53)), which achieve one-sided total absorption over all frequencies, and can be written as

𝜇̂ = 4𝑘3
[

−1 +
(

𝑒−𝑘𝑑 + 2 sin 𝑘𝑑
)

𝑒−i𝑘𝑑
]−1 , (28a)
7

1
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c

Fig. 3. (a) Leading-order reflection and transmission coefficients for a single scatterer (model 𝐵) with cubically nonlinear stiffness, also with higher-order
orrections at the fundamental frequency for different incident amplitudes 𝑎𝑗 = 𝑗 mm, 𝑗 = 1, 1.25, 1.5. (b) Reflected amplitudes at the third harmonic for
different incident amplitudes. The dashed vertical line corresponds to the linear resonance of the scatterer. The gray patches are centered around 𝑘𝑛∕

√

3, where
𝑘𝑛 = 1.521 m−1 is the resonance wavenumber of the scatterer. The circles correspond to FEM results.

Fig. 4. (a) Leading-order reflection and transmission coefficients for a single scatterer (model 𝐵) with cubically nonlinear damping, also with higher-order
corrections at the fundamental frequency for different incident amplitudes 𝑎𝑗 = 𝑗 mm, 𝑗 = 1, 1.25, 1.5. (b) Reflected amplitudes at the third harmonic for
different incident amplitudes. The dashed vertical line corresponds to the resonance of the scatterer. The gray patches are centered around 𝑘𝑛∕

√

3 and 𝑘𝑛, where
𝑘𝑛 = 1.521 m−1 is the resonance wavenumber of the scatterer. The circles correspond to FEM results.

𝜇̂2 = 4𝑘3
[

−1 + 𝑒−𝑘𝑑𝑒i𝑘𝑑
]−1 , (28b)

where 𝑑 is the distance between the two scatterers. These impedances are both passive for 𝑘𝑑 ∈ [1.0067𝜋, 2𝜋]. We then seek a pair
of mass–spring–damper scatterers of model 𝐴, whose impedance is given in Eq. (A.1), that achieve one-sided total absorption at a
specific frequency, or equivalently, wavenumber. For this aim, we choose a value for 𝑘𝑑 = 𝑘0𝑑 that lies within the range of the
nondimensional wavenumber where the impedances of Eq. (28) are passive. By assuming given values for the distance between the
scatterers, 𝑑, and the masses of the two scatterers, 𝑀1,𝑀2, and equating the real and imaginary parts of each of Eqs. (28a) and
(28b) with those of Eq. (A.1), all evaluated at 𝑘0, we can extract the stiffness, 𝜅̂1, 𝜅̂2, and damping, 𝜈̂1, 𝜈̂2, coefficients of the two
scatterers. We have thus designed a cluster of two mass–spring–damper scatterers of model 𝐴 that completely absorb waves incident
from the left with wavenumber 𝑘0.

We then introduce a nonlinear stiffness with coefficient 𝜅∗
2 into the second scatterer, whereas the first scatterer remains linear

(𝜅∗
1 = 0). This nonlinear cluster will now not present total absorption at the specified wavenumber 𝑘0, since the response at the

fundamental will now be shifted by the higher-order contributions 𝑅(1)
𝑛 and 𝑇 (1)

𝑛 , given by Eqs. (22a) and (22b). To get a cluster
that achieves total absorption at 𝑘0 for a given incident amplitude 𝑎 we choose to keep 𝑀1 and 𝑀2 unaltered and determine the
value of 𝜅∗

2 , and we use a combined gradient- and genetic algorithm-based optimization approach to determine 𝜅1, 𝜅2, 𝜈1 and 𝜈2
that minimize the scattered power at the fundamental, given by |

|

|

𝑅(1)
+ (𝑘0)

|

|

|

2
+ |

|

|

𝑇 (1)
+ (𝑘0)

|

|

|

2
, where 𝑅(1)

+ = 𝑅0+ + (𝑅(1)
1+ + 𝑅(1)

2+)∕𝑎 and
𝑇 (1)
+ = 𝑇0 + (𝑇 (1)

1+ + 𝑇 (1)
2+ )∕𝑎. We expect that the response of minimum scattered power by the nonlinear cluster at the fundamental

should occur at a wavenumber close to 𝑘 , since the shift induced by the nonlinearity is expected to be small. The goal function
8

0



Journal of Sound and Vibration 527 (2022) 116859A. Karlos et al.

i
a
p
t
a
a
f
t
i

3

t
h
a
p
m
i
s
F
p

𝜅
𝑥
t
t
a
t
l

d

Fig. 5. Amplitude of the reflected and transmitted waves at the fundamental and at the third harmonic from a cluster of two scatterers with a wave incident
from the left, for three different incident amplitudes. Model parameters are selected to give nearly total absorption of the fundamental frequency when the
input amplitude is 1 mm. When the incident amplitude is slightly different from the optimal, the cluster ceases to perform as an absorbing filter, as seen by the
reflected and transmitted amplitudes plotted in light-colored thin lines. The reflected and transmitted amplitudes at the third harmonic for all input amplitudes,
plotted in dashed and dash-dotted lines, are practically indistinguishable from each other at the scaling of the graph.

of minimum scattered power at 𝑘0 should then be achievable by a specific small perturbation of the free parameters with respect
to those that give |

|

𝑅0+(𝑘0)||
2 + |

|

𝑇0(𝑘0)||
2 = 0, that is, perfect absorption, in the linear case. Therefore, as starting values for the

optimization parameters 𝜅1, 𝜅2, 𝜈1 and 𝜈2 we use the values of the corresponding hatted parameters, 𝜅̂1, 𝜅̂2, 𝜈̂1 and 𝜈̂2, obtained for
the linear cluster above.

Choosing 𝑑 = 𝜋 m, 𝑀1 = 𝑀2 = 1 kg, 𝜅∗
2 = 102 N m−3 and 𝑘0 = 1.1 m−1, the values for the stiffness and damping coefficients

obtained from the optimization for 𝑎 = 10−3 m are 𝜅1 = 1.302778 N m−1, 𝜅2 = 1.1367928 N m−1, 𝜈1 = 0.0478412 N m−1 s−1 and
𝜈2 = 0.0019821 N m−1 s−1. A detail of the response of the system around 𝑘0 for these values is given in Fig. 5 for three different
nput amplitudes, that is, the amplitude of 𝑎 = 10−3 m used for the optimization, a slightly smaller amplitude of 0.99 × 10−3 m and
slightly larger amplitude of 1.01× 10−3 m. We first focus on the results for an input amplitude of 10−3 m, for which we get nearly
erfect absorption at the fundamental frequency for 𝑘 = 𝑘0, in accordance with the optimization aim. It can be also seen that at
his wavenumber, the generated third-harmonic waves are many orders of magnitude larger than those at the fundamental. We can
lso observe that this effect is very narrowband around 𝑘0. If we then look into the response for the slightly non-optimal incident
mplitudes of 0.99 × 10−3 and 1.01 × 10−3 m, plotted in lighter-colored lines, we can see that the scattered wave amplitudes at the
undamental at 𝑘 = 𝑘0 are now similar to or larger than those at the third harmonic, the latter being almost the same as those for
he amplitude of 1 × 10−3 m. This means that the system presents a fine tuning with respect to the input amplitude, so that a wave
ncident from the left with wavenumber 𝑘 = 𝑘0 will be nearly fully absorbed only when its amplitude is very close to 1 × 10−3 m.

.3.2. A frequency converter: three scatterers with transmission only at the third harmonic
We then present the design of a cluster of three scatterers of model 𝐴 which receives the incident wave and only transmits

he third harmonic. At the same time the reflection at the fundamental frequency may be arbitrary and the reflection at the third
armonic frequency is zero. A schematic of the system is illustrated in Fig. 6. We assume that either pair of consecutive scatterers
re far away from each other, at least two wavelengths apart, so that we can neglect the effect of evanescent waves in the design
rocedure. To filter out the third harmonic from the reflection side and the fundamental from the transmission side we use linear,
ass–spring outer scatterers and tune them to have zero transmission at the third harmonic and the fundamental, respectively, when
n isolation. We then use a scatterer with a mass–spring–damper middle scatterer with nonlinear stiffness and optimize its linear
tiffness coefficient to give a maximum third harmonic at 𝑘 = 𝑘0 when in isolation, given the other parameters of the scatterer.
inally, we choose an input amplitude 𝑎 and use a genetic-algorithm-based optimization for the position of the middle scatterer to
roduce a maximum of the global third harmonic transmission coefficient of the cluster at 𝑘 = 𝑘0.
Results for 𝑘0 = 1.03 m−1, 𝜌′ = 1 kg m−1, 𝐷 = 1 N m2, 𝑀1 = 𝑀2 = 𝑀3 = 1 kg, 𝜅1 = 7.0052 N m−1, 𝜅2 = 0.875 N m−1,

3 = 0.895 N m−1, 𝜈1 = 𝜈3 = 0 N m−1 s−1, 𝜈2 = 0.0187 N m−1 s−1, 𝜅∗
1 = 𝜅∗

3 = 0 N m−3, 𝜅∗
2 = 500 N m−3, 𝑥1 = 0 m, 𝑥2 = 22.014 m,

3 = 38.4311 m, with 𝑎 = 1 mm used for the optimization, are shown in Fig. 7 for three different incident amplitudes. It can be seen
hat at 𝑘0 = 1.03 m−1 the transmission coefficient at the fundamental and the reflection coefficient at the third harmonic vanish, so
hat only a third-harmonic wave is transmitted, and only a fundamental-frequency wave is reflected. Therefore, this cluster acts as
frequency converter, transferring a portion of the incident energy to the third harmonic and transmitting it. It can also be seen
hat this effect is independent of incident amplitude, since the filtering at the two sides of the cluster is achieved with the outer,
inear scatterers, whose response does not depend on amplitude.
The response of the frequency converter also clearly demonstrates the breaking of reciprocity, that is, the transmission differs

−1
9

epending on the side of incidence. A wave with 𝑘 = 1.03 m incident from the right is fully reflected by the first scatterer it
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Fig. 6. Design of a cluster of three scatterers which transmits only the third harmonic when excited at a specific wavenumber 𝑘0 for left incidence. Design
teps: 0) assume scatterers of impedance model 𝐴, where the two outer ones are linear and lossless and the middle one also has linear damping and nonlinear
tiffness. Also assume incidence from the left and that all scatterers are far enough from each other to avoid nearfield tunneling. 1) Choose 𝑀1 and define 𝜅1
o that scatterer 1 locally does not transmit the third harmonic, so that this will not be reflected by the cluster. 2) Assume 𝑀3 and define 𝜅3 so that scatterer 3
ocally does not transmit the fundamental wavenumber, so that this will not be transmitted by the cluster. 3) Choose 𝑀2, 𝜈2, 𝜅∗

2 and define 𝜅2 so that scatterer 2
enerates a third harmonic with its maximum at around 𝑘 = 𝑘0. Choose an input amplitude 𝑎 and optimize the position 𝑥2 to give a maximum global transmitted
hird harmonic, 𝑇 (3), at 𝑘 = 𝑘0.

Fig. 7. Amplitude of the reflected and transmitted waves at the fundamental and at the third harmonic from a cluster of three scatterers with a wave incident
from the left, designed according to the procedure outlined in Fig. 6 with the position of the middle scatterer optimized to give a maximum transmitted third
harmonic at 𝑘 = 1.03 m−1 when the input amplitude is 1 mm. Results for three different incident amplitudes are shown.

encounters, regardless of incident amplitude. Therefore, no third-harmonic wave will be produced, since the incident wave will
not reach the middle, nonlinear scatterer. This presents an obvious asymmetry with the case of incidence from the left, where a
considerable third-harmonic wave is generated, as seen in Fig. 7.

4. Conclusions

The multiple-scattering problem of flexural waves on a beam with nonlinear point attachments has been studied. Two particular
types of mass–spring–damper scatterers have been considered, and two different types of nonlinearity, that is, nonlinear stiffness
and nonlinear damping, both with a power-law dependence on the displacement and velocity, respectively. Analytical solutions for
the vertical displacement of the beam have been obtained using a perturbation expansion with respect to a bookkeeping parameter.
The perturbation expansion of the nonlinear equation of motion results in an infinite-ordered set of inhomogeneous linear equations,
which are solved sequentially. The zeroth-order equation corresponds to the linear multiple-scattering problem, and the first-order
solution needs to be considered to capture the effect of nonlinearity. Second-order approximations have been used in the presented
results for higher accuracy.

The analysis of the nonlinear multiple-scattering problem leads to three fundamental differences as compared to the linear
10

counterpart.
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1. Harmonic waves at frequencies that are multiples of the incident wave are generated at a nonlinear scatterer. As a
consequence, part of the incident energy is transferred from the fundamental to higher harmonic frequencies. These higher-
harmonic waves undergo complex scattering between the attachments, which may be controlled by proper adjustment of the
scatterers’ impedances and positions.

2. The fundamental-frequency component admits an amplitude-dependent correction term at higher expansion orders. This
correction term may be asymmetric with respect to the incidence side and affects the reflection and transmission coefficients,
enabling (amplitude-)tunability of the dynamic characteristics of the system.

3. As a result of the two previous properties, when at least two scatterers are present, not only the reflection, but also the
transmission at the different harmonics (including the fundamental) may be asymmetric with respect to the side of incidence.
Therefore, the nonlinearity causes the system to behave non-reciprocally.

The proposed solution approach for the nonlinear multiple-scattering problem was first validated against FEM results for a single
onlinear scatterer of cubically nonlinear stiffness or damping for either of the two mass–spring–damper scatterer models. The cubic
onlinearity generates the third-harmonic component at the first expansion order, thus demonstrating energy conversion from the
undamental to the third harmonic, as well as a fundamental-frequency component that is superimposed with the incident wave.
he complex amplitudes of both the third harmonic and the generated additional fundamental-frequency component depend on
he incident wave amplitude. In the case of the third harmonic, this means that the third harmonic wave amplitude depends on
he incident wave amplitude. For the fundamental frequency, it is shown that the amplitude-dependent ‘‘correction’’ generated by
he nonlinearity renders the response of the scatterer tunable by controlling the incident amplitude. This can, for example, make it
ossible to shift the frequencies at which either the reflection or the transmission becomes minimum or maximum by controlling
he amplitude of the incident wave.
Analytical results for two examples of attachment clusters which exhibit more complicated scattering patterns were next

resented. The first setup consists of two scatterers where one has a cubically nonlinear spring. The system parameters are selected
o nearly completely absorb the fundamental-frequency wave only at a specific incident amplitude for one side of incidence. Thus,
he system behaves as an amplitude-tunable filter at a specific frequency. The second system consists or three scatterers where
he middle one has cubically nonlinear spring. The cluster is designed to prevent transmission of the fundamental frequency and
llow transmission of the third harmonic. Therefore, this system comprises a frequency converter, with a proportion of the incident
nergy transferred to the third harmonic along the direction of transmission, when the wave is incident from the left. This frequency
onverter also clearly illustrates the induced non-reciprocity, since if the input wave is incident from the right, no waves at the
undamental and third harmonic frequencies are transmitted.
The nonlinear multiple-scattering analysis framework developed here allows for investigation of the interaction between waves

ropagating in a linear substrate (beam) with nonlinear point attachments. The latter can be seen as a nonlinear point force, which
epends on the beam displacement at that point. Such coupling is characteristic of a mechanical element interacting with the
eam. Therefore, the proposed method can be applied to model, predict and control the response of point-contacts with Hertzian
onlinearity or finite deformation effects, mechanical joints with nonlinearity due to cracks, frictional attachments, and other
ommon departures from purely linear behavior.
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ppendix A. Linear impedance models

Expressions are given for the complex impedance coefficients 𝜇(𝑚)
𝐴𝛼 , introduced in Eq. (8), for the two most popular discrete

mpedance models [5,12]. Models 𝐴 and 𝐵 can be achieved through parallel combinations of a spring and a damper attached to a
11
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o
n

o

Fig. A.8. Schematic of an infinite beam of linear density 𝜌′ and bending stiffness 𝐷 with 𝑁 model 𝐴 scatterers. The 𝛼th scatterer, positioned at 𝑥𝛼 , consists
f a mass, 𝑀𝛼 , connected to the beam via a spring of stiffness 𝜅𝛼 and a damper of damping coefficient 𝜈𝛼 . The stiffness and the damping can in general be
onlinear, with coefficients 𝜅∗

𝛼 and 𝜈∗𝛼 .

Fig. A.9. Schematic of an infinite beam of linear density 𝜌′ and bending stiffness 𝐷 with 𝑁 point scatterers of impedance model 𝐵 attached to it, where the
𝛼th scatterer, positioned at 𝑥𝛼 , consists of a mass, 𝑀𝛼 , clamped on the beam and connected to a rigid constraint through a spring of stiffness 𝜅𝛼 and a damper
of damping coefficient 𝜈𝛼 . The stiffness and the damping can in general be nonlinear, with coefficients 𝜅∗

𝛼 and 𝜈∗𝛼 .

A.1. Model A

Model 𝐴, denoted 𝜇𝐴, has a mass, 𝑀𝛼 , connected to the beam at position 𝑥𝛼 via a parallel combination of a spring of stiffness 𝜅𝛼
and a damper of damping coefficient 𝜈𝛼 , as shown in the middle of Fig. A.8 (the spring and damper with arrows denote nonlinear
elements, not considered in this section). The impedance of the 𝛼th scatterer, 𝜇𝐴𝛼 , is defined as the ratio of the scatterer force acting
n the beam, to the displacement of the beam at the attachment, and, in general for the 𝑚th harmonic frequency, is [5]

𝜇(𝑚)
𝐴𝛼 = 1

𝐷

(

1
(𝑚𝜔)2𝑀𝛼

− 1
𝜅𝛼 − i(𝑚𝜔)𝜈𝛼

)−1
. (A.1)

A.2. Model B

Model 𝐵 is a point mass clamped to the beam and connected to a rigid constraint through a parallel connection of a spring
and a damper, as shown in Fig. A.9. The impedance for this scatterer for the 𝑚th harmonic frequency, which stems from its linear
properties, is expressed as [5]

𝜇(𝑚)
𝐵𝛼 = 1

𝐷
(

(𝑚𝜔)2 𝑀𝛼 + i (𝑚𝜔) 𝜈𝛼 − 𝜅𝛼
)

. (A.2)

Appendix B. Nonlinear forcing terms

B.1. Models 𝐴 and 𝐵

The forcing terms for quadratic and cubic nonlinearity for an arbitrary expansion order, both for nonlinear stiffness and nonlinear
damping, are given here. For notational convenience, we present the following analysis in terms of the 𝑛th-order displacement, 𝑤𝑛,
which is sufficient for impedance model 𝐵, where no additional degree of freedom is present (i.e. 𝑤′ (𝜏) = 0). The same procedure
12
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E

a

can be followed for impedance model 𝐴 using the displacement difference 𝑤𝑛 − 𝑤𝑀𝑛 (then 𝑤′
𝛼(𝜏) = 𝑤𝑀𝑛). It can be seen from

qs. (2)–(4) and (A.2) that the nonlinear stiffness and damping terms can be written as
∞
∑

𝑛=1
𝜖𝑛𝐶𝑛 =

∞
∑

𝑛=1
𝜖𝑛

(

𝑆𝑛 +𝐷𝑛
)

= −𝜖 𝜅
∗

𝐷

( ∞
∑

𝑛=0
𝜖𝑛𝑤𝑛

)𝑝

− 𝜖 𝜈
∗

𝐷

( ∞
∑

𝑛=0
𝜖𝑛𝑤̇𝑛

)𝑝

, (B.1)

for a generic nonlinearity of order 𝑝. Terms 𝑆𝑛 and 𝐷𝑛 in (B.1) stand for the stiffness- and damping-induced nonlinear forces, respec-
tively. This form of nonlinear forcing is next specified for the quadratic and cubic nonlinearities. Note that the dimensions/units of
𝜅∗ and 𝜈∗ depend upon 𝑝 and the fact that 𝐶𝑛 has dimensions of (length)−2.

B.1.1. Model 𝐴
Impedance model 𝐴 involves an additional degree of freedom as compared to model 𝐵, that is, the displacement of the scatterer

mass. Some elaboration is therefore required to obtain the forcing terms 𝑐(𝑚)𝑛 in Eq. (14). By expanding the equation of motion of
the mass, the mass displacement amplitude of order 𝑛 and at harmonic 𝑚𝜔 can be written with respect to the corresponding beam
displacement amplitude and the forcing terms as

𝑢(𝑚)𝑀𝑛 =
𝜇(𝑚)
𝑆𝐷

𝜇(𝑚)
𝑀 + 𝜇(𝑚)

𝑆𝐷

𝑢(𝑚)𝑛 +
𝑠(𝑚)𝑛 + 𝑑(𝑚)𝑛

𝜇(𝑚)
𝑀 + 𝜇(𝑚)

𝑆𝐷

, (B.2)

where

𝜇(𝑚)
𝑀 = 1

𝐷
(𝑚𝜔)2𝑀, 𝜇(𝑚)

𝑆𝐷 = 1
𝐷

(i𝑚𝜔𝜈 − 𝜅) , (B.3)

nd 𝑠(𝑚)𝑛 and 𝑑(𝑚)𝑛 are functions of the displacement difference of the beam and the scatterer mass, 𝑢(𝑚)𝑛 − 𝑢(𝑚)𝑀 (instead of only the
beam displacement 𝑢(𝑚)𝑛 in the simpler model 𝐵 below). It is also recalled that the beam displacement is evaluated at the scatterer’s
position. The 𝑛th-order and 𝑚th-harmonic force acting on the beam, which corresponds to the bracketed term in the sum in Eq. (14),
is written as

𝜇(𝑚)
𝑀 𝑢(𝑚)𝑀𝑛 = 𝜇(𝑚)

𝐴 𝑢(𝑚)𝑛 +
𝜇(𝑚)
𝐴

𝜇(𝑚)
𝑆𝐷

(

𝑠(𝑚)𝑛 + 𝑑(𝑚)𝑛
)

, (B.4)

where the impedance of model 𝐴, given in Eq. (A.1), has been expressed as 𝜇(𝑚)
𝐴 = 𝜇(𝑚)

𝑀 𝜇(𝑚)
𝑆𝐷∕(𝜇

(𝑚)
𝑀 + 𝜇(𝑚)

𝑆𝐷). Consequently, the forcing
terms 𝑐(𝑚)𝑛 in Eq. (14) for impedance model 𝐴 are given by

𝑐(𝑚)𝑛 =
𝜇(𝑚)
𝐴

𝜇(𝑚)
𝑆𝐷

(

𝑠(𝑚)𝑛 + 𝑑(𝑚)𝑛
)

. (B.5)

B.1.2. Model 𝐵
For impedance model 𝐵, where the beam displacement is the only degree of freedom present, the forcing terms 𝑐(𝑚)𝑛 in Eq. (14)

are

𝑐(𝑚)𝑛 = 𝑠(𝑚)𝑛 + 𝑑(𝑚)𝑛 , (B.6)

where 𝑠(𝑚)𝑛 and 𝑑(𝑚)𝑛 are related to 𝑆𝑛 and 𝐷𝑛 via

𝑆𝑛 =
1
2
∑

𝑚
𝑠(𝑚)𝑛 𝑒−i𝑚𝜏 + c.c.,

𝐷𝑛 =
1
2
∑

𝑚
𝑑(𝑚)𝑛 𝑒−i𝑚𝜏 + c.c..

(B.7)

Explicit expressions for 𝑠(𝑚)𝑛 and 𝑑(𝑚)𝑛 for 𝑛 = 1 and 𝑛 = 2 for quadratic and cubic nonlinearity for impedance model 𝐵 are given
next.

B.2. Quadratic nonlinearity

We first consider the forcing due to the nonlinear stiffness, 𝑆𝑛, which only involves the first term in the right-hand side of
Eq. (B.1). For quadratic nonlinearity, 𝑝 = 2, the square of the sum can be expressed as a Cauchy product, giving

∞
∑

𝑛=1
𝜖𝑛𝑆𝑛 = −𝜖 𝜅

∗

𝐷

∞
∑

𝑛=0
𝜖𝑛

𝑛
∑

𝑗=0
𝑤𝑗𝑤𝑛−𝑗 ⇒

∞
∑

𝑛=1
𝜖𝑛𝑆𝑛 = −𝜅∗

𝐷

∞
∑

𝑛=1
𝜖𝑛

𝑛−1
∑

𝑗=0
𝑤𝑗𝑤𝑛−1−𝑗 . (B.8)

It follows from Eq. (B.8) that

𝑆𝑛 = −𝜅∗

𝐷

𝑛−1
∑

𝑤𝑗𝑤𝑛−1−𝑗 . (B.9)
13
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F

The calculation of 𝑆𝑛 requires the 𝑛 displacements of previous expansion orders from zero to 𝑛− 1, calling for a sequential solution
procedure. Starting from 𝜖1 and expressing the displacements 𝑤0 as in Eq. (7), 𝑆1 is written as

𝑆1 = −𝜅∗

𝐷
𝑤2

0 = −𝜅∗

𝐷

( 1
2
𝑢0𝑒

−i𝜏 + c.c.
)2

= −1
4
𝜅∗

𝐷

(

|

|

𝑢0||
2 + 𝑢20𝑒

−i2𝜏 + c.c.
)

, (B.10)

where all terms are evaluated at 𝑥𝛼 . It can be seen that the forcing term 𝑆1 involves a zero-frequency (DC) and 2𝜔 terms.
Consequently, the terms of these time-dependent factors will appear in the first-order displacement as

𝑤1 =
1
2
𝑢(0)1 + 1

2
𝑢(2)1 𝑒−i2𝜏 + c.c.. (B.11)

With this, the second-order quadratic forcing term can be derived as

𝑆2 = −2𝜅
∗

𝐷
𝑤0𝑤1 = −1

2
𝜅∗

𝐷

[(

2𝑢0Re
{

𝑢(0)1

}

+ 𝑢̄0𝑢
(2)
1

)

𝑒−i𝜏 + 𝑢0𝑢
(2)
1 𝑒−i3𝜏 + c.c.

]

. (B.12)

Eq. (B.12) shows that the second-order displacement will involve wave components at frequencies 𝜔 and 3𝜔, and can therefore be
written as

𝑤2 =
1
2
𝑢(1)2 𝑒−i𝜏 + 1

2
𝑢(3)2 𝑒−i3𝜏 + c.c.. (B.13)

In the same way, 𝑆3 can be calculated, which will involve a DC term and harmonics at 2𝜔 and 4𝜔. In general, it can be deduced
from the form of the forcing terms 𝑆𝑛 given in Eq. (B.9) for quadratic nonlinearity that the 𝑛th-order forcing term will involve all
the odd or even harmonics up to order 𝑛+ 1 for 𝑛 even or odd, respectively. Therefore, the terms 𝑆𝑛 can be expressed with respect
to forcing terms 𝑠(𝑚)𝑛 corresponding to the 𝑛th-order wave amplitudes at frequency 𝑚𝜔 as

𝑆𝑛 =

⎧

⎪

⎨

⎪

⎩

1
2
∑

𝑛
2
𝑗=0 𝑠

(2𝑗+1)
𝑛 𝑒−i(2𝑗+1)𝜏 + c.c., for 𝑛 even,

1
2
∑

𝑛+1
2

𝑗=0 𝑠(2𝑗)𝑛 𝑒−i2𝑗𝜏 + c.c., for 𝑛 odd.
(B.14)

For the equations of orders 𝜖1 and 𝜖2, for which 𝑆𝑛 is written explicitly in Eqs. (B.10) and (B.12), the forcing terms 𝑠
(𝑚)
𝑛 for the wave

amplitudes can be derived by comparison with the appropriate branch of Eq. (B.14) for 𝑛 either odd or even, which gives

𝑠(0)1 = −1
2
𝜅∗

𝐷
|

|

𝑢0||
2 , 𝑠(2)1 = −1

2
𝜅∗

𝐷
𝑢20,

𝑠(1)2 = −𝜅∗

𝐷

(

2𝑢0Re
{

𝑢(0)1

}

+ 𝑢̄0𝑢
(2)
1

)

, 𝑠(3)2 = −𝜅∗

𝐷
𝑢0𝑢

(2)
1 .

(B.15)

Next, we consider the forcing term 𝐷𝑛 due to nonlinear damping of power-law dependence on the velocity, for which Eq. (B.1)
gives

∞
∑

𝑛=1
𝜖𝑛𝐷𝑛 = −𝜖 𝜈

∗

𝐷

( ∞
∑

𝑛=0
𝜖𝑛𝑤̇𝑛

)𝑝

. (B.16)

The forcing terms are then given by

𝐷𝑛 = − 𝜈∗

𝐷

𝑛−1
∑

𝑗=0
𝑤̇𝑗𝑤̇𝑛−1−𝑗 . (B.17)

Following the same procedure as above, but using the time derivatives of the displacements, gives the complex forcing terms, 𝑑(𝑚)𝑛 ,
for the first two higher orders of expansion as

𝑑(0)1 = −1
2
𝜅∗

𝐷
𝜔2

|

|

𝑢0||
2 , 𝑑(2)1 = 1

2
𝜅∗

𝐷
𝜔2𝑢20,

𝑑(1)2 = −2𝜅
∗

𝐷
𝜔2𝑢̄0𝑢

(2)
1 , 𝑑(3)2 = 2𝜅

∗

𝐷
𝜔2𝑢0𝑢

(2)
1 .

(B.18)

For impedance model 𝐴, the forcing terms can be calculated from Eqs. (B.15) and (B.18) if instead of the beam displacement 𝑢(𝑚)𝑗 ,
𝑗 < 𝑛, the displacement difference 𝑢(𝑚)𝑗 − 𝑢(𝑚)𝑀𝑗 is used, where 𝑢(𝑚)𝑀𝑗 is the mass displacement amplitude, calculated with Eq. (B.2). At
the zeroth order, the nonlinear forcing terms are zero, so that Eq. (B.2) reduces to 𝑢(𝑚)𝑀𝑛 = 𝜇(𝑚)

𝑀 𝑢(𝑚)𝑛 ∕(𝜇(𝑚)
𝑀 + 𝜇(𝑚)

𝑆𝐷).

B.3. Cubic nonlinearity

For cubic nonlinearity, the nonlinear stiffness forcing terms 𝑆𝑛 are again found by expressing the series raised to the power 𝑝 = 3
in Eq. (B.1) using Cauchy products, which gives

𝑆𝑛 = −𝜅∗

𝐷

𝑛−1
∑

𝑗=0

𝑛−1−𝑗
∑

𝑙=0
𝑤𝑗𝑤𝑛−1−𝑗−𝑙𝑤𝑙 . (B.19)

or 𝑛 = 1 and 𝑛 = 2, this gives, respectively,

𝑆 = −𝜅∗
𝑤3 = − 𝜅∗ (

3𝑢 |𝑢 |

2 𝑒−i𝜏 + 𝑢3𝑒−i3𝜏 + c.c.
)

, (B.20a)
14

1 𝐷 0 8𝐷 0 | 0| 0



Journal of Sound and Vibration 527 (2022) 116859A. Karlos et al.

(

R

𝑆2 = −𝜅∗

𝐷
3𝑤2

0𝑤1 = −3𝜅∗

8𝐷

(

(

𝑢20𝑢̄
(1)
1 + 𝑢̄20𝑢

(3)
1 + 2 |

|

𝑢0||
2 𝑢(1)1

)

𝑒−i𝜏

+
(

𝑢20𝑢
(1)
1 + 2 |

|

𝑢0||
2 𝑢(3)1

)

𝑒−i3𝜏 + 𝑢20𝑢
(3)
1 𝑒−i5𝜏 + c.c.

)

, (B.20b)

where 𝑤0 is expressed as

𝑤0 =
1
2
𝑢0𝑒

−i𝜏 + c.c., (B.21)

and 𝑤1 is defined as

𝑤1 =
1
2
𝑢(1)1 𝑒−i𝜏 + 1

2
𝑢(3)1 𝑒−i3𝜏 + c.c., (B.22)

to account for the fact that 𝑆1 has components at 𝜔 and at 3𝜔. In general, it can be deduced from the form of the forcing terms
𝑆𝑛 for cubic nonlinearity as given in Eq. (B.19) that these involve all the odd-order harmonics from 1 up to 2𝑛 + 1, as can be seen
for the first two orders in Eqs. (B.20a) and (B.20b). Therefore, 𝑆𝑛 can be expressed with respect to the forcing terms 𝑠

(𝑚)
𝑛 for the

𝑛th-order wave amplitudes at frequencies 𝑛𝜔 as

𝑆𝑛 =
1
2

𝑛
∑

𝑗=0
𝑠(2𝑗+1)𝑛 𝑒−i(2𝑗+1)𝜏 + c.c., (B.23)

which in this case holds for 𝑛 either odd or even. It can thus be deduced that no DC term or even-order harmonics are generated
with a cubic nonlinearity. For the equations of orders 1 and 2, the forcing terms 𝑠(𝑚)𝑛 can be found by comparing Eqs. (B.20a) and
B.20b) with Eq. (B.23), giving

𝑠(1)1 = −3
4
𝜅∗

𝐷
𝑢0 ||𝑢0||

2 , 𝑠(3)1 = −1
4
𝜅∗

𝐷
𝑢30,

𝑠(1)2 = −3
4
𝜅∗

𝐷

(

𝑢20𝑢̄
(1)
1 + 𝑢̄20𝑢

(3)
1 + 2 |

|

𝑢0||
2 𝑢(1)1

)

,

𝑠(3)2 = −3
4
𝜅∗

𝐷

(

𝑢20𝑢
(1)
1 + 2 |

|

𝑢0||
2 𝑢(3)1

)

, 𝑠(5)2 = −3
4
𝜅∗

𝐷
𝑢20𝑢

(3)
1 .

(B.24)

For nonlinear damping, where Eq. (B.16) holds, the real forcing terms are given by

𝐷𝑛 = − 𝜈∗

𝐷

𝑛−1
∑

𝑗=0

𝑛−1−𝑗
∑

𝑙=0
𝑤̇𝑗𝑤̇𝑛−1−𝑗−𝑙𝑤̇𝑙 , (B.25)

which gives the complex forcing terms, 𝑑(𝑚)𝑛 , for the first two higher orders of expansion as

𝑑(1)1 = i 3
4
𝜈∗

𝐷
𝜔3𝑢0 ||𝑢0||

2 , 𝑑(3)1 = − i
4
𝜈∗

𝐷
𝜔3𝑢30,

𝑑(1)2 = i 3
4
𝜈∗

𝐷
𝜔3

(

2 |
|

𝑢0||
2 𝑢(1)1 − 3𝑢̄20𝑢

(3)
1 + 𝑢20𝑢̄

(1)
1

)

,

𝑑(3)2 = i 3
4
𝜈∗

𝐷
𝜔3

(

6 |
|

𝑢0||
2 𝑢(3)1 − 𝑢20𝑢

(1)
1

)

, 𝑑(5)2 = −i 9
4
𝜈∗

𝐷
𝜔3𝑢20𝑢

(3)
1 .

(B.26)

As in the case of quadratic nonlinearity, the forcing terms for impedance model 𝐴 can be calculated from Eqs. (B.26) if the
displacement difference 𝑢(𝑚)𝑗 − 𝑢(𝑚)𝑀𝑗 is used instead of 𝑢

(𝑚)
𝑗 , 𝑗 < 𝑛, also using Eq. (B.2) for the mass amplitude.
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