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Controllable nonreciprocal wave redirection in two dimensions is demonstrated by a monatomic
lattice of masses and nonlinear springs. The key is a functional section with a spatially asymmetric
arrangement of bilinear stiffness. Regardless of the external force driving frequency or the location of
the source relative to the functional section, a stable effect is obtained showing scattered wave motion
towards two opposite directions each with oppositely signed displacement offsets. Crucially, the
bilinear nature of the springs, with linear response but different stiffness coefficients in compression
and tension, makes the passive nonreciprocal redirection effect independent of signal amplitude.
Consistent nonreciprocal scattering is demonstrated first for a lattice section with asymmetrically
distributed bilinearity. Combinations of these fundamental lattice sections with modified bilinear
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szlzrlliztci‘ceroc‘t stiffness and orientation of the asymmetric arrangement demonstrate a wide variety of directional
Wavegl‘]? de 1y scattering effects, illustrating an ability to control the preferred propagating directions and the signs

of the dynamic displacement offsets. These results suggest a novel type of nonreciprocal 2D waveguide
whose underlying nonlinear mechanism is fundamentally different from actively-achieved alternative
methods such as topologically protected edge states.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Strongly anisotropic and reciprocal dynamic effects with wave
propagation restricted to certain directions are possible in pas-
sive linear two-dimensional (2D) periodic structures [1,2]. The
challenge is to achieve tunable nonreciprocal wave directivity
that breaks the limitation arising from the reciprocal nature of
linearity. Generally speaking, two different methods have been
proposed to realize nonreciprocal propagation: active approaches
using energy input and passive approaches based on nonlinearity.

Active methods employ topologically protected edge states
(TPESs), a phenomenon found in many 2D one-way propagating
systems [3]. TPESs occur at the shared boundary of two lattice
structures, across which topology changes and the system is
forced to close its bandgap locally in support of localized edge
states, so that the shape of the interface decides the pathway of
wave motion and becomes immune to scattering into the main
bodies of these sections. Nonreciprocal topologically protected
wave propagation can be realized actively by the introduction of
gyroscopic [4,5] and fluid flow effects [6,7].

Current passive methods depend solely on weak nonlinearity
that perturbs dispersion surfaces in terms of amplitude, and
therefore remain reciprocal. For example, replacing linear springs
with nonlinear ones having cubic stiffness coefficients makes a
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non-propagating wave become propagating, or vice versa [2,8].
Passive nonreciprocal models necessarily require spatially asym-
metric nonlinearity, and can achieve significant control over wave
propagation, e.g., one-way propagation in 1D [9-14] and 2D [15]
scenarios. Compared to the active methods that require external
energy input and can be inherently unstable, passive methods
have zero energy cost and are easily controlled. In this work
we propose a novel approach to control 2D wave directional-
ity by taking advantage of a passive nonreciprocity; the main
idea is to generate the dominant propagation directions via bi-
linear springs, a special form of nonlinearity. Bilinearity is a
unique type of non-perturbative nonlinearity that maintains the
linear property of amplitude independence, meaning that a scal-
ing of the input leads to the same output signal scaled by the
input amplification factor. This phenomenon is common in dif-
ferent engineering scenarios. Continuous materials with bilinear
constitutive elastic behavior (also known as heteromodular or
bimodular in continuum mechanics) have been proposed as non-
linear models for contact forces [16], elastic solids containing
cracks [17], and for the dynamics of geophysical systems, includ-
ing granular media [18]. Wave motion in bimodular media has
been studied extensively [ 19-28]. Recent studies have shown that
wave motion in discrete spring-mass chain systems with bilinear
stiffness demonstrates a variety of interesting phenomena, such
as sign inversion of output signal [18] and nonreciprocal wave
motion [11,14,15].

Here, we model a 2D spring-mass chain system with a func-
tional section of bilinear stiffness arranged asymmetrically. The
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Fig. 1. 2D monatomic lattice of identical masses connected by shear springs. (a) shows the reference system (?1 and 72 denote the horizontal and vertical direction,
respectively); the mass displacement is in the transverse (into- and out-of-plane, labeled by i3) direction only. (b) and (c) depict the physical structure of a unit cell
connecting four neighbors by linear shear springs under a spatially symmetric arrangement; the unit cell consists of a mass and a massless “+” shape structure with
size d — 0, introducing the in-plane transverse wave propagation; reciprocity prevails because the alternate pattern of “+” position maintains spatial symmetry, so
that (b) and (c) stands for the state of “+” up and down, respectively. (d) all linear springs are replaced by the identical bilinear springs, and reciprocity still holds.
(e) illustrates a further asymmetric modulation in horizontal (i) direction by moving one leg of “+” structure in the opposite direction, resulting in the structural

asymmetry of the unit cell and therefore nonreciprocity (see Eq. 5).

spatial asymmetry combined with the nonlinearity produces a
significant wave scattering towards two opposite directions with
direction-dependent signs of displacement. The scattering re-
sults are insensitive to driving frequency and to the relative
location of the source, but depend upon the relations between
the compressive and tensile stiffness of the bilinear springs and
their asymmetric arrangements, refer to the detailed explanation
in Fig. 7 of [15]. This nonreciprocal wave phenomenon is dis-
tinctly a two dimensional effect, which opens up the possibility
of programmable scattering via flexible arrangement of spatial
asymmetry.

The outline of the paper is as follows. Section 2 discusses the
physical structure of the 2D lattice and the definition of spatial
asymmetry; one particular case showing how waves scatter in
the horizontal direction with oppositely signed offsets is demon-
strated. Configurations of various spatially bilinear setups are
introduced in Section 3 to show the capability of our approach to
control wave directionality. A programmable waveguide in the 2D
lattice consisting of several spatially asymmetric bilinear sections
is proposed in Section 4. Section 5 concludes the paper.

2. Introduction of 2D monatomic lattice

A 2D monatomic lattice consisting of masses and springs
serves as the platform for our proposed approach to achiev-
ing controllable directional wave scattering. The lattice and its
structural asymmetry are discussed first. Then a fundamental
configuration of a spatially asymmetric bilinear section is dis-
cussed.

2.1. Lattice setup

A 2D monatomic lattice is modeled as an array of equal masses
interconnected by shear springs, covering a portion of the i;-
i plane, as shown in Fig. 1. Transverse (into- and out-of-plane
direction, i3) displacement is the single degree of freedom for the
motion of each mass. Thus the springs are assumed to act in shear
with a force related to the relative displacements of neighboring
masses. The unit cell consists of a mass and a massless “+” shape
structure (no force between them) with thickness and size d —
0. The “+” shape structure transfers force between neighboring
unit cells, leading to the transverse wave propagation within i;-i,
plane while neglecting rotational motion. Two states (“+” shape
up and down) exist in this 2D lattice, guaranteeing the spatial
symmetry (introduced later) and therefore the reciprocity of the
lattice.

The periodicity of the lattice is defined by orthogonal lattice
vectors aqi; and ayip in the horizontal and vertical directions,
respectively. The unit cell at ny ai; + ny aziz, shown in the gray
box at the center of Fig. 1(a), satisfies the equilibrium equation
below (neglecting rotational motion)

N

mii = Z[Kj’ Ay + it Auj*] , (1)
j=1

where u = Uy, n,) Stands for the transverse displacement at
coordinates (nq, ny), and
Ki = Kj(ny,ny) » Kf = Kj(ny+81, ny+5j2 ) » (2)

with j = 1 and 2 denoting the springs located along the
horizontal and vertical (i; and i,) direction, respectively, and

+

Auj = u(nlj:éj], nziéjz) - u(nl,nz) s (3)

representing the relative transverse displacement of two adjacent
unit cells.

2.2. Structural asymmetry

Spatial symmetry is introduced first. Consider a unit cell, such
as Figs. 1(b) and (c) show, with the same relative displacement
between the unit cell and its nearest neighbors Auji. Spatial
symmetry then produces the same resultant shear force, FjjE
K" Au, such that

Aur = Aut _
B B (4)
I B

j = 1 when we consider the neighboring unit_cells in the
horizontal (i;) direction, and j = 2 in the vertical (i,) direction;
k. denotes the linear stiffness.

The spatial symmetry still holds in the unit cell when all linear
springs are replaced by identical bilinear springs (e.g., labeled by
/" and the corresponding stiffness written as « ») as shown in
Fig. 1(d). Although the bilinear spring has different stiffnesses
when compressed and stretched, two horizontally or vertically
(i;- or ip-related) adjacent bilinear springs are always in the
same condition given the same relative displacement, as Eq. 4
depicts except that k;” = Kj+ = K+, where k_ » stands for the
compressive stiffness, and « ~ the tensile stiffness.

_. In order to generate spatial asymmetry, e.g., in the horizontal
(i1) direction only, one leg in the “+” shape structure of the unit
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Fig. 2. Demonstration of directional wave scattering. (a) shows the simulation model setup: the bilinear section is_square_with sides of 2N bilinear springs; four
potential source locations are equi-distant from the square center with Ny springs in both horizontal and vertical (i; and i,) directions, or simply represented by
the angle «; the receiver is located around the square at various angles 8 and at the same distance to the square center as the source. The incident wave in the
linear section, generated by a continuous excitation, see Eq. 6, propagates preferentially in directions 6 = "T”, n = 1,3,5,7 due to the anisotropy and dispersion
of the linear system. Chains of unit cells in the bilinear section are depicted in (b): the gray shaded one represents the vertical chains (rotated 90°) consisting of
symmetric unit cells connected by identical bilinear springs, while the brown shade denotes the horizontal chains of structurally asymmetric unit cells. (c) shows
the dynamic responses at receivers when positions A and B are considered: a positive steady shift in displacement for incidence coming from A and negative one
from B. (d) shows the consistent wave scattering. Each polar plot illustrates the maximum resultant amplitudes (refer to the labels in (c)) recorded at different
locations around the square for incidence (labeled by arrows with relevant colors) from one of four directions. Together they illustrate stable scattered waves in the
horizontal direction: scattering to the left results in a negative offset (markers are located within the solid black circle and the region is covered by blue) while a
positive offset for right scattering (markers outside the circle and the region in yellow). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1 2.4. Excitation
The possible locations of source and receiver
represented by « and B.

o B

on=1,3,57 M n=0,1,...,11

The incident wave is generated by applying a displacement to
the unit cell at the source,

u=H(t)U sinwt, (6)

where U is the input amplitude, @ the excitation frequency,
and # represents the Heaviside function. Specifically, we take
ap = a, = 1m k1 = Kk = kL = 1N/m,m = ]kngI‘
the model, and U = 1 m, @ = 2 rad/s for excitation. This
choice of frequency results in wave propagation in four discrete
directions, 0 = ”T”, n =1, 3,5, 7. The insert figure at top left in
Fig. 2(a) shows the resultant spatial wavefield distribution in the

Auy = AUT — F~ £FF (5) linear section. This highly directional source guarantees that the

K{ =EKkgq # K1+ =Ky ! T receiver positions are always located in a region without direct
transmission from the source.

cell is moved to the opposite position, up or down, see Fig. 1(e).
Given the same relative displacement, the asymmetric struc-
ture results in the opposite conditions for two adjacent bilinear
springs in horizontal (i;) direction (so j = 1): one is compressed
and the other stretched. The asymmetric spatial structure thus
results in different shear forces,

2.3. Simulation model setup
. . . . . 2.5. Directional wave scattering demonstration
Simulations are used to examine the nonreciprocal wave di-

rectionality generated by configurations of spatially asymmet- ) ) ) ) ) )
ric bilinearity. We consider a square section with sides of 2N As a first case, we consider a functional section with spatially

springs in the purely linear lattice, see Fig. 2(a), within which asymmetric bilinearity arranged in the horizontal (i;) direction
a designated spatially asymmetric bilinearity is introduced. The ~ and with the vertical (i) direction bilinear but symmetric, see
positions of input source and receiver are set equally distant ~ Fig. 2(b) and check Table 2 for stiffness values (labeled by 7).
relative to the square functional section: e.g., in Fig. 2(a), the =~ Nonreciprocal dynamic responses are evident in Fig. 2(c): a posi-
locations A and B of the source and receiver are at a distance of  tive steady offset in time is obtained for incidence from position
No springs in both horizontal and vertical (i; and i,) directions A, but a negative one from B; the maximum amplitudes are
from the square center. For simplicity, the source and receiver marked to represent the values and signs, indicating the domi-
positions are represented by angles « and S, respectively. Table 1 nant scattering directions in the top left polar plot in Fig. 2(d)
lists all the possible positions specified by these two angles. (discussed later).
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Fig. 3. A variety of directional wave scatterings. Each subfigure relates to a specific spatially asymmetric bilinear configuration: a cross consists of two perpendicular
bars indicating the horizontal and vertical makeup of the unit cell with information on the bilinearity and asymmetric arrangement; along with a polar plot showing
the simplified scattering results. (a) and (b) show the horizontal scattering of Case 1 in Section 3 with the horizontally arranged spatial asymmetry, while (c) and (d)
demonstrate the vertical scattering of the vertically asymmetry-arranged Case 2. The outcomes of Case 3 with both horizontal and vertical arrangements of spatial

asymmetry are demonstrated in (e) - (h), indicating a diagonal scattering.

Comprehensive scattering results are shown in Fig. 2(d). Each
polar plot demonstrates an incident wave from a specific direc-
tion « (labeled by an arrow with relevant color); the maximum
resultant amplitudes recorded at a variety of locations (indicated
by different values of angle B) are marked in the polar plot.
In sum, four different locations of source are applied and the
dynamic behaviors at twelve positions of receiver are considered,
see Table 1 for all the values of « and B in the tests.

The four polar plots of Fig. 2(d) show similar results: scattering
to the left produces a negative offset (markers are located within
the solid black circle of the polar plot and the relevant semicircle
is covered by blue), while scattering to the right gives a positive
one (markers outside the circle and semicircle in yellow). These
simulations indicate that regardless of where the incidence comes
from, two distinct parts of scattered waves are observed with the
oppositely signed offsets redirected in horizontally (i;-related)
opposite directions.

3. Programmable scattering

In addition to varying the bilinear stiffness, spatial asymmetry,
which can be set in one direction (horizontal or vertical, i; or
i) or both, provides another dimension of directivity control. We
next explore various configurations, showing the programmable
scattering control of our approach.

3.1. Bilinear stiffness

For simplicity, we only consider two types of bilinear springs,
labeled by ' and \: setting the bilinear stiffnesses x4 =
kiE£Aky and k4N, = K F Ak ; equivalently, we have ki - = ke
Extreme bilinearity guarantees significant nonreciprocal displace-
ment offsets, requiring drastic difference between tensile and
compressive stiffness, e.g. Ax_ & Ak, see Table 2 for the set
of stiffnesses considered.

Table 2
The stiffness of linear and bilinear springs. All linear springs are identical, and
the bilinear springs satisfy «_ » < k4 », k_\ > ki~ and ki » = kx~,. The unit
is N/m.

K1 =Ky =KL Ak Ak K_ Ky KN, K,

1 0.875 10 0.125 11 11 0.125

3.2. Alternative spatial configurations

We first consider asymmetric bilinearity in one direction only
(either i; or i) and then in both horizontal and vertical (i; and i)
directions. By combining spatially asymmetric arrangements with
varying bilinear stiffness, a variety of directional wave scattering
effects can be obtained.

3.2.1. Configuration 1: Bilinearity + spatial asymmetry in horizontal
direction only

The types of bilinear spring and horizontal asymmetry con-
sidered are shown in Figs. 3(a) and (b), along with simplified
scattering results. Similar to the observation in Section 2, com-
parison of Fig. 3(a) and (b) shows that switching the bilinear
spring type from  to the alternative case “\ gives horizontal
(i1) wave scattering with oppositely signed offsets, but the signs
of the corresponding scattering directions are reversed.

3.2.2. Configuration 2: Bilinearity + spatial asymmetry in vertical
direction only

Simulation results in Figs. 3(c) and (d) show, as expected, that
directional scattering with opposite signs occurs in the vertical
(i) direction. Using springs labeled by  leads to the positive
sign in the upper section and negative in the lower section; con-
versely, reversed scattering results with positive upper section
and negative lower one are obtained with Y\ springs.

3.2.3. Configuration 3: Bilinearity + spatial asymmetry in both ver-
tical and horizontal directions

In this configuration Figs. 3(e) - (h) illustrate that the direc-
tional scattering is mainly along the diagonal directions. Different
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Fig. 4. Programmable waveguide in a 2D lattice. (a) and (b) demonstrate a purely linear case where communication between source and receiver is blocked by a
barrier. (c) shows the waveguide consisting of three square functional sections, with the size, position and scattering results of each component indicated. (d) - (g)
illustrate the wavefield spatial distributions (w = 2 rad/s) and dynamic responses at the receivers (various w values); a signal from source A (B) is guided to the
receiver B (A) via multiple directional scattering, resulting in a positive (negative) dynamic offset. Multiple w values show similar single-signed offsets in (e) and (g),
which illustrates the programmable waveguide is stable and insensitive to the driving frequency.

combinations of bilinear springs in horizontal and vertical (_1:1 and waveguide design. Taking advantage of the controllable wave
i) directions lead to unique types of diagonal scattering with op- scattering sections, we arrange them to achieve a designated
posite signs of the displacement offset. Interestingly, the diagonal wave propagation path. Consequently, a fully controlled 2D waveg-
scattering effect obeys the principle of superposition based on uide is obtained using a passive energy-saving approach, different
the simpler configurations with spatial asymmetry arranged in a from active TPES-induced waveguides along the boundary of two

single direction. topologically different sections.
Consider a barrier, consisting of several unit cells with dis-
4. Application: Generation of a waveguide in a 2D lattice placements fixed, located between source A and receiver B in
a linear 2D lattice, essentially eliminating any communication
The previous demonstrations of programmable wave scat- between A and B, see Figs. 4(a) and (b). By introducing three

tering using spatially asymmetric bilinearity inspire a novel 2D functional sections that generate directional wave scattering and
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then placing them around the barrier, we can build a pathway for
nonreciprocal signal transmission between A and B, see Fig. 4(c)
for the sizes, relative positions and the scattering results of each
introduced section.

Excitations with multiple driving frequencies (see Eq. 6) w =
1.5, 2, 2.5 rad/s are applied at positions A and B; Figs. 4(d) and
(f) show instantaneous scattering results, and Figs. 4(e) and (g)
demonstrate the transmitted dynamic profiles. Although different
frequency values can generate a variety of wave directivities
in the linear section of the monatomic lattice, refer to Fig. 2
in [15], the similarly single-signed offsets are maintained in the
dynamic response as shown in Figs. 4(e) and (g), indicating that
the directional scattering is insensitive to the excitation driving
frequency. Under the current setup, the positive offset is related
to the signal coming from position A, and the negative one from
B.

5. Conclusions

We have demonstrated nonreciprocity-induced wave direc-
tivity control in a 2D periodic structure consisting of masses
interconnected by nonlinear shear springs. The nonreciprocity
is passively achieved by spatially asymmetric arrangements of
amplitude-independent bilinear springs. The directivity is insen-
sitive to the driving frequency and the position of the forcing,
and displays significantly different scattering in opposite direc-
tions with oppositely signed wave displacement offsets. The wave
scattering directions and offset signs can be fully controlled and
modulated by varying the values of bilinear stiffnesses and the
arrangement of spatial asymmetry. Based on the programmable
scattering results, a novel 2D waveguide design is proposed.
The waveguide consists of multiple tailored spatially asymmetric
bilinear sections in an otherwise linear 2D lattice; signals can
be transmitted back and forth between two positions via this
waveguide, with oppositely signed displacement offsets indicat-
ing nonreciprocal transmission. Future work could be focused
on practical approaches to realizing such 2D nonreciprocal sys-
tems. Our experience is that achieving pure bilinear stiffness with
low damping is difficult in practice. Despite these challenges in
experimental realization, we should not overlook the potential
applications of these programmable nonreciprocal systems in
wave directivity design and 2D waveguide modeling.
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