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Abstract
This paper proposes a hierarchical organization of a distributed,

parallel and heterogeneous computer system based on the Sequen-
tial Codelet Model. It defines a Hybrid Dataflow/von Neumann
architecture which enables parallel execution of sequentially defined
Codelets at a multi-hierarchical organization of the system. This ar-
chitecture takes advantage of instruction level parallelism techniques
based on dataflow analysis, allowing implicit parallel execution of
code. We present the SuperCodelet Architecture. We describe the
program execution model and its corresponding programming model,
and provide an evaluation of its program execution model through a
prototype emulator based on commodity computer systems.

CCS Concepts
• Computer systems organization → Multicore architectures;
Heterogeneous (hybrid) systems.
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1 Introduction
Computer systems are highly complex machines containing large

number of parts interacting with each other. An ideal system ar-
chitecture should feature high performance, portability, and easily
programmable interfaces. When looking back in history [6], it is
sequential computing architectures that have been able to exploit
these three aspects the most. There are three major events that lead
to the sequential computing success. First, the Turing Machine intro-
duced by Allan Turing in 1936 [19] which provided the necessary
mathematical model. Second, the definition of the Von Neumann
architecture in 1945 [13] that defined the components needed to im-
plement the Turing machine and their interaction. And third, starting
in the 1960’s [1] by Frederick Brooks and his IBM/360 design team,
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the introduction of a common Instruction Set Architectures (ISA) as
a single interface between hardware and software.

The standardization of the ISA worked as a long lasting contract
between software and hardware, allowing them to evolve indepen-
dently and grow apart. Hardware architects focused on improving
instructions per cycle, resulting in complex pipelines and Instruction
Level Parallelism (ILP) optimizations. On the other hand, software
was relieved of the constant need to adapt programs to new system
architectures. As long as new software targeted the same ISA and
execution model provided by the hardware (i.e. Turing Machine and
Von Neumann model), it could freely evolve and increase in com-
plexity. Unlike sequential computing, trending parallel processing
lacks an acceptable common abstraction between software and hard-
ware. Consequently, software (and developers) have been burdened
with scheduling tasks such as workers creation, workload distribu-
tion, memory organization, and synchronization. As a result, parallel
computing is difficult and it heavily relies on software implemented
runtimes.

In sequential computing, Out of order (OoO) execution is an ILP
optimization that allows for parallel execution of sequential instruc-
tions. OoO is a dataflow inspired execution mechanism that, during
runtime, enforces dependencies across a window of instructions
around the program counter. Independent instructions are allowed to
change their original order, as long as communication with the outer
world is committed in a coherent order that resembles the original
program. ILP allows implicit parallelism, therefore, a programmer
can be agnostic of the real execution order of the instructions. How-
ever, an avid programmer (or compiler) can still change the source
code to exploit these mechanisms and improve performance.

This paper builds upon the idea that, in order to bring back per-
formance, portability and programmability, it is necessary to define
a common program execution model (PXM) [15] for parallel, dis-
tributed and heterogeneous machines. The PXM model takes ad-
vantage of the original sequential abstraction to exploit parallelism
through ILP techniques, especially Out of Order execution. This
work relies on a hierarchically organized machine model and its
memory infrastructure that closely maps current computer systems.
By using the models presented by Monsalve Diaz et al. in [10] [11],
we define the SuperCodelet architecture that uses sequential im-
perative programming semantics similar to assembly code. Unlike
current assembly, the supported operations are tasks, called Codelets,
that are also user defined. A Codelet is a set of instructions, a pro-
gram is defined as a Codelet Graph, where codelets are nodes and
data and control dependencies are represented as edges. A Codelet
is dormant when the dependences have not been met, it becomes
enabled once these dependences are fulfilled and it is fired once the
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hardware resources required for his execution are available, becom-
ing active. In comparison to previous Dataflow/von Neumann hybrid
abstractions, the proposed organization is structured hierarchically,
and it can be extended beyond a single level of computational ele-
ments. Furthermore, it is based on an abstract machine model that is
different to regular task scheduling solutions [4] [12] [21]. In this pa-
per we will focus our attention on a two level abstraction composed
of heterogeneous architectures. The objectives of this paper are as
follow:
• define the SuperCodelet architecture based on the Sequential

Codelet Program Execution Model [10],
• create an emulation runtime that maps the Sequential Codelet

Model to current commodity hardware to emulate the behavior of
the SuperCodelet architecture, and

• present results of this emulation runtime that validates parallel
and heterogeneous execution of sequential Codelet programs.

2 The Sequential Codelet Model
The Sequential Codelet Model (SCM) is a Program Execution

Model that heavily borrows from the success of sequential compu-
tation. The SCM is not yet-another-attempt to parallelize already
existing sequential code. Instead, it presents a machine organiza-
tion, a description on how programs execute on this machine, and a
description on how programs should be written.

Perhaps the most valuable aspects of the Sequential Codelet
Model are: 1) it presents a hierarchical organization of Turing Com-
plete machines that enables computation to occur at any level of the
abstraction. 2) At each level, programs are defined sequentially in
an imperative style programming model. The SCM machine uses
ILP-inspired techniques to achieve program parallelization, there-
fore removing the burden of the programmer to think in parallel.
3) the memory organization of the abstract machine presented in
the Sequential Codelet Model recognizes the hierarchical nature of
memory organization (e.g. registers, L1 cache, L2 cache, LN cache,
DRAM, storage devices, network file systems, cloud storage, and
so on). And 4) the Sequential Codelet Model allows for a weaker
memory model to be implemented system-wide, yet it relies on
sequential consistency across each level. The Sequential Codelet
Model considers the system as a whole, allowing to span beyond
the single core into multi-core, multi-sockets, multi-node and cloud
computing systems. This work focuses on multi-core heterogeneous
systems.

2.1 Machine Model: Hierarchical Von Neumann
Based on the Hierarchical Turing Machine presented in [10], we
define the Sequential Codelet Model abstract machine, called the Hi-
erarchical Von Neumann (HVN) Model. Figure 1 shows a simplified
diagram of the HVN abstract machine. The main difference between
the original Von Neumann Model and the HVN model relies in the
Arithmetic Logic Unit (ALU) that forms the hierarchy. The ALU at
each level is seen as a complete Von Neumann machine that repre-
sents the level below. Therefore, operations (i.e. Codelets) supported
by each level’s ALU is programmable in terms of instructions in
the lower level. At a given level of the hierarchy N, programs are
sequentially described and composed of three type of instructions:
Codelets, memory, and control flow.

A Codelet is similar to a task. A Codelet is a collection of instruc-
tions that are scheduled atomically and non-preemptive, defined by

CPU 

MEMORY

Control Unit

Extended ALU

CPU 

MEMORY

Control Unit

Extended ALU

…

I/O I/O

Figure 1: Hierarchical Von Neumann Architecture.

its event and data dependencies. In the Sequential Codelet Model,
Codelets are the basic unit of operation of a given level. The func-
tionality of a Codelet in level N is defined in the level below N −1
as a sequential Codelet program. Additionally, each Codelet has a
well defined API and is side-effect free (similar to ISA instructions).
Control flow instructions determines Codelets scheduling. Regular
arithmetic operations (e.g. ADD, SUB, and MULT) are intrinsic
Codelets for all levels that do not require a definition in the level
below. The level of complexity of each levels’ ISA is up to the design
of the machine. This flexibility allows for in-memory computation
to be described as a program in the upper levels of the hierarchy.

As a result of the structure of the HVN machine, memory is
hierarchically organized. When a Codelet program is executing, load
and store operations of level N −1 will fall into memory of level N.
Thus, limiting the memory latency range in between two consecutive
levels. Simple memory operations copy consecutive data from one
level to the level below. However, more complex memory operations
can be defined to perform intelligent memory fetching (e.g. scatter-
gather). On the other hand, memory instructions inside of the Codelet
definition only reference the Codelet’s operands. Therefore, mixed
memory consistency models can be used at different levels, while
maintaining a relaxed consistency system wide.

A Hierarchical Von Neuman machine can use a combination
of other architectural models. This is analogous to floating point
arithmetic units in current architectures, or Nvidia’s Tensor cores
[14]. In our hierarchical organization heterogeneity computation is
supported by including architectures with other execution models
(e.g. GPU cores), or application-specific silicon (e.g. Neuromor-
phic chips [2][8][22]) to the ALU of any given level of the HVN
model. A Codelet mapping to these architectures is written in the
corresponding programming model.

2.2 The Sequential Codelet Model
Figure 2 shows a 3 level HVN extended abstract machine. This
system uses a five stages pipeline at each level of the HVN machine:
Fetch, Decode, Execute, Memory and Write back. At the bottom,
level L0 corresponds to any architecture that is commonly found
nowadays (e.g. a core implementing any of the commodity architec-
tures: RISC-V, ARM, x86, or POWER PC). Going up in Figure 2,
the execution stage (Extended ALU) of the L1 pipeline corresponds
to L0. Likewise, L1 is the execution stage for L2. Therefore, L1
Codelets are scheduled to L0 and L2 Codelets to L1.

Codelet operands are stored in a register file. The register file
in L1 is also seen as memory of L0, and the register file of L2 is
also seen as memory of L1. Therefore, memory instructions inside
a Codelet will fetch data from the register file of the level above.
The higher the level of the hierarchy, the larger the memory capacity
is. Therefore, the aggregated size of the register file as well as the
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Figure 2: A 3 level abstract machine of the Sequential Codelet Model
that implements the Hierarchical Von Neuman Model.

maximum size of each register is expected to be higher as we go
up the hierarchy. We opted to use registers since it provides a fixed
limit for memory complexity of Codelets, allowing for compiler
optimizations and analysis. Furthermore, registers allows hardware
dependency handling mechanisms such as those present in ILP.

3 SuperCodelet Architecture
This architecture uses all the elements presented in section 2,

and it allows a construction of a parallel and heterogeneous sys-
tem. We use Tomasulo’s original architecture [16] as base, and we
extend it for the upper levels of the hierarchical abstract machine
of Figure 2. The system organization presented in here is just one
possible organization of a system that implements the Sequential
Codelet Model. Our intention in this paper is to show how to achieve
parallelism on heterogeneous systems using the SuperCodelet archi-
tecture, demonstrating that the proposed architecture does not go
against the progress made until now in heterogeneous architectures,
but instead builds upon it.

As mentioned before, parallel execution is achieved through the
use of techniques that derive from instruction level parallelism. At a
given level, the system must maintain the order of true-dependent
instructions (i.e. Read after write), while anti dependencies and out-
put dependencies can be eliminated through Tomasulo’s algorithm
and register renaming techniques. Independent instructions are al-
lowed to execute in parallel. Heterogeneity is achieved through using
different architectures in Level L0 as execution units of the SCM
machine.

Figure 3 shows the diagram of the SuperCodelet architecture for
up to 3 levels. Level L2 (light gray background) is partially shown.
Level L0 (dark gray background at the bottom) is seem as a black
box that implements architectures that should already be familiar
to the reader such as CPU cores, GPUs streaming multiprocessors
or FPGAs. Finally multiple instances of Level L1 (mid-gray back-
ground) are displayed, but only one is expanded and labeled.
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Figure 3: Diagram of the SuperCodelet architecture

Centering our attention in L1, it is easy to notice the similarities of
this diagram to diagrams used in variations of Tomasulo’s algorithm
in current single core architectures. Starting at the bottom, the usual
FPU and ALU units have been replaced with CPU, GPU and FPGA
cores. Each type containing its own reservation table and scheduler.
A traditional ALU is added to the left to perform regular arithmetic
operations at level L1. Continuing, on the bottom right there is the
memory interface with its corresponding memory ordering buffer to
guarantee in order commit of instructions. This memory is connected
to L2’s register file and reservation tables (top right), which acts as
L1’s memory. In the middle we have instruction fetch (connected
to the instruction memory), instruction decode, register renaming
and allocation logic, and the reordering buffer. To the right of this
section there is the hidden and program visible register files. This
aforementioned structure repeats twice on the top part of the L1 box,
thus representing the potential for multiple of these units which act
as L2 execution units, enabling parallelism across L1.

3.1 Execution order
Assume we are describing an L2 Codelet that is currently mapped to
an L1 execution unit, as seen in Figure 3. Execution stages are:

Fetch and Decode The instruction fetch unit starts reading in-
structions of the current L2 Codelet from the Instruction Memory
and gives it to the decode stage. Following, register renaming and
allocation removes possible anti and output dependencies. Then,
depending on the instruction type, it is pushed into a reordering
buffer of the corresponding L0 execution unit, memory controller or
the L1 ALU.

Codelets are defined to be executed in the level below. A given
Codelet may be represented in different variants of the L0 architec-
tures. For example, a Codelet that performs a Matrix Multiplication
may be implemented in GPU and CPU. Execution goals or system
state could determine what variant to use. For example, the GPU
may by busy, or there may be different power goals for the overall
execution of the program that disable some units [9]. Codelets are
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not bounded to a specific core, but they have an identifier in the
reservation table that will be used to fetch its instructions.

Execute Reservation tables contain a CodeletID and its
operands. These Codelets may be waiting for values to be provided
by other execution units. Once all the operands of a Codelet are
available, the corresponding Scheduling unit will assign it to one
of the available execution units. Once assigned, Codelets must exe-
cute until completion in a non-preemptive fashion. When a Codelet
finishes, the execution unit will signal the scheduler. The Scheduler
will now signal all the reservation tables for instructions waiting for
this Codelet to complete, and the entry in the reservation table is
freed for a new instruction to come in.

Memory Units Memory operations of a level will result in access
to the level above. Memory operations require its own infrastructure
for re-ordering according to the chosen memory consistency model.
Access will flow through the bus of level L2 into the corresponding
location: a register in the register file, or a reservation station for the
consumer Codelet. There are two register files. One that is accessible
by the user, corresponding to all the different registers available to
the user for the description of programs. A second register file is
used for register renaming opportunities.

Commit L2 Codelet has finished execution, a commit operation
signals the following instructions in L2 that are waiting. When the
final instruction finishes, a Commit operation will guarantee that the
pipeline is empty, and signal L2 for completion.

4 Programming model
A program written for the SuperCodelet model maps to the hier-

archical organization of the machine. For each level, the user must
declare the collection of available Codelets. A Codelet is define by
using Codelets and instructions of the level below. For example, if
a Codelet is to be used in L2, that Codelet needs to be defined in a
sequential Codelet program in level L1. At all levels above L0, the
user has access to a set of operations that are common. We refer to
these as the SuperCodelet ISA. Consequently, Codelet programs use
the Codelets of the level below, plus supported SuperCodelet ISA
operations. We divide the instructions in four groups:
• Arithmetic instructions: ADD, MULT, SUB, and Shift right and left

(SHFR/SHFL). Their syntax have the format OP RD, RS, RT
• Control: JMPLBL (to label) and JMPPC (to offset) for uncondi-

tional branching. BREQ, BGT/BLT, and BGET/BLET for conditional
branching.

• Memory: LDIMM for immediate values. LDADDR and STADDR for
load and store operations. LDOFF and STOFF for load and store
with offsets.

• Codelet Control: COD <name> and COMMIT
These instructions form the bare minimum for our design, but they

do not limit possible extensions in the future. The Codelet control
operations coordinate the communication across levels for initiating
and finishing Codelet Execution. The COD <name> operation spawns
a new Codelet for execution on the level below. The COMMIT opera-
tion informs the upper level that the Codelet has finished execution
and results are ready to be used.

Codelets are user defined, therefore it is necessary to provide
flexibility in terms of number, type (Register or Immediate value),

and read/write direction of operands. Read or write direction allows
the out of order engine to discover dependencies during execution.

5 Evaluation
In order to evaluate the feasibility of this architecture and to

provide an early prototype, we have developed an emulator of the
SuperCodelet architecture: SCMUlate [7]. This emulator resembles
the behavior of two levels of the Super Codelet Model, and it runs in
current multicore systems with support for integrated GPUs through
OpenMP offloading code generation. We show a Matrix Multiplica-
tion example.

All tests were performed on an Intel Core i7-8700k processor.
There are 6 CPU cores, each with HyperThreading technology (i.e.
SMT with 2 threads), for a total of 12 hardware threads. In addition,
it contains an Intel UHD Graphics 630 Gen 9.5 architecture inte-
grated GPU. The processor is hosted in a Dell Model Precision 3630
desktop tower. Additionally, it is equipped with 32 GB of DRAM
distributed in two 16 GB DDR4 DIMMs, each running at 2666 MHz
and a last level of cache (LLC) of 12MB.

The Assembler (Interpreter) It allows to interpret the set of
SuperCodelet ISA operations as mentioned in section 4. Assembly
code is translated into executable instructions at runtime. The input
of the assembler is a text file containing the code of level L1. The
output is a list of objects representing the Instruction.

The Runtime It maps the SuperCodelet Abstract Machine and
its execution model to the available resources. A software thread is
created per hardware thread in the system and each thread is assigned
a role. There are three roles in the Abstract Machine: SU or Schedul-
ing Unit, CU or Computation Unit, and MU or Memory Units. One
single thread is the Scheduling Unit. This thread does not participate
in the computation, but it is in charge of the arithmetic and control
operations of the SuperCodelet ISA. The rest of the threads are all
Computational Units and Memory Units executed concurrently one
role at a time depending on the instruction. The Scheduler Unit per-
forms fetch and decode operations. If the instruction is an arithmetic
or control instruction, then it is executed immediately. Otherwise, it
needs to be scheduled to a CU or an MU. There are three modes of
operation: sequential, Superscalar, and Out of Order.

L0 Codelet definition These are declared and defined in C++
through the use of classes and macros. A Codelet is automatically
registered to a lookup table. When the assembler sees a COD instruc-
tion, it uses the lookup table to find the implementation, creates an
executable Codelet containing the arguments, and assigns it to one
of the computational Unit.

Register File To emulate the behavior of the register file, SC-
MUlate uses the LLC. A segment of memory in DRAM is allocated
as big as the LLC. A register name keeps a reference to this loca-
tion in memory, allowing to maintain locality between producer and
consumer Codelet. The expectation is that any memory access that
occurs within a Codelet scheduled in a CU (GPU or CPU) will have
almost zero cache misses in the LLC. Following, the simulated L1
register file is partitioned into registers of different sizes that are
multiples of the cache line. Memory instructions, such as LD and
ST, perform copies from a memory location of L2 (i.e. DRAM) to
the segment of memory that maps the L1 register file.
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5.1 Matrix multiplication
Dense Matrix multiplication is one of the most widely used kernels
in scientific computation and data sciences. In matrix multiplication,
tiling provides an structure that can be easily mapped to the hierar-
chical structure of the Sequential Codelet Model. The underlying
strategy adopted for this example is a tiled Matrix Multiplication, us-
ing an L1 Codelet per tile with L1 registers as operands. This Codelet
is called MatMult_2048L. The matrix multiplication performed in-
side this Codelet is fixed in size. The operation to be performed is
C =C A∗B.

The MatMult_2048L uses registers of size 2048L (i.e. 2048x64
= 131072 bytes). These registers can fit a square tile of dimension√︃

2048∗64
8 = 128. When copying data between memory and registers

the elements in memory may not be contiguously allocated. Conse-
quently, an special 2D memory access operation is required. Two
memory Codelets are defined for loading and storing tiles. These
Codelets are named LoadSqTile_2048L and StoreSqTile_2048L
respectively. Listing 1 shows the matrix multiplication L1 SCM
code for a single tile. The complete code can be seen in the GitHub
repository [7].

1 LDIMM R64B_1 , 0 ; / / Loading base a d d r e s s A
2 LDIMM R64B_2 , 131072 ; / / Loading base a d d r e s s B
3 LDIMM R64B_3 , 262144 ; / / Loading base a d d r e s s C
4 / / S i n g l e t i l e code
5 COD LoadSqTile_2048L R2048L_1 , R64B_1 , 128 ; / / Load A t i l e
6 COD LoadSqTile_2048L R2048L_2 , R64B_2 , 128 ; / / Load B t i l e
7 COD LoadSqTile_2048L R2048L_3 , R64B_3 , 128 ; / / Load C t i l e
8 COD MatMult_2048L R2048L_3 , R2048L_1 , R2048L_2 ;
9 COD S t o r e S q T i l e _ 2 0 4 8 L R2048L_3 , R64B_3 , 128 ; / / S t o r e C t i l e

10
11 COMMIT ;

Listing 1: Matrix Multiplication 1 tile: C.

1 IMPLEMENT_CODELET ( MatMult_2048L ,
2 / / O b t a i n i n g t h e operands
3 double *A = t h i s −> ge tPa rams ( ) . getParamValueAs <double * >(2) ;
4 double *B = t h i s −> ge tPa rams ( ) . getParamValueAs <double * >(3) ;
5 double *C = t h i s −> ge tPa rams ( ) . getParamValueAs <double * >(1) ;
6
7 cblas_dgemm ( CblasRowMajor , CblasNoTrans , CblasNoTrans ,
8 TILE_DIM , TILE_DIM , TILE_DIM , 1 , A,
9 TILE_DIM , B , TILE_DIM , 1 , C , TILE_DIM ) ;

10 ) ;

Listing 2: Optimized version of matMult_2048L.

Three different implementations of the MatMult 2048L Codelet
were explored: No optimized, user optimized, and Matrix Multipli-
cation with Intel’s MKL library. The No-optimized is a naïve Matrix
Multiplication implementation. The user optimized implementation
swapped two lines of the naïve version, allowing a modern compiler
to easily vectorize this code using SIMD extensions. Finally, List-
ing 2 uses Intel’s Math Kernels Library (MKL) to highly optimize
the execution of Matrix Multiplication. A GPU implementation is
achieved by using an OpenMP target region inside of the Codelet’s
implementation. OpenMP is only used to generate code for the GPU
and schedule it, but not to speed up computation outside of the
Codelet. Intel’s OneAPI compiler is used to generate code for the
Intel Gen9 GPU.

5.2 Results
Figure 4 shows the execution time of a single Codelet in all three
implementations. It also overlaps the overall execution time for M =

Figure 4: M=N=K=40 tile dimension. Scalability comparison for
different implementations
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N = K = 40 tiles running on all 12 threads. Out of order execution is
enabled in SCMulate. This figure shows it is possible to change the
implementation of a Codelet that keeps its API in the upper level.

Figure 4 shows a scalability comparison of all three Codelet
versions. NoOpt and UserOpt show an almost perfect scaling until
5 CUs. After 6 CUs scalability is affected by resource sharing in
HyperThreading. Given that all the Codelets are computational units
and memory units, memory bandwidth is saturated after 6 cores
are used. On the other hand, Scalability in the MKL version is
affected by a large scheduling time in the emulator, in comparison
to the execution time of the Codelet. These results influence the
formulation of section 5.3. Figure 5 shows the execution time of
the Matrix Multiplication microbenchmark when running on the
Intel Gen 9.5 Integrated GPU. The LLC is shared between the CPU
and the GPU, allowing for access to share values between CPU and
GPU. Similar to the case of MKL, scalability is poor due to the high
performance of the GPU Codelets. Larger Codelet sizes are needed
to fully take advantage of the SCM machine.

5.3 Defining the appropriate size of Codelets
The size of a Codelet is determined in terms of execution time.
Figure 6 shows how the size of Codelets have a direct impact on
the execution time of the application. Figure 7 shows a diagram that
allows to create a mathematical foundation of the number of CUs and
the size of a Codelet. Let us assume that the SU will take a constant
time Ts to schedule an instruction (Codelet) into a CU and that the
Codelet has a compute time TC. Notice that as the number of CUs
increases, the time it takes for the scheduler to finish assigning work
to all the units grows, proportional to the number of CUs. Assuming
no synchronization cost, and no extra overhead in the system, the
time between one allocation and the next one, for the same CU is
equal to TsXNCU where NCU is the number of CUs in the systems.
This time is referred to as TMIN , and it will be the shortest time for
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Figure 6: 5 CUs and M=N=K=20. Bars: Codelet execution time (left
axis). Line: Program Execution Time (right axis).

Figure 7: Sequential bottleneck. Ts Scheduling time for Codelet. Tc
Compute time. TMIN minimum compute time to avoid Twaste

sub-utilization

all CUs to be busy all the time. If TC is shorter than TMIN , there will
be a waste in execution equal to Twaste in the figure. The size of the
Codelet has a direct impact on scalability, as seen in section 5. One
must increase the Codelet size (i.e. TC), or reduce scheduling time
(i.e. Ts) to allow to take advantage of the Sequential Codelet Model.

6 Related Work
This work extends the original Codelet Model proposed by Suet-

terlein et al. in [18], we have borrowed the definition of Codelet,
change the machine model and program execution model. The Se-
quential Codelet Model is a hybrid dataflow/Von Neumann architec-
ture. Historically, several hybrid approaches have been proposed and
can be reviewed in surveys such as [20] [17]. Perhaps the ones that
share the most properties with this work are [4][12] [5] [3]. They
propose a similar description of sequential execution of tasks that
are executed in parallel by means of out of order execution engines.
Furthermore, some prior work proposes the use of hardware mecha-
nisms for handling data dependencies across tasks. Although we use
a similar sequential abstraction and out of order execution schemes,
the Sequential Codelet Model proposes a hierarchical organization
of both scheduling and memory. Such organization result in an exe-
cution model that may be used beyond multiple cores, and possibly
mapped to multiple nodes and groups of nodes.

7 Conclusions
This paper introduces the SuperScalar architecture. An archi-

tecture based on the Sequential Codelet Model. The hierarchical
structure of the SuperCodelet architecture aims to utilize hierar-
chical sequential semantics to be used in parallel, distributed and
heterogeneous systems, taking advantage of out of order execution
techniques that are inspired by dataflow models of computation.
We present a theoretical background, system organization, and pro-
gramming model for the SuperCodelet Model. We also present an
evaluation framework that shows the feasibility of our system in
current commodity parallel and heterogeneous hardware.
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