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Abstract 

 

Organisms living in seasonal environments often adjust physiological capacities and sensitivities 

in response to (or in anticipation of) environment shifts. Such physiological and morphological 

adjustments (“acclimation” and related terms) inspire opportunities to explore the mechanistic 

bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their 

ecological and evolutionary consequences. Seasonal adjustments (“seasonal acclimation”) can be 

detected either by measuring physiological capacities and sensitivities of organisms retrieved 

directly from nature (or outdoor enclosures) in different seasons or less directly by rearing and 

measuring organisms maintained in the laboratory under conditions that attempt to mimic or 

track natural ones. But mimicking natural conditions in the laboratory is challenging -- doing so 

requires prior natural-history knowledge of ecologically relevant body temperature cycles, 

photoperiods, food rations, social environments, among other variables. We argue that traditional 

laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature, 

photoperiod, food, ‘lockdown’). Consequently, whether the resulting acclimation shifts correctly 

approximate those in nature is uncertain, and sometimes is dubious. We argue that background 

natural history information provides opportunities to design acclimation protocols that are not 

only more ecologically relevant, but also serve as templates for testing the validity of traditional 

protocols. Finally, we suggest several best practices to help enhance ecological realism. 
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Chinese Abstract 

生活在季節性環境中的生物經常調整其生理能力和生理敏感性以響應（或預

判）環境變化。這些生理和形態上的調整（“馴化”和相關術語）啟發研究者去
探索背後的機制、檢測誘導產生這些調整的信号並闡明其生態和進化後果。季
節性調整（“季節馴化”）可以通過測量在不同季節從野外（或室外圍欄）採集
的生物體的生理能力和生理敏感性來檢測，也可以間接地通過測量飼養在模擬

自然條件的實驗室環境中的生物體來檢測。但在實驗室中模擬自然條件存在諸

多困難——需要事先了解與物種生態相關的體溫循環、光週期、食物配給、社
會環境等博物學知識。我們認為，傳統的實驗室條件通常無法準確模擬野外不

同季節的環境條件（溫度、光週期、食物、“封鎖”）。因此，在這些實驗室條

件下產生的馴化響應是否接近野外真實發生的情況存在不確定性，甚至是非常

可疑的。我們認為，了解博物學背景信息有助於设计出更加具有生态相关性的

驯化流程，并应用这些标准化的流程去检验传统驯化流程的缺陷。最後，我們
提出了一些有助於增強生態現實性的方案。 
 

French abstract 

Les organismes vivant dans des environnements saisonniers ajustent souvent leurs capacités et leurs 

sensibilités physiologiques en réponse (ou en prévision de) aux changements environnementaux. De tels 

ajustements physiologiques et morphologiques (« acclimatation » et termes apparentés) offrent 

l'opportunité d’explorer les mécanismes sous-jacents à ces ajustements, de détecter les indices qui les 

induisent et d’élucider leurs conséquences écologiques et évolutives. Les ajustements saisonniers 

("acclimatation saisonnière") peuvent être détectés soit en mesurant les capacités physiologiques et les 

sensibilités d’organismes prélevés directement dans la nature (ou dans des enclos extérieurs) à différentes 

saisons, soit de manière moins directe en élevant et en mesurant des organismes maintenus en laboratoire 

dans des conditions qui tentent d'imiter ou de suivre les conditions naturelles. Mais il est difficile de 

reproduire les conditions naturelles en laboratoire car il faut pour cela connaître les cycles de température 

corporelle, la photopériode, le régime alimentaire, les environnements sociaux, entre autres variables 
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pertinentes d’un point de vue écologique. Nous argumentons que les conditions traditionnellement 

utilisées en laboratoire ne parviennent généralement pas à se rapprocher des conditions saisonnières 

naturelles (température, photopériode, nourriture, « confinement »). Par conséquent, il n'est pas certain, et 

parfois douteux, que les écarts d'acclimatation qui en résultent se rapprochent correctement de ceux de la 

nature. Nous soutenons que les informations de base sur l'histoire naturelle offrent la possibilité de 

concevoir des protocoles d'acclimatation qui sont non seulement plus pertinents sur le plan écologique, 

mais servent également de modèles pour tester la validité des protocoles traditionnels. Enfin, nous 

suggérons plusieurs bonnes pratiques pour aider à améliorer le réalisme écologique. 

 

German abstract 

Organismen, die in saisonalen Umgebungen leben, passen häufig ihre physiologischen 

Fähigkeiten und ihre Sensitivität als Reaktion auf (oder in Erwartung von) 

Umweltveränderungen an. Solche physiologischen und morphologischen Anpassungen 

(„Akklimatisierung“ und verwandte Begriffe) bieten die Möglichkeit, die diesen Anpassungen 

zugrunde liegenden mechanistischen Grundlagen zu erforschen, Reize zu erkennen, die 

Anpassungen auslösen, und ökologische und evolutionäre Konsequenzen aufzuklären. Saisonale 

Anpassungen („saisonale Akklimatisierung“) können entweder durch Messung der 

physiologischen Kapazitäten und Sensitivität von Organismen, die zu verschiedenen Jahreszeiten 

direkt aus der Natur (oder Außengehegen) entnommen wurden, oder weniger direkt durch 

Aufzucht und Messung von Organismen, die im Labor unter Bedingungen gehalten werden, die 

eine Nachahmung oder Nachverfolgung der natürlichen Bedingungen anstrebt, detektiert 

werden. Allerdings ist die Nachahmung natürlicher Bedingungen im Labor eine Herausforderung 

– dies erfordert unter anderem Kenntnisse über ökologisch relevante Körpertemperaturzyklen, 

Photoperioden, Nahrungsrationen, sowie das soziale Umfeld. Wir argumentieren, dass 
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traditionelle Laborbedingungen normalerweise nicht den natürlichen saisonalen Bedingungen 

entsprechen (Temperatur, Photoperiode, Nahrung, „Lockdown“). Ob die resultierenden 

Akklimatisierungsverschiebungen denen in der Natur genau entsprechen, ist daher ungewiss und 

manchmal zweifelhaft. Wir argumentieren, dass naturgeschichtliche Hintergrundinformationen 

Möglichkeiten bieten, Akklimatisierungsprotokolle zu entwerfen, die nicht nur ökologisch 

relevanter sind, sondern auch als Vorlagen zum Testen der Gültigkeit traditioneller Protokolle 

dienen können. Abschließend schlagen wir mehrere Best Practices vor, um den ökologischen 

Realismus zu verbessern. 

 

Spanish abstract 

Los organismos que viven en ambientes estacionales pueden ajustar sus capacidades y 

sensibilidades fisiológicas en respuesta (o en anticipación) a cambios ambientales. Estos ajustes 

fisiológicos y morfológicos (“aclimatación” y términos afines) dan la oportunidad para explorar 

el mecanismo que subyace a estos ajustes, también para detectar las señales que inducen tales 

ajustes y finalmente para dilucidar sus consecuencias ecológicas y evolutivas. Los ajustes 

estacionales (“aclimatación estacional”) se pueden detectar midiendo las capacidades y 

sensibilidades fisiológicas de los organismos, ya sea en especímenes extraídos directamente de la 

naturaleza (o recintos al aire libre) en diferentes estaciones, como también, de una manera menos 

directa, en especímenes criados y mantenidos en el laboratorio bajo condiciones que simulan las 

condiciones naturales y sus cambios estacionales. Sin embargo, esta simulación en el laboratorio 

es un desafío; hacerlo requiere un conocimiento previo de la historia natural de los ciclos de 

temperatura corporal, los fotoperíodos, las raciones de alimentos, los entornos sociales, entre 

otras variables ecológicamente relevantes. Argumentamos que las condiciones tradicionales de 
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laboratorio generalmente no se aproximan a las condiciones estacionales naturales (temperatura, 

fotoperíodo, comida, "bloqueo"). En consecuencia, es incierto y, a veces, dudoso si los cambios 

de aclimatación resultantes se aproximan correctamente a los de la naturaleza. Así también, la 

información de antecedentes de la historia natural brinda oportunidades para diseñar protocolos 

de aclimatación que no solo son más relevantes desde el punto de vista ecológico, sino que 

también sirven como plantillas para probar la validez de los protocolos tradicionales. Finalmente, 

sugerimos varias mejoras prácticas que pueden ayudar a lograr un realismo ecológico optimizado 

en las simulaciones de laboratorio. 

 

Introduction 

"... a frog or a toad is by no means the same thing in summer as in winter."  

    Claude Bernard, 1865 (1949 edition) 

Seasonality is a fact of nature for almost all terrestrial organisms, especially those at higher 

latitudes and altitudes. In anticipation of – or in reaction to –  such seasonal environmental 

variation, organisms often adjust their behavior, physiological capacities, and environmental 

sensitivities via internal physiological adjustments that are variously called acclimation, 

acclimatization, or phenotypic plasticity (Levins, 1968; Sultan, 2015). Given that 1-½ centuries 

have elapsed since Claude Bernard pioneered studies of seasonal physiological plasticity in 

ectotherms (Bernard, 1949), a newcomer to this field might expect that associated experimental 

protocols would be well established and long validated. However, we argue here that common 

laboratory protocols (especially those involving acute shifts of temperature or photoperiod) are in 

fact ecologically dubious, sometimes damaging (Jensen et al., 2017), and have rarely been 
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validated against phenotypic shifts in nature. Such issues weaken attempts to use laboratory 

results to help predict phenotypic responses to seasonal or climate change (Angilletta, 2009, p. 

154; Buckley & Kingsolver, 2019; Gibert et al., 2019; Gunderson et al., 2016; Seebacher et al., 

2015; Somero, 2010; Terblanche & Hoffmann, 2020). We suggest that seasonal natural history 

information can guide development of protocols that may improve the eco-evolutionary and 

physiological relevance of seasonal plasticity experiments. We focus on animal ectotherms, but 

many ideas apply to plants and endotherms. 

Our Perspective on Terminology 

Physiologists often restrict “acclimatization” to physiological shifts occurring in nature and 

restrict “acclimation” to investigator-driven shifts in the laboratory, typically involving 

controlled manipulations of one or a few environmental variables (reviewed in Somero et al., 

2017, p. 12-13). Unfortunately, these distinct terms divert focus from the physiological responses 

themselves to the venues of study. The distinction has persisted because field biologists have 

rarely examined seasonal changes in environments and in physiology in nature (information that 

laboratory physiologists need to design ecologically relevant experiments) and because few 

laboratory facilities were capable of controlling dynamic shifts in multiple environmental factors. 

Adjusting one or a few factors does achieve experimental control and reproducibility but 

sacrifices ecological realism.  

Here we use “acclimation” as an umbrella term for studies of seasonal responses. We 

argue that the traditional distinction (acclimation versus acclimatization) has become both 

antiquated and counterproductive in the context of seasonal plasticity. It is antiquated because 

ecology and physiology are mutually dependent and represent mutually informative levels of 

biological analysis (Bartholomew, 2005). It is antiquated because contemporary environmental 
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facilities are increasingly capable of complex environmental manipulations (below). It is 

counterproductive because it reinforces separations between ecology and physiology as well as 

between descriptive and experimental approaches. Accordingly, we will use “acclimation” here 

to refer to both field and laboratory responses to seasonal change.  

 In addition, we use seasonal acclimation for species with multi-generations per year, even 

though acclimation is traditionally restricted for individuals, not generations. Species with a 

sequence of generations across seasons offer opportunities to explore between-generation causes, 

mechanisms, and ecological consequences of seasonal changes in phenotypes (Rudman et al., 

2022). 

 Our paper is part of a long-standing standing effort by many to push for greater interactions 

between field biologists, who now can monitor and simulate seasonal changes in phenotypes and 

environmental factors, and laboratory biologists, who can design ecologically realistic, 

controlled, and multifactorial experiments (Bartholomew, 1964; Chown & Gaston, 1999; Denny, 

2018; Gunderson et al., 2016; Kearney et al., 2014; Loeschcke & Hoffmann, 2007; Rudman et 

al., 2022; Somero et al., 2017, p. 13). 

 

General Goals for Seasonal Acclimation Studies 

We begin by conceptualizing three individual but complementary goals of a hypothetical 

study of seasonal plasticity of trait(s) in an arbitrary ectotherm. First, quantify seasonal variation 

in, for example, the thermal sensitivity of trait performance or capacity (independent of short-

term hardening responses, see Zhang et al., 2021). Second, probe the underlying environmental, 

behavioral, and physiological cues and drivers of those seasonal shifts (and interactions). Third, 

elucidate the ecological and evolutionary consequences of seasonal shifts (Kingsolver & 
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Wiernasz, 1991; Loeschcke & Hoffmann, 2007; Rudman et al., 2022; Somero, 2010; Terblanche 

& Hoffmann, 2020). However, the techniques necessary to evaluate those consequences are 

beyond the scope of this paper and will not be discussed here.  

Achieving the first goal of describing acclimation patterns would seem relatively easy, and 

three general methods can be used.  

(1) One can directly – and unambiguously – quantify seasonal patterns in physiology and 

morphology by collecting organisms from nature in each season and quickly 

measuring their trait values and sensitivities. 

(2) One can release organisms into semi-realistic enclosures in nature and then 

periodically extract individuals for measurements. This approach is logistically 

appealing because retrieving individuals from enclosures is often easier than from 

nature. In any case, these first two methods both yield “realized” acclimation 

(acclimatization) patterns.  

(3) Finally, controlled laboratory experiments can be designed to induce seasonal 

responses that approximate those of organisms in nature. However, because seasonal 

changes in environments and physiological activities are complex, multi-factor 

manipulations are required but can be daunting. Consider an experiment with three 

different temperature cycles, three photoperiod cycles, and three food regimes. When 

faced with all the critical variations on this approach (each with main and interactive 

effects) plus replication, many researchers will quickly conclude multi-factorial 

approaches are intractable for most organisms (see especially fig. 6 in Boyd et al., 

2918; but see Porter et al., 1984; Singh et al., 2020). 
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Here we address key challenges to designing laboratory acclimation protocols that are 

intended to induce physiological responses that approximate natural ones (goal one, above). Our 

suggestions are guided by our experiences with terrestrial ectotherms (lizards, insects) but should 

hold for other mobile ectotherms living in spatially heterogeneous environments. We make no 

attempt to be exhaustive but rather focus on four factors that are common to most acclimation 

studies (body temperature, photoperiod, food ration, and “social distancing and lockdown”). 

Other physical factors can of course be relevant (e.g., barometric pressure for altitude 

acclimation; pH, salinity, and hypoxia in aquatic systems). We will describe traditional protocols 

for manipulating each of these factors, then argue that such manipulations generally bear little 

resemblance to the shifting and fluctuating environments experienced by organisms in nature 

(see Angilletta, 2009, p. 154), and suggest ‘best practices’ to enhance realism.  

 

Key problems with seasonal-acclimation experiments  

Laboratory conditions are not ecologically relevant 

Even though experimental conditions should attempt to mimic ones in nature, experimental 

conditions (e.g., temperature cycles, photoperiods) are often not ecologically relevant (Schou et 

al., 2015). Importantly, specific protocols sometimes generate different responses and 

experimental artifacts (see fig. 2 in Rohr et al., 2018; Terblanche & Hoffmann, 2020). 

Researchers sometimes guess at conditions that seem ecologically relevant, make choices 

for experimental convenience (e.g., constant temperature treatments), manipulate only one or a 

few environmental variables, and ignore natural environmental, developmental, and cross-

generational variation (Bradshaw & Holzapfel, 2006; Crill et al., 1996; Robolledo et al., 2021). 

Few workers have tested whether targeted laboratory variables such as temperature are in fact 
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‘key factors’ in nature (Angilletta, 2009; Ives & Gilchrist, 1993). For example, researchers 

working with lizards have – for many decades – manipulated only temperature. However, the 

importance of moisture is increasingly appreciated (Clusella-Trullas et al., 2011; Kearney et al., 

2018; Rozen-Rechels et al., 2021). In general, multi-factor experiments will be required to 

understand seasonal acclimation responses (Danks, 2007; Gunderson et al., 2016; Somero et al., 

2017, p. 13; Terblanche & Hoffmann, 2020). Further, few studies consider the influence of biotic 

interactions (Davis et al., 1998; Nespolo et al., 2022) or the magnitude of individual and 

genotypic variation (Dowd et al., 2015; Messerman & Leal, 2021; Seebacher & Little, 2021; 

Terblanche & Hoffmann, 2020; Winterová & Gvoždík, 2021). 

A less arbitrary approach is to use natural history data as guides for laboratory conditions 

(Basson & Clusella-Trullas, 2015; Bradshaw & Holzapfel, 2001; Fangue & Bennett, 2003; 

Niehaus, Angilletta, et al., 2012; Toxopeus et al., 2019). Or, as Lewontin wryly noted (2000, p. 

54), “If one wants to know what the environment of an organism is, one must ask the organism.” 

We explore this view below. 

Laboratory conditions block behavioral adjustments 

In nature, animals are not only affected by changes in their environment but also actively 

choose their own environment:  “Organisms are both the subjects and the objects of evolution” 

(Levins & Lewontin, 1985, p. 275). In other words, “…the histories of both environment and 

organism are functions of both environment and organism” (Lewontin, 2000, p. 101). In 

contrast, laboratory environments are physically restrictive and force animals to passively accept 

conditions chosen by the experimenter. This gives experimental control but prevents animals 

from making behavioral adjustments (in exposure time, operative environment, social behaviors) 

or moving about, as they would do in nature (Hadamová & Gvoždík, 2011; Salachan et al., 
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2020). Such constraints on behavior potentially mask natural seasonal responses (Brankatschk et 

al., 2018; Salachan et al., 2020) and potentially induce stress or pathologies. 

Consider a photoperiod experiment in which individuals will be forced to experience a 

specific photoperiod, but that might not do so if given a choice. Experiments with hatchling 

lizards illustrate variation in voluntary exposure to light. For example, hatchling lizards of a 

high-elevation species of Sceloporus voluntary exposed themselves to a heat lamp for shorter 

periods each day than did hatchlings from a high-elevation species (Sinervo & Adolph, 1989), as 

did as populations a high elevation species in the field (Sinervo, 1990). Would forced exposure 

to long days induce stress in individuals that would normally retreat in the field? 

Consider the ‘habitat matching’ model (see fig. 1 in Jacob et al., 2015), in which 

unconstrained individuals can disperse to find and settle in habitats suitable for their particular 

phenotype (e.g., if males and females have different thermal preferences, Lailvaux, 2007). But in 

a fixed acclimation treatment, all phenotypes are forced to experience specified conditions, even 

if some individuals would have dispersed away from such conditions in nature. Would that 

induce stress in forcibly  “mis-matched” individuals? We see behavioral restriction in the 

laboratory as a potential confound in acclimation studies, whether seasonal or not, and needing 

study. 

 

Seasonal acclimation in the field 

Collecting and quickly measuring animals from the field (or from enclosures) in different 

seasons is the ‘gold standard’ for assaying directions and magnitudes of realized seasonal 

acclimation. Moreover, such field studies are necessary for validation studies that attempt to 

evaluate whether laboratory acclimation protocols in fact yield ecologically relevant responses.  
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Examples of such field studies (Fig. 1) are shown for critical thermal maximum and 

minimum (CTmax, CTmin  -- upper or lower thermal indices of performance, respectively) 

(Bennett et al., 2018). These studies show elevated heat tolerance in summer and increased cold 

tolerance in winter, but also show considerable interspecific variation in the magnitude of 

‘realized’ seasonal responses (Fig. 1).  

Of course, obtaining animals in nature in some seasons can be challenging, dangerous, or 

even impossible. Further, the results are descriptive (but see below) and apply only to local 

populations and conditions; and they do not illuminate whether observed seasonal responses 

reflect individual, cross-generation, or genetic differences (Stone et al., 2020). But they do 

provide a critical baseline. 

  

Factors often manipulated in seasonal-acclimation experiments  

Body temperature 

Body temperature of most terrestrial ectotherms varies daily and seasonally (Clusella-Trullas & 

Chown, 2014; Nordberg & Cobb, 2017), even in the tropics (Christian et al., 1983; Hertz, 1992; 

Salazar et al., 2019). Yet acclimation treatments often use fixed temperature treatments with 

rapid transitions between treatments (c.f. Angilletta, 2009; see Supplement in Gunderson & 

Stillman, 2015; Terblanche & Hoffmann, 2020) and may confound seasonal and ‘heat-

hardening’ (i.e., brief exposure to sub-lethal temperature) responses (Loeschcke & Hoffmann, 

2007; Phillips et al., 2015). Seasonal acclimation studies are more likely to use gradual 

temperature transitions than are studies addressing climate change issues (Gunderson & Stillman, 

2015; Seebacher et al., 2015), but the rates are still abnormally fast (Table S1). For example, 

animals might be transferred acutely from a fixed and warm baseline temperature regime (“warm 

D
ow

nloaded from
 https://academ

ic.oup.com
/iob/advance-article/doi/10.1093/iob/obac016/6575552 by guest on 09 M

ay 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

season”) to a “cool season” one (Fig. 1A). Sometimes, however, an animal’s temperature is 

stepped down over several weeks (e.g., -5 °C every six days, Thamnophis marcianus, Holden et 

al., 2021) or is lowered more gradually (e.g., 1 °C per day, Tachydromus spp., Huang & Tu, 

2008)(Fig. 2A).  

In the above examples, Tb will drop by 10 °C in a maximum of only 10 days. In contrast, 

the Tb of timber rattlesnakes (Crotalus horridus) in retreats in Oklahoma (Nordberg & Cobb, 

2017) took three months to drop about 10 °C; and Tb dropped erratically, differed among 

individuals, and included daily cycles (Fig. 2B)! Thus, gradual or step drops typically used in the 

laboratory can be much faster than are those in nature, while ignoring diel and stochastic 

variation (cf.  Dillon & Lozier, 2019; Sinclair, 2001; Sørensen et al., 2020). Examples of studies 

that used more realistic shifts include Bradshaw and Holzapfel (1989), Costanzo et al. (2000), 

Neihaus et al. (2012), and Toxopeus et al. (2019). Natural Tb trajectories can be obtained via 

radio-telemetry, attached/implanted data loggers (Cobb & Peterson, 2008; Davis et al., 2008) 

(Fig. 2B), or biophysical simulations (Buckley, 2008; Kearney, Deutscher, et al., 2020). 

Do abnormally fast drops and short acclimation durations found in most laboratory 

experiments (Table S1) allow sufficient time for normal acclimation adjustments (Angilletta, 

2009), or might they even be pathological? This is hard to predict, but many physiological 

responses are sensitive to rates and duration of temperature change (Jørgensen et al., 2019; 

Nilsson-Örtman & Johansson, 2007; Terblanche et al., 2007). Also, some responses require 

weeks of acclimation to be manifest (Toxopeus et al., 2019). Consequently, using natural rates of 

temperature change in the laboratory may be the safest way to generate realistic responses to 

seasonal acclimation. Of course, ‘long and slow’ acclimation might deplete energy reserves or 
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induce cold damage (Sinclair, 2015). Even so, that could be appropriate if ‘long and slow’ is 

what happens in nature (Fig. 2B). 

Thermal regimes used in laboratory acclimation experiments generally do not incorporate 

diel individual, stochastic, microhabitat and day-to-day variation in Tb (Bradshaw et al., 2004; 

Niehaus, Wilson, et al., 2012)(e.g., Table S1, Fig. 2B). However, individual differences in 

environmental exposure can be pronounced in nature (Carlson et al., 2021; Denny, 2018), 

especially during seasonal transitions (Nordberg & Cobb, 2017; Taylor et al., 2004), except deep 

in the soil (figure 4 in Huey, Ma, et al., 2021). Such differences can have marked physiological 

impacts (Clarke & Zani, 2012; Dowd et al., 2015; Niehaus, Angilletta, et al., 2012; Wiebler et 

al., 2017). 

Whether suppression of natural variation in Tb biases acclimation responses is rarely 

studied (but see Estay et al., 2010; Hadamová & Gvoždík, 2011; Niehaus, Angilletta, et al., 

2012). Over a half century ago, Wilhoft (1958) showed that fence lizards (Sceloporus 

occidentalis) had elevated death rates if maintained at their normal activity temperature (34 °- 35 

°C) for several weeks. Subsequent studies demonstrate that constant-temperature treatments may 

induce pathologies and alter performance profiles (Cavieres et al., 2016; Colinet et al., 2015; 

Schulte et al., 2011). Persistent temperature exposures (Jørgensen et al., 2019; Kingsolver & 

Woods, 2016; Rezende et al., 2014) and repeated exposures can be stressful (Marshall & 

Sinclair, 2015). 

Diel and day-to-day variation in Tb during dormancy can be marked in species that are 

intermittently active on warm winter days, as Tb jumps during such activity (Fig. 2B). A 

simulated example is shown in Fig. 3, which plots histograms of Tb (by activity status) for 

summer and winter. Three patterns are striking. First, Tb distributions are bimodal within 
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seasons, and the median Tb of active individuals is much warmer than that of inactive animals. 

Second, the median Tb of active individuals (black arrows) changes very little among seasons, 

whereas the median Tb of inactive individuals (white arrows) shifts dramatically. Third, the 

relative areas under the active versus inactive modes also shifts seasonally. For example, 53.5% 

of all hourly Tb are from inactive animals in summer, but 94.7% are from inactive individuals in 

winter. Thus, a realistic acclimation Tb profile for this simulated animal will require diel shifts in 

mean inactive Tb (less so in active Tb) and in the relative proportion of active versus inactive Tb 

by season. In an early example that considered such seasonal differences, Tsuji (1988) exposed 

lizards to 12 h at 35 °C and 12 h at 16 °C for summer conditions, but then used 6 h at 35 °C and 

18 h at 10 °C for autumn conditions. Similarly, Zani (2012) gradually shifting photoperiods and 

thermoperiods for the lizard Uta stansburiana. 

Incorporating a daily temperature cycle may be important (Bradshaw, 1980; Brakefield & 

Mazzotta, 1995; Colinet et al., 2015; Hadamová & Gvoždík, 2011; Kingsolver et al., 2020) not 

only to reduce stress (above), but also because Tb has non-linear effects on physiology (Colinet et 

al., 2015). Seasonal variation in the magnitude of daily cycles in Tb in nature can be substantial 

(Basson & Clusella-Trullas, 2015; Bradshaw et al., 2004). For  simulated data in Fig. 3, the 

median daily range in Tb is varies three-fold among seasons [21.0 °C (spring), 15.3 °C (summer), 

17.2 °C (autumn), and 6.3 °C winter)].  

Other complications involving Tb regimes can be raised. In many ectotherms, Tb changes 

during ontogeny, as different developmental stages may live in different microenvironment, 

occur at different times of year, or have different tolerances (Kingsolver et al., 2011; Potter et al., 

2013; Zani et al., 2005). Moreover, developmental and cross-generational effects can alter the 

temperature dependence of performance (Cavieres et al., 2019; Gilchrist & Huey, 2001; 
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Rebolledo et al., 2021). Thus, a seasonal acclimation study may need different thermal (and 

photoperiod) regimes for each developmental stages, and especially for seasonal acclimation in 

multi-voltine species, where different generations experience different conditions (Kingsolver et 

al., 2011; Sørensen et al., 2016; Terblanche & Hoffmann, 2020). Also, individual and landscape 

variation in natural Tb profiles (Dowd et al., 2015) is expected (e.g., Fig. 2B), but whether such 

variation in Tb (e.g., Fig. 2B) often alters acclimation responses remains to be determined. It can 

affect overwinter survival and reproduction (Bradshaw & Holzapfel, 1991; Otero et al., 2015). 

As noted above, animals in environmental chambers typically have no opportunity for 

behavioral adjustments but are “force-fed” specific Tb profiles and simplified environments. 

Might such constraints on behavioral induce stress or alter acclimation patterns?  In general, we 

suspect so (Bartholomew, 1964; Glanville & Seebacher, 2006; Jiménez-Padilla et al., 2020). 

Indeed, thermal preference of Drosophila melanogaster shifted with forced acclimation, but not 

when flies were reared in heterogeneous environment where they could behaviorally 

thermoregulate (Salachan et al., 2020). 

For animals with multiple generations per year, winter and summer captured individuals in 

nature may be somewhat genetically different – a consequence of seasonal selection 

(Dobzhansky, 1948; Rudman et al., 2022). Copepods (Acartia spp.) collected in summer were 

genetically more heat tolerant than those collected in winter, but had weaker acclimation 

responses (Sasaki & Dam, 2020). Thus, an acclimation study based on a single cohort (e.g., 

summer collected) might yield misleading predictions of realized phenotypic patterns in winter. 

Best practices.—We encourage laboratory studies that use ecologically relevant shifts in 

temperature, even though this will greatly lengthen the duration of experiments well beyond 

those of traditional ones (Table S1). Deciding on an ‘ecologically realistic’ temperature profile 
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will be challenging, given individual, microhabitat, and yearly variation (see Fig. 2B). Especially 

interesting will be validation studies that compare responses from traditional temperature 

exposures (fast, acute drops, no diurnal variation) versus those from ecologically realistic ones 

(Fig. 2B, 3) or that compare field with lab responses.   

Photoperiod 

Photoperiod is often the dominant environmental cue regulating observed seasonal shifts 

(Bradshaw & Holzapfel, 2007) and can affect physiological tolerance (but see Moghadam et al., 

2019; Toxopeus et al., 2019). For example, diel shifts in heat tolerance in Drosophila buzzatii are 

controlled by a physiological clock (Sørensen & Loeschcke, 2002). Interestingly, freeze 

tolerance in the cricket Gryllus veletis requires shifts in both Tb and photoperiod (Toxopeus et 

al., 2019); and nymphal development in the cricket Modicogryllus siamensis depends on both 

photoperiod and temperatures pathways (Miki et al., 2020). Surprisingly, photoperiod is not 

adjusted in many seasonal experiments (Table S1), even though seasonally inappropriate 

photoperiods can cause major declines in performance or fitness (Bradshaw et al., 2004; Le Roy 

& Seebacher, 2020; MacLean & Gilchrist, 2019). Responses can depend not only the length of 

the photoperiod, but also on the rate and direction of change of photoperiod (Norling, 2018). 

A common protocol involves a rapid shift in photoperiod from long day (summer) to short 

day (winter) (Fig. 4A). Less commonly, photoperiod is adjusted gradually to match local 

photoperiod (Fig. 4A, Bradshaw & Holzapfel, 1989; Toxopeus et al., 2019). However, acute or 

step shifts in photoperiod are more common, especially in older studies (see Norling, 2018), 

when frequent adjustment of photoperiod was logistically challenging. 

A priori, one might think that adjusting laboratory photoperiods to match natural ones at a 

given field site would be easy, at least if programmable environmental chambers are available. 
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Note, however, the direct use of local photoperiods in acclimation experiments makes two 

implicit assumptions: 1) that nearby mountains are not delaying local sunrise or accelerating 

local sunset (Kearney, Gillingham, et al., 2020), and 2) that organisms in nature are fully 

exposed to and perceive the local photoperiod (Danks, 2007). In reality, local photoperiod will 

approximate the realized photoperiod only for organisms that live in a flat and open landscape, 

that are always above ground, and that are always fully exposed to the sky. Few terrestrial 

organisms (other than some plants and birds) probably fit this bill. Whether this matters to plastic 

responses is unclear (see Bradshaw & Phillips, 1980). 

Most animals – whether diurnal or nocturnal – have restricted activity times, as regulation 

of above-ground activity time is the key behavioral adjustment that many terrestrial ectotherms 

use to regulate Tb (Stevenson, 1985). In many reptiles, above-ground activity occupies a 

surprisingly small fraction of the year (fig. 4 in Davis & DeNardo, 2010; table VII in Huey, 

1982). For example, desert tortoises (Gopherus agassizii) are above ground only 3% of the year 

(Marlow, 1979), but whether they perceive light when underground is unclear.  For inactive 

animals inside fully dark retreats, realized exposure time may be less – sometimes substantially 

less – than the local photoperiod (Davis & DeNardo, 2010; Kerr et al., 2004). Further, animals 

overwintering inside dark retreats (or in the Arctic) throughout winter will experience a 0:24 L:D 

photoperiod – obviously, no light exposure at all (Williams et al., 2016)! Similarly, aquatic 

ectotherms at depth may experience very dim or no natural light (Filatova et al., 2019). Local 

photoperiods can thus be a red herring in seasonal acclimation experiments and possibly 

confound seasonal responses. 

To simulate how voluntary behavioral restriction can influence realized exposure time, we 

used NicheMapR (Kearney & Porter, 2020) to estimate photoperiod as well as predict realized 
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exposure time of a 10-g lizard at Ford Dry Lake, CA in 2019 (parameter values in online 

supplement). Over the year, local photoperiod varied from 9.8 to 14.2 h per day, and an acute 

acclimation shift using these photoperiods is shown in Fig. 4A. However, variation in predicted 

hours of exposure varied from 0 to 13 h/day, not 9.8 to 14.2 (Fig. 4B). In summer months, the 

difference between the median local photoperiod (14.0 h) and the median exposure time (11.4 h) 

was only 2.6 h (Fig. 4B); but in winter months, the median local photoperiod (10 h) was 9 h 

longer than the median exposure time (0.7 h). Moreover, simulated lizards in winter were 

completely inactive in some weeks, while active in others (Fig. 4B). 

Are observed winter acclimation patterns sensitive to whether an experiment uses a local, 

mid-winter photoperiod (e.g., 9.7:14.3 L:D) or a predicted exposure-time one (e.g., 0.7:23.3 

L:D)? Similarly, are acclimation patterns sensitive to whether ectotherms are intermittently 

active in winter (Huey, Miles, et al., 2021; Nordberg & Cobb, 2016), and thus to whether they 

intermittently experience daylight? We know of no study with ectotherms that directly evaluates 

these issues, but brief exposures to elevated temperatures can potentially be physiologically 

beneficial (see Huey, Ma, et al., 2021, p. 181). In addition, physiological responses and even 

longevity can be sensitive to diel cycles in the intensity and spectral pattern of daylight (Shen & 

Tower, 2019) as well as to dawn-dusk transitions (Bradshaw & Phillips, 1980).  

Natural history adds further complications. Consider the appropriate photoperiod for 

winter at mid-latitudes. In nature, a lizard overwintering a few centimeters in the soil experiences 

constant darkness, but one wedged in a nearby rock crevice might receive dim light cues. Also, 

Uta stansburiana lizards in eastern Oregon emerge from rock crevices and bask on sunny days 

even in mid-winter (P. Zani, personal communication), and such exposures will affect their Tb as 
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well as their realized photoperiod. Are winter-acclimation responses of ectotherms sensitive to 

the interaction between light and Tb? Such interactions are rarely studied (Singh et al., 2020). 

The ‘rectangular’ shifts in light-dark cycles (Fig. 4A) in laboratory studies typically ignore 

twilight (Bradshaw & Phillips, 1980), the length of which varies seasonally and latitudinally. 

Circadian responses can differ between rectangular vs. twilight light schedules (Boulos & 

Macchi, 2006), and thus might affect acclimation responses (Bradshaw & Phillips, 1980). 

Best practices.—Because photoperiod is a key cue of seasonality, seasonal laboratory 

experiments should adjust photoperiod. Realized photoperiods (as distinct from local 

photoperiods) can be measured in nature via telemetry, data loggers that are light sensitive 

(Davis & DeNardo, 2010; Williams et al., 2016), or with time-lapse cameras (P. Zani, personal 

communication). Alternatively, photoperiod can be predicted via biophysical simulations (figure 

4, Kearney & Porter, 2020). Providing opportunities for animals to voluntarily adjust their 

exposure may be required to generate realistic acclimation responses to seasonality (Sinervo and 

Adolph 1989, Sinervo 1990). 

Food 

In a seasonal-acclimation experiment, individuals might be maintained in the lab for months at a 

time. Should they be fed? If so, what (type, quality), how much, and how often? For acclimation 

studies involving the activity seasons (e.g., spring versus summer), food should be generally 

provided, as animals in nature will usually be feeding in these seasons. However, some animals 

have empty stomachs even in activity seasons (Huey et al., 2001; Vinson & Angradi, 2011), and 

the amount of food consumed per meal and the interval between meals may be quite variable 

between seasons (Christel et al., 2007). In contrast, laboratory feeding regimes are typically ad 

libitum or fixed ration (Table S1). 
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Whether food should be provided during those seasonal treatments associated with reduced 

or even no activity (e.g., winter dormancy) is unclear. Anorexia is a normal seasonal behavior in 

diverse fish, reptiles, birds, and mammals, often associated with incubation, brooding, or 

dormancy (Mrosovsky & Sherry, 1980). The extent to which food (amount, type, quality) during 

winter alters acclimation responses in the laboratory is largely unresolved. 

Natural history observations can indicate whether animals are feeding in winter (Filatova et al., 

2019; Huey, Miles, et al., 2021; Nagy, 1983; Nespolo et al., 2022) and whether feeding varies 

geographically. For example, the lizard Uta stansburiana emerges and feed on warm winter days 

in California (B. Sinervo, personal communication) but not eastern Oregon (P. Zani, personal 

communication). 

In vertebrate ectotherms, the motivation to feed and digestion can require high 

temperatures (Angilletta, 2001; Kingsolver & Woods, 1997). Thus, constant low temperatures 

associated with cool acclimation treatments will potentially slow and potentially stop digestion, 

perhaps pathologically so (Regal, 1966).  

Traditional acclimation experiments use the same food type, independent of season.  But 

diet often changes seasonally (Hardison et al., 2021), either because of availability or choice.  

Some mammals prepare for hibernation by behaviorally altering their diet. For example, 

chipmunks (Eutamias amoenus) increase their consumption of seeds (rich in polyunsaturated 

oils) prior to hibernation, which enables them to lower metabolic rate during torpor and may 

enhance survival over winter (Geiser & Kenagy, 1987). Sometimes seasonal shifts in food 

quality are pronounced and may affect selection for life history patterns (Maciá & Bradshaw, 

2000) and interact with photoperiod in terminating diapause (Bradshaw, 1970). Diet can modify 

growth responses to temperature and cold tolerance in Drosophila spp. (Jiménez-Padilla et al., 
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2020; Kutz et al., 2019; Shreve et al., 2007) and in a calanoid copepod (Malzahn et al., 2016), as 

well as heat tolerance in an ant (Bujan & Kaspari, 2017) and life history in an insect (Ngomane 

et al., 2022). Responses can be complex: responses of opaleye fish (Girella nigricans) to 

temperature and diet were trait specific (Hardison et al., 2021). Interestingly, Drosophila 

melanogaster shift dietary preferences from yeast to plant lipids at low temperature, thereby 

altering membrane fluidity and increasing cold tolerances (Brankatschk et al., 2018). Such a shift 

would be blocked if flies were unable to select food. Locusts (Chortoicetes terminifera) shift 

temperatures in response to nutritional imbalance (Clissold et al., 2013) and would inadvertently 

experience nutritional deficits if held at fixed temperatures.  

Best practices.— Ideally, one would adjust laboratory feeding rates and foods to match 

patterns in nature (cf. Basson & Clusella-Trullas, 2015; Bradshaw & Holzapfel, 1989, p. 873; 

Danks, 2007), but that will usually be impractical. Moreover, seasonal dietary information is 

rarely available. Nevertheless, observations on chipmunks (Geiser & Kenagy, 1987) and 

Drosophila (Andersen et al., 2010; Brankatschk et al., 2018) suggest that use of standard 

artificial diets (rabbit chow, fly medium) may sometimes (Ngomane et al., 2022) – but not 

always (Davies et al., 2021) – yield biased seasonal responses. Studies that examine the impact 

of natural shifts in diet on seasonal phenotypes are encouraged. 

 

 “Social distancing” and “lockdown” 

Terrestrial animals in seasonal acclimation experiments are often be housed individually (Table 

S1), sometimes with little or no physical “enrichment” (cover, rocks, sand, plants). Such animals 

have restricted opportunities for movement (exercise), exploration, and conspecific interactions 

relative to what animals in nature will experience during the activity season (Kiester, 1979; 
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Killen et al., 2021), and sometimes even during hibernation (e.g., ectotherms sharing 

hibernacula). Does movement restriction, cage “enrichment” (or especially the lack thereof), and 

conspecific (or even hetero-specific) isolation affect the seasonal activity responses of isolated 

animals (Körner et al., 2018)? 

Some animals (especially invertebrates, fishes) are often acclimated in groups (Table S1), 

apparently for logistic reasons. Group living may be ecologically appropriate for some species, 

but increased conspecific interactions can trigger aggressive behaviors and stress, possibly 

altering seasonal physiological capacities. For example, larval crowding affects heat tolerance in 

Drosophila melanogaster (Sørensen & Loeschcke, 2001).  

Traditional acclimation experiments involve single species. However, incorporating 

multiple species acclimation regimes may sometimes be important, at least when interspecific 

interactions are commensal. Midges (Metriocnemus knabi) and mosquitos (Wyeomyia smithii) 

naturally co-exist in pitcher plants and both feed on decaying invertebrate carcasses. 

Interestingly, processing by midges enhances food availability (bacteria) and energy intake by 

mosquitoes (Heard, 1994). Mosquitoes reared without midges will have different energy budgets 

and potentially different plasticity responses. 

Movement restriction in cages (“lock down”) likely has diverse effects on development, 

physiology, morphology, and behavior. Relative to endurance-trained individuals, constrained 

lizards (Anolis carolinensis) had lower muscle mass, lower hematocrits, smaller fast glycolytic 

muscle fibers (Riley et al., 2017), elevated immune function (females only, Husak et al., 2017), 

and elevated resting metabolic rate (Lailvaux et al., 2018). These lizards are ambush predators, 

and more actively foraging species might be even more effected by movement restriction.  
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Imposed restriction on voluntary movements can have unwanted consequences.  After 31 

generations, mice selected for high running activity ran about three times farther per day than did 

controls (Careau et al., 2013). When “high runner” mice were prevented from running, they 

showed signs of depression and withdrawal  (Kolb et al., 2013; Malisch et al., 2009). Because 

plasticity experiments typically block animals from natural movements, behavioral “lockdown” 

in laboratories will potentially bias seasonal responses. 

“Social distancing” and “solitary confinement” can have marked behavioral and 

physiological effects on animals. In a pioneering experiment, Regal (1971) found that a male 

lizard greatly increased its thermoregulatory behavior (and undoubtedly its Tb) in response to the 

presence of another male. Such social effects are well known in endotherms, but have also been 

detected in ectotherms (Matsubara et al., 2017). When encountering socially reared lizards, 

isolation-reared lizards were relatively submissive and slower to attack prey (Ballen et al., 2014). 

Food level affected the tendency of marsupials to huddle in winter (Nespolo et al., 2022). 

Best practices.—Whether social conditions (solitary versus grouped housing), 

“impoverished” cages, and physical restriction have major effects on seasonal acclimation 

patterns is an open question. Ideally, housing conditions should attempt to reflect patterns in 

nature, but those patterns sometimes show seasonal variation in nature. For example, some 

lizards and snakes are territorial during the activity season but nonetheless share communal 

hibernacula in winter.  We recognize that implementing seasonally realistic housing conditions 

will be difficult or even impossible for most studies. An initial goal would be to evaluate whether 

and how housing conditions bias seasonal responses. 
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Concluding remarks 

We have called attention to diverse ways that traditional laboratory regimes may bias seasonal 

acclimation responses. Biologically realistic regimes will of course be challenging to derive and 

implement.  Thus, an immediate goal should be to determine which complications have strong 

effects and thus need to be incorporated into protocols versus which are weak and can safely be 

ignored. In other words, the goal is to select “methodologies that make questions answerable in 

practice in a world of finite resources” (Lewontin, 2000, p. 219) and that can increase the 

ecological relevance of acclimation experiments. But there are limits to experimental biology. 

Perhaps a practical way to start is to promote studies that evaluate whether traditional 

protocols are “good enough” or whether they bias acclimation patterns. This requires directly 

comparing laboratory and field results, and we highlight some examples of validation studies 

(Fangue & Bennett, 2003; Filatova et al., 2019; MacMillan et al., 2016; Pintor et al., 2016; 

Schultz et al., 2011; Terblanche & Hoffmann, 2020; Toxopeus et al., 2019). Such field-lab 

comparisons (validations) are encouraged.  

Validation studies aren’t necessary if one’s goal is merely to describe the phenotypic 

capacities of animals in different seasons. Here one can extract animals from nature at intervals 

and measure them promptly (Storey et al., 1988; Zani, 2005; Zhang et al., 2021). Of course, 

animals from some seasonal retreats are inaccessible, but sampling can be facilitated by keeping 

animals in semi-natural enclosures (Bestion et al., 2015; Nespolo et al., 2022; Zani, 2005).  

When designing a laboratory experiment, a good place to start is to try to base protocols on 

natural history and environmental observations in the field (reviewed in Danks, 2007; Sinclair, 

2001). Fortunately, tools for monitoring, recording, or simulating organismal temperatures (Fig. 
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2B, Kearney & Porter, 2020) as well as of environmental microclimates are increasingly 

available (Judge et al., 2018; Wickert et al., 2019).  

Increasingly, seasonal patterns of microclimates, body temperatures, and activity times can 

even be simulated via environmental databases (e.g., ERA5) and software (Kearney & Porter, 

2020)(Fig. 4B), even for historical periods (Huey, Miles, et al., 2021; Kearney, Gillingham, et 

al., 2020). Evaluations of predictions will ultimately require comparisons of simulated responses 

versus those of organisms in nature (Schulte et al., 2011; Terblanche & Hoffmann, 2020). 

Given seasonal variation exists in many environmental factors, seasonal acclimation 

experiments may need to manipulate more than just temperature and photoperiod (Gunderson et 

al., 2016; Somero et al., 2017; Terblanche & Hoffmann, 2020). However, multi-factorial 

experiments are still uncommon (Table S1). They will always be logistically challenging, but 

environmental chambers that can manipulate multiple environmental factors and incorporate 

realistic variability (based on organismal or weather station data) are increasingly available.  

Bradshaw and Holzapfel’s laboratory experiments with pitcher-plant mosquitos (e.g., 

Bradshaw & Holzapfel, 1989) serve as exemplars of achieving relatively natural conditions in 

the laboratory. Mosquitos were reared inside leaves of intact pitcher plants (their natural 

microhabitat), exposed to natural sinewave thermoperiods that appropriately lagged natural 

photoperiods (with transitory dusk and dawn) by several hours, and food levels adjusted 

appropriately. 

Field enclosures can also be used for experimental manipulations. Nespolo (2022) released 

marsupials into semi-natural enclosures and manipulated food levels, testing a prediction that 

food-constrained marsupials would enter torpor more frequently than would well fed controls. 

They did. Some field mesocosms (“The Metatron”) are designed for natural behaviors and 
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dispersal, as well as to enable investigator manipulation of environmental variables (Bestion et 

al., 2015). 

A few complex laboratory facilities have been available for decades (e.g., ‘Biotron,’ see 

figures 19-20 in Porter et al., 1973). Some can be programmed to mimic seasonal changes in 

temperature, light, and food, while still allowing an animal to behave somewhat naturally, and 

thus adjust its own Tb, realized photoperiod, and food regime.  

“AnaEE France” (Analysis and Experimentation on Ecosystems) serves as a more 

elaborate and synthetic way of approaching ecological studies, including seasonal ones (Clobert 

et al., 2018).  This program consists of five modules, ranging from highly controlled laboratory 

facilities to field mesocosms. For example, laboratory “Ecotron” mesocosms manipulate 

temperature (even soil gradients!), humidity, rainfall, irradiance, O2 and CO2 concentrations – all 

capable of dynamic as well as step changes (Verdier et al., 2014). Aquatic and terrestrial 

organisms can be studied, and replication is feasible. Ecological validation of such approaches 

can be evaluated by releasing Ecotron-acclimated animals into nature at different seasons 

(Loeschcke & Hoffmann, 2007) and then comparing their performance, sensitivity, and survival 

with those of field acclimated individuals. Unfortunately, these facilities are expensive to build 

and maintain, and won’t be accessible to most workers.  Each experimental option has associated 

trade-offs (Clobert et al., 2018). 

Even more serious challenges will face studies that are designed to tease apart potential 

cues and effectors (Danks, 2007) that induce seasonal acclimation or those designed to evaluate 

the physiological shifts underlying organismal responses (Somero et al., 2017). One’s personal 

experience and prior research (Danks, 2007) can direct appropriate factorial or fractional 

factorial designs, constant versus random or autocorrelated fluctuating treatments, and key 
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environmental factors to vary (e.g., temperature, photoperiod) (Bradshaw & Holzapfel, 1989; 

Nespolo et al., 2022; Niehaus, Wilson, et al., 2012; Singh et al., 2020). However, validating (or 

falsifying) the ecological and physiological relevance of such choices will be challenging 

(Bacigalupe et al., 2018; Sørensen et al., 2016), and incorporating individual, seasonal, 

geographic, and interspecific variation and interactions will be daunting (Gilbert & Miles, 2017; 

Messerman & Leal, 2021; Seebacher & Little, 2021; Sinervo & Adolph, 1994; Terblanche & 

Hoffmann, 2020; Winterová & Gvoždík, 2021). But challenges are also opportunities. 
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