

Temperature-sensitive development shapes insect phenological responses to climate change

³**Q1** Lauren B Buckley

5 Phenological shifts vary within and among insect species and
6 locations based on exposure and sensitivity to climate change.
7 Shifts in environmental conditions and seasonal constraints
8 along elevation and latitudinal gradients can select for
9 differences in temperature sensitivity that generate differential
10 phenological shifts. I examine the phenological implications of
11 observed variation in developmental traits. Coupling
12 physiological and ecological insight to link the environmental
13 sensitivity of development to phenology and fitness offers
14 promise in understanding variable phenological response to
15 climate change and their community and ecosystem
16 implications. A key challenge in establishing these linkages is
17 extrapolating controlled, laboratory experiments to temporally
18 variable, natural environments. New lab and field experiments
19 that incorporate realistic environmental variation are needed to
20 test the extrapolations. Establishing the linkages can aid
21 **Q3** understanding and anticipating impacts of climate change on
22 insects.

Address

23 Department of Biology, University of Washington, Seattle, WA 98195-
24 1800, USA

Corresponding author: Buckley, Lauren B (lbuckley@uw.edu)

25 **Current Opinion in Insect Science** 2022, 53:xx-yy
26 This review comes from a themed issue on **Global change biology**
27 Edited by **Robby Stoks** and **Nedim Tüzün**

28 <https://doi.org/10.1016/j.cois.2022.100897>
29 2214-5745/© 2022 Published by Elsevier Inc.

30 Introduction

31 Butterfly monitoring data linking dramatic population
32 declines in the Western US to late-season warming suggest
33 the importance of considering how climate change
34 alters phenology [1^{••}]. Warming late-season temperatures
35 can alter development rates and diapause energetics and
36 induce physiological stress [1^{••},2]. Amidst the deluge of
37 phenological observations addressing responses to climate
38 change [3], studies of insects have the distinct
39 advantage of their development and growth being highly
40 temperature sensitive and well documented. Much of this
41 owes to the relative ease of rearing insects in controlled

42 laboratory conditions. The physiological and genetic
43 mechanisms underlying temperature-sensitive development
44 have recently been reviewed [4]. Although most
45 populations and species advance phenology in response
46 to climate warming, they exhibit considerable variability
47 in advancements and some populations and species delay
48 phenology with warming [5]. Here I review the potential
49 to apply understanding of the temperature-sensitivity of
50 insect development to account for variable phenological
51 responses. I consider how interactions with microclimate
52 and topography also contribute to the heterogeneous
53 responses [6].

54 I focus on life history differences across elevations and
55 latitudes associated with season length. I explore the
56 ramifications of the life history differences, including
57 differential phenological shifts and altered community
58 interactions. I aim to encourage both more consideration
59 of the ecological implications of development and growth
60 rates and the physiological mechanisms underlying
61 phenology.

62 Several aspects of insect life history contribute to the
63 variable phenological shifts. Many species undergo dia-
64 pause, a physiologically controlled state of dormancy.
65 Photoperiod (daylength) often interacts with temperature
66 to cue development including the induction and termi-
67 nation of diapause [7]. Cues for diapause timing and other
68 aspects of seasonal regulation can become suboptimal
69 with climate warming [5]. Whether insects complete only
70 a single generation each active season (univoltine) or have
71 the potential to complete a variable number of genera-
72 tions (e.g. multivoltine) shapes the fitness consequences
73 of phenology. While many multivoltine insect popula-
74 tions have been able to complete additional generations
75 with advanced phenology [8], others face a developmen-
76 tal trap whereby they attempt but fail to complete addi-
77 tional generations [9]. Diapause, voltnism, and the ther-
78 mal sensitivity of development interact, as has been
79 demonstrated for Australian grasshoppers [10].

80 Insects shift phenology in response to both how much
81 climate warming they experience and how sensitive they
82 are to the warming. Both these factors interact with
83 seasonal timing [11]. Phenological shifts can be more
84 pronounced for species that develop more slowly and
85 mature later in the season since they are exposed to a
86 greater duration of warming. However, earlier season
87 species can exhibit greater thermal plasticity in develop-
88 ment, which allows responsiveness to variable early

2 Global change biology

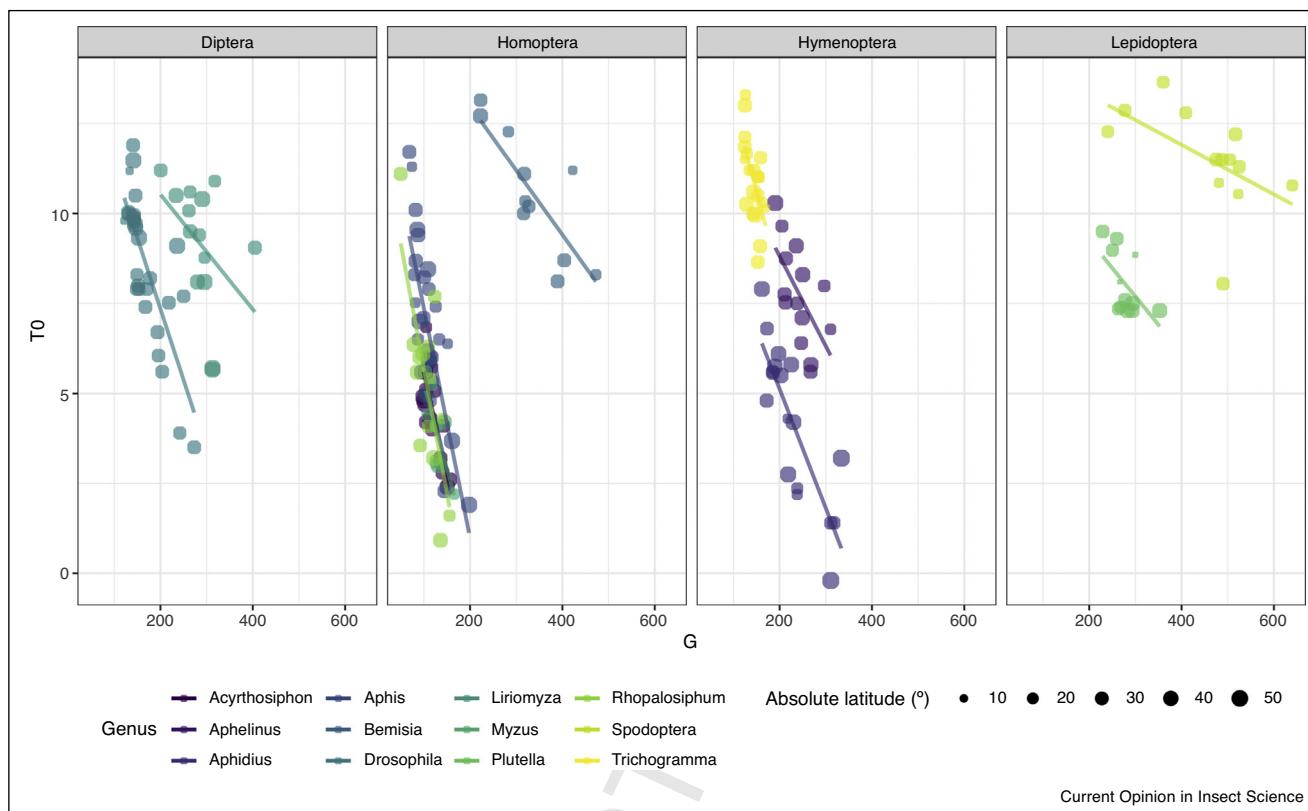
89 season conditions [12]. Early season species, which may
90 also overwinter in more advanced developmental stages,
91 often exhibit more pronounced phenological shifts [13].
92 However, a compilation of observations for univoltine
93 butterflies suggests early season species delayed flight
94 phenology and later-season species advanced flight phe-
95 nology at high, northern latitudes [14]. Developmental
96 plasticity tends to be particularly pronounced at high
97 elevations and latitudes to ensure the completion of a
98 generation within a short, temperature-limited growing
99 season. Although warming generally accelerates develop-
100 ment, developmental relaxation can occur for univoltine
101 species in these systems as the duration of thermal
102 opportunity expands with warming [15]. A study of
103 mountain butterfly communities found that the pheno-
104 logical delay with cooler temperatures at higher elevation
105 was less than expected for the majority of species, sug-
106 gesting physiological differences between populations
107 along the elevation gradient [16[•]]. The study also docu-
108 mented greater temperature sensitivity of development
109 rate among early season species.

110 Another complication with interpreting phenological
111 shifts is their potential to interact with range shifts in
112 tracking environmental niches. Although 40% of butterfly
113 and moth species in Finland shifted neither phenology
114 nor distribution over 20–25 years of surveys, the 15% of
115 species that exhibited both advanced flight phenology
116 and a northern range shift were more likely to exhibit
117 positive population growth [17^{••}].

118 Characterizing the thermal sensitivity of 119 development

120 A common and long-employed method for predicting
121 insect phenology is estimating the accumulation of heat
122 units (degree-days) [18]. The method assumes a constant
123 development response to a heat unit, but can readily
124 account for variability in heat unit accumulation over
125 time. Linear regressions of developmental durations at
126 several constant temperatures are used to estimate a
127 lower thermal limit for development (T_0 , sometimes
128 called lower developmental temperature, LDT) as well
129 as to estimate the number of heat units required to
130 complete development (G) [19,20]. Upper thermal limits
131 on development are less often assessed. Developmental
132 traits are available for thousands of insect populations and
133 species [21] and some studies account for variation across
134 developmental stages [22]. Insects tend to respond to
135 limited thermal opportunity (e.g. at high latitude or
136 altitudes) through reduced T_0 . Sometimes G increases
137 as well, reflecting a physiological tradeoff of more heat
138 units required to complete development if development
139 initiates at lower temperatures [23]. Development often
140 occurs at cool, early season temperatures where thermal
141 responses are typically linear, but increasingly develop-
142 mental rate summations use thermal performance curves

(TPCs) to account for non-linear thermal responses [18,24].


143 Physiological metrics of temperature sensitivity are often
144 applied to investigate growth and development rates. Q10
145 indicates the ratio by which a 10-degree temperature
146 increase shifts physiological rates [12]. A related
147 approach, which accounts for non-linear thermal
148 responses, uses the activation energies required for bio-
149 chemical reactions and thermodynamics to estimate rates
150 [25]. Insects in warmer, temporally constant environ-
151 ments generally mature faster and at smaller size than
152 do those grown in cooler, constant environments. One
153 prominent explanation for this temperature-size rule
154 (TSR) is that increasing temperatures accelerate ecto-
155 therm development rate more than growth rate due to the
156 thermal response of development rate having either a
157 greater slope or temperature intercept [26]. In some
158 insects, particularly univoltine insects in season-limited
159 environments, the TSR is reversed [27]. The warm
160 adaptation of physiological processes related to feeding
161 in some insects may lead to greater increases in growth
162 than development at warm temperatures [28].

163 Are development models relevant for variable, 164 natural environments?

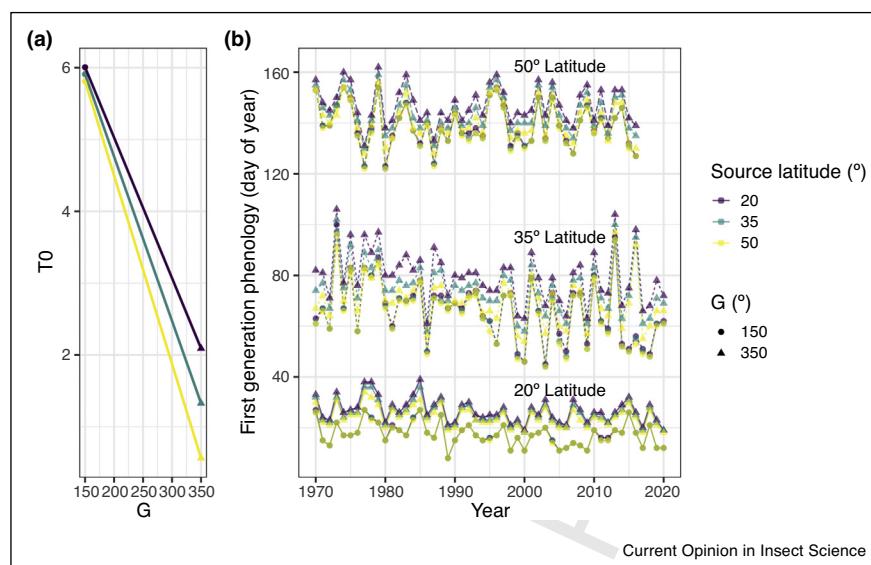
165 Fluctuating temperatures tend to accelerate develop-
166 ment unless the fluctuations result in stressful tempera-
167 tures [29]. The occurrence of warm temperatures in
168 variable environments can accelerate development in
169 cool environments but decelerate development in
170 warm environments [30]. This observation is aligned
171 with Jensen's Inequality, which points out that rates at
172 mean temperatures deviate from mean rates at a
173 sequence of temperatures due to non-linearities in
174 temperature dependence [31]. Some studies suggest
175 that integrating over temperature variation is sufficient
176 to predict developmental rates [32[•]], but others suggest
177 the need to consider carry-over effects (e.g. acclima-
178 tion, stress) and other impacts of temporally variable
179 temperatures. Fluctuating rearing temperatures can, for
180 example, elevate optimal temperatures and maximal
181 growth rate [30].

182 A field study across microhabitats for the butterfly *Pieris*
183 *napi* indicated that development rates could be accurately
184 predicted using data from constant temperature labora-
185 tory experiments, but suggests the importance of account-
186 ing for non-linearities [32[•]]. Another rearing experiment
187 with sepsid flies suggest that TPCs from fixed tempera-
188 tures accurately predicted development rates in variable
189 conditions as long as temperatures never got below the
190 critical minimum temperature [33]. But flies exposed to
191 cold temperatures developed faster than predicted
192 because they were able to continue growing or to accel-
193 erate development when temperatures warmed.

Figure 1

Lower thermal limits (T_0) are inversely related to the number of heat units required (G) for development across genera within four insect orders. Developmental traits are variable across latitude (symbol size).

Accurate predictions of development can require consideration of additional cues beyond just temperature. Photoperiod can cue acceleration or deceleration of development to ensure the completion of a seasonal generation or capitalization on permissive conditions, respectively. For example, damselfly populations accelerate development when reared under photoperiods indicative of seasonal time constraints [34*].


Intra-specific and inter-specific patterns of thermal sensitivity

An analysis of developmental traits for 1037 populations of 678 insect species concentrated in six orders [21] indicated that T_0 decreases and G increases with increasing absolute latitude [23, see also Refs. 19,20]. An inverse relationship between T_0 and G , indicating more heat units required to complete development if development initiates at lower temperatures, was weak across the full data but apparent within orders. Here, I further explore how developmental traits vary among related species, and assess their capacity to account for phenological variation, by subsetting the database [23] to genera with data for at least 10 populations [methods follow 23 and are summarized in Appendix S1 (Supplementary material)]. T_0

strongly declines with increasing G within genera (Figure 1). Shifts in T_0 and G across absolute latitude are variable, but there is a significant interaction between G and latitude such that the decline in T_0 with increasing G is steeper for higher-latitude populations (Figure 2a, linear mixed effect model with genera as a random effect, ANOVA: G standardized coefficient $= -0.54 \pm 0.14$ SE, $\chi^2 = 14.2$, $p < 0.001$; latitude standardized coefficient $= 0.09 \pm 0.08$ SE, $\chi^2 = 1.3$, $p = 0.25$; $G \times$ latitude standardized coefficient $= -0.29 \pm 0.13$ SE, $\chi^2 = 4.5$, $p = 0.03$). This is consistent with a stronger physiological tradeoff in cool, high-latitude environments.

Virtual 'reciprocal transplants' explore how intragenus variation in developmental traits influences phenology (Figure 2). I apply the model described above to estimate T_0 for populations at three northern latitudes (20° , 35° , 50°) requiring 150 and 350 heat units to complete development (G). The G range was selected to bound most data. I estimate T_0 s varying from 6.0° to 5.8°C for $G = 150$ and 2.1° to 0.6°C for $G = 350$ at 20° and 50° , respectively (Figure 2a). Hourly interpolations of weather station data were used to estimate the accumulation of heat units and first-generation phenology based on T_0 and G (Appendix

Figure 2

(a) I use the model characterizing the data in Figure 1 to estimate T_0 at three source latitudes for insects that require $G = 150$ and 350° heat units. T_0 declines with increasing absolute latitude, with the decline more pronounced for larger G . **(b)** I conduct virtual ‘reciprocal transplants’ to predict the first generation phenology for insects with developmental traits corresponding to each point in (a) at each latitude. Fewer required heat units (symbols) and lower latitude thermal conditions (line types) accelerate projected phenology. Lower T_0 s also accelerate phenology, with the variance being particularly apparent at $G = 350^\circ$ given the substantial predicted variation in T_0 .

240 S1 in Supplementary material). Lower G requirements
 241 accelerate development (Figure 2b). For higher G values
 242 and ‘transplant’ latitudes, lower T_0 s associated with
 243 higher source latitudes accelerate development and the
 244 predicted phenology of the first generation (Figure 2b).

245 Although the phenology projections are for geographi-
 246 cally disparate populations, differences in developmental
 247 traits that occur for populations along elevation gradients
 248 and between species within communities can produce
 249 divergent phenologies [12,35]. The significance of devel-
 250 opment trait differences for phenology depends on cli-
 251 mate context (e.g. compare ‘transplant’ sites in
 252 Figure 2b). Developmental traits vary with seasonal tim-
 253 ing, which can help explain variable phenological
 254 responses to warming among species with different sea-
 255 sonal timing [11,12].

256 **Community implications of developmental 257 differences**

258 Species traits such as voltnism and diet specialization can
 259 influence whether species advance/delay or prolong/
 260 shorten activity periods, which can restructure communi-
 261 ties and alter interactions [36]. Negative fitness impacts
 262 are anticipated when phenological mismatches occur
 263 among interacting species but evidence for such fitness
 264 detriments are mixed [37]. Differential shifts in the
 265 phenology of plants and their herbivores or pollinators
 266 have been prominently studied [38]. For example, bee

emergence advances with warmer temperatures and ear-
 267 lier snowmelt whereas peak abundance and senescence
 268 was more influenced by functional traits including over-
 269 wintering stage [39•]. Warmer season thus extended bee
 270 flight periods but flower phenology shifted less, indicating
 271 that climate warming may erode the synchrony of flowers
 272 and pollinators [39•] and thus ecosystem function.

273
 274 Phenological shifts within communities tend to reduce
 275 synchrony, but dynamics including longer active periods
 276 can increase synchrony. For example, herbivory can
 277 induce early leafing phenology, but warming can coun-
 278 teract this strategy by advancing insect phenology [40].
 279 Broader abundance distributions coupled with phenolog-
 280 ical advancements of later-season species increases phe-
 281 nological overlap among grasshopper species [41].
 282 Increased phenological overlap corresponds to decreased
 283 abundance, particularly of later-season species, consistent
 284 with altered interactions such as resource competition
 285 [41]. Such examples highlight the need to consider full
 286 phenological distributions—not just emergence dates—
 287 when assessing shifts in phenological overlap with warm-
 288 ing [42].

289 **Conclusions**

290 The pronounced temperature sensitivity of insect devel-
 291 opment and growth drive phenological shifts with climate
 292 warming. Well-established means of describing and mea-
 293 suring the temperature sensitivity of insect development

and growth along with abundant existing measurements offer promise in understanding and predicting phenological responses to climate change. In particular, differences in environmental conditions and seasonal constraints along elevation and latitudinal gradients can be linked to differences in temperature sensitivity and development plasticity. These differences (along with variation in life history including seasonal timing, voltinism, overwintering stage, and diet breadth) often shape intra-specific and inter-specific variance in phenology and phenological shifts with implications for species interactions and community and ecosystem function. A crucially important, and oft omitted, step is linking shifts in phenology and phenological synchrony to changes in the vital rates that shape population dynamics [43^{••}]. Establishing these linkages is central for understanding and anticipating ongoing, dramatic insect declines. Indeed, observations such as insect population declines being most pronounced in areas with substantial fall warming [1^{••}] point to the importance of linking underlying physiological mechanisms, phenology, and demographic consequences.

Fully realizing this potential will require coupling physiological and ecological insight to determine how lab experiments can best be applied to variable, natural environments and to design new lab and field experiments that incorporate realistic environmental variation, including the interaction of multiple environmental drivers. Field experiments that examine fitness consequences are essential to understanding the implications of phenological shifts. For example, experimentally accelerating bee phenology increased fitness with survival increases outweighing a trade-off of decreased reproduction [44]. Incorporating realistic environmental variability and employing integrative approaches is increasingly important given increases in the incidence and severity of environmental extremes, which can substantially alter insect phenology with community and ecosystem consequences [45].

332 Conflict of interest statement

333 Nothing declared.

334 Acknowledgements

335 I thank R. Huey, C. Johnson, J. Kingsolver, A. Meyer, R. Ren, J. Smith, N. 336 Tuzun, C. Williams, and an anonymous reviewer for valuable discussions 337 and/or comments on the manuscript. This work was supported in part by the 338 US National Science Foundation (DBI-1349865 and DEB-1951356). Q7

339 Uncited references

340 [46,47].

341 Appendix A. Supplementary data

342 Supplementary material related to this article can be 343 found, in the online version, at doi:<https://doi.org/10.1016/j.cois.2022.100897>. 344

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Forister ML, Halsch CA, Nice CC, Fordyce JA, Dilts TE, Oliver JC, Prudic KL, Shapiro AM, Wilson JK, Glassberg J: **Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West.** *Science* 2021, **371**:1042-1045. 348
2. Marshall KE, Gotthard K, Williams CM: **Evolutionary impacts of winter climate change on insects.** *Curr Opin Insect Sci* 2020, **41**:54-62. 349
3. Cohen JM, Lajeunesse MJ, Rohr JR: **A global synthesis of animal phenological responses to climate change.** *Nat Clim Change* 2018, **8**:224-228. 350
4. Mirth CK, Saunders TE, Amourda C: **Growing up in a changing world: environmental regulation of development in insects.** *Ann Rev Entomol* 2021, **66**:81-99. 351
5. Forrest JR: **Complex responses of insect phenology to climate change.** *Curr Opin Insect Sci* 2016, **17**:49-54. 352
6. Nice CC, Forister ML, Harrison JG, Gompert Z, Fordyce JA, Thorne JH, Waetjen DP, Shapiro AM: **Extreme heterogeneity of population response to climatic variation and the limits of prediction.** *Glob Change Biol* 2019, **25**:2127-2136. 353
7. Lindestad O, Wheat CW, Nylin S, Gotthard K: **Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly.** *Ecology* 2019, **100**:e02550. 354
8. Altermatt F: **Climatic warming increases voltinism in European butterflies and moths.** *Proc R Soc B* 2009, **277**:1281-1287. 355
9. Van Dyck H, Bonte D, Puls R, Gotthard K, Maes D: **The lost generation hypothesis: could climate change drive ectotherms into a developmental trap?** *Oikos* 2015, **124**:54-61. 356
10. Kong JD, Hoffmann AA, Kearney MR: **Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism.** *Philos Trans R Soc B Biol Sci* 2019, **374**:20180547. 357
11. Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH: **The mechanisms of phenology: the patterns and processes of phenological shifts.** *Ecol Monogr* 2018, **89**:e01337. 358
12. Smith JM, Telemeco RS, Briones Ortiz B, Nufio, Buckley LB: **High-elevation populations of montane grasshoppers exhibit greater developmental plasticity in response to seasonal cues.** *Front Physiol* 2021, **12**:738992. 359
13. Nufio CR, Buckley LB: **Grasshopper phenological responses to climate gradients, variability, and change.** *Ecosphere* 2019, **10**:e02866. 360
14. Fric ZF, Rindos M, Konvička M: **Phenology responses of temperate butterflies to latitude depend on ecological traits.** *Ecol Lett* 2020, **23**:172-180. 361
15. Buckley LB, Nufio CR, Kirk EM, Kingsolver JG: **Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming.** *Proc R Soc Lond Ser B Biol Sci* 2015, **282**:20150441. 362
16. Gutiérrez D, Wilson RJ: **Intra- and interspecific variation in the responses of insect phenology to climate.** *J Anim Ecol* 2021, **90**:248-259. 363

This analysis of butterfly phenology along a Mediterranean mountain range suggests that different responses to spatial and temporal components of temperature variation contribute to phenological variation.

17. Hälfors MH, Pöyry J, Heliölä J, Kohonen I, Kuussaari M, Leinonen R, Schmucki R, Sihvonen P, Saastamoinen M: **Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera.** *Ecol Lett* 2021, **24**:1619-1632. 364

6 Global change biology

403 This study of boreal Lepidoptera is notable in that it examines how
404 phenological and range shifts interact to shape population trends.

405 18. Rebaudo F, Rabhi V-B: **Modeling temperature-dependent**
406 **development rate and phenology in insects: review of major**
407 **developments, challenges, and future directions.** *Entomol Exp*
408 *Appl* 2018, **166**:607-617.

409 19. Trudgill DL: **Why do tropical poikilothermic organisms tend to**
410 **have higher threshold temperatures for development than**
411 **temperate ones?** *Funct Ecol* 1995, **9**:136-137.

412 20. Honek A: **Constraints on thermal requirements for insect**
413 **development.** *Entomol Sci* 1999, **2**:615-621.

414 21. Jarošík V, Honěk A, Magarey RD, Skuhrovec J: **Developmental**
415 **database for phenology models: related insect and mite**
416 **species have similar thermal requirements.** *J Econ Entomol*
417 **2011, 104**:1870-1876.

418 22. Kingsolver JG, Buckley LB: **Ontogenetic variation in thermal**
419 **sensitivity shapes insect ecological responses to climate**
420 **change.** *Curr Opin Insect Sci* 2020, **41**:17-24.

421 23. Buckley LB, Arakaki AJ, Cannistra AF, Kharouba HM,
422 Kingsolver JG: **Insect development, thermal plasticity and**
423 **fitness implications in changing, seasonal environments.** *Integr Comp Biol* 2017, **57**:988-998.

424 24. Quinn BK: **A critical review of the use and performance of**
425 **different function types for modeling temperature-dependent**
426 **development of arthropod larvae.** *J Therm Biol* 2017, **63**:65-77.

427 25. Irlich UM, Terblanche JS, Blackburn TM, Chown SL: **Insect rate-**
428 **temperature relationships: environmental variation and the**
429 **metabolic theory of ecology.** *Am Nat* 2009, **174**:819-835.

430 26. Verberk WCEP, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR,
431 Siepel H: **Shrinking body sizes in response to warming:**
432 **explanations for the temperature-size rule with special**
433 **emphasis on the role of oxygen.** *Biol Rev* 2021, **96**:247-268.

434 27. Walters RJ, Hassall M: **The temperature-size rule in ectotherms:**
435 **may a general explanation exist after all?** *Am Nat* 2006,
167:510-523.

436 28. Miller GA, Clissold FJ, Mayntz D, Simpson SJ: **Speed over**
437 **efficiency: locusts select body temperatures that favour**
438 **growth rate over efficient nutrient utilization.** *Proc R Soc Lond*
439 *B Biol Sci* 2009, **276**:3581-3589.

440 29. Colinet H, Sinclair BJ, Vernon P, Renault D: **Insects in fluctuating**
441 **thermal environments.** *Ann Rev Entomol* 2015, **60**:123-140.

442 30. Kingsolver JG, Higgins JK, Augustine KE: **Fluctuating**
443 **temperatures and ectotherm growth: distinguishing non-**
444 **linear and time-dependent effects.** *J Exp Biol* 2015, **218**:2218-
445 2225.

446 31. Denny M: **The fallacy of the average: on the ubiquity, utility and**
447 **continuing novelty of Jensen's inequality.** *J Exp Biol* 2017,
220:139-146.

448 32. von Schmalensee L, Gunnarsdóttir KH, Näslund J, Gotthard K,
449 • Lehmann P: **Thermal performance under constant**
450 **temperatures can accurately predict insect development**
451 **times across naturally variable microclimates.** *Ecol Lett* 2021,
24:1633-1645

452 This study demonstrates that the temperature-sensitivity of butterfly
453 development assessed in constant temperatures in the lab can be applied
454 to accurately predict field phenology if microclimate and temporal varia-
455 tion are accounted for.

456 33. Khelifa R, Blanckenhorn WU, Roy J, Rohner PT, Mahdjoub H:
457 **Usefulness and limitations of thermal performance curves in**
458 **predicting ectotherm development under climatic variability.** *J*
459 *Anim Ecol* 2019, **88**:1901-1912.

34. Johansson F, Watts PC, Sniegula S, Berger D: **Natural selection**
• **mediated by seasonal time constraints increases the**
460 **alignment between evolvability and developmental plasticity.**
461 *Evolution* 2021, **75**:464-475

462 This analysis reveals that seasonal time constraints can select for
463 increased developmental plasticity and augment alignment with
464 evolvability.

35. Rodrigues YK, Beldade P: **Thermal plasticity in insects'**
465 **response to climate change and to multifactorial**
466 **environments.** *Front Ecol Evol* 2020, **8**:271.

36. Zografo K, Swartz MT, Adamidis GC, Tilden VP, McKinney EN,
467 Sewall BJ: **Species traits affect phenological responses to**
468 **climate change in a butterfly community.** *Sci Rep* 2021,
470 **11**:3283.

37. Kharouba HM, Wolkovich EM: **Disconnects between ecological**
471 **theory and data in phenological mismatch research.** *Nat Clim*
472 *Chang* 2020, **10**:406-415.

38. Stoks R, Verheyen J, Van Dievel M, Tüzün N: **Daily temperature**
473 **variation and extreme high temperatures drive performance**
474 **and biotic interactions in a warming world.** *Curr Opin Insect Sci*
475 2017, **23**:35-42.

39. Stemkovski M, Pearse WD, Griffin SR, Pardee GL, Gibbs J,
• Griswold T, Neff JL, Oram R, Rightmyer MG, Sheffield CS et al.:
476 **Bee phenology is predicted by climatic variation and**
477 **functional traits.** *Ecol Lett* 2020, **23**:1589-1598

478 This study finds that the early phenology of bees is sensitive to climate
479 variation whereas traits account for variation in later phenology. It also
480 suggests that a strong sensitivity to climate variation in bees than flowers
481 will reduce synchrony under climate change.

40. Ren P, Néron V, Rossi S, Liang E, Bouchard M, Deslauriers A:
• **Warming counters defoliation-induced mismatch by**
482 **increasing herbivore-plant phenological synchrony.** *Glob*
483 *Change Biol* 2020, **26**:2072-2080.

484

41. Buckley LB, Graham SL, Nufio CR: **Grasshopper species'**
485 **seasonal timing underlies shifts in phenological overlap in**
486 **response to climate gradients, variability and change.** *J Anim*
487 *Ecol* 2021, **90**:1252-1263.

42. Inouye BD, Ehrlén J, Underwood N: **Phenology as a process**
488 **rather than an event: from individual reaction norms to**
489 **community metrics.** *Ecol Monogr* 2019, **89**:e01352.

43. Iler AM, CaraDonna PJ, Forrest JRK, Post E: **Demographic**
• **consequences of phenological shifts in response to climate**
490 **change.** *Annu Rev Ecol Evol Systemat* 2021, **52**

491 This systematic review assesses the how classes of phenological shifts
492 influences vital rates and identifies gaps in linking phenology to
493 demography.

44. Farzan S, Yang LH: **Experimental shifts in phenology affect**
494 **fitness, foraging, and parasitism in a native solitary bee.**
495 *Ecology* 2018, **99**:2187-2195.

45. Ma C-S, Ma G, Pincebourde S: **Survive a warming climate:**
496 **insect responses to extreme high temperatures.** *Ann Rev*
497 *Entomol* 2021, **66**:163-184.

46. Edmund H, Chamberlain S, Ram K, Edmund MH: **rnoaa: "NOAA"**
498 **weather data from R.** *R Package Version 065. 2016* <http://CRAN.R-project.org/package=rnoaa>.

499

500

47. Damos P, Savopoulou-Soultani M: **Temperature-driven models**
501 **for insect development and vital thermal requirements.** *Psyche*
502 **2011**, 2012.

503

504

505

506

507

508

509

510

511

512