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a b s t r a c t

Controllable nonreciprocal wave redirection in two dimensions is demonstrated by a monatomic
lattice of masses and nonlinear springs. The key is a functional section with a spatially asymmetric
arrangement of bilinear stiffness. Regardless of the external force driving frequency or the location of
the source relative to the functional section, a stable effect is obtained showing scattered wave motion
towards two opposite directions each with oppositely signed displacement offsets. Crucially, the
bilinear nature of the springs, with linear response but different stiffness coefficients in compression
and tension, makes the passive nonreciprocal redirection effect independent of signal amplitude.
Consistent nonreciprocal scattering is demonstrated first for a lattice section with asymmetrically
distributed bilinearity. Combinations of these fundamental lattice sections with modified bilinear
stiffness and orientation of the asymmetric arrangement demonstrate a wide variety of directional
scattering effects, illustrating an ability to control the preferred propagating directions and the signs
of the dynamic displacement offsets. These results suggest a novel type of nonreciprocal 2D waveguide
whose underlying nonlinear mechanism is fundamentally different from actively-achieved alternative
methods such as topologically protected edge states.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Strongly anisotropic and reciprocal dynamic effects with wave
ropagation restricted to certain directions are possible in pas-
ive linear two-dimensional (2D) periodic structures [1,2]. The
hallenge is to achieve tunable nonreciprocal wave directivity
hat breaks the limitation arising from the reciprocal nature of
inearity. Generally speaking, two different methods have been
roposed to realize nonreciprocal propagation: active approaches
sing energy input and passive approaches based on nonlinearity.
Active methods employ topologically protected edge states

TPESs), a phenomenon found in many 2D one-way propagating
ystems [3]. TPESs occur at the shared boundary of two lattice
tructures, across which topology changes and the system is
orced to close its bandgap locally in support of localized edge
tates, so that the shape of the interface decides the pathway of
ave motion and becomes immune to scattering into the main
odies of these sections. Nonreciprocal topologically protected
ave propagation can be realized actively by the introduction of
yroscopic [4,5] and fluid flow effects [6,7].
Current passive methods depend solely on weak nonlinearity

hat perturbs dispersion surfaces in terms of amplitude, and
herefore remain reciprocal. For example, replacing linear springs
ith nonlinear ones having cubic stiffness coefficients makes a
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non-propagating wave become propagating, or vice versa [2,8].
Passive nonreciprocal models necessarily require spatially asym-
metric nonlinearity, and can achieve significant control over wave
propagation, e.g., one-way propagation in 1D [9–14] and 2D [15]
scenarios. Compared to the active methods that require external
energy input and can be inherently unstable, passive methods
have zero energy cost and are easily controlled. In this work
we propose a novel approach to control 2D wave directional-
ity by taking advantage of a passive nonreciprocity; the main
idea is to generate the dominant propagation directions via bi-
linear springs, a special form of nonlinearity. Bilinearity is a
unique type of non-perturbative nonlinearity that maintains the
linear property of amplitude independence, meaning that a scal-
ing of the input leads to the same output signal scaled by the
input amplification factor. This phenomenon is common in dif-
ferent engineering scenarios. Continuous materials with bilinear
constitutive elastic behavior (also known as heteromodular or
bimodular in continuum mechanics) have been proposed as non-
linear models for contact forces [16], elastic solids containing
cracks [17], and for the dynamics of geophysical systems, includ-
ing granular media [18]. Wave motion in bimodular media has
been studied extensively [19–28]. Recent studies have shown that
wave motion in discrete spring–mass chain systems with bilinear
stiffness demonstrates a variety of interesting phenomena, such
as sign inversion of output signal [18] and nonreciprocal wave
motion [11,14,15].

Here, we model a 2D spring–mass chain system with a func-

tional section of bilinear stiffness arranged asymmetrically. The
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Fig. 1. 2D monatomic lattice of identical masses connected by shear springs. (a) shows the reference system (⃗i1 and i⃗2 denote the horizontal and vertical direction,
espectively); the mass displacement is in the transverse (into- and out-of-plane, labeled by i⃗3) direction only. (b) and (c) depict the physical structure of a unit cell
onnecting four neighbors by linear shear springs under a spatially symmetric arrangement; the unit cell consists of a mass and a massless ‘‘+’’ shape structure with
ize d → 0, introducing the in-plane transverse wave propagation; reciprocity prevails because the alternate pattern of ‘‘+’’ position maintains spatial symmetry, so
hat (b) and (c) stands for the state of ‘‘+’’ up and down, respectively. (d) all linear springs are replaced by the identical bilinear springs, and reciprocity still holds.
e) illustrates a further asymmetric modulation in horizontal (⃗i1) direction by moving one leg of ‘‘+’’ structure in the opposite direction, resulting in the structural
symmetry of the unit cell and therefore nonreciprocity (see Eq. 5).
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patial asymmetry combined with the nonlinearity produces a
ignificant wave scattering towards two opposite directions with
irection-dependent signs of displacement. The scattering re-
ults are insensitive to driving frequency and to the relative
ocation of the source, but depend upon the relations between
he compressive and tensile stiffness of the bilinear springs and
heir asymmetric arrangements, refer to the detailed explanation
n Fig. 7 of [15]. This nonreciprocal wave phenomenon is dis-
inctly a two dimensional effect, which opens up the possibility
f programmable scattering via flexible arrangement of spatial
symmetry.
The outline of the paper is as follows. Section 2 discusses the

hysical structure of the 2D lattice and the definition of spatial
symmetry; one particular case showing how waves scatter in
he horizontal direction with oppositely signed offsets is demon-
trated. Configurations of various spatially bilinear setups are
ntroduced in Section 3 to show the capability of our approach to
ontrol wave directionality. A programmable waveguide in the 2D
attice consisting of several spatially asymmetric bilinear sections
s proposed in Section 4. Section 5 concludes the paper.

. Introduction of 2D monatomic lattice

A 2D monatomic lattice consisting of masses and springs
erves as the platform for our proposed approach to achiev-
ng controllable directional wave scattering. The lattice and its
tructural asymmetry are discussed first. Then a fundamental
onfiguration of a spatially asymmetric bilinear section is dis-
ussed.

.1. Lattice setup

A 2D monatomic lattice is modeled as an array of equal masses
nterconnected by shear springs, covering a portion of the i⃗1-
2 plane, as shown in Fig. 1. Transverse (into- and out-of-plane
irection, i⃗3) displacement is the single degree of freedom for the
otion of each mass. Thus the springs are assumed to act in shear
ith a force related to the relative displacements of neighboring
asses. The unit cell consists of a mass and a massless ‘‘+’’ shape
tructure (no force between them) with thickness and size d →

. The ‘‘+’’ shape structure transfers force between neighboring
nit cells, leading to the transverse wave propagation within i⃗1-⃗i2
lane while neglecting rotational motion. Two states (‘‘+’’ shape
p and down) exist in this 2D lattice, guaranteeing the spatial
ymmetry (introduced later) and therefore the reciprocity of the
attice.
2

The periodicity of the lattice is defined by orthogonal lattice
ectors a1 i⃗1 and a2 i⃗2 in the horizontal and vertical directions,
espectively. The unit cell at n1 a1 i⃗1 + n2 a2 i⃗2, shown in the gray
ox at the center of Fig. 1(a), satisfies the equilibrium equation
elow (neglecting rotational motion)

ü =

2∑
j=1

[
κ−

j ∆u−

j + κ+

j ∆u+

j

]
, (1)

here u = u(n1,n2) stands for the transverse displacement at
oordinates (n1, n2), and
−

j = κj (n1,n2) , κ+

j = κj ( n1+δj1, n2+δj2 ) , (2)

with j = 1 and 2 denoting the springs located along the
orizontal and vertical (⃗i1 and i⃗2) direction, respectively, and

u±

j = u( n1±δj1, n2±δj2 ) − u(n1,n2) , (3)

epresenting the relative transverse displacement of two adjacent
nit cells.

.2. Structural asymmetry

Spatial symmetry is introduced first. Consider a unit cell, such
s Figs. 1(b) and (c) show, with the same relative displacement
etween the unit cell and its nearest neighbors ∆u±

j . Spatial
ymmetry then produces the same resultant shear force, F±

j =
±

j ∆u±

j , such that

∆u−

j = ∆u+

j

κ−

j = κ+

j ≡ κL
⇒ F−

j = F+

j . (4)

= 1 when we consider the neighboring unit cells in the
orizontal (⃗i1) direction, and j = 2 in the vertical (⃗i2) direction;
L denotes the linear stiffness.
The spatial symmetry still holds in the unit cell when all linear

prings are replaced by identical bilinear springs (e.g., labeled by
and the corresponding stiffness written as κ↗) as shown in

ig. 1(d). Although the bilinear spring has different stiffnesses
hen compressed and stretched, two horizontally or vertically
i⃗1- or i⃗2-related) adjacent bilinear springs are always in the
ame condition given the same relative displacement, as Eq. 4
epicts except that κ−

j = κ+

j ≡ κ±↗, where κ−↗ stands for the
ompressive stiffness, and κ+↗ the tensile stiffness.
In order to generate spatial asymmetry, e.g., in the horizontal

i⃗ ) direction only, one leg in the ‘‘+’’ shape structure of the unit
1
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Fig. 2. Demonstration of directional wave scattering. (a) shows the simulation model setup: the bilinear section is square with sides of 2N bilinear springs; four
otential source locations are equi-distant from the square center with N0 springs in both horizontal and vertical (⃗i1 and i⃗2) directions, or simply represented by
he angle α; the receiver is located around the square at various angles β and at the same distance to the square center as the source. The incident wave in the
linear section, generated by a continuous excitation, see Eq. 6, propagates preferentially in directions θ =

nπ
4 , n = 1, 3, 5, 7 due to the anisotropy and dispersion

f the linear system. Chains of unit cells in the bilinear section are depicted in (b): the gray shaded one represents the vertical chains (rotated 90◦) consisting of
ymmetric unit cells connected by identical bilinear springs, while the brown shade denotes the horizontal chains of structurally asymmetric unit cells. (c) shows
he dynamic responses at receivers when positions A and B are considered: a positive steady shift in displacement for incidence coming from A and negative one
rom B. (d) shows the consistent wave scattering. Each polar plot illustrates the maximum resultant amplitudes (refer to the labels in (c)) recorded at different
ocations around the square for incidence (labeled by arrows with relevant colors) from one of four directions. Together they illustrate stable scattered waves in the
orizontal direction: scattering to the left results in a negative offset (markers are located within the solid black circle and the region is covered by blue) while a
ositive offset for right scattering (markers outside the circle and the region in yellow). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
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Table 1
The possible locations of source and receiver
represented by α and β .
α β

nπ
4 , n = 1, 3, 5, 7 nπ

6 , n = 0, 1, . . . , 11

cell is moved to the opposite position, up or down, see Fig. 1(e).
iven the same relative displacement, the asymmetric struc-
ure results in the opposite conditions for two adjacent bilinear
prings in horizontal (⃗i1) direction (so j = 1): one is compressed
and the other stretched. The asymmetric spatial structure thus
results in different shear forces,{
∆u−

1 = ∆u+

1
κ−

1 ≡ κ∓↗ ̸= κ+

1 ≡ κ±↗

⇒ F−

1 ̸= F+

1 . (5)

2.3. Simulation model setup

Simulations are used to examine the nonreciprocal wave di-
rectionality generated by configurations of spatially asymmet-
ric bilinearity. We consider a square section with sides of 2N
springs in the purely linear lattice, see Fig. 2(a), within which
a designated spatially asymmetric bilinearity is introduced. The
positions of input source and receiver are set equally distant
relative to the square functional section: e.g., in Fig. 2(a), the
locations A and B of the source and receiver are at a distance of
N0 springs in both horizontal and vertical (⃗i1 and i⃗2) directions
from the square center. For simplicity, the source and receiver
positions are represented by angles α and β , respectively. Table 1
ists all the possible positions specified by these two angles.
3

2.4. Excitation

The incident wave is generated by applying a displacement to
the unit cell at the source,

u = H(t)U sinωt , (6)

where U is the input amplitude, ω the excitation frequency,
and H represents the Heaviside function. Specifically, we take
a1 = a2 = 1 m, κ1 = κ2 = κL = 1 N/m, m = 1 kg for
he model, and U = 1 m, ω = 2 rad/s for excitation. This
choice of frequency results in wave propagation in four discrete
directions, θ =

nπ
4 , n = 1, 3, 5, 7. The insert figure at top left in

ig. 2(a) shows the resultant spatial wavefield distribution in the
inear section. This highly directional source guarantees that the
eceiver positions are always located in a region without direct
ransmission from the source.

.5. Directional wave scattering demonstration

As a first case, we consider a functional section with spatially
symmetric bilinearity arranged in the horizontal (⃗i1) direction

and with the vertical (⃗i2) direction bilinear but symmetric, see
Fig. 2(b) and check Table 2 for stiffness values (labeled by ↗).
Nonreciprocal dynamic responses are evident in Fig. 2(c): a posi-
tive steady offset in time is obtained for incidence from position
A, but a negative one from B; the maximum amplitudes are
marked to represent the values and signs, indicating the domi-
nant scattering directions in the top left polar plot in Fig. 2(d)
(discussed later).
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Fig. 3. A variety of directional wave scatterings. Each subfigure relates to a specific spatially asymmetric bilinear configuration: a cross consists of two perpendicular
ars indicating the horizontal and vertical makeup of the unit cell with information on the bilinearity and asymmetric arrangement; along with a polar plot showing
he simplified scattering results. (a) and (b) show the horizontal scattering of Case 1 in Section 3 with the horizontally arranged spatial asymmetry, while (c) and (d)
emonstrate the vertical scattering of the vertically asymmetry-arranged Case 2. The outcomes of Case 3 with both horizontal and vertical arrangements of spatial
symmetry are demonstrated in (e) - (h), indicating a diagonal scattering.
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Comprehensive scattering results are shown in Fig. 2(d). Each
olar plot demonstrates an incident wave from a specific direc-
ion α (labeled by an arrow with relevant color); the maximum
esultant amplitudes recorded at a variety of locations (indicated
y different values of angle β) are marked in the polar plot.
n sum, four different locations of source are applied and the
ynamic behaviors at twelve positions of receiver are considered,
ee Table 1 for all the values of α and β in the tests.
The four polar plots of Fig. 2(d) show similar results: scattering

o the left produces a negative offset (markers are located within
he solid black circle of the polar plot and the relevant semicircle
s covered by blue), while scattering to the right gives a positive
ne (markers outside the circle and semicircle in yellow). These
imulations indicate that regardless of where the incidence comes
rom, two distinct parts of scattered waves are observed with the
ppositely signed offsets redirected in horizontally (⃗i1-related)
pposite directions.

. Programmable scattering

In addition to varying the bilinear stiffness, spatial asymmetry,
hich can be set in one direction (horizontal or vertical, i⃗1 or

2) or both, provides another dimension of directivity control. We
ext explore various configurations, showing the programmable
cattering control of our approach.

.1. Bilinear stiffness

For simplicity, we only consider two types of bilinear springs,
abeled by ↗ and ↘: setting the bilinear stiffnesses κ±↗ =

L±∆κ± and κ±↘ = κL∓∆κ±; equivalently, we have κ±↗ = κ∓↘.
xtreme bilinearity guarantees significant nonreciprocal displace-
ent offsets, requiring drastic difference between tensile and
ompressive stiffness, e.g. ∆κ− ≪ ∆κ+, see Table 2 for the set
f stiffnesses considered.
 t

4

able 2
he stiffness of linear and bilinear springs. All linear springs are identical, and
he bilinear springs satisfy κ−↗ ≪ κ+↗, κ−↘ ≫ κ+↘ and κ±↗ = κ∓↘ . The unit
s N/m.
κ1 = κ2 = κL ∆κ− ∆κ+ κ−↗ κ+↗ κ−↘ κ+↘

1 0.875 10 0.125 11 11 0.125

3.2. Alternative spatial configurations

We first consider asymmetric bilinearity in one direction only
(either i⃗1 or i⃗2) and then in both horizontal and vertical (⃗i1 and i⃗2)
directions. By combining spatially asymmetric arrangements with
varying bilinear stiffness, a variety of directional wave scattering
effects can be obtained.

3.2.1. Configuration 1: Bilinearity + spatial asymmetry in horizontal
direction only

The types of bilinear spring and horizontal asymmetry con-
sidered are shown in Figs. 3(a) and (b), along with simplified
scattering results. Similar to the observation in Section 2, com-
parison of Fig. 3(a) and (b) shows that switching the bilinear
spring type from ↗ to the alternative case ↘ gives horizontal
(⃗i1) wave scattering with oppositely signed offsets, but the signs
f the corresponding scattering directions are reversed.

.2.2. Configuration 2: Bilinearity + spatial asymmetry in vertical
irection only
Simulation results in Figs. 3(c) and (d) show, as expected, that

irectional scattering with opposite signs occurs in the vertical
i⃗2) direction. Using springs labeled by ↗ leads to the positive
ign in the upper section and negative in the lower section; con-
ersely, reversed scattering results with positive upper section
nd negative lower one are obtained with ↘ springs.

.2.3. Configuration 3: Bilinearity + spatial asymmetry in both ver-
ical and horizontal directions

In this configuration Figs. 3(e) - (h) illustrate that the direc-
ional scattering is mainly along the diagonal directions. Different
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⃗

Fig. 4. Programmable waveguide in a 2D lattice. (a) and (b) demonstrate a purely linear case where communication between source and receiver is blocked by a
barrier. (c) shows the waveguide consisting of three square functional sections, with the size, position and scattering results of each component indicated. (d) - (g)
illustrate the wavefield spatial distributions (ω = 2 rad/s) and dynamic responses at the receivers (various ω values); a signal from source A (B) is guided to the
eceiver B (A) via multiple directional scattering, resulting in a positive (negative) dynamic offset. Multiple ω values show similar single-signed offsets in (e) and (g),
which illustrates the programmable waveguide is stable and insensitive to the driving frequency.
-

combinations of bilinear springs in horizontal and vertical (⃗i1 and
i2) directions lead to unique types of diagonal scattering with op-
posite signs of the displacement offset. Interestingly, the diagonal
scattering effect obeys the principle of superposition based on
the simpler configurations with spatial asymmetry arranged in a
single direction.

4. Application: Generation of a waveguide in a 2D lattice

The previous demonstrations of programmable wave scat-
tering using spatially asymmetric bilinearity inspire a novel 2D
5

waveguide design. Taking advantage of the controllable wave
scattering sections, we arrange them to achieve a designated
wave propagation path. Consequently, a fully controlled 2D waveg
uide is obtained using a passive energy-saving approach, different
from active TPES-induced waveguides along the boundary of two
topologically different sections.

Consider a barrier, consisting of several unit cells with dis-
placements fixed, located between source A and receiver B in
a linear 2D lattice, essentially eliminating any communication
between A and B, see Figs. 4(a) and (b). By introducing three
functional sections that generate directional wave scattering and
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hen placing them around the barrier, we can build a pathway for
onreciprocal signal transmission between A and B, see Fig. 4(c)
or the sizes, relative positions and the scattering results of each
ntroduced section.

Excitations with multiple driving frequencies (see Eq. 6) ω =

.5, 2, 2.5 rad/s are applied at positions A and B; Figs. 4(d) and
f) show instantaneous scattering results, and Figs. 4(e) and (g)
emonstrate the transmitted dynamic profiles. Although different
requency values can generate a variety of wave directivities
n the linear section of the monatomic lattice, refer to Fig. 2
n [15], the similarly single-signed offsets are maintained in the
ynamic response as shown in Figs. 4(e) and (g), indicating that

the directional scattering is insensitive to the excitation driving
frequency. Under the current setup, the positive offset is related
to the signal coming from position A, and the negative one from
B.

5. Conclusions

We have demonstrated nonreciprocity-induced wave direc-
tivity control in a 2D periodic structure consisting of masses
interconnected by nonlinear shear springs. The nonreciprocity
is passively achieved by spatially asymmetric arrangements of
amplitude-independent bilinear springs. The directivity is insen-
sitive to the driving frequency and the position of the forcing,
and displays significantly different scattering in opposite direc-
tions with oppositely signed wave displacement offsets. The wave
scattering directions and offset signs can be fully controlled and
modulated by varying the values of bilinear stiffnesses and the
arrangement of spatial asymmetry. Based on the programmable
scattering results, a novel 2D waveguide design is proposed.
The waveguide consists of multiple tailored spatially asymmetric
bilinear sections in an otherwise linear 2D lattice; signals can
be transmitted back and forth between two positions via this
waveguide, with oppositely signed displacement offsets indicat-
ing nonreciprocal transmission. Future work could be focused
on practical approaches to realizing such 2D nonreciprocal sys-
tems. Our experience is that achieving pure bilinear stiffness with
low damping is difficult in practice. Despite these challenges in
experimental realization, we should not overlook the potential
applications of these programmable nonreciprocal systems in
wave directivity design and 2D waveguide modeling.
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