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ABSTRACT

Runaway electron acceleration is the keystone process responsible for the production of energetic radiation by lightning and thunderstorms.
In the laboratory, it remains undetermined if runaway electrons are merely a consequence of high electric fields produced at the ionization
fronts of electrical discharges, or if they impact the discharge formation and propagation. In this work, we simulate photon pileup in a
detector next to a spark gap. We compare laboratory measurements to ensembles of monoenergetic electron beam simulations performed
with Geant4 (using the Monte Carlo method). First, we describe the x-ray emission properties of monoenergetic beams with initial energies
in the 20 to 75 keV range. Second, we introduce a series of techniques to combine monoenergetic beams to produce general-shape electron
energy spectra. Third, we proceed to attempt to fit the experimental data collected in the laboratory, and to discuss the ambiguities created
by photon pileup and how it constrains the amount of information that can be inferred from the measurements. We show that pileup ambi-
guities arise from the fact that every single monoenergetic electron beam produces photon deposited energy spectra of similar qualitative
shape and that increasing the electron count in any beam has the same qualitative effect of shifting the peak of the deposited energy spectrum
toward higher energies. The best agreement between simulations and measurements yields a mean average error of 8.6% and a R-squared
value of 0.74.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086579

I. INTRODUCTION

Research on the role of runaway electrons in transient plasma
discharges in the laboratory1–4 and nature5–7 has bloomed in
recent years. The basic idea of how runaway electrons emerge is
simple.8 When an electric field is applied to air, a free electron
begins to accelerate. The electron interacts with air molecules, loses
energy due to numerous types of collisions, and decelerates. The
effects of these collisions can be represented by an energy-
dependent effective friction force, as shown in Fig. 1(a). If the field
supplies more energy to the electron than is lost due to collisions,
the electron may enter the runaway state.9,10 This phenomenon
happens for energies larger than 100 eV, where the friction force
experienced by electrons decreases with increasing electron energy
[marked by a red circle in Fig. 1(a)]. More precisely, in the energy
range between 300 eV and 300 keV, the runaway electron threshold
energy (in eV) can be approximated by the following formula Kth

¼ 8.4� 105E�1:4, where E is the applied electric field in kV/cm.

This formula is obtained by fitting the effective friction force as
given by Berger et al.,11 and it corresponds to sea-level atmospheric
pressure. The Kth approximation is shown as an orange dashed
curve in Fig. 1(a). In order to begin a runaway event (which
may grow to become a runaway electron avalanche12), a high-
energy (>Kth) seed electron is necessary.7,9 For instance for
E¼ 12.5 kV/cm, Kth ¼ 23 keV, as marked in Fig. 1(a) with a trian-
gle. This high-energy seed electron can actually come from a vari-
ety of sources, including cosmic background radiation,12 other
high-energy electrons produced via positron and gamma-ray feed-
back effects,13 or low-energy electrons accelerated by the electric
field produced at streamer ionization fronts.9,14 When electrons
are pushed into the runaway state [i.e., over the “hill” in Fig. 1(a)]
by the very high electric field at streamer tips, the process is known
as the thermal (or cold) runaway mechanism.10,15,16 The thermal
runaway electron mechanism is further supported by Monte Carlo
simulations9 and laboratory spark investigations.1,17
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When electrons in a runaway state approach the nucleus of the
background gas molecules they change their velocity and emit
Bremsstrahlung x-ray radiation,19 which allows researchers to
remotely probe the physics of this phenomenon.6 In the early 2000s,

work by Moore,20 Dwyer,21 and colleagues showed that lightning pro-
duces x-rays from several keV to many MeV. Since then, substantial
progress has been made toward connecting the measured x-ray emis-
sions with the properties of runaway electrons emitted by lightning

FIG. 1. (a) The dynamic friction force experienced by electrons in air at ground pressure. The solid line shows the total friction force, while the dashed lines the collisional (blue) and
radiative (green) contribution. The horizontal dot-dashed line shows the applied electric force corresponding to an electric field of 12.5 kV/cm. The intersection between both curves
(marked with a triangle) defines the runaway threshold energy for this electric field value (which is 23 keV). For low energies, the data in the figure come from the widely referenced
ICRU Report 3718 (their Fig. 8.2), while for energies � 1 keV we use the more recent NIST database.11 Panel (a) also shows the KthðEÞ approximation discussed in the text as an
orange dashed curve. (b) Schematic representation of the experimental setup simulated. (c) Screenshot of Geant4’s graphical interface. The copper cathode is the yellow rod, the alu-
minum anode is the white disk, and the LaBr3:Ce x-ray detector is the cylinder inside an aluminum shielding box. The red lines show electron paths, while the green ones photon paths.
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leader tips,22–25 but a long road still lies ahead of the atmospheric elec-
tricity community to fully probe the energy distribution of runaway
electrons emitted by lightning and their dependence on the lightning
channel properties. Lightning is a short-lived, stochastic, and danger-
ous phenomenon, making it challenging to study in close proximity.
For these reasons, researchers have relied heavily on laboratory experi-
ments to understand energetic electron and photon production by
electrical discharges.1,4,17,26–39

Laboratory experiments have revealed that runaway electrons
can be readily produced in short laboratory discharges under applied
voltages of the order of �100 kV. These experiments have revealed
that a number of factors can be adjusted to increase the flux of run-
away electrons (or their current), including the use of higher applied
voltages (or more precisely, average electric fields in the gap), faster
voltage risetimes, lower gas pressures, gasses with lower molecular
mass, cathodes made of materials with higher work functions (for volt-
age pulse risetimes longer than 1ns), and anodes made of materials
with higher atomic numbers.40 Investigations with laboratory dis-
charges allow researchers to repeat the “miniaturized lightning flash”
multiple times and provide statistical inferences about runaway elec-
tron production and subsequent x-ray emissions. For instance, da
Silva et al.1 showed that runaway electrons and their associated x-ray
emissions are prolifically produced in an 8-cm-long, rod-to-plane gap
under an applied voltage of �100 kV. These authors inferred that
median x-ray burst energies varied between 33 and 96 keV, depending
on the observation geometry, type of anode, and type of filter placed
between the source and x-ray detector. These authors also inferred
that the discharges produced between 5 � 104 and 0.5 � 106 runaway
electrons and that the x-ray emissions were produced when runaway
electrons collided with the anode.1

In this paper, we simulate photon pileup in a detector near a
spark gap. We do so by simulating monoenergetic runaway electron
beams in atmospheric pressure air under an applied electric field of
12.5 kV/cm, imitating the experimental setup used by da Silva et al.1

Using Geant4, we calculate the expected behavior of the x-ray emis-
sions from electron beams with initial kinetic energy between 20 and
75 keV. A key point of this article is the introduction of algebraic tools
that allow us to create general-shape electron energy spectra by com-
bining previously simulated monoenergetic beams. Finally, we use the
simulations to understand the ambiguities created by photon pileup at
the x-ray detector, which is a natural consequence of performing
close-range x-ray observations of electrical discharges. We conclude by
discussing avenues to circumvent pileup ambiguities when inferring
the energy spectrum of the source runaway electrons.

II. METHODOLOGY
A. Geant4 simulation setup

In this work, we use the Geant4 (Geometry and Tracking) object-
oriented Cþþ toolkit, which utilizes Monte Carlo techniques to simu-
late the complex interactions between a wide variety of particles and a
background medium.41–43 Of particular interest to our project is
Geant4’s capability of tracking individual photons. This process can be
computationally intensive and time-consuming but allows us to almost
totally circumvent the issues associated with photon pileup—at least
within the modeling efforts. Geant4 has already been successfully used
to simulate runaway electrons in the past.44–46 Here, runaway electrons
are assumed to be formed by the thermal runaway acceleration

mechanism in compact regions of strong electric fields ahead of
streamer tips.9,15We start the simulations when the streamer ionization
fronts are 2 cm away from the ground electrode. We assume that the
runaway electrons can be modeled as a series of monoenergetic beams,
with initial energies between 20 and 75 keV. The underlying assump-
tion here is that when streamers are close to the ground electrode, the
runaway electrons detach from the streamer ionization front and prop-
agate under the applied average gap field, which is 12.5 kV/cm in this
case. The minimum initial energy value of 20 keV is just under the
threshold runaway value Kth for the average gap field [marked in Fig.
1(a) with a triangle]. Themaximum initial energy value of 75 keV is the
potentially maximum energy gain from the externally applied voltage
(¼ 12.5 kV/cm� 6 cm) before the start of the simulation tracking. The
simulation setup is schematically shown in Fig. 1(b).

The Geant4 simulation starts with electrons released 2 cm away
from the ground electrode (anode in the figure); they accelerate under
an applied 12.5 kV/cm electric field and experience a series of colli-
sions with air molecules, modeled with the Monte Carlo stochastic
simulation approach.9 In this small-scale setup, electrons produce
bremsstrahlung x-rays when they collide with the anode (a disk with
10 cm diameter and 2.5mm thick), as verified by our simulations.
Photons are detected by an accurate mass model of a Saint Gobain
LaBr3:Ce scintillation detector positioned 20 cm away, as shown in Fig.
1(b). The detector consists of a scintillating crystal, which has a
3.81 cm diameter and 3.81 cm length, and is enclosed by a 0.5mm
thick aluminum shield. The x-ray emissions serve as a fingerprint of
the electron kinetic energy and, thus, are the primary focus of our
investigation. In our simulations, we used the Lawrence Livermore
National Laboratory physics list, which has been proven to work very
well at the energies of interest (<1MeV).45 Our Geant4 simulation
code is based on example B1 provided in the Geant4 software man-
ual.47 The version and patch of Geant4 used in this investigation were
version 4.10.05 and patch-01. A screenshot of the Geant4 graphical
user interface, showing the simulation setup, is shown in Fig. 1(c).

Our simulation setup mirrors the experiments performed by da
Silva et al.,1 who measured x-ray emissions from �100 kV streamer
discharges in an 8 cm rod-to-plane discharge gap. More specifically, it
mirrors “case A” in their Table I. These authors constructed spectra of
x-ray energies deposited in the detector by collecting x-ray emissions
from hundreds of electrical discharges, assumed to be identical. In this

TABLE I. Summary of algebraic tools for combining and creating new electron
beams and their x-ray energy spectra. The check marks (�) indicate which type of
spectra can be recreated with a given technique.

Section Operation

Single
photon
energy

Number
of photons
detected

Total
energy

deposited Application(s)

II B 1 Weighted sum
of distributions

� � � Interpolation

II B 2 Convolution � Interpolation
and Synthesis

II B 3 Random
sampling

� Interpolation
and Synthesis

II B 4 Random
combination

� � � Synthesis
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article, we repeat the strategy computationally. For each monoener-
getic electron beam energy and electron count, 200 different simula-
tions are performed, each one of them is seeded by a different random
number. The results are then aggregated to produce spectral informa-
tion, as shown in Fig. 2.

Figure 2 shows probability distributions for: individual photon
energies [Fig. 2(a)], number of photons detected [Fig. 2(b)], and total
energy deposited in the detector [Fig. 2(c)], for three sample monoe-
nergetic beams. Hereafter, these three distributions are referred to as
pðEÞ; pðN; hNiÞ, and pðEdepÞ, respectively. The beam energies and
their corresponding electron counts are listed in the main figure leg-
end. Three key points must be highlighted from this figure. First, the
single photon energy spectrum tail gets longer for higher beam ener-
gies, but it is independent of the number of electrons in the source
beam [Fig. 2(a)]. Also note that the maximum photon energy is higher
than the initial beam kinetic energy. This happens because electrons
gain more energy from the gap field before producing Bremsstrahlung
x-rays. Second, we verify that the amount of photons intercepted by
the detector is a Poisson process (similar to the findings of Carlson
et al.48) by fitting a Poisson function over our data. The analytical
expression for the Poisson distribution is given by

pðN; hNiÞ ¼ hNiNe�hNi

N!
; (1)

where N is the number of photons arriving at the detector each time
(i.e., the independent variable), and hNi is the average number of pho-
tons arriving at the detector (i.e., the parameter that defines the distri-
bution shape). We calculate hNi from the results of the Geant4
simulations, plug into Eq. (1), and compare to the distributions
derived directly from the Monte Carlo simulations. The good agree-
ment is evidenced by the high-value of the coefficient of determination
(R2) listed in the Fig. 2(b) legend. Figure 2(b) shows that multiple pho-
tons usually arrive at the same time at the detector (up to 22 for the
particular cases shown in the figure), this is what we refer to as photon
pileup in this paper. Third, the deposited energies shown in Fig. 2(c)
are what really can be measured in a laboratory experiment. It is easy
to see that the deposited energy spectra has a complicated dependence
on both the number of electrons in the beam and the initial electron
kinetic energy, and that in principle it may be very different from the
single-photon energy spectrum itself. Figure 2 makes the case that, due
to ambiguities arising from photon pileup, it can be very difficult to
retrieve the runaway electron properties solely based on the deposited
energy spectra.

B. Algebraic tools for creating and combining
electron beams

The ultimate goal of this paper is to reproduce x-ray deposited
energy spectra emitted by runaway electrons with an arbitrary energy

FIG. 2. Three sample monoenergetic elec-
tron beam x-ray spectra from: two 50-keV
beams, one with 1� 106 and another with
2� 106 electrons, plus one 75-keV beam
with 2� 106 electrons. Results for each
monoenergetic beam are shown by curves
in different colors, as listed in the legend. (a)
Single-photon energy spectrum, shown as a
probability distribution function (PDF) in units
of keV�1. (b) PDF of the number of photons
arriving simultaneously in the detector. Note
that the number of photons detected follows
a Poisson PDF, as verified by the fits shown
in the figure with excellent coefficients of
determination, R2. (c) Spectra of x-ray ener-
gies deposited in the detector (PDF in units
of keV�1). This quantity is what is typically
reported in experimental investigations. Note:
in this article when we refer to the beam
kinetic energy we always mean the kinetic
energy of individual electrons in the monoe-
nergetic beam.
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distribution, such as what is obtained in laboratory measurements
(see, for instance, Fig. 4 of da Silva et al.1). In this work, we aim to
devise a strategy to relate the spectrum of runaway electrons at the
source to the x-ray photons collected by the detector. This is done by
combining an ensemble of monoenergetic beams, as described below.
We start by extending the simulations shown in Fig. 2 to cover the 20
to 75 keV energy range (in steps of 5 keV), and for beams with electron
counts ranging between 5� 104 and 2� 106 electrons (in steps of up
to 5� 105). The resulting grid of simulations is shown in Fig. 3(a). The
vertical axis (or the sheet height) shows the average number of photon
detections (up to 10). In our approach, these monoenergetic electron
beam simulations serve as basis functions, which can be superposed to
create general-shape electron energy spectra. The strategies used
for creating and combining electron beams are described in detail in
Secs. II B 1–II B 4.

1. Weighted sum of distributions

Weighted sum of distributions is a method for interpolation
devised to create a monoenergetic beam with any energy and number
of electrons within the existing grid based on information from the
four nearest neighbors, which are results of direct Geant4 simulations.
When an initial electron count and beam energy are requested, a unit
rectangular area is created around the requested point, with corners at
the four nearest catalogued simulations. The area is divided into quad-
rants, and each of these four subareas is then designated as a weight
corresponding to the distribution at the nearest corner. The unit rect-
angle is schematically shown in Fig. 3(b). Mathematically, the weight
associated with each corner is ð1� dKi=dKtotÞð1� dNi=dNtotÞ,
where dKi and dNi are the distances to the point of interest, and dKtot

¼ dK1 þ dK2 and dNtot ¼ dN1 þ dN2 are the total dimensions of the
rectangle, equal to the increment in electron energy or number of elec-
trons that discretizes the “quilt” in Fig. 3(a). Any of the three probabil-
ity distributions (shown in Fig. 2) for the point of interest is then
recreated as a weighted sum of the distributions of the four neighbor-
ing points. Additionally, the entire distribution is renormalized to

ensure that the area under the probability distribution function (PDF)
curve is 1. When recreating a point inside of the domain [green dot in
Fig. 3(b)], this algorithm is equivalent to a bilinear interpolation. On
the other hand, if the desired point lies at one of the edges of the
domain (orange dot in the figure), a simple linear interpolation is suffi-
cient. In this case, the weight is given based on the distance to the
point of interest, as 1� Ki=Ktot, for a point at one of the Ne edges of
the domain. When reconstructing the single-photon energy distribu-
tion, pðEÞ, it is convenient to replace the green dot by the orange one
altogether (with Ne ¼ Ne;max ¼ 2� 106), since pðEÞ does not depend
on the electron count, and the case with the highest number of photon
detections yields the most trustworthy statistics.

The distribution of the number of photons detected is well repre-
sented by a closed-form parametric distribution, as shown in Eq. (1)
and Fig. 2(b). Thus, when recreating the distribution of photons arriv-
ing at the detector, we use the procedure above to interpolate the sheet
shown in Fig. 3(a) to recreate hNi, and then we plug it into Eq. (1) to
reconstruct the desired distribution.

2. Convolution

Convolution is a short-hand name to an alternative method used
to reconstruct the distribution of energy deposited in the detector
[same as shown in Fig. 2(c)]. Convolution of probability distributions
is commonly used to derive the probability distribution of sums of
random variables. Mathematically, the distribution of deposited ener-
gies is expressed as

pðEdepÞ ¼
XNmax

N¼1

pðN; hNiÞCðE;NÞ; (2)

where pðN; hNiÞ is the probability of N photons arriving at the detec-
tor given by Eq. (1), and CðE;NÞ is the resulting photon energy (E)
distribution when N photons arrive simultaneously at the detector. For
N¼ 1, CðE;N ¼ 1Þ is simply the single photon energy distribution
pðEÞ, such as shown in Fig. 2(a). However for higher N values, this

FIG. 3. (a) A three-dimensional plot showing the average number of photons detected (sheet height) as a function of initial electron count and initial beam energy. (b)
Schematical representation of the two-dimensional linear interpolation algorithm used. In order to create beams within the grid of pre-tabulated simulations, we use bi-linear
interpolation (green dot). For points at the edge of the domain (orange dot), a simple, 1D linear interpolation is used instead.
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quantity is recursively defined by the following convolution: CðE;NÞ
¼ pðEÞ~CðE;N�1Þ. This is why we refer to this method as
“convolution.” The method outlined in this subsection is an alternative
to the weighted sum of distributions (introduced in Sec. IIB1) for rec-
reating the distribution of deposited energies whenever pðN;hNiÞ and
pðEÞ are known.

If both pðN; hNiÞ and pðEÞ are represented by closed-form dis-
tributions, pðEdepÞ may also be represented in closed form. For
instance, if pðEÞ is given by an Exponential distribution, the resulting
pðEdepÞ is given in closed-form by the Erlang distribution, as noted by
Carlson et al.48 [see their Eqs. (2), (3), and (4)].

3. Random sampling

Random sampling is another alternative method for generating
the spectrum of deposited energies from the known spectra of single-
photon energies and number of detected photons. This is done by
drawing random numbers from the pðN; hNiÞ and pðEÞ distributions
a large number of times and combining this information to construct
pðEdepÞ. More precisely, one detection (equivalent to one Geant4 sim-
ulation or one spark trigger) is generated by drawing the number of
photons arriving at the detector from pðN; hNiÞ. Let’s say that the
result is 3. Then three photons are drawn from pðEÞ and their total
energy is summed up to yield Edep. All Edep values are then histo-
grammed to construct the compound probability distribution pðEdepÞ.

Algorithmically, one may proceed as follows to obtain the photon
energy, for example. First, a random number r is drawn between 0 and 1.
Second, the cumulative distribution function, CDFðEÞ ¼

Ð E
0 pðE0ÞdE0, is

inverted to yield an energy value, E ¼ CDF�1ðrÞ. Thus, likelihood
of being selected is related to the weight associated with that energy
value in the distribution. Since a very large number of artificial
detections can be created with random sampling, this technique
works very well in cases where data are scant, e.g., for lower-energy
or lower-count beams. This technique is in some ways analogous to
the bootstrapping method used in statistics.49

4. Random combination

Random combination is used to combine beams together. Here, a
new distribution is created by randomly summing the constituent compo-
nents of the distributions. For example, consider two distributions created
from two data sets [A, B, C, D] and [a, b, c, d], where each of the elements
may be the single-photon energies, the number of photons detected, or
the total photon energy deposited in the detector. In principle, the two sets
can be combined by summing the elements of both arrays, i.e., [Aþ a,
Bþ b, Cþ c, Dþ d]. After the summation is performed, the probability
distributions of interest can be created. When the two arrays listed above
correspond to lists of individual photon energies, the addition operation
“þ” in Aþ a corresponds in practice to a concatenation of both arrays.

Combination can be further expanded upon by randomization.
Given two or more arrays, entries from every array are selected from a
random index and then summed together, yielding for instance, some-
thing like [Bþ c, Aþ d, Cþ b, Dþ a, Aþ a, Cþ d, …]. This method,
shorthanded random combination, improves upon a simple addition in
several ways. First, the random selection of elements allows for arrays of
varying lengths to be summed together, so no array needs to be truncated
or artificially expanded. Second, a large number of different random
combinations can be created, up to

Q
j Mj ¼M1 �M2 �M3…, whereMj

is the number of entries in the jth set. In the example above, consisting of
two sets with four entries each, a total of 16 different combinations are
possible. The combined data set may effectively have a population size
(
Q

j Mj) much larger than the original ones (Mj).

5. Summary of algebraic tools

A summary of the algebraic tools is provided in Table I. The table
indicates which type of spectra can be reconstructed with each technique,
and what are the key application(s) of each of the proposed methods. In
the far-right column, interpolation refers to the creation of monoener-
getic beams within the grid of pre-tabulated simulations [Fig. 3(a)], while
synthesis refers to the addition of two or more electron beams to create
new beams (including ones with more electrons than in the pre-
tabulated simulations), or to create spectra of arbitrary shape. As dis-
cussed and justified in Sec. III below, the weighted sum of distributions is
the preferred technique for beam interpolation, while the random sam-
pling is the preferred technique for creating synthetic pðEdepÞ spectra.
III. RESULTS
A. Monoenergetic electron beam properties

Figure 4 shows average properties of the simulated monoenergetic
beams as a function of the kinetic energy of electrons in the beam.
Each curve in the figure corresponds to beams with an increasing
number of electrons (Ne). Each data point in the figure is the aggre-
gate result of 200 Geant4 simulations seeded by different random
numbers. The four panels in the figure show: the average energy of
detected photons [Fig. 4(a)], the average number of photons
detected [Fig. 4(b)], the average energy deposited in the detector
[Fig. 4(c)], and the detection frequency [Fig. 4(d)]. Error bars are
one standard deviation, shown only for the 0.5 and 2 � 106 electron
cases to avoid cluttering the figures. The average photon energy hEi
does not depend on Ne, and thus all curves in Fig. 4(a) naturally lie
on top of each other. On the other hand, the average number of pho-
tons arriving at the detector hNi, and the average x-ray energy
deposited in the detector hEdepi, are directly proportional to Ne. For
this reason, the curves in Figs. 4(b) and 4(c) are normalized to the
number of electrons in the monoenergetic beam. Similarly, the dis-
played error bars are normalized as well.

The data in Figs. 4(a)–4(c) can be approximately fitted by a poly-
nomial expression in the form aðK=KmaxÞ2 þ bðK=KmaxÞ þ c, where
K is the initial kinetic energy of electrons in the beam in units of keV,
Kmax ¼ 75 keV is a normalization value, and a, b, and c are the fit con-
stants. The coefficients that best fit the data are listed in Table II. The
normalization to Kmax ensures that the units of a, b, and c are the
same ones as of the quantities on the left-hand side; the units are listed
in the table’s fourth column. The far-right column shows the average
R2 value when comparing the fit to all four curves shown in each fig-
ure. It can be seen from Fig. 4 and Table II that hEi and hNi=Ne have
mostly a linear dependence on the electron energy, as evidenced by
the dominance of the b coefficient. In contrast, hEdepi=Ne mostly
trends quadratic with K. The fits for hNi=Ne and hEdepi=Ne do not
perform well for energies lower than�30 keV.

According to Attix50 (p. 214), the Bremsstrahlung emission effi-
ciency of a monoenergetic electron beam impingent on a thick target
can be approximated as hEemiti=Ne ¼ jZK2, where hEemiti is the
expected total x-ray energy emitted, Z is the target (ground electrode)
atomic number, and j ’ 10�6keV is a constant.50–52 The emitted x-
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ray energy can be converted to deposited (or detected) energy by
accounting for two factors: the solid angle (¼Adet=4pd2 for an isotro-
pic source, whereAdet is the detector surface area and d is the source-
detector distance) and attenuation in air (¼e�ld , where l ¼ 0.065
m�1 is the linear attenuation coefficient of 25-keV x-rays in air,53

which corresponds to a typical x-ray energy in our data set).
Combining these effects, we reach the following expression for the
expected detected energy:

hEdepi
Ne

¼ jZ
Adet

4pd2
e�ldK2: (3)

This equation has the same shape as the fits shown in Table II, but
with b ¼ c ¼ 0. The resulting a coefficient is shown in the table. The
simple formula (3) derived and discussed in this paragraph performs

well against the direct results of Monte Carlo simulations (see the R2

value in the right-most column). If nothing else, it helps illustrate the
origin of the quadratic dependence of hEdepi on K, displayed in Fig.
4(c).

The detection frequency, shown in Fig. 4(d), simply represents
the % fraction of all simulations in which at least one photon has been
detected. As a point of comparison, in case A of da Silva’s experimen-
tal data1 (which directly maps to the simulation setup used here), pho-
tons were detected in about 60% of all discharge triggers.

B. Beam interpolation

Three different methods can be used to create beams within the
pre-existing grid of simulations, i.e., to perform beam interpolation. The
primary one is the weighted sum of distributions described in Sec. II B 1.

TABLE II. Curves in Figs. 4(a)–4(c) can be well fit by a polynomial expression in the format aðK=KmaxÞ2 þ bðK=KmaxÞ þ c, with fit coefficients a, b, and c as given in the
table.

Quantity averaged Figure Expression Units a b c R2

Single-photon energy 4(a) hEi keV �14.7 48.4 2.89 0.987
Number of detected photons 4(b) hNi=Ne 10�6 0.25 8.13 �2.8 0.985
Deposited x-ray energy 4(c) hEdepi=Ne 10�6keV 209.3 34.27 �37.76 0.992
Dep. x-ray energy, Eq. (3) 4(c) hEdepi=Ne 10�6keV 163.71 0 0 0.907

FIG. 4. Properties of monoenergetic beams
with initial electron energies from 20 to
75 keV in steps of 5 keV. The four panels
are plotted against the initial kinetic energy
of electrons in the beam. (a) Average
energy of individual photons detected. (b)
Average number of detections. (c) Average
x-ray energy deposited in the detector. (d)
Detection frequency (in %). Error bars rep-
resent one standard deviation. Curves in
panels (b) and (c) are normalized to the
number of electrons in the beam.
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This method can reconstruct all three types of spectra of interest:
pðEÞ; pðN; hNiÞ, and pðEdepÞ. Additionally, there are two alternative
methods for reconstructing the spectrum of energies deposited in the
detector: the method of convolution described in Sec. II B 2, and the
method of random sampling described in Sec. II B 3. In order to validate
our beam interpolation algorithms, we ran a test run of 57keV and
8.5� 105 electrons, a combination not available in our catalogued
Geant4 runs. The comparison is shown in Fig. 5. The accuracy of all
methods is evaluated using the R-squared value (R2), as well as the
mean average error (MAE in %), between the reconstructed prec and ref-
erence pref distribution. The MAE is normalized to the peak value of the
reference distribution as MAE¼ hjprec � pref j=maxðpref Þi.

As can be seen in Fig. 5, the weighted sum of distributions is
excellent at reproducing the three types of spectra. The two alternative
methods for recreating pðEdepÞ perform reasonably well, but not as

well the weighted sum of distributions. For quantitative assurance, the
reader is referred to the R2 andMAE values in the legend of Fig. 5(c).

C. Monoenergetic beam synthesis

Synthesis is the process of combining multiple beams to produce
electron energy spectra of any desired shape. In order to ensure that
our methods are accurate, we start by synthesizing the simplest type of
spectrum—a monoenergetic beam. Here, we combine two 50 keV
beams, with 1� 106 electrons each, into a single 50 keV beam with
2� 106 electrons. The results of our beam synthesis procedure is then
compared to an independent 50 keV beam, 2� 106 electrons Geant4
simulation, as shown in Fig. 6.

Figure 6 shows that the primary synthesis technique, random
combination, performs very well in reproducing the three types of
spectra of interest. The mean average error in reconstructing the

FIG. 5. Reconstruction of the spectra corresponding to a 57 keV beam of 8.5� 105 electrons. The figure is presented in the same format as Fig. 2. Presented in red is the
direct Geant4 data of such a run. Presented in blue is the interpolation by method of weighted sum of distributions. (a) Single-photon energy spectrum. (b) Distribution of num-
ber of photons arriving at the detector. (c) Spectrum of deposited energies. Panel (c) shows how the convolution (green curve) and random sampling (purple) compare to the
weighted sum of distributions.
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single-photon energy, the number of detections, and deposited energy
spectra is 2.8, 7.5, and 12.1%, respectively. The alternative methods for
reconstructing pðEdepÞ also perform well. Interestingly, the random
sampling technique further improves the reconstruction and yields
higher R2 and lower MAE values. Additionally, we have noticed that
the randomization aspect of the random combination technique does
not improve the reconstruction of the single-photon energy spectrum.
In other words, simply concatenating the photons in the two beams
and histogramming them into pðEÞ yields a satisfactory result.

D. Synthesis of general-shape spectra

In this section, we discuss how monoenergetic electron beams
can be combined to create electron energy spectra of general/arbitrary
shape, and proceed to discuss how photon pileup ambiguities manifest

themselves. The general question we are posing is what is the electron
energy distribution Ne ¼ NeðKÞ that can best reproduce the experi-
mental data collected in the laboratory.1 Note that Ne is not a normal-
ized probability distribution function. The results are shown in Fig. 7
and described below. The blue curve in Fig. 7(b) shows the spectrum
of deposited energies corresponding to case A in the experimental
data,1 which best matches the Geant4 simulation setup used here. This
distribution is constructed by repeating the experiment �600 times
and histogramming the detected x-ray energy. The spectrum shown in
Fig. 7(b) has two peaks, with the second one at about 320 keV due to
detector pulse height saturation. The maximum expected energy of
single photons is 100 keV, because that is also the maximum expected
kinetic energy gained by electrons under the 100 kV gap voltage. It is
easy to see that the pðEdepÞ distribution extends well beyond that and
even beyond the saturation level of the detector. As discussed earlier,

FIG. 6. Reconstruction of a 50 keV, 2� 106 electron beam from two 50 keV, 1� 106 electron beams. The figure is presented in the same format as Fig. 2. The red curves corre-
spond to the direct Geant4 run of a 50 keV, 2� 106 electron beam run. Presented in blue is the synthesis via random combination. (a) Single-photon energy spectrum. (b)
Distribution of number of photons arriving at the detector. (c) Spectrum of deposited energies. Panel (c) shows how the convolution (green curve) and random sampling (purple)
techniques compare to random combination.
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this happens due to photon pileup, i.e., due to the fact that every time
a successful detection is made, multiple photons arrive at the detector
virtually at the same time.

In order to constrain the number of free parameters we are oper-
ating with, we use a simple two-parameter, monotonic function to

describe the electron energy spectrum. We assume that the electron
distribution follows an inverse power law NeðKÞ ¼ AðK=KmaxÞb, with
b < 0. For a given choice of A and b parameters, the synthetic spectra
are constructed by first, determining the number of electrons in each
beam according to the formula NeðKÞ ¼ AðK=KmaxÞb, where K takes

FIG. 7. Power-law electron energy spectra
at the source (left), resulting x-ray depos-
ited energy spectra (right), and compari-
son to measurements (blue curves on
right-hand side panels). Fit coefficients
and associated errors are listed in Table
III. (a) and (b) Attempt to fit the deposited
energy curve using a decreasing power
law. (c) and (d) Attempt to fit the deposited
energy curve using an increasing power
law. (e) and (f) Comparison between the
optimal cases for the increasing and
decreasing power laws. The Ntotal pre-
sented in panels (a) and (c) are the total
number of electrons in the beam for the
optimal case in that panel. Panel (f) also
shows the effects of Gaussian broadening
due to limited energy resolution in the
detector. A 6% Gaussian broadening is
applied to the red curve, and the resulting
effects are shown as a gray dashed
curved in the same figure.
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the values 20, 25, 30, …, 75 keV. If the number of electrons does not
coincide with one of the pre-tabulated simulations, the weighted sum
of distributions method (Secs. II B 1 and III B) is used to interpolate
and provide all beams with the desired NeðKÞ values. Second, after all
12 beams are constructed, their combined x-ray emission spectra are
synthesized with the random sampling technique (Secs. II B 3 and
IIIC) augmented by random combination. Second, we iteratively
adjust the two free parameters (A and b) until the discrepancy between
model and measurements reaches a minimum. More precisely, we
minimize a cost function given by the following expression: Cost
¼
P

j wjej=W. In this summation, ej are five different types of error
metrics: the MAE, the error in both peaks (PE1 and PE2), the fraction
of variance unexplained by the model (¼ 1� R2), and the error in
detection frequency (DFE). Additionally, wj are empirically adjusted
weights to ensure that all five error metrics have the desired relative
weights to one another, andW¼

P
j wj. All terms in the cost function

are given in %.
Our fitting process covered an initial range in A values from 0 to

2� 106 electrons and a range in the exponent b from �8 to 0. The
resulting best fit is shown in the top row of Fig. 7 (as the red curve).

Figure 7(a) shows the inferred electron distribution (red curve), while
Fig. 7(b) the resulting pðEdepÞ and comparison with the experimental
measurements. The inferred values for A and b that best fit the data
are listed in Table III. It can be seen that the inverse power law electron
spectrum does a fairly decent job of capturing the low-energy peak in
the photon deposited energy spectrum. Figures 7(a)–7(b) also include
two other curves with higher and lower power-law indexes b, with val-
ues as listed in Table III. The additional curves show that increasing
the electron content at low energies (with everything else kept con-
stant) has the role of shifting the primary peak of pðEdepÞ to the right,
toward higher Edep values.

It is evident from Fig. 7(b) that an inverse power-law electron
energy spectrum cannot simultaneously capture the first peak in
pðEdepÞ and its long distribution tail. This may, in principle, be attrib-
uted to the fact that runaway electron acceleration is a nonequilibrium
process. In such a type of nonequilibrium process, it may be that the
system has a large number of electrons in the highest energy levels
available. For this reason, we proceed to attempt to fit a spectrum with
a monotonically increasing power-law dependence, i.e., with b> 0, ini-
tially ranging from 0 to 8. The results are shown in the middle row of

TABLE III. Coefficients and errors associated with different power law fits for Figs. 7 and 8. The five components of the cost function are: 1� R2, the mean average error
(MAE), the error at the two peaks (PE1 and PE2), and the detection frequency error compared to the detection frequency reported in case A of the measurements paper1

(DFE). The weights in the cost function that produced the fits for Fig. 7 were: 0.5, 1, 1, 0.2, and 0.5, for the five terms in the order shown in the table. For obtaining the fits shown
in Fig. 8, we swapped the weights of PE1 and PE2.

Figures Color A b R2 MAE (%) PE1 (%) PE2 (%) DFE (%) Cost (%)

Attempts to fit the first peak of the measured x-ray deposited energy distribution (Fig. 7)
7(a) and 7(b) Red 40 000 �0.6 0.486 7 14.64 4.616 100 26.33 24.39
7(a) and 7(b) Green 40 000 �0.2 0.504 2 14.90 17.67 100.0 19.66 27.25
7(a) and 7(b) Purple 40 000 �1.0 0.481 4 14.11 2.94 99.96 34.30 25.03
7(c) and 7(d) Orange 80 000 3.4 0.498 6 14.03 2.915 99.95 21.56 22.74
7(c) and 7(d) Green 60 000 3.4 0.520 8 15.41 21.49 100.0 5.273 26.09
7(c) and 7(d) Purple 100 000 3.4 0.478 3 12.96 15.69 99.96 33.99 28.64

Attempts to fit the second (saturation) peak of the measured x-ray deposited energy distribution (Fig. 8)
8(a) and 8(b) Red 160 000 �1.2 0.002 25 17.78 97.03 4.667 67.62 62.30
8(a) and 8(b) Orange 380 000 4.2 0.012 76 16.66 95.36 3.631 67.17 61.13

FIG. 8. Attempts to fit the saturation peak
of the measured spectrum of x-ray depos-
ited energies. (a) Power-law electron energy
spectra, and (b) resulting pðEdepÞ. The fit
coefficients and associated errors are listed
in the bottom two rows of Table III.
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Fig. 7, where the best fit corresponds to the light-orange curve. Figure
7(c) shows the inferred electron distribution, while Fig. 7(d) the result-
ing pðEdepÞ and comparison with the experimental measurements.
The values for A and b that best fit the data are listed in the fourth row
of Table III. Remarkably, using the same type of cost function in the
optimization problem (i.e., with the same weights wj), yields a best-fit
pðEdepÞ spectrum that is nearly identical to the descending power-law

case. The additional curves in Figs. 7(c) and 7(d) show that increasing
the electron content at high energies also shifts pðEdepÞ toward higher
Edep values. Nonetheless, this effect is more aggressive in the middle
rather than in the top row of Fig. 7.

The bottom row of Fig. 7 emphasizes that the rather different
electron energy spectra [Fig. 7(e)] produce nearly identical spectra of
photon deposited energies [Fig. 7(f)]. Figures 7(e) and 7(f) illustrate

FIG. 9. (a) Twelve monoenergetic electron
beams. In each one of them the electron
count is adjusted so that the resulting
pðEdepÞ best matches the measurements
(b). For this exercise, the weight of all
terms in the cost function with the excep-
tion of R2 are set to zero.

FIG. 10. Power-law electron energy spec-
tra at the source (left), resulting x-ray
deposited energy spectra (right), and com-
parison to measurements (blue curves on
right-hand side panels). To create each
deposited x-ray energy spectrum, the
results of the two electron configurations
in the left panels were combined (with rel-
ative weights shown). The statistics dis-
played are for the best case (which is the
50%–50% case). The weights are in order
of peak priority, meaning an 80%–20%
weight corresponds to a higher contribu-
tion from the electron distribution which
best fits the first peak. Only the error met-
rics for the red curves are shown in the
right column panels. The top row and bot-
tom rows show results for decreasing and
increasing power-law electron energy
spectra, respectively.
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that the attempt to infer pðEdepÞ in a system with photon pileup is an
ill-posed problem. This happens even though the level of pileup is not
severe. The best fit cases shown in Fig. 7 have an average number of
photons detected in a given simulation equal to 1.4 and 1.3, for the
ascending and descending power-law spectra, respectively. The inher-
ent ambiguities arise from the fact that increasing the electron content
at any portion of the electron spectrum has the same effect of shifting
pðEdepÞ to the right. This ambiguity can only be alleviated by feeding
the automated fitting algorithm progressively more information about
the experimental data, such as pðEdepÞ collected with the x-ray detec-
tor located at several different distances from the source, or with differ-
ent x-ray filters placed in front of the detector. Such a type of data has
been collected previously,1 and attempting to simulate it will be the
subject of subsequent investigations by our team. The total number of
electrons for the two best-case fits are listed in Fig. 7. It can be seen
that 3–7� 105 electrons are required to explain the measurements,
which agrees with the rough estimates provided before.1

Figure 8 shows additional attempts to match the experimentally
measured pðEdepÞ with power-law electron energy spectra. However
now, the weight associated with the second peak (saturation peak) in
pðEdepÞ in the optimization cost function is increased from 0.2 to 1.0,
while at the same time the weight associated with the first peak error is
reduced from 1.0 to 0.2. The figure shows that the saturation peak can
be matched very well, but at the expense of the first one. Generally
speaking, more electrons increase the detection frequency. All cases
listed in Table III overestimate the experimentally measured detection
frequency (see the second-to-last column in the table), which is 59.6%.
This detection frequency value implies that 40% of the triggers lie in
the Edep < 5 keV bin. Please note that this is omitted from the spectra
shown in Figs. 7 and 8, to aid the visualization.

IV. DISCUSSION

Figure 9 is produced to illustrate the origins of the pileup ambi-
guity. Figure 9 shows 12 different monoenergetic beams between 20
and 75 keV. In each one of them the electron count (Ne) is adjusted so
that the photon deposited energy spectrum best fits the measurements.
It can be seen that all 12 beams produce a qualitatively similar pðEdepÞ
response, and it is not trivial to tell them apart. Increasing the electron
count in each beam simply shifts the pðEdepÞ peak to the right, and
also widens it. This effect can be seen in Fig. 2(c). Figure 9 emphasizes
two points: (first) adjusting the electron content at any location (K
value) has the same effect, and (second) composite spectra are domi-
nated by the higher-energy beams. Note that one needs 108 electrons
in the 20-keV beam to produce the same effect as 2� 105 electrons in
the 75-keV one. Looking back at the spectra in Figs. 7 and 8, we have
revisited it and verified that most of its features can be reproduced by
including only beams with K � 50 keV. Photon pileup happens for all
12 beams shown in Fig. 9, with the average number of photons inter-
cepted by the detector per simulation ranging between 1.1 and 4.5, for
the 75 and 20 keV beams, respectively.

Another source of uncertainty is the variability from one electri-
cal discharge to the next. da Silva et al.1 provided spectra of deposited
x-ray energies under the assumption that all electrical discharges are
identical. However, due to the stochasticity of electrical breakdown,
the actual voltage at which the discharges fire may differ from one dis-
charge to the next. Suppose for instance that the electrical discharges
fall into two groups, one that fires at maximum voltage, and produces

higher Edep on average, as shown in Fig. 8, and another that misfires
(i.e., fires earlier than expected at a lower applied voltage), and produ-
ces lower average Edep, such as shown in Fig. 7. In Fig. 10 we entertain
this possibility and reconstruct pðEdepÞ [Fig. 10(b)] by drawing Edep

50% of the time from each of the best descending power law fits [Fig.
10(a)], the ones that best fit the main (Fig. 7) and saturation (Fig. 8)
peaks, respectively. It can be seen that the generated pðEdepÞ [red curve
in Fig. 10(b) with error metrics listed in the figure itself] improves sub-
stantially upon the “identical discharge” hypothesis, with higher R2

and lower MAE values than the ones listed in Table III.
Figure 10(b) also shows what happens if the “misfires” happen

more often (80%–20% case, green curve) or less often (20%–80% case,
yellow curve). The figure illustrates that this effect may be a major
source of uncertainty, since the three displayed cases, with different
proportions between full-voltage triggers and misfires, generate sub-
stantially different pðEdepÞ. Additionally, this effect may also explain
the long tail in the measured pðEdepÞ. Under this hypothesis, the
low-energy peak would be (mostly) generated by the misfires (lower-
voltage discharges), while the long tail and the saturation peak would
arise from higher-voltage discharges. Figures 10(c)–10(d) illustrate the
same effect for the best ascending power-law fits. An improvement
with respect to the identical discharge hypothesis is also seen in this
case. However, it is still not possible to tell apart the descending and
ascending power-law electron energy spectra from their x-ray emis-
sions. Figure 10 helps emphasize that this effect needs to be carefully
accounted for in future experimental and modeling works.

Finally, we also explore whether effects of instrumental response
can help explain the long tail in the measured pðEdepÞ. The energy res-
olution of the LaBr3:Ce detector used in the experiment1 is 6% at
122 keV.54 We reconstruct pðEdepÞ for the best descending power-law
electron energy spectra shown in Fig. 7(e) with added 6% Gaussian
broadening to mimic the effects of the detector’s energy resolution.
This is done by generating a Gaussian distribution centered at Edep

and with a width of 1.06 Edep, for each Edep value, and then redrawing
Edep from it. The resulting broadened pðEdepÞ spectrum is shown as a
gray dashed curve in Fig. 7(f). The difference with respect to the red
curve is insignificant and cannot explain the long tail in the measure-
ments (blue curve in the same figure).

V. CONCLUSIONS

In this work, we presented Geant4 simulations of runaway elec-
trons produced by short laboratory discharges. In the simulations, we
represent the runaway electrons by a series of monoenergetic electron
beams injected in the spark gap. The initial energy of electrons varies
between 20 and 75 keV, but electrons are allowed to accelerate and
gain additional energy from the average gap field, of 12.5 kV/cm. The
runaway electrons produce Bremsstrahlung x-ray emissions when
they hit the ground electrode. After characterizing the x-ray emissions
from the monoenergetic beams, we devised a series of algebraic opera-
tions that allow us to combine and create new beams from an existing
grid of simulations. A substantial amount of work has been done in
this paper to validate the proposed methods. Aided of these tools, we
proceeded to construct electron energy spectra of general shape, their
resulting x-ray emissions, and to compare them to laboratory mea-
surements. The strategies devised can, to some extent, reproduce the
spectrum of deposited x-ray energies collected in a laboratory experi-
ment.1 The results indicate that about 3–7� 105 runaway electrons
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have been produced in these 8-cm-long, �100 kV discharges. Due to
even a moderate amount of photon pileup, the precise shape of the
electron energy spectrum cannot be determined and, thus, this meth-
odology can only be employed to determine what are the best fit
parameters within a chosen model (determined by other means, such
as from first-principles calculations). We show that pileup ambiguities
arise from the fact that every single monoenergetic electron beam
(simulated) produces photon deposited energy spectra of similar quali-
tative shape and that increasing the electron count in any beam has
the same qualitative effect of shifting the peak of the deposited energy
spectrum toward higher energies. Photon pileup ambiguities can be
alleviated by feeding the fitting algorithm with progressively more
information about the single-photon energy spectrum. These may be
done by simultaneously fitting multiple data sets collected with distinct
detection configurations, such as different distances and angles, but we
leave this exercise for a subsequent investigation. Finally, we have also
discussed how an uncertainty in determining the precise voltage at
which the discharges happen may translate into a wide range of x-ray
burst energies measured. The discharge voltage uncertainty may be
the root cause of the long tail in the measured energy spectra, which
could not be explained by other means in this investigation.
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14O. Chanrion, Z. Bonaventura, D. Çinar, A. Bourdon, and T. Neubert,
“Runaway electrons from a ‘beam-bulk’ model of streamer: Application to
TGFs,” Environ. Res. Lett. 9, 055003 (2014).

15J. R. Dwyer, “Implications of x-ray emission from lightning,” Geophys. Res.
Lett. 31, L12102, https://doi.org/10.1029/2004GL019795 (2004).

16S. Celestin and V. P. Pasko, “Energy and fluxes of thermal runaway electrons
produced by exponential growth of streamers during the stepping of lightning
leaders and in transient luminous events,” J. Geophys. Res. 116, A03315,
https://doi.org/10.1029/2010JA016260 (2011).

17J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J.
Jerauld, M. A. Uman, and V. A. Rakov, “A study of x-ray emission from labora-
tory sparks in air at atmospheric pressure,” J. Geophys. Res. 113, D23207,
https://doi.org/10.1029/2008JD010315 (2008).

18M. J. Berger, M. Inokuti, H. H. Anderson, H. Bichsel, J. A. Dennis, D. Powers,
S. M. Seltzer, and J. E. Turner, “ICRU Report 37: Stopping power for
electrons and positrons,” J. Int. Comm. Radiat. Units Meas. os19, 1–176
(1982); available at https://www.govinfo.gov/content/pkg/GOVPUB-C13-
139be796c7e56cb34375ad52db8ec5e7/pdf/GOVPUB-C13-139be796c7e56cb34375
ad52db8ec5e7.pdf (1984).

19J. D. Jackson, “Charge density on thin straight wire, revisited,” Am. J. Phys. 68,
789–799 (2000).

20C. B. Moore, K. B. Eack, G. D. Aulich, and W. Rison, “Energetic radiation asso-
ciated with lightning stepped-leaders,” Geophys. Res. Lett. 28, 2141–2144,
https://doi.org/10.1029/2001GL013140 (2001).

21J. R. Dwyer, M. A. Uman, H. K. Rassoul, M. Al-Dayeh, L. Caraway, J. Jerauld,
V. A. Rakov, D. M. Jordan, K. J. Rambo, V. Corbin, and B. Wright, “Energetic
radiation produced during rocket-triggered lightning,” Science 299, 694–697
(2003).

22J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, E.
Kozak, J. Jerauld, M. A. Uman, V. A. Rakov, D. M. Jordan, and K. J. Rambo,
“X-ray bursts associated with leader steps in cloud-to-ground lightning,”
Geophys. Res. Lett. 32, L01803, https://doi.org/10.1029/2004GL021782 (2005).

23J. Howard, M. A. Uman, J. R. Dwyer, D. Hill, C. Biagi, Z. Saleh, J. Jerauld, and
H. K. Rassoul, “Co-location of lightning leader x-ray and electric field change
sources,” Geophys. Res. Lett. 35, L13817, https://doi.org/10.1029/
2008GL034134 (2008).

24J. R. Dwyer, M. Schaal, H. K. Rassoul, M. A. Uman, D. M. Jordan, and D. Hill,
“High-speed x-ray images of triggered lightning dart leaders,” J. Geophys. Res.
116, D20208, https://doi.org/10.1029/2011JD015973 (2011).

25M. M. Schaal, J. R. Dwyer, S. Arabshahi, E. S. Cramer, R. J. Lucia, N. Y. Liu, H.
K. Rassoul, D. M. Smith, J. W. Matten, A. G. Reid, J. D. Hill, D. M. Jordan, and
M. A. Uman, “The structure of x-ray emissions from triggered lightning leaders
measured by a pinhole-type x-ray camera,” J. Geophys. Res. 119, 982–1002,
https://doi.org/10.1002/2013JD020266 (2014).

26S. Frankel, V. Highland, T. Sloan, O. van Dyck, and W. Wales, “Observation of
x-rays from spark discharges in a spark chamber,” Nucl. Instrum. Methods 44,
345–348 (1966).

27Y. L. Stankevich and V. G. Kalinin, “Fast electrons and x-ray radiation during
the initial stage of growth of a pulsed spark discharge in air,” Sov. Phys. Dokl.
12, 1042–1043 (1967).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 053506 (2022); doi: 10.1063/5.0086579 29, 053506-14

Published under an exclusive license by AIP Publishing

https://doi.org/10.1002/2017GL075262
https://doi.org/10.1070/PU2004v047n09ABEH001790
https://doi.org/10.1088/0022-3727/42/17/175202
https://doi.org/10.1063/1.3540504
https://doi.org/10.1063/1.2709652
https://doi.org/10.1016/j.physrep.2013.09.004
https://doi.org/10.1029/2008JA013210
https://doi.org/10.1017/S0305004100003236
https://doi.org/10.1029/2005JA011350
http://physics.nist.gov/Star
http://physics.nist.gov/Star
https://doi.org/10.1016/0375-9601(92)90348-P
https://doi.org/10.1016/0375-9601(92)90348-P
https://doi.org/10.1029/2003GL017781
https://doi.org/10.1088/1748-9326/9/5/055003
https://doi.org/10.1029/2004GL019795
https://doi.org/10.1029/2004GL019795
https://doi.org/10.1029/2010JA016260
https://doi.org/10.1029/2008JD010315
https://www.govinfo.gov/content/pkg/GOVPUB-C13-139be796c7e56cb34375ad52db8ec5e7/pdf/GOVPUB-C13-139be796c7e56cb34375ad52db8ec5e7.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-139be796c7e56cb34375ad52db8ec5e7/pdf/GOVPUB-C13-139be796c7e56cb34375ad52db8ec5e7.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-139be796c7e56cb34375ad52db8ec5e7/pdf/GOVPUB-C13-139be796c7e56cb34375ad52db8ec5e7.pdf
https://doi.org/10.1119/1.1302908
https://doi.org/10.1029/2001GL013140
https://doi.org/10.1126/science.1078940
https://doi.org/10.1029/2004GL021782
https://doi.org/10.1029/2008GL034134
https://doi.org/10.1029/2011JD015973
https://doi.org/10.1002/2013JD020266
https://doi.org/10.1016/0029-554X(66)90172-8
https://scitation.org/journal/php


28R. C. Noggle, E. P. Krider, and J. R. Wayland, “A search for x-rays from helium
and air discharges at atmospheric pressure,” J. Appl. Phys. 39, 4746 (1968).

29L. V. Tarasova and L. N. Khudyakova, “X rays from pulsed discharges in air,”
Sov. Phys. Tech. Phys. 14, 1148 (1970).

30J. R. Dwyer, H. K. Rassoul, Z. Saleh, M. A. Uman, J. Jerauld, and J. A. Plumer,
“X-ray bursts produced by laboratory sparks in air,” Geophys. Res. Lett. 32,
L20809, https://doi.org/10.1029/2005GL024027 (2005).

31I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, “X-ray
radiation due to nanosecond volume discharges in air under atmospheric pres-
sure,” Tech. Phys. 51, 356–361 (2006).

32C. V. Nguyen, A. P. J. van Deursen, and U. Ebert, “Multiple x-ray bursts from
long discharges in air,” J. Phys. D 41, 234012 (2008).

33C. V. Nguyen, A. P. J. van Deursen, E. J. M. van Heesch, G. J. J. Winands, and
A. J. M. Pemen, “X-ray emission in streamer-corona plasma,” J. Phys. D 43,
025202 (2010).

34V. March and J. Montany�a, “Influence of the voltage-time derivative in x-ray
emission from laboratory sparks,” Geophys. Res. Lett. 37, L19801, https://
doi.org/10.1029/2010GL044543 (2010).

35T. Shao, C. Zhang, Z. Niu, P. Yan, V. F. Tarasenko, E. K. Baksht, I. D.
Kostyrya, and V. Shutko, “Runaway electron preionized diffuse discharges in
atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode,”
J. Appl. Phys. 109, 083306 (2011).

36T. Shao, V. F. Tarasenko, C. Zhang, D. V. Rybka, I. D. Kostyrya, A. V.
Kozyrev, P. Yan, and V. Y. Kozhevnikov, “Runaway electrons and x-rays from
a corona discharge in atmospheric pressure air,” New J. Phys. 13, 113035
(2011).

37C. Zhang, T. Shao, V. F. Tarasenko, H. Ma, C. Ren, I. D. Kostyrya, D. Zhang,
and P. Yan, “X-ray emission from a nanosecond-pulse discharge in an inhomo-
geneous electric field at atmospheric pressure,” Phys. Plasmas 19, 123516
(2012).

38P. O. Kochkin, C. V. Nguyen, A. P. J. van Deursen, and U. Ebert,
“Experimental study of hard x-rays emitted from metre-scale positive dis-
charges in air,” J. Phys. D 45, 425202 (2012).

39P. O. Kochkin, A. P. J. van Deursen, and U. Ebert, “Experimental study on
hard x-rays emitted from metre-scale negative discharges in air,” J. Phys. D 48,
025205 (2015).

40V. Tarasenko, “Runaway electrons in diffuse gas discharges,” Plasma Sources
Sci. Technol. 29, 034001 (2020).

41S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,
D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L.
Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G.
Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D.
Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F.
Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. Gomez
Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine,
A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H.
Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J.
Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P.
Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E.
Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F.
Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. M. de Freitas, Y.
Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura,
K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer,
M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. D. Salvo, G. Santin, T. Sasaki, N.
Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H.
Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M.
Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden,
W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T.
Yamada, H. Yoshida, and D. Zschiesche, “Geant4—A simulation toolkit,” Nucl.
Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).

42J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G.
Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman,
G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G.
Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A.
Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F.
Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei,
O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. M.
Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L.
Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S.
Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B.
Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P.
Wellisch, D. C. Williams, D. Wright, and H. Yoshida, “Geant4 developments
and applications,” IEEE Trans. Nucl. Sci. 53, 270–278 (2006).

43J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A.
Bagulya, S. Banerjee, G. Barrand, B. Beck, A. Bogdanov, D. Brandt, J. Brown,
H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G. Cirrone, G.
Cooperman, M. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L.
Desorgher, X. Dong, A. Dotti, V. Elvira, G. Folger, Z. Francis, A. Galoyan, L.
Garnier, M. Gayer, K. Genser, V. Grichine, S. Guatelli, P. Gueye, P.
Gumplinger, A. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko,
V. Ivanchenko, F. Jones, S. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros,
M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S. Lee, F. Longo, M.
Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T.
Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M. Pia, W. Pokorski, J.
Quesada, M. Raine, M. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G.
Santin, T. Sasaki, D. Sawkey, J. Shin, I. Strakovsky, A. Taborda, S. Tanaka, B.
Tome, T. Toshito, H. Tran, P. Truscott, L. Urban, V. Uzhinsky, J. Verbeke, M.
Verderi, B. Wendt, H. Wenzel, D. Wright, D. Wright, T. Yamashita, J. Yarba,
and H. Yoshida, “Recent developments in Geant4,” Nucl. Instrum. Methods
Phys. Res., Sect. A 835, 186–225 (2016).

44A. B. Skeltved, N. Østgaard, B. Carlson, T. Gjesteland, and S. Celestin,
“Modeling the relativistic runaway electron avalanche and the feedback mecha-
nism with GEANT4,” J. Geophys. Res. 119, 9174–9191, https://doi.org/
10.1002/2014JA020504 (2014).

45C. Rutjes, D. Sarria, A. B. Skeltved, A. Luque, G. Diniz, N. Østgaard, and U.
Ebert, “Evaluation of Monte Carlo tools for high energy atmospheric physics,”
Geosci. Model Dev. 9, 3961–3974 (2016).

46D. Sarria, C. Rutjes, G. Diniz, A. Luque, K. Ihaddadene, J. Dwyer, N. Østgaard,
A. Skeltved, I. Ferreira, and U. Ebert, “Evaluation of Monte Carlo tools for
high-energy atmospheric physics II: Relativistic runaway electron avalanches,”
Geosci. Model Dev. 11, 4515–4535 (2018).

47Geant4Collaboration, Geant4 Installation Guide Documentation Release 10.4
(Geant4Collaboration, 2017).

48B. E. Carlson, N. Østgaard, P. Kochkin, Ø. Grondahl, R. Nisi, K. Weber, Z.
Scherrer, and K. LeCaptain, “Meter-scale spark x-ray spectrum statistics,”
J. Geophys. Res. 120, 11,191–11,202, https://doi.org/10.1002/2015JD023849
(2015).

49C. Mooney and R. Duval, Bootstrapping: A Nonparametric Approach to
Statistical Inference, Quantitative Applications in the Social Sciences (SAGE
Publications, 1993).

50F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry
(John Wiley & Sons, 1986), p. 628.

51L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases:
Theory, Experiment, and Natural Phenomena (Futurepast Inc., 2003), p. 358.

52R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 988.
53See J. H. Hubbell and S. M. Seltzer, http://physics.nist.gov/xaamdi for “Tables
of x-ray mass attenuation coefficients and mass energy-absorption coefficients
(version 1.4),” [National Institute of Standards and Technology (NIST),
Gaithersburg, MD, 2004], accessed 1 December 2018.

54Saint-Gobain, Manual: Lanthanum Bromide Integrated Detector Design (Saint-
Gobain Crystals, 2018).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 053506 (2022); doi: 10.1063/5.0086579 29, 053506-15

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/1.1655832
https://doi.org/10.1029/2005GL024027
https://doi.org/10.1134/S1063784206030108
https://doi.org/10.1088/0022-3727/41/23/234012
https://doi.org/10.1088/0022-3727/43/2/025202
https://doi.org/10.1029/2010GL044543
https://doi.org/10.1063/1.3581066
https://doi.org/10.1088/1367-2630/13/11/113035
https://doi.org/10.1063/1.4773439
https://doi.org/10.1088/0022-3727/45/42/425202
https://doi.org/10.1088/0022-3727/48/2/025205
https://doi.org/10.1088/1361-6595/ab5c57
https://doi.org/10.1088/1361-6595/ab5c57
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1002/2014JA020504
https://doi.org/10.5194/gmd-9-3961-2016
https://doi.org/10.5194/gmd-11-4515-2018
https://doi.org/10.1002/2015JD023849
http://physics.nist.gov/xaamdi
https://scitation.org/journal/php

	s1
	f1
	s2
	s2A
	t1
	d1
	s2B
	s2B1
	s2B2
	d2
	f3
	s2B3
	s2B4
	s2B5
	s3
	s3A
	d3
	s3B
	t2
	s3C
	f5
	s3D
	f6
	t3
	s4
	s5
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54

