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Abstract—The problem of quickest change detection in anony-
mous heterogeneous sensor networks is studied. The sensors are
clustered into K groups, and different groups follow different
data generating distributions. At some unknown time, an event
occurs in the network and changes the data generating distribu-
tion of the sensors. The goal is to detect the change as quickly
as possible, subject to false alarm constraints. The anonymous
setting is studied, where at each time step, the fusion center
receives unordered samples without knowing which sensor each
sample comes from, and thus does not know its exact distribution.
In [1], an optimal algorithm was provided, which however is
not computational efficient for large networks. In this paper, a
computationally efficient test is proposed and a novel theoretical
characterization of its false alarm rate is further developed.

I. INTRODUCTION

Suppose a network consists of n sensors and a fusion center.
At some unknown time, an event occurs in the network, and
causes a change in the data generating distribution of the
sensors. The goal is to detect the change as quickly as possible
subject to false alarm constraints. We consider a general
setting with heterogeneous sensors, where the sensors can be
clustered into K groups, and different groups follow different
data generating distributions. In this paper, we investigate
the scenario where the sensors are anonymous. Specifically,
the fusion center does not know which sensor each sample
comes from (see e.g., [2], [3] for anonymous data collection
approaches). The anonymous and heterogeneous setting finds a
wide range of applications in sensor networks in social settings
[4], where human participants are involved, and thus privacy
and anonymity are required to protect the participants.

In this paper, we investigate the anonymous setting. Existing
approaches for quickest change detection (QCD) in sensor
networks [5]–[14] are not applicable since the fusion center is
not able to compute one CuSum statistic for each sensor.

In [15], the binary hypothesis testing problem under the
anonymous setting was considered and an optimal mixture
likelihood ratio test (MLRT) was developed. In [1], the QCD
problem under the anonymous setting was investigated, and
a mixture CuSum algorithm was constructed based on the
MLRT, and was further shown to be exactly optimal under Lor-
den’s criterion [16]. However, the computational complexity of
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mixture CuSum increases exponentially with n, which limits
its applications in large networks. In this paper, we propose a
computationally efficient test and further derive a lower bound
on its worst-case average run length to false alarm, so that a
threshold can be chosen analytically for false alarm control.
We provide numerical results to demonstrate the performance
of our test and its computational efficiency.

II. PROBLEM FORMULATION

Consider a network consisting of n sensors. The sensors are
heterogeneous and can be divided into K groups. Each group
k has nk sensors, 1 ≤ k ≤ K. Let α = [α1 · · ·αK ]T , where
αk = limn→∞

nk
n . The distributions of the observations in

group k are pθ,k, θ ∈ {0, 1}. Let Pθ = [pθ,1 · · · pθ,K ]T . We
assume that αTP0 6= αTP1 almost everywhere.

The centralized setting is considered, where there is a fusion
center. The sensors are anonymous, i.e., the fusion center
doesn’t know which group of sensors that each observation
comes from. The fusion center only knows the distributions
pθ,k, θ ∈ {0, 1} and the number of sensors nk in each group
k. We focus on discrete distributions, that is, the cardinality
of X is finite, where X denotes the alphabet of distributions.
Denote by PX the set of all distributions supported on X .

In anonymous networks, unordered samples are observed
sequentially. Let Xn[t] = {X1[t], . . . , Xn[t]} be the n col-
lected samples at time t, which are assumed to be independent.
We further assume that Xn[t1] is independent from Xn[t2]
for any t1 6= t2. Denote by σt(i) ∈ {1, . . . ,K} the label of
the group that Xi[t] comes from, i.e., Xi[t] ∼ pθ,σt(i). Due
to the anonymity, σt(i), i = 1, . . . , n, are unknown to the
fusion center. There are ( n

n1,...,nK) possible σt : {1, . . . , n} →
{1, . . . ,K} satisfying |{i : σt(i) = k}| = nk,∀k = 1, . . . ,K.
We denote the collection of all such labelings by Sn,λ, where
λ = {n1, . . . , nK}.

At some unknown time ν, an event occurs and changes
the data generating distributions of the sensors. Before the
change, i.e., t < ν, Xn[t] ∼ P0,σt

∆
=
∏n
i=1 p0,σt(i), for some

σt ∈ Sn,λ. After the change, i.e., t ≥ ν, Xn[t] ∼ P1,σt
∆
=∏n

i=1 p1,σt(i), for some σt ∈ Sn,λ. Note that σt may change
with time, i.e., σt1 may not be the same as σt2 , for t1 6= t2.
Let Xn[t1, t2] = {Xn[t1], · · · , Xn[t2]}, for t1 ≤ t2.



The objective is to detect the change at time ν as quickly
as possible subject to false alarm constraints. In this paper,
we consider a deterministic unknown change point ν, and we
define the worst-case average detection delay (WADD) under
Lorden’s criterion [16] and worst-case average run length
(WARL) for any stopping time τ as follows:

WADD(τ) , sup
ν≥1

sup
Ω

ess supEνΩ
[
(τ − ν)+|Xn[1, ν − 1]

]
,

WARL(τ) , inf
Ω

E∞Ω [τ ]. (1)

where Ω = {σ1, σ2, ..., σ∞}, EνΩ denotes the expectation when
the change is at ν, and samples are labeled by σt.

The goal is to design a stopping rule that minimizes the
WADD subject to a constraint on the WARL:

inf
τ :WARL(τ)≥γ

WADD(τ). (2)

III. EXACTLY OPTIMAL MIXTURE CUSUM

In [1], the following mixture CuSum algorithm was pro-
posed for the QCD problem in (2):

T ∗(b) = inf
{
t : max

1≤k≤t

t∑

i=k

log

∑
σ∈Sn,λ P1,σ(Xn[i])

∑
σ∈Sn,λ P0,σ(Xn[i])

≥ b
}
,

(3)

where b > 0 is the threshold. This test was shown to
be exactly optimal for the problem in (2). However, the

mixture likelihood ratio
∑
σ∈Sn,λ

P1,σ(Xn[i])
∑
σ∈Sn,λ

P0,σ(Xn[i]) needs to com-

pute the average of the likelihood over all possible σ ∈
Sn,λ. Note that the size of Sn,λ is

(
n

n1,··· ,nK
)
. From the

exponential bounds on the size of a type class [17], we

have that 2
nH

(
[
n1
n
···nK

n
]

)

(n+1)|X| ≤
(

n
n1,··· ,nK

)
≤ 2nH

(
[
n1
n ···

nK
n ]
)
,

where H
(
[n1

n · · · nKn ]
)

denotes the entropy of [n1

n · · · nKn ]. As
n → ∞, we have that limn→∞H

(
[n1

n · · · nKn ]
)

= H(α).
Therefore, the computational complexity of mixture CuSum
increases almost exponentially with n, which limits its prac-
tical applications in large networks. This motivates the need
for computationally efficient tests for large networks.

IV. AN EFFICIENT ALGORITHM

In this section, we propose a computationally efficient
algorithm. We derive a lower bound on its WARL so that
a threshold can be chosen analytically for false alarm control.
The WADD for the computationally efficient algorithm is
challenging. We will then investigate the detection delay when
the change occurs at ν = 1.

A. Algorithm Construction

We first introduce some useful results that motivate the
design of our algorithm. Let ΠXn denote the empirical distri-
bution of samples Xn, and T (ΠXn) denote the type class of
ΠXn [17]. It can be firstly shown that [15]

∑
σ∈Sn,λ P1,σ(Xn)

∑
σ∈Sn,λ P0,σ(Xn)

=
P1,σ

(
T (ΠXn)

)

P0,σ

(
T (ΠXn)

) . (4)

The right hand side of (4) is a function of the empirical
distribution ΠXn . Let D(P‖Q) denote the Kullback-Leibler
divergence between two distributions P and Q. Then the
computation of likelihood ratio in mixture CuSum can be
converted into an optimization problem when n is large [15]:
for any θ ∈ {0, 1} and any σ ∈ Sn,λ,

lim
n→∞

1

n
logPθ,σ

(
T (Qn)

)

= − inf
U=(U1,...,UK)∈(PX )K

αTU=Q

K∑

k=1

αkD(Uk||pθ,k), (5)

where Pn denote the set of types with denominator n, Qn ∈
Pn denotes a sequence of distributions and limn→∞Qn = Q.

The right hand side of (5) is a convex optimization problem
with linear constraints, which can be solved efficiently using
standard optimization tools [18], [19]. Its computational com-
plexity is independent of the number of sensors. Therefore,
for large n, the mixture of the likelihood over σ in (4) can be
approximated by convex optimization.

Let P = [P1 · · ·PK ]T , where Pk ∈ PX , 1 ≤ k ≤ K. For
any distribution Q ∈ PX , define the following function of Q:

fP (α, Q) = inf
(U1,...,UK)∈(PX )K

αTU=Q

K∑

k=1

αkD(Uk||Pk). (6)

Intuitively, an algorithm for problem in Section II can be
constructed by approximating the mixture likelihood ratio at
time t in the mixture CuSum algorithm using fP0

(α,ΠXn[t])−
fP1

(α,ΠXn[t]). However, the lower bound on WARL for this
algorithm is difficult to derive due to the “inf" in the test
statistic. In the following, we construct a novel test that can
be updated recursively, and for which the lower bound on
WARL can be theoretically characterized.

Let ν̂t denote the change point estimate at time t. Denote
by t̂ , t − v̂t + 1. We then design our detection statistic to

approximate
∑t
i=k log

∑
σ∈Sn,λ

P1,σ(Xn[i])
∑
σ∈Sn,λ

P0,σ(Xn[i]) in (3):

W [t] = t̂n
[
fP0

(α,ΠXn[ν̂t,t])− fP1
(α,ΠXn[ν̂t,t])

]
. (7)

Instead of using a maximum likelihood approach to estimate
ν̂t as in (3), which is not computationally efficient here, since
ν̂t also appears in Xn[ν̂t, t], we design a recursive way of
updating ν̂t: let ν̂0 = 0; if W [t] ≤ 0, ν̂t+1 = t + 1, and if
W [t] > 0, ν̂t+1 = ν̂t. Then, ΠXn[ν̂t,t] can also be updated
recursively: if W [t] ≤ 0, ΠXn[ν̂t+1,t+1] = ΠXn[t+1], and if

W [t] > 0, ΠXn[ν̂t+1,t+1] =
t̂ΠXn[ν̂t,t]

+ΠXn[t+1]

t−ν̂t+1+2 .
We next provide a heuristic explanation of how W [t]

evolves in the pre- and post-change regimes. According to the
Glivenko–Cantelli theorem [20], before the change point ν, as
n→∞, ΠXn[ν̂t,t] converges to αTP0 almost surely. It can be
easily seen that fP (α, Q) ≥ 0 for any α,P and Q. The equal-
ity holds if and only if αTP = Q almost everywhere. This
implies that fP0

(α,αTP0) − fP1
(α,αTP0) < 0. Therefore,

before the change point ν, for large n, W [t] has a negative
drift. Similarly, after the change point ν, for large n, W [t] has



a positive drift and evolves towards ∞. This motivates us to
construct the following computationally efficient test:

τe = inf
{
t ≥ 1 : W [t] ≥ b

}
. (8)

The computation cost of τe mainly lies in the update of
the empirical distribution and the optimization step. The com-
putational complexity of updating the empirical distribution
increases linearly with n, and the computational complexity
of the optimization problem is independent of n. Therefore,
the computationally efficient test is more efficient than the
optimal mixture CuSum algorithm when n is large.

B. Lower Bound on WARL

In this section, we derive the WARL lower bound for our
computationally efficient test in (8).

Theorem 1. Define Γ ,
{
µ ∈ PX |fP0(α, µ) > fP1(α, µ)

}
.

Let h = inf(U1,...,UK)∈(PX )K

αTU∈Γ

∑K
k=1 nkD(Uk||P0,k). Then h >

0, and for any Ω,

E∞Ω
[
τe(b)

]
≥ eb(

b
h + 1

)(∏
k |P b

hnk
|
) . (9)

Proof. Let Y = inf{t ≥ 1 : W [t] ≤ 0} be the first
regeneration time. For any Ω and m ≥ 1, we have that

P∞Ω (Y > m) = P∞Ω
(
W [t] > 0,∀t ∈ [1,m]

)

≤ P∞Ω
(
nm
[
fP0

(α,ΠXn[1,m])− fP1
(α,ΠXn[1,m])

]
> 0
)
.

Let Γ , {µ ∈ PX |fP0(α, µ) > fP1(α, µ)}. We have that

P∞Ω
(
nm
[
fP0

(α,ΠXn[1,m])− fP1
(α,ΠXn[1,m])

]
> 0
)

= P∞Ω
{

ΠXn[1,m] ∈ Γ
}

≤
∑

(U1,...,UK)∈Pmn1×...×PmnK
αTU∈Γ

e−
∑K
k=1mnkD(Uk||p0,k)

≤
(∏

k

|Pmnk |
)

· exp

(
− inf
(U1,...,UK)∈Pmn1

×...×PmnK
αTU∈Γ

K∑

k=1

mnkD(Uk||p0,k)

)

≤
(∏

k

|Pmnk |
)
e−hm, (10)

where the last step is due to the fact that Pmnk ∈ PX , ∀k.
Note that fP (α,Q) ≥ 0 for any Q and the equality holds if
and only if αTP = Q almost everywhere. We then have that
αTP0 /∈ Γ and h > 0. Therefore, for any Ω and m ≥ 1,

P∞Ω (Y > m) ≤
(∏

k

|Pmnk |
)
e−mh. (11)

Define regeneration times Y0 = 0 and for r ≥ 0,
Yr+1 = inf

{
t > Yr : W [t] ≤ 0

}
. Let R = inf{r :

Yr ≤ ∞ and W [t] ≥ b for some Yr < t ≤ Yr+1}
denote the index of the first cycle in which W [t] crosses b.

Note that according to the recursive update rule of ν̂t and
W [t], the test statistics in cycle r + 1 are independent of
the samples in cycles 1, · · · , r. For any Ω, we have that
E∞Ω [τe(b)] ≥ E∞Ω [R] =

∑∞
r=0 P∞Ω (R ≥ r). For any Ω and

m ≥ 1, we have that

P∞Ω (τe(b) < Y )

= P∞Ω (τe(b) < Y, Y ≤ m) + P∞Ω (τe(b) < Y, Y > m)

≤ P∞Ω (τe(b) < m) + P∞Ω (Y > m). (12)

Consider the first term in (12) P∞Ω (τe(b) < m):

P∞Ω
(
τe(b) < m

)
= P∞Ω

(
max

1≤t<m
W [t] ≥ b

)

≤
∑

1≤t<m
P∞Ω
(
W [t] ≥ b

)

=
∑

1≤t<m
P∞Ω
(
nt̂
[
fP0

(α,ΠXn[ν̂t,t])− fP1
(α,ΠXn[ν̂t,t])

]
≥ b
)
.

Define Γb,t ,
{
µ ∈ PX

∣∣nt̂
[
fP0(α, µ)− fP1(α, µ)

]
≥ b
}

.
For all µ ∈ Γb,t, we have that nt̂fP0

(α, µ) ≥ b +
nt̂fP1(α, µ) ≥ b, where the last inequality is due to the facts
that t̂ ≥ 0 and fP1

(α, µ) ≥ 0. For any Ω and 1 ≤ t < m,
following the same idea as (10), we have that

P∞Ω
(
nt̂
[
fP0(α,ΠXn[ν̂t,t])− fP1(α,ΠXn[ν̂t,t])

]
> b
)

= P∞Ω
{

ΠXn[ν̂t,t] ∈ Γb,t
}

≤
(∏

k

|Pt̂nk |
)

exp

(
− inf
(U1,...,UK)∈(PX )K

αTU∈Γb,t

K∑

k=1

nk t̂D(Uk||p0,k)

)

≤
(∏

k

|Pmnk |
)
e−b, (13)

We then have that for any Ω, P∞Ω
(
τe(b) < m

)
≤

m (
∏
k |Pmnk |) e−b. Let m = b

h , combing (11) and (13),

P∞Ω (τe(b) < Y ) =
( b
h

+ 1
)(∏

k

|P b
hnk
|
)
e−b. (14)

It then follows that

P∞Ω (R ≥ r) = P∞Ω
(
W [t] < b,∀Ym−1 ≤ t ≤ Ym,∀1 ≤ m ≤ r

)

=
r∏

m=1

P∞Ω
(
W [t] < b,∀Ym−1 ≤ t ≤ Ym

)

≥
(

1−
( b
h

+ 1
)(∏

k

|P b
hnk
|
)
e−b
)r
, (15)

where the second equality is due to (14) and the independence
among the cycles [21]. Therefore, for any Ω,

E∞Ω [τe(b)] ≥
∞∑

r=0

(
1−

( b
h

+ 1
)(∏

k

|P b
hnk
|
)
e−b
)r

=
eb(

b
h + 1

)(∏
k |P b

hnk
|
) . (16)

This completes the proof.



To guarantee that infΩ E∞Ω
[
τe(b)

]
≥ γ, it suffices to choose

b such that eb(
b
h+1
)(∏

k |P b
h
nk
|
) = γ and b ∼ log γ.

Note that an upper bound on the WADD for τe is difficult
to obtain. To understand the detection delay of the proposed
computationally efficient test, we then study the case when the
change occurs at ν = 1. We have the following result.

Proposition 1. Consider the case with ν = 1. Then,
as t → ∞, n

[
fP0

(α,ΠXn[1,t]) − fP1
(α,ΠXn[1,t])

]
→

nfP0
(α,αTP1), almost surely.

Proof. According to the Glivenko–Cantelli theorem [20], as
t → ∞, under the post-change distribution, the empirical
distribution ΠXn[1,t] convergences to αTP1 almost surely.
Due to the fact that fP1

(α,αTP1) = 0, we have that
1
t (t−1+1)n

[
fP0(α,ΠXn[1,t])−fP1(α,ΠXn[1,t])

]
converges

to nfP0(α,αTP1) almost surely.

Intuitively, Proposition 1 implies that if the change is at ν =
1 and regeneration does not happen, then the detection delay
of the computationally efficient algorithm increases linearly
with the threshold b at the rate of 1/(nfP0(α,αTP1)).

Let P̃0 = 1
|Sn,λ|

∑
σ∈Sn,λ P0,σ and P̃1 =

1
|Sn,λ|

∑
σ∈Sn,λ P1,σ . We then present the following universal

lower bound on the WADD, and show that the slope is also
1/(nfP0

(α,αTP1)) when n is large.

Proposition 2. For large γ, we have that
infτ :WARL≥γ WADD(τ) ∼ log γ

D(P̃1‖P̃0)
(1 + o(1)). Moreover,

as n→∞,

lim
n→∞

1

n
D
(
P̃1

∣∣∣∣P̃0

)
= fP0

(α,αTP1). (17)

Proof. It was shown in [1] that the mixture CuSum τ∗ is
exactly optimal for the QCD problem in Section II. Then, as
γ →∞, we have that infτ :WARL≥γ WADD(τ) = WADD(τ∗).
From Theorem 4 in [22] and the optimality of τ∗ in [1], as
γ → ∞, it follows that WADD(τ∗) ∼ log γ

D
(
P̃1

∣∣∣∣P̃0

) (1 + o(1)).

From Lemma 4, we have that for any σ ∈ Sn,λ,

log
P̃1(Xn)

P̃0(Xn)
= log

P1,σ

(
T (ΠXn)

)

P0,σ

(
T (ΠXn)

) . (18)

Let B(αTPθ, ε) =
{
µ ∈ PX : sup

x∈X

∣∣µ(x) − αTPθ(x)
∣∣ ≤ ε

}

denote the ball centered at αTPθ with radius ε > 0. According
to the Glivenko–Cantelli theorem [20], we then have that for
any σ ∈ Sn,λ and ε > 0,

lim
n→∞

Pθ,σ
{

sup
x∈X

∣∣ΠXn(x)−αTPθ(x)
∣∣ > ε

}
= 0. (19)

It then follows that for any σ ∈ Sn,λ and ε > 0,

lim
n→∞

Pθ,σ
{

ΠXn /∈ B(αTPθ, ε)
}

= lim
n→∞

Pθ,σ
{

sup
x∈X

∣∣ΠXn(x)−αTPθ(x)
∣∣ > ε

}
= 0. (20)

It was shown in Lemma 5.3 in [15] that fPθ (α, P ) is a
continuous function of P for any θ ∈ {0, 1}. Therefore,

fP0
(α, P ) − fP1

(α, P ) is a continuous function of P . Then
we have that for any ε > 0, there exists an η(ε) > 0 such that
∀P ∈ B(αTP1, ε),

fP0(α,αTP1)− η(ε) < fP0(α, P )− fP1(α, P )

< fP0
(α,αTP1) + η(ε), (21)

where η(ε)→ 0 as ε→ 0. We then have that

lim
n→∞

1

n
D
(
P̃1

∣∣∣∣P̃0

)

= lim
n→∞

1

n
EP̃1

[
logP1,σ

(
T (ΠXn)

)
− logP0,σ

(
T (ΠXn)

)]

(a)

≤ lim
n→∞

1

n
EP̃1

[
log

(∏

k

|Pnk |
)
− log

( K∏

k=1

1

(nk + 1)|X |

)

− inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p0,k)

]

= lim
n→∞

1

n
P̃1

(
ΠXn ∈ B(αTP1, ε)

)
EP̃1

[
log

(∏

k

|Pnk |
)

− inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑

k=1

nkD(Uk||p0,k)

− log

( K∏

k=1

1

(nk + 1)|X |

)∣∣∣∣∣ΠXn ∈ B(αTP1, ε)

]

+ lim
n→∞

1

n
P̃1

(
ΠXn /∈ B(αTP1, ε)

)
EP̃1

[
log

(∏

k

|Pnk |
)

− inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑

k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p0,k)

− log

( K∏

k=1

1

(nk + 1)|X |

)∣∣∣∣∣ΠXn /∈ B(αTP1, ε)

]

(b)
= lim

n→∞
1

n
P̃1

(
ΠXn ∈ B(αTP1, ε)

)
EP̃1

[

− inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p0,k)



Fig. 1. Comparison of the three algorithms: n =
2.

Fig. 2. Comparison of the three algorithms: n =
8.

Fig. 3. Comparison of the computational complex-
ity.

∣∣∣∣∣ΠXn ∈ B(αTP1, ε)

]

+ lim
n→∞

1

n
P̃1

(
ΠXn ∈ B(αTP1, ε)

)(
log
(∏

k

|Pnk |
)

− log
( K∏

k=1

1

(nk + 1)|X |

))

(c)

≤ fP0(α,αTP1) + η(ε), (22)

where the inequality (a) is due to the bound of the prob-
ability of type classes [17]: 1

(nk+1)|X| 2
−nkD(Uk||pθ,k) ≤

p
⊗
nk

θ;k

(
Tnk(Uk)

)
≤ 2−nkD(Uk||pθ,k), the equality in (b) is

due to the fact that limn→∞ P̃1

(
ΠXn /∈ B(αTP1, ε)

)
=

0 and the inequality (c) is due to (21) and the fact

that limn→∞ 1
n P̃1

(
ΠXn ∈ B(αTP1, ε)

)(
log
(∏

k |Pnk |
)
−

log
(∏K

k=1
1

(nk+1)|X|

))
= 0.

For the lower bound, following the same idea as in (22),
we have that

lim
n→∞

1

n
D(P̃1

∣∣∣∣P̃0)

≥ lim
n→∞

1

n
EP̃1

[
log

( K∏

k=1

1

(nk + 1)|X |

)
− log

(∏

k

|Pnk |
)

− inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑

k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK
αTU=ΠXn

K∑

k=1

nkD(Uk||p0,k)

]

≥ fP0
(α,αTP1)− η(ε). (23)

By (22) and (23), we have that limn→∞ 1
nD
(
P̃1

∣∣∣∣P̃0

)
=

fP0
(α,αTP1).

Combining Propositions 1 and 2, it can be seen that the
tradeoff between the WADD and WARL for our computation-
ally efficient test is close to the optimal one for large n. This
demonstrates the advantage of our test that for large networks,

it has a similar statistical efficiency comparing to the optimal
test, and has a significantly reduced computational complexity.

V. SIMULATION RESULTS

In this section, we provide some numerical results. We first
consider a simple example with n = 2, K = 2, n1 = 1
and n2 = 1. The pre- and post-change distributions for
group 1 are binomial distribution B(10, 0.5) and B(10, 0.3),
respectively, and for group 2 are B(10, 0.5) and B(10, 0.7),
respectively. We compare the performance of our efficient
algorithm with the optimal mixture CuSum algorithm in [1]
and a heuristic Bayesian CuSum algorithm TB = inf

{
t ≥

1 : max
1≤j≤t

t∑
i=j

log
∏n
i=1(

∑K
k=1

nk
n p1,k(Xi[t]))∏n

i=1(
∑K
k=1

nk
n p0,k(Xi[t]))

≥ b
}

. The test

statistics of these three algorithms are all symmetric, and
therefore for different Ω’s, the ADD and ARL are the same.

We then repeat the experiment for n = 8, n1 = 4 and n2 =
4 with the same distributions. For the two cases with n = 2
and n = 8, we plot the WADD as a function of the WARL
in Fig. 1 and Fig. 2, respectively. It can be seen that mixture
CuSum outperforms the other two tests, and our efficient test
has a better performance than the intuitive Bayesian CuSum.
More importantly, as n increases, the slope of the WADD-
WARL tradeoff curve of the efficient algorithm is closer to the
one of the optimal mixture CuSum algorithm. This conforms
to the design of our efficient test which is to approximate the
optimal mixture CuSum when n is large.

In Fig. 3, we show the computational efficiency of our
algorithm. We compare the running time of one step update
of our efficient algorithm and the optimal mixture CuSum
algorithm. From Fig. 3, one can see that as n increases, the
running time of the mixture CuSum increases exponentially,
while the running time of our efficient test stays the same.

VI. CONCLUSION

In this paper, we studied the quickest change detection
problem in anonymous heterogeneous sensor networks. We
proposed a computationally efficient test to approximate the
optimal mixture CuSum in [1]. We further developed its
WARL lower bound for practical false alarm control. It re-
mains to see whether our computationally efficient algorithm
is also asymptotically optimal as n→∞.
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