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Collective resonance of interacting particles has important implications in many-body quantum
systems and their applications. Strong interactions can lead to a blockade that prohibits the exci-
tation of a collective resonance of two or more nearby atoms. However, a collective resonance can
be excited with the presence of weak interaction and has been observed for atoms in the first ex-
cited state (P states). Here, we report the observation of collective resonance of rubidium atoms in
a higher excited state (D states) in addition to the first excited state. The collective resonance
is excited by a double-quantum four-pulse excitation sequence. The resulting double-quantum
two-dimensional (2D) spectrum displays well-isolated peaks that can be attributed to collective
resonances of atoms in P and D states. The experimental one-quantum and double-quantum 2D
spectra can be reproduced by a simulation based on the perturbative solutions to the optical Bloch
equations, confirming collective resonances as the origin of the measured spectra. The experimen-
tal technique provides a new approach for preparing and probing collective resonances of atoms in
highly excited states.

Collective resonance of multiple particles has impor-
tant implications for quantum information science [1, 2],
quantum metrology [3, 4], strongly correlated systems
[5], photosynthesis [6], and fundamental studies of many-
body physics [7]. A well-known example is Dicke state [8]
which is a coherent collection of N atoms. A hallmark
phenomenon of Dicke states is superradiance, in which
the collective resonance of N atoms produces a coopera-
tive spontaneous emission whose intensity scales with N2

instead of N . In the case of Dicke states, the formation of
collective resonance can be mediated by interacting with
a common optical field and does not necessarily require
interatomic interactions. On the other hand, collective
effects due to strong interatomic interactions have been
extensively studied in ensembles of highly excited Ryd-
berg atoms, promising quantum applications such as non-
classical light sources [9–11] and quantum gates [12, 13].
Owing to their large dipole moments, highly excited Ry-
dberg atoms interact strongly and lead to the blockade of
excitations for surrounding atoms in the blockade regime.
This phenomenon, known as the Rydberg blockade, is the
key for many applications of Rydberg atoms. However,
in most Rydberg atom experiments, the blockade also
prohibits the simultaneous excitation of two interacting
Rydberg atoms to form a collective resonance [14, 15]
which is necessary to manipulate entanglement states of
two or more atoms. The simultaneous excitation of Ry-
dberg aggregates has been demonstrated by using spe-
cial techniques such as interaction-facilitated excitation
[16, 17] and excitation with ultrafast laser pulses [18]. On
the other hand, the excitation of collective resonance is
possible with the presence of weak interatomic interac-
tion and has been observed for atoms in the first excited
state (P states) [19–26]. It is of interest to induce and
probe collective resonances of atoms in higher excited
states (D states, etc.). Compared to the strong Rydberg
interaction, the dipole-dipole interaction between atoms

in P and D states is in the weak interaction regime. The
interaction strengths are different for atoms in different
excited states due to different transition dipoles. The
ability to prepare atoms in different collective states with
various interaction strengths makes it possible to design
a versatile system to simulate a more complex Hamilto-
nian that can include different types of many-body inter-
actions with different strengths. Moreover, the approach
to create and observe collective resonance of doubly ex-
cited states in atoms can be extended to study collective
states of biexcitons in solid-state system such as semi-
conductor quantum wells, quantum dots, 2D materials,
etc.

Optical two-dimensional coherent spectroscopy
(2DCS), which is an optical analog of two-dimensional
nuclear magnetic resonance [27], has been demonstrated
as a powerful tool to study many-body correlations and
interactions in various systems [28, 29]. In particular,
double-quantum 2DCS was used to probe collective
resonances due to weak dipole-dipole interactions in
potassium (K) and rubidium (Rb) atomic vapors [19–22].
In double-quantum 2DCS, the excitation pulses create a
double-quantum coherence between the ground state and
the doubly-excited state that can be a collective state
of two atoms. However, the signals from all excitation
pathways cancel out if the two atoms do not interact.
The presence of interaction breaks the symmetry so that
the cancellation is incomplete, resulting in a nonzero
double-quantum signal [19, 20]. The double-quantum
2DCS provides sensitive detection of the collective
resonances induced by weak interatomic interactions.
The technique can also be extended to detect multi-
quantum coherence associated with collective resonances
of multiple atoms [23, 24, 26]. The observed collective
resonances were collective states of two or more atoms
in the P states but not higher excited states in the
previous studies.
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In this letter, we report the observation of collective
resonances of Rb atoms in the D state in addition to
the P state in an Rb atomic vapor. The collective reso-
nances are created and detected by a four-pulse double-
quantum excitation sequence in an optical 2DCS exper-
iment. The excitation pulses generate double-quantum
coherences between an initial state and a doubly-excited
state. For atoms initially prepared in the P state, the
collective resonances of two atoms in the D state can
be generated and the resulting double-quantum signals
are unambiguously manifested in the 2D spectrum as
an isolated peak. Both the one- and double-quantum
spectra involving the D state are presented. The exper-
imental spectra can be reproduced by simulation based
on the perturbative solutions to the optical Bloch equa-
tions, confirming collective resonances as the origin of the
observed signals. This work provides a new experimen-
tal approach for generating and manipulating collective
resonances of atoms in highly excited states, including
Rydberg states, for potential applications of quantum
many-body systems.

The collective resonances of Rb atoms are measured
in our experiment. The relevant Rb energy levels are
|S〉 = |52S1/2〉, |P 〉 = |52P3/2〉, and |D〉 = |52D〉, as
shown in Fig. 1(a). The |52P1/2〉 state is outside the
laser bandwidth and the hyperfine levels are not resolved
in our measurements. For single atoms, the excitation
pulses with a central wavelength of 778 nm can generate
a double-quantum coherence between |S〉 and |D〉, which
leads to two off-diagonal peaks in the double-quantum
2D spectrum [20, 22]. When two atoms are consid-
ered in their joint Hilbert space, the collective states
of |S〉 and |P 〉 form a four-level system, as shown in
Fig. 1(b), including the ground state |g〉 = |S, S〉, singly
excited states |e1,±〉 = 1√

2
(|P, S〉 ± |S, P 〉), where state

|e1,−〉 = 1√
2
(|P, S〉−|S, P 〉) is a dark state that cannot be

excited, and a doubly excited state |e2〉 = |P, P 〉. There-
fore the system can be considered as a three-level ladder
system with energy shift ∆1 for singly excited state. For
two atoms initially in the ground state |g〉, the double-
quantum excitation can generate a double-quantum co-
herence between |g〉 and |e2〉 and give rise to a diago-
nal peak in the double-quantum 2D spectrum [20, 22],
providing evidence for dipole-dipole interaction induced
collective resonances of Rb atoms in the P state. Here,
we further consider two atoms initially in the doubly ex-
cited state |e2〉. As shown in Fig. 1(c), they can similarly
be excited into states |e3,+〉 = 1√

2
(|D,P 〉 + |P,D〉) by a

single-quantum excitation and state |e4〉 = |D,D〉 by a
double-quantum excitation. The double-quantum coher-
ence between |e2〉 and |e4〉 can result in an isolated peak
in the double-quantum 2D spectrum as the evidence for
the collective resonance of two atoms in the D states.

Optical 2DCS experiment is implemented in a collinear
setup based on acousto-optic modulators (AOMs) [22, 23,
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FIG. 1: (a) Relevant single-atom energy levels of Rb atoms,
including ground state |S〉, singly excited state |P 〉, and dou-
bly excited state |D〉. (b) Collective states of two Rb atoms
are |g〉 = |S, S〉 as the initial state, |e1,±〉 = 1√

2
(|PS〉±|PS〉),

and |e2〉 = |P, P 〉. (c) Collective states of two Rb atoms are
|e2〉 = |P, P 〉 as the initial state, |e3,±〉 = 1√

2
(|DP 〉 ± |PD〉),

and |e4〉 = |D,D〉. (d) one-quantum and (e) double-quantum
excitation pulse sequences. (f) Experimental schematic of op-
tical 2DCS. Four copropagating pulses are incident on the
window of a vapor cell and the fluorescence signal is detected
by a photodetector (PD).

30]. As shown in Fig. 1(f), four co-propagating excita-
tion pulses are incident on the window of an Rb atomic
vapor cell. The cell is heated to 170 ◦C in an oven and the
atomic density is 2.06×1014 cm−3. The excitation pulses
are derived from the output of a Ti:sapphire femtosecond
oscillator by using a nested Mach-Zehnder interferometer
[30]. The pulses are about 200 fs in duration at a repeti-
tion rate of 78 MHz. The spectrum has a central wave-
length of 778 nm and a bandwidth of 2.55 nm (the stan-
dard deviation). The total power of four pulse trains at
the cell window is 45 mW. The combined beam is focused
by a lens to a spot on the window with a 1/e2-radius
of 84.7 µm. The pulses are labeled A∗, B, C, and D∗

and the time delays are τ , T , and t for the first, second,
and third delays, respectively, between the pulses. Each
pulse is phase modulated by an AOM at a slightly differ-
ent frequency ΩA = 80.107 MHz, ΩB = 80.104 MHz,
ΩC = 80.0173 MHz and ΩD = 80 MHz respectively.
Since the CW and pulse laser beams have identical opti-
cal path, both beams are modulated at the same AOM
frequencies. Therefore, the target signal due to mixing
of pulses (A∗, B, C, and D) is modulated at a specific
mixing frequency of AOM frequencies and can be demod-
ulated in a lock-in amplifier by using the beating notes of
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FIG. 2: Experimental (a) one-quantum and (b) double-
quantum 2D spectra and simulated (c) one-quantum and (d)
double-quantum 2D spectra. In all spectra, the amplitude is
plotted with the maximum normalized to one.

the CW laser as the reference frequency. Pulses A∗ and
D∗ are considered conjugated in our excitation schemes
so their corresponding modulation frequencies are −ΩA
and −ΩD. Two excitation pulse sequences are used. Fig-
ure 1(d) shows the pulse sequence for one-quantum ex-
citation and Fig. 1(e) for double-quantum excitation.
Both excitation sequences generate a fourth-order non-
linear signal. For instance, in the double-quantum ex-
citation, the first pulse, B, generates a single-quantum
coherence between the ground and singly-excited states;
the second pulse, C, converts the single-quantum coher-
ence to a double-quantum coherence between the ground
and doubly-excited states; the third pulse, A∗, converts
the double-quantum coherence to a third-order single-
quantum coherence; and the fourth pulse, D∗, turns the
single-quantum coherence into a fourth-order population
which emits a fluorescence signal. The signal is detected
by a photodetector (PD) and demodulated by a lock-
in amplifier. The fourth-order nonlinear signal is se-
lected by the lock-in amplifier at the reference frequency
ΩS = ΩB − ΩA + ΩC − ΩD = 14.3 kHz. The signal is
recorded as a function of two time delays and 2D Fourier-
transformed into the frequency domain to generate a 2D
spectrum. A one-quantum 2D spectrum is generated by
scanning τ and t in the one-quantum excitation sequence.
A double-quantum 2D spectrum requires to scan T and
t in the double-quantum excitation sequence.

The acquired one-quantum and double-quantum 2D
spectra are shown in Fig. 2(a) and 2(b), respectively.
The spectral amplitude is plotted with the maximum
normalized to one. All time delays are scanned for 10
ps corresponding to a frequency resolution of 0.1 THz
so the hyperfine levels, two 52D states (J = 1/2, 3/2),
and the isotope shifts between 85Rb and 87Rb are not re-
solved in the measurement. The one-quantum spectrum
was obtained with the excitation pulse sequence shown
in Fig. 1(d). The absorption frequency ωτ axis and the
emission frequency ωt axis correspond to the time delays
τ and t, respectively. The diagonal peak 1 is due to the
transition from |S〉 to |P 〉, while peak 4 corresponds to
the transition from |P 〉 to |D〉. There are also two off-
diagonal peaks 2 and 3 due to the coupling between peaks
1 and 4. The existence of peak 4 suggests that the first
pulse can excite some atoms into the |P 〉 state. There-
fore, the subsequent optical 2DCS experiment needs to
account for both |S〉 and |P 〉 states as possible initial
states. For atoms that are initially prepared in the |P 〉
state, it is then possible to excite collective resonances
of atoms in the |D〉 state by using the double-quantum
excitation pulse sequence shown in Fig. 1(e). The re-
sulting double-quantum 2D spectrum, as shown in Fig.
2(b), has a double-quantum frequency ωT axis and an
emission frequency ωt axis corresponding to the time
delays T and t, respectively. Peaks I, II, and III have
been previously reported in double-quantum 2D spectra
of Rb atoms [20, 22]. They are attributed to the double-
quantum signal from the excitation of atoms initially in
the |S〉 state. Peaks II and III are associated with the
single-atom state |D〉 while peak I is contributed by the
two-atom collective state |e2〉. In this experiment, we ob-
served an additional peak labeled as IV. This peak has
a double-quantum frequency that is twice the transition
frequency from |P 〉 to |D〉. The double-quantum signal
associated with peak IV is attributed to the excitation of
atoms initially in the |P 〉 state. A high excitation den-
sity is required to prepare a sufficient number of atoms in
the |P 〉 state. Peak IV was absent in the previously re-
ported double-quantum 2D spectra due to the relatively
low laser power used in the experiment.

Both one-quantum and double-quantum 2D spectra
can be reproduced by a simulation based on the pertur-
bative solutions to the optical Bloch equation. Under the
excitation of the pulse sequences in Fig. 1(d) and Fig.
1(e), each peak in the spectra is contributed by several
excitation pathways that can be represented by double-
sided Feynman diagrams. The pathways in Fig. 3(a) and
3(b) contribute to peak 4 in the one-quantum 2D spec-
trum and peak IV in the double-quantum 2D spectrum,
respectively. The pathways associated with other peaks
are shown in Supplemental Material (SM) [31]. Each
excitation pathway generates a fourth-order population
which can be calculated from the double-sided Feynman
diagram. The pathways in Fig. 3(a) lead to a fourth-
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FIG. 3: Double-sided Feynman diagrams showing excitation
pathways that contribute to (a) peak 4 in one-quantum 2D
spectrum and (b) peak IV in double-quantum 2D spectrum.

order population in state |P 〉 that emits one photon as
well as state |D〉 that emits two photons (one from |D〉 to
|P 〉 and the other from |P 〉 to |S〉) as a fluorescence sig-
nal. The signal in peak 4 is the sum of the contributions
from all pathways in Fig. 3(a) and can be calculated as
[31]

S4(ωτ , ωt) =
2S0ρ

(0)
PP

(ωτ − ωPD + iΓDP )(ωt − ωDP + iΓDP )
,(1)

where S0 = −EAEBECEDµ
4
PD

16~ . Here EA,B,C,D are the
electric field amplitudes, ~ is the reduced Planck con-

stant, ρ
(0)
PP is the initial population in state |P 〉, µij is

dipole moment, Γij is the relaxation rate, and ωij =
ωi−ωj is the frequency difference between states |i〉 and
|j〉. Similarly, based on the pathways shown in Fig. 3(b),
the signal in peak IV can be calculated as

SIV(ωT , ωt) =
3S0ρ

(0)
e2e2

ωT − ωe4e2 + iΓe4e2

(
1

ωt − ωe3,+e2 + iΓe3,+e2
− 1

ωt − ωe4e3,+ + iΓe4e3,+
), (2)

where ρ
(0)
e2e2 is the initial population in state |e2〉. The

signals for all other peaks can be calculated based on
the doubled-sided Feynman diagrams for the contribut-
ing pathways as shown in SM [31]. Simulated one-
quantum and double-quantum 2D spectra, as shown in
Fig. 2(c) and 2(d) respectively, are generated from the
calculated signals as shown in SM [31]. The simulation
shows that peak 4 in the one-quantum 2D spectrum is
due to the transition from |P 〉 to |D〉, indicating there
is an initial population in state |P 〉 for the 2DCS mea-
surement. Within the initial population in |P 〉, some of
the atoms are in the correlated two-atom state |e2〉. The

double-quantum excitation pulse sequence in Fig. 1d can
then access states |e3,+〉, and |e4〉 and generate double-
quantum coherence between states |e4〉 and |e2〉, as illus-
trated by doubled-sided Feynman diagrams in Fig. 3(b).
The resulting double-quantum signal calculated from Eq.
2 would be zero if the interaction between the two atoms
is absent in which case we have ωe4e3,+ = ωe3,+e2 and
Γe4e3,+ = Γe3,+e2 . The existence of peak IV in the double-
quantum 2D spectrum is a result of the two-atom states
|e3,+〉, |e4〉 and the interaction between the two atoms.

In summary, we observed collective resonances of Rb
atoms in the D and P states in an atomic vapor by us-
ing optical 2DCS experiments. Both one-quantum and
double-quantum 2D spectra were measured. The one-
quantum 2D spectrum shows that some atoms are ini-
tially prepared in the P state. The double-quantum 2D
spectrum includes signals due to double-quantum coher-
ences between the two-atom collective states |e4〉 (two
atoms in the D state), |e2〉 (two atoms in the P state),
and |g〉 (two atoms in the S state). The double-quantum
signal also indicates the interaction between two atoms.
As previously reported, double-quantum signal was mea-
sured at a density as low as 108 cm−3 for K and 109

cm−3 for Rb [22], while multi-quantum signal indicat-
ing correlation of more than two atoms required higher
atomic densities [26]. The simulated 2D spectra based
on the perturbative solutions to the optical Bloch equa-
tions agree with the experimental spectra and confirm
collective resonances as the origin of the observed double-
quantum signals. The developed technique can provide a
new approach to prepare and probe collective resonances
of atoms in highly excited states including Rydberg states
for quantum applications requiring many-body systems.

This material is based upon work supported by the
National Science Foundation under Grant No. PHY
1707364.
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