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Abstract

Organisms living in seasonal environments often adjust physiological capacities and sensitivities
in response to (or in anticipation of) environment shifts. Such physiological and morphological
adjustments (“acclimation” and related terms) inspire opportunities to explore the mechanistic
bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their
ecological and evolutionary consequences. Seasonal adjustments (“seasonal acclimation’)‘can‘be
detected either by measuring physiological capacities and sensitivities of organisms-fetrieved
directly from nature (or outdoor enclosures) in different seasons or less directly.byrearing and
measuring organisms maintained in the laboratory under conditions that-attempt to mimic or
track natural ones. But mimicking natural conditions in the laboratery is'challenging -- doing so
requires prior natural-history knowledge of ecologically relevant body temperature cycles,
photoperiods, food rations, social environments, among other variables. We argue that traditional
laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature,
photoperiod, food, ‘lockdown’). Consequently, whether the resulting acclimation shifts correctly
approximate those in nature is uncertain, and/sometimes is dubious. We argue that background
natural history information provides opportunities to design acclimation protocols that are not
only more ecologically relévant, but also serve as templates for testing the validity of traditional

protocols. Finally, we suggest several best practices to help enhance ecological realism.
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Chinese Abstract
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French abstract

Les organismes vivant dans des environnements saisonniers ajustent souvent leurs capacités et leurs
sensibilités physiologiques en réponse (ou en prévision de) aux changements environnementaux. De tels
ajustements physiologiques et morphologiques («acclimatation » et termes apparentés) offrent
I'opportunité d’explorer les mécanismes seus-jacents a ces ajustements, de détecter les indices qui les
induisent et d’élucider leurs conséquences écologiques et évolutives. Les ajustements saisonniers
("acclimatation saisonniére") peuvent étre détectés soit en mesurant les capacités physiologiques et les
sensibilités d’organismes prélevés directement dans la nature (ou dans des enclos extérieurs) a différentes
saisons, soit de maniére moins directe en élevant et en mesurant des organismes maintenus en laboratoire
dans des.conditions qui tentent d'imiter ou de suivre les conditions naturelles. Mais il est difficile de
reproduire-les conditions naturelles en laboratoire car il faut pour cela connaitre les cycles de température

corporelle, la photopériode, le régime alimentaire, les environnements sociaux, entre autres variables
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pertinentes d’un point de vue écologique. Nous argumentons que les conditions traditionnellement
utilisées en laboratoire ne parviennent généralement pas a se rapprocher des conditions saisonnieres
naturelles (température, photopériode, nourriture, « confinement »). Par conséquent, il n'est pas certain, et
parfois douteux, que les écarts d'acclimatation qui en résultent se rapprochent correctement de ceux de la
nature. Nous soutenons que les informations de base sur I'histoire naturelle offrent la possibilité de
concevoir des protocoles d'acclimatation qui sont non seulement plus pertinents sur le plan écologique,
mais servent également de modeles pour tester la validité des protocoles traditionnels. Enfin, nous

suggérons plusieurs bonnes pratiques pour aider a améliorer le réalisme écologique.

German abstract

Organismen, die in saisonalen Umgebungen leben, passen hiufig ihre physielogischen
Fahigkeiten und ihre Sensitivitit als Reaktion auf (oder in Erwartung ven)
Umweltverdnderungen an. Solche physiologischen und morpholegischen Anpassungen
(,,Akklimatisierung® und verwandte Begriffe) bieten dieMoglichkeit, die diesen Anpassungen
zugrunde liegenden mechanistischen Grundlagen zu erforschen, Reize zu erkennen, die
Anpassungen auslosen, und dkologische undéevolutiondre Konsequenzen aufzukliren. Saisonale
Anpassungen (,,saisonale Akklimatisierung*) konnen entweder durch Messung der
physiologischen Kapazititen und Sensitivitit von Organismen, die zu verschiedenen Jahreszeiten
direkt aus der Natur (oder AuBBengehegen) entnommen wurden, oder weniger direkt durch
Aufzucht und Messung, von, Organismen, die im Labor unter Bedingungen gehalten werden, die
eine Nachahmung oder'Nachverfolgung der natiirlichen Bedingungen anstrebt, detektiert
werden. Allerdings ist die Nachahmung natiirlicher Bedingungen im Labor eine Herausforderung
— dies erfordert unter anderem Kenntnisse liber 6kologisch relevante Korpertemperaturzyklen,

Photoperioden, Nahrungsrationen, sowie das soziale Umfeld. Wir argumentieren, dass
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traditionelle Laborbedingungen normalerweise nicht den natiirlichen saisonalen Bedingungen
entsprechen (Temperatur, Photoperiode, Nahrung, ,,Lockdown*). Ob die resultierenden
Akklimatisierungsverschiebungen denen in der Natur genau entsprechen, ist daher ungewiss und
manchmal zweifelhaft. Wir argumentieren, dass naturgeschichtliche Hintergrundinformationen
Moglichkeiten bieten, Akklimatisierungsprotokolle zu entwerfen, die nicht nur 6kologisch
relevanter sind, sondern auch als Vorlagen zum Testen der Giiltigkeit traditioneller Protokolle
dienen konnen. AbschlieBend schlagen wir mehrere Best Practices vor, um den dkologischen

Realismus zu verbessern.

Spanish abstract

Los organismos que viven en ambientes estacionales pueden ajustar sus-capacidades y
sensibilidades fisioldgicas en respuesta (o en anticipacion) a cambios ambientales. Estos ajustes
fisiologicos y morfologicos (“aclimatacion” y términos afines) dan la oportunidad para explorar
el mecanismo que subyace a estos ajustes, también para detectar las sefiales que inducen tales
ajustes y finalmente para dilucidar sus consecuenciasécoldgicas y evolutivas. Los ajustes
estacionales (“aclimatacion estacional”).se pueden detectar midiendo las capacidades y
sensibilidades fisiologicas de los organismos, ya sea en especimenes extraidos directamente de la
naturaleza (o recintos al aire libre).en diferentes estaciones, como también, de una manera menos
directa, en especimenes criados'y mantenidos en el laboratorio bajo condiciones que simulan las
condiciones natural€syy. sus cambios estacionales. Sin embargo, esta simulacion en el laboratorio
es un desafioj hacerlo requiere un conocimiento previo de la historia natural de los ciclos de
temperatura.corporal, los fotoperiodos, las raciones de alimentos, los entornos sociales, entre

otras variables ecologicamente relevantes. Argumentamos que las condiciones tradicionales de
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laboratorio generalmente no se aproximan a las condiciones estacionales naturales (temperatura,
fotoperiodo, comida, "bloqueo"). En consecuencia, es incierto y, a veces, dudoso si los cambios
de aclimatacion resultantes se aproximan correctamente a los de la naturaleza. Asi también, la
informacion de antecedentes de la historia natural brinda oportunidades para disefiar protocolos
de aclimatacion que no solo son mas relevantes desde el punto de vista ecoldgico, sino que
también sirven como plantillas para probar la validez de los protocolos tradicionales. Finalmente,
sugerimos varias mejoras practicas que pueden ayudar a lograr un realismo ecoldgico optimizado

en las simulaciones de laboratorio.

Introduction

’

".. afrog or a toad is by no means the samething-in summer as in winter.'

Claude Bernard, 1865 (1949 edition)

Seasonality is a fact of nature for almost all terresttial organisms, especially those at higher
latitudes and altitudes. In anticipation of — or in reaction to — such seasonal environmental
variation, organisms often adjust their'’behavior, physiological capacities, and environmental
sensitivities via internal physiological adjustments that are variously called acclimation,
acclimatization, or phenotypic plasticity (Levins, 1968; Sultan, 2015). Given that 1-/ centuries
have elapsed since Claude Bernard pioneered studies of seasonal physiological plasticity in
ectotherms (Bernard, 1949), a newcomer to this field might expect that associated experimental
protocolsswould-be well established and long validated. However, we argue here that common
laboratory-protocols (especially those involving acute shifts of temperature or photoperiod) are in

fact,ecologically dubious, sometimes damaging (Jensen et al., 2017), and have rarely been
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validated against phenotypic shifts in nature. Such issues weaken attempts to use laboratory
results to help predict phenotypic responses to seasonal or climate change (Angilletta, 2009, p.
154; Buckley & Kingsolver, 2019; Gibert et al., 2019; Gunderson et al., 2016; Seebacher et al.,
2015; Somero, 2010; Terblanche & Hoffmann, 2020). We suggest that seasonal natural history
information can guide development of protocols that may improve the eco-evolutionary and
physiological relevance of seasonal plasticity experiments. We focus on animal ectotherms, but

many ideas apply to plants and endotherms.

Our Perspective on Terminology

Physiologists often restrict “acclimatization” to physiological shifts occurring in nature and
restrict “acclimation” to investigator-driven shifts in the laboratory, typieally,involving
controlled manipulations of one or a few environmental variables (reviewed in Somero et al.,
2017, p. 12-13). Unfortunately, these distinct terms divert focus, from the physiological responses
themselves to the venues of study. The distinction has petsisted because field biologists have
rarely examined seasonal changes in environment$iand in physiology in nature (information that

laboratory physiologists need to design ecologically relevant experiments) and because few

laboratory facilities were capable of contrelling dynamic shifts in multiple environmental factors.

Adjusting one or a few factors does achieve experimental control and reproducibility but
sacrifices ecological realism.

Here we use “acclimation” as an umbrella term for studies of seasonal responses. We
argue that the traditional distinction (acclimation versus acclimatization) has become both
antiquated and counterproductive in the context of seasonal plasticity. It is antiquated because
ecologyand physiology are mutually dependent and represent mutually informative levels of

biological analysis (Bartholomew, 2005). It is antiquated because contemporary environmental

220z Ae|N 60 U0 3sanb Ag 2G55/G9/91.09EG0/GOYEG0 L 0 L /10P/a[0IE-80UBADE/GOl/WOD"dNO"OISpEDE//:SAY WOI) Papeojumoq



facilities are increasingly capable of complex environmental manipulations (below). It is
counterproductive because it reinforces separations between ecology and physiology as well as
between descriptive and experimental approaches. Accordingly, we will use “acclimation” here
to refer to both field and laboratory responses to seasonal change.

In addition, we use seasonal acclimation for species with multi-generations per year, even
though acclimation is traditionally restricted for individuals, not generations. Species with a
sequence of generations across seasons offer opportunities to explore between-generation causes,
mechanisms, and ecological consequences of seasonal changes in phenotypes (Rudman et al.;
2022).

Our paper is part of a long-standing standing effort by many to push for greater interactions
between field biologists, who now can monitor and simulate seasonal«¢changes in phenotypes and
environmental factors, and laboratory biologists, who can design ecologically realistic,
controlled, and multifactorial experiments (Bartholomew, 19643 Chown & Gaston, 1999; Denny,
2018; Gunderson et al., 2016; Kearney et al., 2014; Loeschcke & Hoffmann, 2007; Rudman et

al., 2022; Somero et al., 2017, p. 13).

General Goals for Seasonal Acclimation Studies

We begin by conceptualizing three individual but complementary goals of a hypothetical
study of seasonal plasticity of trait(s) in an arbitrary ectotherm. First, quantify seasonal variation
in, for example, the thermal sensitivity of trait performance or capacity (independent of short-
term hardening responses, see Zhang et al., 2021). Second, probe the underlying environmental,
behavioralyand physiological cues and drivers of those seasonal shifts (and interactions). Third,

elucidate the ecological and evolutionary consequences of seasonal shifts (Kingsolver &
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Wiernasz, 1991; Loeschcke & Hoffmann, 2007; Rudman et al., 2022; Somero, 2010; Terblanche
& Hoffmann, 2020). However, the techniques necessary to evaluate those consequences are
beyond the scope of this paper and will not be discussed here.

Achieving the first goal of describing acclimation patterns would seem relatively easy, and
three general methods can be used.

(1) One can directly — and unambiguously — quantify seasonal patterns in physiology and
morphology by collecting organisms from nature in each season and quickly
measuring their trait values and sensitivities.

(2) One can release organisms into semi-realistic enclosures in nature and then
periodically extract individuals for measurements. This approach islogistically
appealing because retrieving individuals from enclosures is-often easier than from
nature. In any case, these first two methods both yield “realized” acclimation
(acclimatization) patterns.

(3) Finally, controlled laboratory experiments ¢an be designed to induce seasonal
responses that approximate those of erganisms in nature. However, because seasonal
changes in environments and-physiological activities are complex, multi-factor
manipulations are requitedibutcan be daunting. Consider an experiment with three
different temperature cycles, three photoperiod cycles, and three food regimes. When
faced with all the critical variations on this approach (each with main and interactive
effects) plus replication, many researchers will quickly conclude multi-factorial

approaches are intractable for most organisms (see especially fig. 6 in Boyd et al.,

2918; but see Porter et al., 1984; Singh et al., 2020).
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Here we address key challenges to designing laboratory acclimation protocols that are
intended to induce physiological responses that approximate natural ones (goal one, above). Our
suggestions are guided by our experiences with terrestrial ectotherms (lizards, insects) but should
hold for other mobile ectotherms living in spatially heterogeneous environments. We make no
attempt to be exhaustive but rather focus on four factors that are common to most acclimation
studies (body temperature, photoperiod, food ration, and “social distancing and lockdown”).
Other physical factors can of course be relevant (e.g., barometric pressure for altitude
acclimation; pH, salinity, and hypoxia in aquatic systems). We will describe traditional protocols
for manipulating each of these factors, then argue that such manipulations generally bear little
resemblance to the shifting and fluctuating environments experienced by organisms in nature

(see Angilletta, 2009, p. 154), and suggest ‘best practices’ to enhancewrealism.

Key problems with seasonal-acclimation experiments

Laboratory conditions are not ecologically relevant

Even though experimental conditions Shouldrattempt to mimic ones in nature, experimental
conditions (e.g., temperature cycles, photoperiods) are often not ecologically relevant (Schou et
al., 2015). Importantly, specific_protocols sometimes generate different responses and
experimental artifacts (seefig. 2 in Rohr et al., 2018; Terblanche & Hoffmann, 2020).

Researchers sometimes guess at conditions that seem ecologically relevant, make choices
for experimental.convenience (e.g., constant temperature treatments), manipulate only one or a
few environmental variables, and ignore natural environmental, developmental, and cross-
generational variation (Bradshaw & Holzapfel, 2006; Crill et al., 1996; Robolledo et al., 2021).

Eew workers have tested whether targeted laboratory variables such as temperature are in fact
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‘key factors’ in nature (Angilletta, 2009; Ives & Gilchrist, 1993). For example, researchers
working with lizards have — for many decades — manipulated only temperature. However, the
importance of moisture is increasingly appreciated (Clusella-Trullas et al., 2011; Kearney et al.,
2018; Rozen-Rechels et al., 2021). In general, multi-factor experiments will be required to
understand seasonal acclimation responses (Danks, 2007; Gunderson et al., 2016; Somero et al.,
2017, p. 13; Terblanche & Hoffmann, 2020). Further, few studies consider the influence of biotic
interactions (Davis et al., 1998; Nespolo et al., 2022) or the magnitude of individual and
genotypic variation (Dowd et al., 2015; Messerman & Leal, 2021; Seebacher & Little,2021;
Terblanche & Hoffmann, 2020; Winterova & Gvozdik, 2021).

A less arbitrary approach is to use natural history data as guides for laboratory conditions
(Basson & Clusella-Trullas, 2015; Bradshaw & Holzapfel, 2001; Fangue-& Bennett, 2003;
Niehaus, Angilletta, et al., 2012; Toxopeus et al., 2019). Or, as Lewontin wryly noted (2000, p.
54), “If one wants to know what the environment of an organism:is, one must ask the organism.”

We explore this view below.

Laboratory conditions block behavioral adjustments

In nature, animals are not only affected by changes in their environment but also actively
choose their own environment: “Organisms are both the subjects and the objects of evolution”
(Levins & Lewontin, 1985, p. 275)-In other words, “...the histories of both environment and
organism are functions of both environment and organism” (Lewontin, 2000, p. 101). In
contrast, laboratory\environments are physically restrictive and force animals to passively accept
conditions«Chosen by the experimenter. This gives experimental control but prevents animals
from making behavioral adjustments (in exposure time, operative environment, social behaviors)

or,moving about, as they would do in nature (Hadamova & Gvozdik, 2011; Salachan et al.,
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2020). Such constraints on behavior potentially mask natural seasonal responses (Brankatschk et
al., 2018; Salachan et al., 2020) and potentially induce stress or pathologies.

Consider a photoperiod experiment in which individuals will be forced to experience a
specific photoperiod, but that might not do so if given a choice. Experiments with hatchling
lizards illustrate variation in voluntary exposure to light. For example, hatchling lizards of a
high-elevation species of Sceloporus voluntary exposed themselves to a heat lamp for shorter
periods each day than did hatchlings from a high-elevation species (Sinervo & Adolph, 1989), as
did as populations a high elevation species in the field (Sinervo, 1990). Would forced exposure
to long days induce stress in individuals that would normally retreat in the field?

Consider the ‘habitat matching’ model (see fig. 1 in Jacob et al., 2015), in, which
unconstrained individuals can disperse to find and settle in habitats suitable:for their particular
phenotype (e.g., if males and females have different thermal preferences, Lailvaux, 2007). But in
a fixed acclimation treatment, all phenotypes are forced to experience specified conditions, even
if some individuals would have dispersed away from such ¢onditions in nature. Would that
induce stress in forcibly “mis-matched” individuals?’We see behavioral restriction in the
laboratory as a potential confound in acclimation studies, whether seasonal or not, and needing

study.

Seasonal acclimation in the field

Collecting and quickly measuring animals from the field (or from enclosures) in different
seasons is.the“gold standard’ for assaying directions and magnitudes of realized seasonal
acclimation, Moreover, such field studies are necessary for validation studies that attempt to

cvaluate whether laboratory acclimation protocols in fact yield ecologically relevant responses.
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Examples of such field studies (Fig. 1) are shown for critical thermal maximum and
minimum (CTiax, CTiin -- upper or lower thermal indices of performance, respectively)
(Bennett et al., 2018). These studies show elevated heat tolerance in summer and increased cold
tolerance in winter, but also show considerable interspecific variation in the magnitude of
‘realized’ seasonal responses (Fig. 1).

Of course, obtaining animals in nature in some seasons can be challenging, dangerous, or
even impossible. Further, the results are descriptive (but see below) and apply only to local
populations and conditions; and they do not illuminate whether observed seasonal responses
reflect individual, cross-generation, or genetic differences (Stone et al., 2020). But they do

provide a critical baseline.

Factors often manipulated in seasonal-acclimation experiments

Body temperature

Body temperature of most terrestrial ectotherms varies daily and seasonally (Clusella-Trullas &
Chown, 2014; Nordberg & Cobb, 2017), even in the tropics (Christian et al., 1983; Hertz, 1992;
Salazar et al., 2019). Yet acclimation treatments often use fixed temperature treatments with
rapid transitions between treatments(c.f-’Angilletta, 2009; see Supplement in Gunderson &
Stillman, 2015; Terblanche:& Hoffmann, 2020) and may confound seasonal and ‘heat-
hardening’ (i.e., brief@xposure to sub-lethal temperature) responses (Loeschcke & Hoffmann,
2007; Phillips et al.,,2015). Seasonal acclimation studies are more likely to use gradual
temperature,transitions than are studies addressing climate change issues (Gunderson & Stillman,
2015; Seebacher et al., 2015), but the rates are still abnormally fast (Table S1). For example,

animals might be transferred acutely from a fixed and warm baseline temperature regime (“warm
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season”) to a “cool season” one (Fig. 1A). Sometimes, however, an animal’s temperature is
stepped down over several weeks (e.g., -5 °C every six days, Thamnophis marcianus, Holden et
al., 2021) or is lowered more gradually (e.g., 1 °C per day, Tachydromus spp., Huang & Tu,
2008)(Fig. 2A).

In the above examples, 7}, will drop by 10 °C in a maximum of only 10 days. In contrast,
the T, of timber rattlesnakes (Crotalus horridus) in retreats in Oklahoma (Nordberg & Cobb,
2017) took three months to drop about 10 °C; and T, dropped erratically, differed among
individuals, and included daily cycles (Fig. 2B)! Thus, gradual or step drops typically used inythe
laboratory can be much faster than are those in nature, while ignoring diel and stochasti¢
variation (cf. Dillon & Lozier, 2019; Sinclair, 2001; Serensen et al., 2020). Examples of studies
that used more realistic shifts include Bradshaw and Holzapfel (1989);:Cestanzo et al. (2000),
Neihaus et al. (2012), and Toxopeus et al. (2019). Natural 7y, trajectories can be obtained via
radio-telemetry, attached/implanted data loggers (Cobb & Petetrson, 2008; Davis et al., 2008)
(Fig. 2B), or biophysical simulations (Buckley, 2008; Kearney, Deutscher, et al., 2020).

Do abnormally fast drops and short acclimation-durations found in most laboratory
experiments (Table S1) allow sufficient time fornormal acclimation adjustments (Angilletta,
2009), or might they even be pathological? This is hard to predict, but many physiological
responses are sensitive to rates.and duration of temperature change (Jorgensen et al., 2019;
Nilsson-Ortman & Johansson,”2007; Terblanche et al., 2007). Also, some responses require
weeks of acclimationsto be manifest (Toxopeus et al., 2019). Consequently, using natural rates of
temperature change in the laboratory may be the safest way to generate realistic responses to

seasonal ac¢limation. Of course, ‘long and slow’ acclimation might deplete energy reserves or
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induce cold damage (Sinclair, 2015). Even so, that could be appropriate if ‘long and slow’ is

what happens in nature (Fig. 2B).

Thermal regimes used in laboratory acclimation experiments generally do not incorporate
diel individual, stochastic, microhabitat and day-to-day variation in 7}, (Bradshaw et al., 2004;
Niehaus, Wilson, et al., 2012)(e.g., Table S1, Fig. 2B). However, individual differences in
environmental exposure can be pronounced in nature (Carlson et al., 2021; Denny, 2018),
especially during seasonal transitions (Nordberg & Cobb, 2017; Taylor et al., 2004), except'deep
in the soil (figure 4 in Huey, Ma, et al., 2021). Such differences can have marked physiological
impacts (Clarke & Zani, 2012; Dowd et al., 2015; Niehaus, Angilletta, et al., 2012; Wiebler et
al., 2017).

Whether suppression of natural variation in 7} biases acclimation responses is rarely
studied (but see Estay et al., 2010; Hadamova & Gvozdik, 20115 Niehaus, Angilletta, et al.,
2012). Over a half century ago, Wilhoft (1958) showed that fence lizards (Sceloporus
occidentalis) had elevated death rates if maintained at their normal activity temperature (34 °- 35
°C) for several weeks. Subsequent studies demonstrate that constant-temperature treatments may
induce pathologies and alter performance profiles (Cavieres et al., 2016; Colinet et al., 2015;
Schulte et al., 2011). Persistent temperatutre exposures (Jorgensen et al., 2019; Kingsolver &
Woods, 2016; Rezende et al., 2014) and repeated exposures can be stressful (Marshall &
Sinclair, 2015).

Diel and day-to-day variation in 7}, during dormancy can be marked in species that are
intermittently active on warm winter days, as 7 jumps during such activity (Fig. 2B). A
simulated example is shown in Fig. 3, which plots histograms of T;, (by activity status) for

summet and winter. Three patterns are striking. First, T}, distributions are bimodal within
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seasons, and the median T, of active individuals is much warmer than that of inactive animals.
Second, the median 73, of active individuals (black arrows) changes very little among seasons,
whereas the median 7, of inactive individuals (white arrows) shifts dramatically. Third, the
relative areas under the active versus inactive modes also shifts seasonally. For example, 53.5%
of all hourly T, are from inactive animals in summer, but 94.7% are from inactive individuals in
winter. Thus, a realistic acclimation 7, profile for this simulated animal will require diel shifts in
mean inactive Ty (less so in active 7},) and in the relative proportion of active versus inactive 7y,
by season. In an early example that considered such seasonal differences, Tsuji (1988)€xposed
lizards to 12 h at 35 °C and 12 h at 16 °C for summer conditions, but then used 6. h at 35 °C and
18 h at 10 °C for autumn conditions. Similarly, Zani (2012) gradually shifting phoetoperiods and

thermoperiods for the lizard Uta stansburiana.

Incorporating a daily temperature cycle may be important(Bradshaw, 1980; Brakefield &
Mazzotta, 1995; Colinet et al., 2015; Hadamova & Gvozdik, 2011; Kingsolver et al., 2020) not
only to reduce stress (above), but also because 7y has non-linear effects on physiology (Colinet et
al., 2015). Seasonal variation in the magnitudé of.daily cycles in 7} in nature can be substantial
(Basson & Clusella-Trullas, 2015; Bradshaw et‘al., 2004). For simulated data in Fig. 3, the
median daily range in Ty, is varies threesfold among seasons [21.0 °C (spring), 15.3 °C (summer),
17.2 °C (autumn), and 6.3 °C winter)].

Other complications involving T}, regimes can be raised. In many ectotherms, 7}, changes
during ontogeny, as different developmental stages may live in different microenvironment,
occur at different times of year, or have different tolerances (Kingsolver et al., 2011; Potter et al.,
2013; Zani et al., 2005). Moreover, developmental and cross-generational effects can alter the

temperature dependence of performance (Cavieres et al., 2019; Gilchrist & Huey, 2001;
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Rebolledo et al., 2021). Thus, a seasonal acclimation study may need different thermal (and
photoperiod) regimes for each developmental stages, and especially for seasonal acclimation in
multi-voltine species, where different generations experience different conditions (Kingsolver et
al., 2011; Serensen et al., 2016; Terblanche & Hoffmann, 2020). Also, individual and landscape
variation in natural T}, profiles (Dowd et al., 2015) is expected (e.g., Fig. 2B), but whether such
variation in 7T} (e.g., Fig. 2B) often alters acclimation responses remains to be determined. It can
affect overwinter survival and reproduction (Bradshaw & Holzapfel, 1991; Otero et al., 2015).

As noted above, animals in environmental chambers typically have no opportunity for
behavioral adjustments but are “force-fed” specific T} profiles and simplified envitonments.
Might such constraints on behavioral induce stress or alter acclimation patterns? In’ general, we
suspect so (Bartholomew, 1964; Glanville & Seebacher, 2006; Jiménez=Padilla et al., 2020).
Indeed, thermal preference of Drosophila melanogaster shifted-with-forced acclimation, but not
when flies were reared in heterogeneous environment where they could behaviorally
thermoregulate (Salachan et al., 2020).

For animals with multiple generations petriyear, winter and summer captured individuals in
nature may be somewhat genetically différent —a consequence of seasonal selection
(Dobzhansky, 1948; Rudman et al5 2022): Copepods (Acartia spp.) collected in summer were
genetically more heat tolerant'than those collected in winter, but had weaker acclimation
responses (Sasaki & Dam, 2020). Thus, an acclimation study based on a single cohort (e.g.,
summer collected) might yield misleading predictions of realized phenotypic patterns in winter.

Best practices.—We encourage laboratory studies that use ecologically relevant shifts in
temperaturey even though this will greatly lengthen the duration of experiments well beyond

those of traditional ones (Table S1). Deciding on an ‘ecologically realistic’ temperature profile
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will be challenging, given individual, microhabitat, and yearly variation (see Fig. 2B). Especially
interesting will be validation studies that compare responses from traditional temperature
exposures (fast, acute drops, no diurnal variation) versus those from ecologically realistic ones

(Fig. 2B, 3) or that compare field with lab responses.
Photoperiod

Photoperiod is often the dominant environmental cue regulating observed seasonal shifts
(Bradshaw & Holzapfel, 2007) and can affect physiological tolerance (but see Moghadam.et al.,
2019; Toxopeus et al., 2019). For example, diel shifts in heat tolerance in Drosophila buzzatii are
controlled by a physiological clock (Serensen & Loeschcke, 2002). Interestingly, fieeze
tolerance in the cricket Gryllus veletis requires shifts in both 7}, and photoperiod (Toxopeus et
al., 2019); and nymphal development in the cricket Modicogryllus siameunsis depends on both
photoperiod and temperatures pathways (Miki et al., 2020). Surprisingly, photoperiod is not
adjusted in many seasonal experiments (Table S1), even-though seasonally inappropriate
photoperiods can cause major declines in performance orfitness (Bradshaw et al., 2004; Le Roy
& Seebacher, 2020; MacLean & Gilchrist, 2019)."Responses can depend not only the length of
the photoperiod, but also on the rate and direction of change of photoperiod (Norling, 2018).

A common protocol involves a.rapid shift in photoperiod from long day (summer) to short
day (winter) (Fig. 4A). Less commonly, photoperiod is adjusted gradually to match local
photoperiod (Fig. 4A; Bradshaw & Holzapfel, 1989; Toxopeus et al., 2019). However, acute or
step shifts in photoperiod are more common, especially in older studies (see Norling, 2018),
when frequent adjustment of photoperiod was logistically challenging.

Auprioeri, one might think that adjusting laboratory photoperiods to match natural ones at a

given field site would be easy, at least if programmable environmental chambers are available.
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Note, however, the direct use of local photoperiods in acclimation experiments makes two
implicit assumptions: 1) that nearby mountains are not delaying local sunrise or accelerating
local sunset (Kearney, Gillingham, et al., 2020), and 2) that organisms in nature are fully
exposed to and perceive the local photoperiod (Danks, 2007). In reality, local photoperiod will
approximate the realized photoperiod only for organisms that live in a flat and open landscape,
that are always above ground, and that are always fully exposed to the sky. Few terrestrial
organisms (other than some plants and birds) probably fit this bill. Whether this matters to plastic
responses is unclear (see Bradshaw & Phillips, 1980).

Most animals — whether diurnal or nocturnal — have restricted activity times, as regulation
of above-ground activity time is the key behavioral adjustment that many terrestrial ectotherms
use to regulate 7y (Stevenson, 1985). In many reptiles, above-ground-aetivity occupies a
surprisingly small fraction of the year (fig. 4 in Davis & DeNatdo, 2010; table VII in Huey,
1982). For example, desert tortoises (Gopherus agassizii) are.above ground only 3% of the year
(Marlow, 1979), but whether they perceive light whenunderground is unclear. For inactive
animals inside fully dark retreats, realized exposure time may be less — sometimes substantially
less — than the local photoperiod (Davis & DeNardo, 2010; Kerr et al., 2004). Further, animals
overwintering inside dark retreats (orin the Arctic) throughout winter will experience a 0:24 L:D
photoperiod — obviously, no light.exposure at all (Williams et al., 2016)! Similarly, aquatic
ectotherms at depth may experience very dim or no natural light (Filatova et al., 2019). Local
photoperiods can thus:be a red herring in seasonal acclimation experiments and possibly
confound seasonalresponses.

To simulate how voluntary behavioral restriction can influence realized exposure time, we

used NicheMapR (Kearney & Porter, 2020) to estimate photoperiod as well as predict realized
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exposure time of a 10-g lizard at Ford Dry Lake, CA in 2019 (parameter values in online
supplement). Over the year, local photoperiod varied from 9.8 to 14.2 h per day, and an acute
acclimation shift using these photoperiods is shown in Fig. 4A. However, variation in predicted
hours of exposure varied from 0 to 13 h/day, not 9.8 to 14.2 (Fig. 4B). In summer months, the
difference between the median local photoperiod (14.0 h) and the median exposure time (11.4 h)
was only 2.6 h (Fig. 4B); but in winter months, the median local photoperiod (10 h) was 9 h
longer than the median exposure time (0.7 h). Moreover, simulated lizards in winter were
completely inactive in some weeks, while active in others (Fig. 4B).

Are observed winter acclimation patterns sensitive to whether an experiment.usesa local,
mid-winter photoperiod (e.g., 9.7:14.3 L:D) or a predicted exposure-time one (e,g.50.7:23.3
L:D)? Similarly, are acclimation patterns sensitive to whether ectotherms-ate intermittently
active in winter (Huey, Miles, et al., 2021; Nordberg & Cobb, 2016); and thus to whether they
intermittently experience daylight? We know of no study with ectotherms that directly evaluates
these issues, but brief exposures to elevated temperatures can potentially be physiologically
beneficial (see Huey, Ma, et al., 2021, p. 181)/In addition, physiological responses and even
longevity can be sensitive to diel cycles in the intensity and spectral pattern of daylight (Shen &
Tower, 2019) as well as to dawn-duskitransitions (Bradshaw & Phillips, 1980).

Natural history adds further.complications. Consider the appropriate photoperiod for
winter at mid-latitudes. In natute, a lizard overwintering a few centimeters in the soil experiences
constant darkness, but.one wedged in a nearby rock crevice might receive dim light cues. Also,
Uta stansburiana-izards in eastern Oregon emerge from rock crevices and bask on sunny days

even in midswinter (P. Zani, personal communication), and such exposures will affect their 7y as
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well as their realized photoperiod. Are winter-acclimation responses of ectotherms sensitive to
the interaction between light and 7;,? Such interactions are rarely studied (Singh et al., 2020).

The ‘rectangular’ shifts in light-dark cycles (Fig. 4A) in laboratory studies typically ignore
twilight (Bradshaw & Phillips, 1980), the length of which varies seasonally and latitudinally.
Circadian responses can differ between rectangular vs. twilight light schedules (Boulos &
Macchi, 2006), and thus might affect acclimation responses (Bradshaw & Phillips, 1980).

Best practices.—Because photoperiod is a key cue of seasonality, seasonal laboratory
experiments should adjust photoperiod. Realized photoperiods (as distinct from local
photoperiods) can be measured in nature via telemetry, data loggers that are light sensitive
(Davis & DeNardo, 2010; Williams et al., 2016), or with time-lapse cameras (P. Zani, personal
communication). Alternatively, photoperiod can be predicted via biophysical simulations (figure
4, Kearney & Porter, 2020). Providing opportunities for animals to voluntarily adjust their
exposure may be required to generate realistic acclimation responses to seasonality (Sinervo and

Adolph 1989, Sinervo 1990).

Food

In a seasonal-acclimation experiment; individuals might be maintained in the lab for months at a
time. Should they be fed? If so,swhat (type, quality), how much, and how often? For acclimation
studies involving the activity seasons (e.g., spring versus summer), food should be generally
provided, as animals innature will usually be feeding in these seasons. However, some animals
have empty stomachs even in activity seasons (Huey et al., 2001; Vinson & Angradi, 2011), and
the amount of food consumed per meal and the interval between meals may be quite variable
between'seasons (Christel et al., 2007). In contrast, laboratory feeding regimes are typically ad

libitum or fixed ration (Table S1).
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Whether food should be provided during those seasonal treatments associated with reduced
or even no activity (e.g., winter dormancy) is unclear. Anorexia is a normal seasonal behavior in
diverse fish, reptiles, birds, and mammals, often associated with incubation, brooding, or
dormancy (Mrosovsky & Sherry, 1980). The extent to which food (amount, type, quality) during
winter alters acclimation responses in the laboratory is largely unresolved.

Natural history observations can indicate whether animals are feeding in winter (Filatova et al.,
2019; Huey, Miles, et al., 2021; Nagy, 1983; Nespolo et al., 2022) and whether feeding varies
geographically. For example, the lizard Uta stansburiana emerges and feed on warm winter days
in California (B. Sinervo, personal communication) but not eastern Oregon (P. Zani, personal
communication).

In vertebrate ectotherms, the motivation to feed and digestion can-require high
temperatures (Angilletta, 2001; Kingsolver & Woods, 1997). Thus,\constant low temperatures
associated with cool acclimation treatments will potentially slow.and potentially stop digestion,

perhaps pathologically so (Regal, 1966).

Traditional acclimation experiments use,the same food type, independent of season. But
diet often changes seasonally (Hardison etials, 2021), either because of availability or choice.
Some mammals prepare for hibernation by behaviorally altering their diet. For example,
chipmunks (Eutamias amoenus) increase their consumption of seeds (rich in polyunsaturated
oils) prior to hibernation, which enables them to lower metabolic rate during torpor and may
enhance survivalover winter (Geiser & Kenagy, 1987). Sometimes seasonal shifts in food
quality are proneunced and may affect selection for life history patterns (Macid & Bradshaw,
2000),and-interact with photoperiod in terminating diapause (Bradshaw, 1970). Diet can modify

growth responses to temperature and cold tolerance in Drosophila spp. (Jiménez-Padilla et al.,
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2020; Kutz et al., 2019; Shreve et al., 2007) and in a calanoid copepod (Malzahn et al., 2016), as
well as heat tolerance in an ant (Bujan & Kaspari, 2017) and life history in an insect (Ngomane
et al., 2022). Responses can be complex: responses of opaleye fish (Girella nigricans) to
temperature and diet were trait specific (Hardison et al., 2021). Interestingly, Drosophila
melanogaster shift dietary preferences from yeast to plant lipids at low temperature, thereby
altering membrane fluidity and increasing cold tolerances (Brankatschk et al., 2018). Such a shift
would be blocked if flies were unable to select food. Locusts (Chortoicetes terminifera) shift
temperatures in response to nutritional imbalance (Clissold et al., 2013) and would inadvertently

experience nutritional deficits if held at fixed temperatures.

Best practices.— Ideally, one would adjust laboratory feeding rates.and foods to match
patterns in nature (cf. Basson & Clusella-Trullas, 2015; Bradshaw & Holzapfel, 1989, p. 873;
Danks, 2007), but that will usually be impractical. Moreover, seasonal dietary information is
rarely available. Nevertheless, observations on chipmunksyGeiser & Kenagy, 1987) and
Drosophila (Andersen et al., 2010; Brankatschk etal:; 2018) suggest that use of standard
artificial diets (rabbit chow, fly medium) may.,sometimes (Ngomane et al., 2022) — but not
always (Davies et al., 2021) — yield biasediseasonal responses. Studies that examine the impact

of natural shifts in diet on seasonal phenotypes are encouraged.

“Social distancing” and “lockdown”

Terrestrial animals:in seasonal acclimation experiments are often be housed individually (Table
S1), sometimes with little or no physical “enrichment” (cover, rocks, sand, plants). Such animals
have restricted opportunities for movement (exercise), exploration, and conspecific interactions

relative to what animals in nature will experience during the activity season (Kiester, 1979;
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Killen et al., 2021), and sometimes even during hibernation (e.g., ectotherms sharing
hibernacula). Does movement restriction, cage “enrichment” (or especially the lack thereof), and
conspecific (or even hetero-specific) isolation affect the seasonal activity responses of isolated
animals (Korner et al., 2018)?

Some animals (especially invertebrates, fishes) are often acclimated in groups (Table S1),
apparently for logistic reasons. Group living may be ecologically appropriate for some species,
but increased conspecific interactions can trigger aggressive behaviors and stress, possibly
altering seasonal physiological capacities. For example, larval crowding affects heat tolerancein
Drosophila melanogaster (Serensen & Loeschcke, 2001).

Traditional acclimation experiments involve single species. However, incorporating
multiple species acclimation regimes may sometimes be important, atdeast-when interspecific
interactions are commensal. Midges (Metriocnemus knabi) andanosquitos (Wyeomyia smithii)
naturally co-exist in pitcher plants and both feed on decaying invertebrate carcasses.
Interestingly, processing by midges enhances food availability (bacteria) and energy intake by
mosquitoes (Heard, 1994). Mosquitoes reared without midges will have different energy budgets
and potentially different plasticity responses.

Movement restriction in cages (“lock down”) likely has diverse effects on development,
physiology, morphology, and behavior. Relative to endurance-trained individuals, constrained
lizards (Anolis carolinensis) had lower muscle mass, lower hematocrits, smaller fast glycolytic
muscle fibers (Riley'et.al., 2017), elevated immune function (females only, Husak et al., 2017),
and elevated testing metabolic rate (Lailvaux et al., 2018). These lizards are ambush predators,

and more actively foraging species might be even more effected by movement restriction.
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Imposed restriction on voluntary movements can have unwanted consequences. After 31
generations, mice selected for high running activity ran about three times farther per day than did
controls (Careau et al., 2013). When “high runner” mice were prevented from running, they
showed signs of depression and withdrawal (Kolb et al., 2013; Malisch et al., 2009). Because
plasticity experiments typically block animals from natural movements, behavioral “lockdown”
in laboratories will potentially bias seasonal responses.

“Social distancing” and “solitary confinement” can have marked behavioral and
physiological effects on animals. In a pioneering experiment, Regal (1971) found that.a male
lizard greatly increased its thermoregulatory behavior (and undoubtedly its 7}) in response to the
presence of another male. Such social effects are well known in endotherms, but have also been
detected in ectotherms (Matsubara et al., 2017). When encountering soecially reared lizards,
isolation-reared lizards were relatively submissive and slower to attack’prey (Ballen et al., 2014).
Food level affected the tendency of marsupials to huddle in winter (Nespolo et al., 2022).

Best practices—Whether social conditions (selitary versus grouped housing),
“impoverished” cages, and physical restriction’have major effects on seasonal acclimation
patterns is an open question. Ideally, housing conditions should attempt to reflect patterns in
nature, but those patterns sometimes show seasonal variation in nature. For example, some
lizards and snakes are territorial during the activity season but nonetheless share communal
hibernacula in winter. We recognize that implementing seasonally realistic housing conditions
will be difficult or €ven impossible for most studies. An initial goal would be to evaluate whether

and how housing-eonditions bias seasonal responses.
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Concluding remarks

We have called attention to diverse ways that traditional laboratory regimes may bias seasonal
acclimation responses. Biologically realistic regimes will of course be challenging to derive and
implement. Thus, an immediate goal should be to determine which complications have strong
effects and thus need to be incorporated into protocols versus which are weak and can safely be
ignored. In other words, the goal is to select “methodologies that make questions answerable in
practice in a world of finite resources” (Lewontin, 2000, p. 219) and that can increase the
ecological relevance of acclimation experiments. But there are limits to experimental biology.

Perhaps a practical way to start is to promote studies that evaluate whether traditional
protocols are “good enough” or whether they bias acclimation patterns. This requires directly
comparing laboratory and field results, and we highlight some examples of validation studies
(Fangue & Bennett, 2003; Filatova et al., 2019; MacMillan et al., 2016; Pintor et al., 2016;
Schultz et al., 2011; Terblanche & Hoffmann, 20203 Toxopeus et al., 2019). Such field-lab
comparisons (validations) are encouraged.

Validation studies aren’t necessary ifione’s goal is merely to describe the phenotypic
capacities of animals in different seasons. Here one can extract animals from nature at intervals
and measure them promptly (Storey et al., 1988; Zani, 2005; Zhang et al., 2021). Of course,
animals from some seasonal retreats are inaccessible, but sampling can be facilitated by keeping
animals in semi-natural enclosures (Bestion et al., 2015; Nespolo et al., 2022; Zani, 2005).

When designing a laboratory experiment, a good place to start is to try to base protocols on
natural\history and environmental observations in the field (reviewed in Danks, 2007; Sinclair,

200T1). Fortunately, tools for monitoring, recording, or simulating organismal temperatures (Fig.
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2B, Kearney & Porter, 2020) as well as of environmental microclimates are increasingly
available (Judge et al., 2018; Wickert et al., 2019).

Increasingly, seasonal patterns of microclimates, body temperatures, and activity times can
even be simulated via environmental databases (e.g., ERAS5) and software (Kearney & Porter,
2020)(Fig. 4B), even for historical periods (Huey, Miles, et al., 2021; Kearney, Gillingham, et
al., 2020). Evaluations of predictions will ultimately require comparisons of simulated responses
versus those of organisms in nature (Schulte et al., 2011; Terblanche & Hoffmann, 2020).

Given seasonal variation exists in many environmental factors, seasonal acclimation
experiments may need to manipulate more than just temperature and photoperiod (Gunderson et
al., 2016; Somero et al., 2017; Terblanche & Hoffmann, 2020). However, multi-factorial
experiments are still uncommon (Table S1). They will always be logistieally challenging, but
environmental chambers that can manipulate multiple environmental factors and incorporate
realistic variability (based on organismal or weather station data) are increasingly available.

Bradshaw and Holzapfel’s laboratory experiments with pitcher-plant mosquitos (e.g.,
Bradshaw & Holzapfel, 1989) serve as exemplars of achieving relatively natural conditions in
the laboratory. Mosquitos were reared inside leaves of intact pitcher plants (their natural
microhabitat), exposed to natural sinewave thermoperiods that appropriately lagged natural
photoperiods (with transitory‘dusk and dawn) by several hours, and food levels adjusted
appropriately.

Field enclosures.can also be used for experimental manipulations. Nespolo (2022) released
marsupials into"semi-natural enclosures and manipulated food levels, testing a prediction that
food-constrained marsupials would enter torpor more frequently than would well fed controls.

They did. Some field mesocosms (“The Metatron™) are designed for natural behaviors and
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dispersal, as well as to enable investigator manipulation of environmental variables (Bestion et
al., 2015).

A few complex laboratory facilities have been available for decades (e.g., ‘Biotron,” see
figures 19-20 in Porter et al., 1973). Some can be programmed to mimic seasonal changes in
temperature, light, and food, while still allowing an animal to behave somewhat naturally, and
thus adjust its own Ty, realized photoperiod, and food regime.

“AnaEE France” (Analysis and Experimentation on Ecosystems) serves as a more
elaborate and synthetic way of approaching ecological studies, including seasonal ones (Clobert
et al., 2018). This program consists of five modules, ranging from highly controlled laboratory
facilities to field mesocosms. For example, laboratory “Ecotron” mesocosms manipulate
temperature (even soil gradients!), humidity, rainfall, irradiance, O, and-€Q, concentrations — all
capable of dynamic as well as step changes (Verdier et al., 2014). Aquatic and terrestrial
organisms can be studied, and replication is feasible. Ecologicalvalidation of such approaches
can be evaluated by releasing Ecotron-acclimated animals into nature at different seasons
(Loeschcke & Hoffmann, 2007) and then comparing their performance, sensitivity, and survival
with those of field acclimated individuals. Unfortunately, these facilities are expensive to build
and maintain, and won’t be accessibleito most workers. Each experimental option has associated
trade-offs (Clobert et al., 2018).

Even more serious challenges will face studies that are designed to tease apart potential
cues and effectors (Danks, 2007) that induce seasonal acclimation or those designed to evaluate
the physiological'shifts underlying organismal responses (Somero et al., 2017). One’s personal
experi¢nce-and prior research (Danks, 2007) can direct appropriate factorial or fractional

factorial designs, constant versus random or autocorrelated fluctuating treatments, and key
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environmental factors to vary (e.g., temperature, photoperiod) (Bradshaw & Holzapfel, 1989;
Nespolo et al., 2022; Niehaus, Wilson, et al., 2012; Singh et al., 2020). However, validating (or
falsifying) the ecological and physiological relevance of such choices will be challenging
(Bacigalupe et al., 2018; Serensen et al., 2016), and incorporating individual, seasonal,
geographic, and interspecific variation and interactions will be daunting (Gilbert & Miles, 2017;
Messerman & Leal, 2021; Seebacher & Little, 2021; Sinervo & Adolph, 1994; Terblanche &

Hoffmann, 2020; Winterova & Gvozdik, 2021). But challenges are also opportunities.
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Fig. 1. Examples of change in CTpax and in CTyin (difference from lowest seasonal value) in animals
collected in nature over the seasons. Some species (e.g., termites) show little seasonal change, but other
show marked change. Seasonal studies provide a realized baseline for validating laboratory estimates of
critical temperatures (or other traits). References: (Mundahl 1989; Fangue and Bennett 2003; Hu and Appel
2004; Sharma et al. 2015; Sherman 2015; Dominguez-Guerrero et al. 2019; Kamalam et al. 2019; Bujan et

al. 2020; Leclair et al. 2020).
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(A) Experimental Tb (B) Field Tb (Crotalus horridus)
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Fig. 2 (A) Typical experimental protocols involving body temperature in seasonal acclimation experiments
(autumn to winter). Here a 10 °C drop from ‘autumn’ temperatures is achieved in a maximum of 10 days.
(B) Realized Ty, shifts for four timber rattlesnakes in Tennessee in autumn and early winter (data from
Nordberg and Cobb, 2017). Here a 10 °C drop took about 89 days (based on black regression line for all
points), much longer than in laboratory experiments in A. Note that individual snakes (colors) had different

Tp trajectories; and some had marked diel cycles of Tp,.
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Fig. 3 Simulated body temperature distributions of a lizard (10 g) at Ford Dry Lake, CA (see online
supplement for methods). Red = active (basking, foraging) lizards, gray = inactive lizards. The arrows
indicate median Tb of inactive and of inactive animals by season, and the percentage of all animals that

were inactive is indicated. Note that median T}, of active animals is rather independent of season, whereas
that of inactive animals drops markedly cool seasons. Note also that the percentage of animals that are

inactive shifts dramatically among seasons.
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A) Traditional photoperiod treatments B) Photoperiod & predicted activity time
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Fig. 4 (A) Traditional photoperiod treatment of 14.2 h for summer versus 9.8 h for winter at Ford Dry Lake,
California, with an abrupt shift in photoperiod. (B) Time series of local photoperiod (red line) and potential
exposure time (black line) of a simulated lizard over the year at Ford Dry Lake (see text). Note that
predicted hours of exposure for this lizard was markedly lower than the actual daylength, especially in
winter. Thus, use of an acclimation photoperiod of 9.8 h for winter (A) may grossly overestimate the
photoperiod perceived (B) by the animal.
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