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Phenological shifts vary within and among insect species and
locations based on exposure and sensitivity to climate change.
Shifts in environmental conditions and seasonal constraints
along elevation and latitudinal gradients can select for
differences in temperature sensitivity that generate differential
phenological shifts. | examine the phenological implications of
observed variation in developmental traits. Coupling
physiological and ecological insight to link the environmental
sensitivity of development to phenology and fitness offers
promise in understanding variable phenological response to
climate change and their community and ecosystem
implications. A key challenge in establishing these linkages is
extrapolating controlled, laboratory experiments to temporally
variable, natural environments. New lab and field experiments
that incorporate realistic environmental variation are needed to
test the extrapolations. Establishing the linkages can aid
understanding and anticipating impacts of climate change on
insects.
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Introduction

Butterfly monitoring data linking dramatic population
declines in the Western US to late-season warming sug-
gest the importance of considering how climate change
alters phenology [1°°]. Warming late-season temperatures
can alter development rates and diapause energetics and
induce physiological stress [1°%,2]. Amidst the deluge of
phenological observations addressing responses to cli-
mate change [3], studies of insects have the distinct
advantage of their development and growth being highly
temperature sensitive and well documented. Much of this
owes to the relative ease of rearing insects in controlled

laboratory conditions. The physiological and genetic
mechanisms underlying temperature-sensitive develop-
ment have recently been reviewed [4]. Although most
populations and species advance phenology in response
to climate warming, they exhibit considerable variability
in advancements and some populations and species delay
phenology with warming [5]. Here I review the potential
to apply understanding of the temperature-sensitivity of
insect development to account for variable phenological
responses. I consider how interactions with microclimate
and topography also contribute to the heterogenous
responses [6].

I focus on life history differences across elevations and
latitudes associated with season length. I explore the
ramifications of the life history differences, including
differential phenological shifts and altered community
interactions. I aim to encourage both more consideration
of the ecological implications of development and growth
rates and the physiological mechanisms underlying
phenology.

Several aspects of insect life history contribute to the
variable phenological shifts. Many species undergo dia-
pause, a physiologically controlled state of dormancy.
Photoperiod (daylength) often interacts with temperature
to cue development including the induction and termi-
nation of diapause [7]. Cues for diapause timing and other
aspects of seasonal regulation can become suboptimal
with climate warming [5]. Whether insects complete only
a single generation each active season (univoltine) or have
the potential to complete a variable number of genera-
tions (e.g. multivoltine) shapes the fitness consequences
of phenology. While many multivoltine insect popula-
tions have been able to complete additional generations
with advanced phenology [8], others face a developmen-
tal trap whereby they attempt but fail to complete addi-
tional generations [9]. Diapause, voltinism, and the ther-
mal sensitivity of development interact, as has been
demonstrated for Australian grasshoppers [10].

Insects shift phenology in response to both how much
climate warming they experience and how sensitive they
are to the warming. Both these factors interact with
seasonal timing [11]. Phenological shifts can be more
pronounced for species that develop more slowly and
mature later in the season since they are exposed to a
greater duration of warming. However, earlier season
species can exhibit greater thermal plasticity in develop-
ment, which allows responsiveness to variable early
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season conditions [12]. Early season species, which may
also overwinter in more advanced developmental stages,
often exhibit more pronounced phenological shifts [13].
However, a compilation of observations for univoltine
butterflies suggests early season species delayed flight
phenology and later-season species advanced flight phe-
nology at high, northern latitudes [14]. Developmental
plasticity tends to be particularly pronounced at high
clevations and latitudes to ensure the completion of a
generation within a short, temperature-limited growing
season. Although warming generally accelerates develop-
ment, developmental relaxation can occur for univoltine
species in these systems as the duration of thermal
opportunity expands with warming [15]. A study of
mountain butterfly communities found that the pheno-
logical delay with cooler temperatures at higher elevation
was less than expected for the majority of species, sug-
gesting physiological differences between populations
along the elevation gradient [16°]. The study also docu-
mented greater temperature sensitivity of development
rate among early season species.

Another complication with interpreting phenological
shifts is their potential to interact with range shifts in
tracking environmental niches. Although 40% of butterfly
and moth species in Finland shifted neither phenology
nor distribution over 20-25 years of surveys, the 15% of
species that exhibited both advanced flight phenology
and a northern range shift were more likely to exhibit
positive population growth [17°°].

Characterizing the thermal sensitivity of
development

A common and long-employed method for predicting
insect phenology is estimating the accumulation of heat
units (degree-days) [18]. The method assumes a constant
development response to a heat unit, but can readily
account for variability in heat unit accumulation over
time. Linear regressions of developmental durations at
several constant temperatures are used to estimate a
lower thermal limit for development (T, sometimes
called lower developmental temperature, LDT) as well
as to estimate the number of heat units required to
complete development (G) [19,20]. Upper thermal limits
on development are less often assessed. Developmental
traits are available for thousands of insect populations and
species [21] and some studies account for variation across
developmental stages [22]. Insects tend to respond to
limited thermal opportunity (e.g. at high latitude or
altitudes) through reduced T,. Sometimes G increases
as well, reflecting a physiological tradeoff of more heat
units required to complete development if development
initiates at lower temperatures [23]. Development often
occurs at cool, early season temperatures where thermal
responses are typically linear, but increasingly develop-
mental rate summations use thermal performance curves

(TPCs) to account for non-linear thermal responses
[18,24].

Physiological metrics of temperature sensitivity are often
applied to investigate growth and development rates. Q10
indicates the ratio by which a 10-degree temperature
increase shifts physiological rates [12]. A related
approach, which accounts for non-linear thermal
responses, uses the activation energies required for bio-
chemical reactions and thermodynamics to estimate rates
[25]. Insects in warmer, temporally constant environ-
ments generally mature faster and at smaller size than
do those grown in cooler, constant environments. One
prominent explanation for this temperature-size rule
(T'SR) is that increasing temperatures accelerate ecto-
therm development rate more than growth rate due to the
thermal response of development rate having either a
greater slope or temperature intercept [26]. In some
insects, particularly univoltine insects in season-limited
environments, the TSR is reversed [27]. The warm
adaptation of physiological processes related to feeding
in some insects may lead to greater increases in growth
than development at warm temperatures [28].

Are development models relevant for variable,
natural environments?

Fluctuating temperatures tend to accelerate develop-
ment unless the fluctuations result in stressful tempera-
tures [29]. The occurrence of warm temperatures in
variable environments can accelerate development in
cool environments but decelerate development in
warm environments [30]. This observation is aligned
with Jensen’s Inequality, which points out that rates at
mean temperatures deviate from mean rates at a
sequence of temperatures due to non-linearities in
temperature dependence [31]. Some studies suggest
that integrating over temperature variation is sufficient
to predict developmental rates [32°], but others suggest
the need to consider carry-over effects (e.g. acclima-
tion, stress) and other impacts of temporally variable
temperatures. Fluctuating rearing temperatures can, for
example, elevate optimal temperatures and maximal
growth rate [30].

A field study across microhabitats for the butterfly Pieris
napi indicated that development rates could be accurately
predicted using data from constant temperature labora-
tory experiments, but suggests the importance of account-
ing for non-linearities [32°]. Another rearing experiment
with sepsid flies suggest that TPCs from fixed tempera-
tures accurately predicted development rates in variable
conditions as long as temperatures never got below the
critical minimum temperature [33]. But flies exposed to
cold temperatures developed faster than predicted
because they were able to continue growing or to accel-
erate development when temperatures warmed.
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Lower thermal limits (To) are inversely related to the number of heat units required (G) for development across genera within four insect orders.

Developmental traits are variable across latitude (symbol size).

Accurate predictions of development can require consid-
eration of additional cues beyond just temperature. Pho-
toperiod can cue acceleration or deceleration of develop-
ment to ensure the completion of a seasonal generation or
capitalization on permissive conditions, respectively. For
example, damselfly populations accelerate development
when reared under photoperiods indicative of seasonal-
time constraints [34°].

Intra-specific and inter-specific patterns of
thermal sensitivity

An analysis of developmental traits for 1037 populations
of 678 insect species concentrated in six orders [21]
indicated that T, decreases and G increases with increas-
ing absolute latitude [23, see also Refs. 19,20]. An inverse
relationship between T and G, indicating more heat
units required to complete development if development
initiates at lower temperatures, was weak across the full
data but apparent within orders. Here, I further explore
how developmental traits vary among related species, and
assess their capacity to account for phenological variation,
by subsetting the database [23] to genera with data for at
least 10 populations [methods follow 23 and are summa-
rized in Appendix S1 (Supplementary material)]. Ty

strongly declines with increasing G within genera (Fig-
ure 1). Shifts in Ty and G across absolute latitude are
variable, but there is a significant interaction between G
and latitude such that the decline in Ty with increasing G
is steeper for higher-latitude populations (Figure 2a, lin-
ear mixed effect model with genera as a random effect,
ANOVA: G standardized coefficient=—0.54 £0.14 SE,
x> =14.2, »<0.001; latitude standardized coefficient
=0.0940.08 SE, x*=1.3, p=0.25; G x latitude standard-
ized coefficient = —0.29 £ 0.13 SE, XZ =4.5,p=0.03). This
is consistent with a stronger physiological tradeoff in cool,
high-latitude environments.

Virtual ‘reciprocal transplants’ explore how intragenus
variation in developmental traits influences phenology
(Figure 2). I apply the model described above to estimate
T, for populations at three northern latitudes (20, 35, 50°)
requiring 150 and 350 heat units to complete develop-
ment (G). The G range was selected to bound most data. |
estimate T'ys varying from 6.0° to 5.8°C for G =150 and
2.1° to 0.6°C for G=350 at 20° and 50°, respectively
(Figure 2a). Hourly interpolations of weather station data
were used to estimate the accumulation of heat units and
first-generation phenology based on Ty and G (Appendix
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(a) | use the model characterizing the data in Figure 1 to estimate T, at three source latitudes for insects that require G =150 and 350° heat units.
To declines with increasing absolute latitude, with the decline more pronounced for larger G. (b) | conduct virtual ‘reciprocal transplants’ to predict
the first generation phenology for insects with developmental traits corresponding to each point in (a) at each latitude. Fewer required heat units
(symbols) and lower latitude thermal conditions (line types) accelerate projected phenology. Lower Tgs also accelerate phenology, with the
variance being particularly apparent at G =350° given the substantial predicted variation in To.

S1 in Supplementary material). Lower G requirements
accelerate development (Figure 2b). For higher G values
and ‘transplant’ latitudes, lower Tys associated with
higher source latitudes accelerate development and the
predicted phenology of the first generation (Figure 2b).

Although the phenology projections are for geographi-
cally disparate populations, differences in developmental
traits that occur for populations along elevation gradients
and between species within communities can produce
divergent phenologies [12,35]. The significance of devel-
opment trait differences for phenology depends on cli-
mate context (e.g. compare ‘transplant’ sites in
Figure 2b). Developmental traits vary with seasonal tim-
ing, which can help explain variable phenological
responses to warming among species with different sea-
sonal timing [11,12].

Community implications of developmental
differences

Species traits such as voltinism and diet specialization can
influence whether species advance/delay or prolong/
shorten activity periods, which can restructure communi-
ties and alter interactions [36]. Negative fitness impacts
are anticipated when phenological mismatches occur
among interacting species but evidence for such fitness
detriments are mixed [37]. Differential shifts in the
phenology of plants and their herbivores or pollinators
have been prominently studied [38]. For example, bee

emergence advances with warmer temperatures and ear-
lier snowmelt whereas peak abundance and senescence
was more influenced by functional traits including over-
wintering stage [39°]. Warmer season thus extended bee
flight periods but flower phenology shifted less, indicating
that climate warming may erode the synchrony of flowers
and pollinators [39°] and thus ecosystem function.

Phenological shifts within communities tend to reduce
synchrony, but dynamics including longer active periods
can increase synchrony. For example, herbivory can
induce early leafing phenology, but warming can coun-
teract this strategy by advancing insect phenology [40].
Broader abundance distributions coupled with phenolog-
ical advancements of later-season species increases phe-
nological overlap among grasshopper species [41].
Increased phenological overlap corresponds to decreased
abundance, particularly of later-season species, consistent
with altered interactions such as resource competition
[41]. Such examples highlight the need to consider full
phenological distributions—not just emergence dates—
when assessing shifts in phenological overlap with warm-
ing [42].

Conclusions

T'he pronounced temperature sensitivity of insect devel-
opment and growth drive phenological shifts with climate
warming. Well-established means of describing and mea-
suring the temperature sensitivity of insect development
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and growth along with abundant existing measurements
offer promise in understanding and predicting phenolog-
ical responses to climate change. In particular, differences
in environmental conditions and seasonal constraints
along elevation and latitudinal gradients can be linked
to differences in temperature sensitivity and develop-
ment plasticity. These differences (along with variation in
life history including seasonal timing, voltinism, over-
wintering stage, and diet breadth) often shape intra-
specific and inter-specific variance in phenology and
phenological shifts with implications for species interac-
tions and community and ecosystem function. A crucially
important, and oft omitted, step is linking shifts in phe-
nology and phenological synchrony to changes in the vital
rates that shape population dynamics [43°°]. Establishing
these linkages is central for understanding and anticipat-
ing ongoing, dramatic insect declines. Indeed, observa-
tions such as insect population declines being most pro-
nounced in areas with substantial fall warming [1°°] point
to the importance of linking underlying physiological
mechanisms, phenology, and demographic consequences.

Fully realizing this potential will require coupling physi-
ological and ecological insight to determine how lab
experiments can best be applied to variable, natural
environments and to design new lab and field experi-
ments that incorporate realistic environmental variation,
including the interaction of multiple environmental dri-
vers. Field experiments that examine fitness conse-
quences are essential to understanding the implications
of phenological shifts. For example, experimentally accel-
erating bee phenology increased fitness with survival
increases outweighing a trade-off of decreased reproduc-
tion [44]. Incorporating realistic environmental variability
and employing integrative approaches is increasingly
important given increases in the incidence and severity
of environmental extremes, which can substantially alter
insect phenology with community and ecosystem con-
sequences [45].
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