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Abstract
We report carbon impurity ion incident angles and deposition rates, alongwith silicon erosion rates,
frommeasurements ofmicro-engineered trenches on a silicon surface exposed to L-mode deuterium
plasmas at theDIII-D divertor. Post exposure ex-situ analysis determined elementalmaps and
concentrations, carbon deposition thicknesses, and erosion of silicon surfaces. Carbon deposition
profiles on the trench floor showed carbon ion shadowing that was consistent with EROcalculations
of average carbon ion angle distributions (IADs) for both polar and azimuthal angles.Measured
silicon net erosion rates negatively correlatedwith the deposited carbon concentration at different
locations. Differential erosion of surfaces on twodifferent ion-downstream trench slope structures
suggested that carbon deposition rate is affected by the carbon ion incident angle and significantly
suppressed the surface erosion. The results suggest the C impurity ion incident angles, determined by
the IADs and surfacemorphology, strongly affect erosion rates as well as themain ion (D,T,He)
incident angles.

1. Introduction

Low-Z impurities, such as C and Be, can play an important role in the erosion of high-Zmaterials in tokamak
plasma devices. InH-mode operations with edge localizedmodes (ELMs), erosion in the divertor is
dominated by physical sputtering enhanced by impurities, e.g., C forDIII-D [1, 2] and ASDEXUpgrade [3],
and Be for JET [4, 5]. On the contrary, C deposition on plasma-facing component (PFC) surfaces reduces the
effective sputtering rate ofMo andWdue to deposited C diluting thematerial surface in L-modeDIII-D
discharges [6]. Similar calculation results ofW erosion suppressionwere reported for L-mode EAST
discharges when the C impurity concentrationwas higher than 1% [7, 8]. Hence, the characteristics of those
low-Z impurities such as deposition rate, concentration in the plasma, and incident angle and energy
comprise crucial information needed to understand the net erosion of PFCs.Modeling using the ERO3D-
Monte Carlo code and simple equation-of-motionmodels showed that the sheathwidth is a critical parameter
controlling the incident ion trajectory of C [9] as well as D andHe ions [10, 11]. Calculations have also shown
that the incident ion angles of C [9], Be, andN [12] impurities aremore affected by the sheath than that of the
mainD species.
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Wehave previously reported experimentalmeasurements of the polar and azimuthalD ion angle
distributions (IADs) at the divertor surface inDIII-Dusing 30×30×2–4 μmdeepmicro-trenches [11, 13].
These sample surfaces were exposed to L-modeDdischarges using theDivertorMaterials Evaluation System
(DiMES) facility [14] at DIII-D.Deposition patterns of C impurities on the trench floors resulting fromD
incident ion shadowing effects from the trenchwalls weremeasured by energy-dispersive X-ray spectroscopy
(EDS) and comparedwith a net erosion calculated by theMonte Carlomicro-patterning and roughness (MPR)
code [15, 16]. TheCEDS intensity profiles showed that trenchfloor erosionwasmaximized at the azimuthal
direction ofj=−40° (referenced toj=0° for the toroidalmagnetic field) and polar angle of θ=80°
(referenced to θ=0° for the surface normal), inwhich the incident angle of themagnetic field onto the surface
wasα=88.5° (referenced to the surface normal). A schematic of the spherical coordinate system employed for
this article is shown in figure 1(b) of reference [10]. TheMPR code reproduced the erosion pattern by usingD
IADs, which have average values ofj=−40° and θ=80°, calculated by an analytical equation-of-motion
model [10, 17] for the case k=3 and LMPS=k×ρi (ρi: the ion gyro radius), when the sheath potential was
analytically approximated byf=fw exp(−2z/LMPS) (fw: the potential drop at thewallmeasured from the
entrance of the sheath, z: the distance from the surface).

In this paperwe report on the accumulation of C impurities inD ion shadowed areas of themicro-trenches
and Si erosion at various locations on the Si discDiMES samples. Themicro-trench technique revealed the effect
of C redeposition on Si erosion from the sample, which benchmarks the previousDiMES experiments and ERO
calculations forMo andW [6]. Carbon deposition profile and thickness in theD ion shadowing area on the
trenchfloor, C impurity concentrations at different locations, and erosion of the trenches were analyzed after
exposure to L-modeDdischarges. Sputtering and deposition ofmaterials were calculated by theMPR code,
which uses the experimentally verified polar and azimuthalD IADs and calculated average C IADs.

2. Experiment

A schematic drawing of the Si samples with trench locationswas shown in a previous report (figure 1 of [13]).
Micro-trenches 30 μm×30 μm×2–4 μmdeepwere fabricated on the ‘downstream’half of the Si sample
surface relative to the toroidalmagnetic field,BT, direction by a focused ion beam (FIB) etching system that used
Ga ions at 30 keV as described in a previous report [13]. FIB etching formed aGa-implanted Si layer 28-nm
thick, whichwas calculated by SRIM [18] for the penetration range, i.e., peak concentration depths, of 30-keV
Ga ions in Si, at the trenchfloor andwall surfaces. The layer will be used as a reference property of the original
trench surface so thatmorphology changes before and after plasma exposures can be analyzed.We use data from
the two samples reported in [11, 13] that were located at the center of theDiMES head and indicated as ‘S1’ in
[13]. Configurations of the samples and trenches used in this analysis are summarized in table 1.We refer to the
samples reported in [13] and [11] as ‘S1A’ and ‘S1B’, respectively. The trenches reported herein are denoted as
T31 andT32 (3- μmdeep) on S1A (figure 1 in [13]), andT41 andT42 (4-μmdeep) on S1B.T42 is the trenchT4
reported in [11] located at the same position asT32 (0.5 mm from theDiMES head boundary), andT41 andT31

Figure 1. (a) Schematic of a trench indicatingBT directions, slopedwalls, trench coordinates (x-y), and point locations (·1-4) used for
analysis. (b)GaEDSmap of trenchT42 on S1B, withmajor radiusR and toroidal fieldBT directions indicated. The 1–2 μmwide dark
region on thefloor seen at the bottom and right sides, just next to trenchwalls, arises because x-rays from that region are blocked by
the trenchwalls.
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are located in the inner trench array (2 mm from theDiMES head boundary). Themain difference between
samples S1A and S1B is the trench orientation: the S1B trencheswere rotated clockwise by 45° in the x-y plane
compared to the S1A trenches. Figure 1(a) shows a schematic of theBT directions, slopedwalls on the ion
downstream sides, trench coordinates (x-y), and locations used for analysis. A geometrical profilemeasured by
atomic forcemicroscopy (AFM) before exposure, and a scanning electronmicroscopy (SEM) image after
exposure, of a 3- μmdeep trench on S1A are shown infigure 2 and 3 of [13], respectively. The slope structures on
the ion downstream sides are seen in bothfigures, andAFMmeasurements indicated the slope tilt was∼20°
from the horizontal plane.We identify those slope structures as the x-slope (marked as·1) and y-slope (marked
as·2) infigure 1(a).

The samples were exposed to steady-state L-modeDplasmas characterized by electron temperature
Te∼30 eV, electron density ne∼0.7×1013 cm−3, ion flux I∼1018 cm−2 s−1 perpendicular to the divertor
surface,BT=2.0 T, and aB incident angleα=88.5°. Total exposure timeswere 30 s (L-mode shots:#179785-
87, 179789-93) for S1A and 10 s (L-mode shots:#182505, 182506, and 182508) for S1B. TheC impurity
concentration in the plasmaswas estimated to be 1.2% for similar discharge parameters (‘S-DCase’ in [10]) by
an ERO calculation [19] andwe assume a similar C ion concentration in the experiments considered herein.
UEDGEmodeling of Cx+ ion fractions in aH-mode plasma inDIII-D showedC2+ andC3+were the dominant
species, with fractions of C+ andC4+ one order ofmagnitude smaller [19].We examine theC+ andC3+ species
to evaluate the effect of theC ion charge states on redeposition in section 4.We assign experimental errors for the
azimuthal and polar angles as±3° and±1°, respectively, herein due to the experimental uncertainty in
mounting the sample in theDiMES head. Post-exposure ex-situ analysis was performed using SEM, EDS, and
AFMas described previously [13]. The electron energy for EDSwas chosen to be 5.0 keV, at which the
penetration depth in Si is 200 nm [20]. EDS concentration analysis was performed three times by slightly shifting
the target positionwithin a 1 μmdistance at each location. Averaged values are used for each location, and
standard deviations are indicated by the error bars. 2D elemental depositionmaps and 1D line profiles using the
EDS signals were generated by the same procedure as described previously [13].

3. Computationalmodel

AMonteCarloMPR code [15, 16, 21]was used tomodel physical sputtering andC impurity deposition due toD
andC ion bombardment on the trench Si surfaces or deposited C layers. 3D geometries of the trencheswere
mathematically reproduced (as shown infigure 2 of [13]) and used as input to theMPR code.We used the
azimuthal and polar D IADs for k=3, whichwere verified experimentally with an uncertainty of±0.5 [11], to
set up the flux ofD ions.We employed a single ion direction, θ=60° andj=−55°, taken from average C
(Cx+: x=1–3) IADs calculated by EROassuming k=2.4 [9], to set up theC ion flux. Both energy and angular
dependencies of sputtering and reflection rate coefficients were the same as those in [13] forD ion projectiles.
We used sputtering and reflection rate coefficients from [22, 23] for C ion bombardment onC. The incident ion
energies, Eimpact, employed for calculations were 140 eV forD+ andC+, and 300 eV for C3+, by assuming

Table 1. Summary of Cnet deposition and Si net erosion for four trench configurations. Si erosion depth
wasmeasured byAFM, andC concentrations at locations outside the trenchweremeasured by EDS.

Trench T42 T32 T41 T31

SampleDisc S1B S1A S1B S1A

yDirection (j) 0° 45° 0° 45°
Depth [μm] 4 3 4 3

Distance fromDiMESHead [mm] 0.5 0.5 2 2

Exposure Time [s] 10 30 10 30

CNetDeposition (±30) [nm] 110 300 100 280

CNetDepositionRate [nm s−1] 11±3 10±1 10±3 9.3±1
10.5 (avg.) 9.7 (avg.)

SiNet Erosion (±30) [nm] at position 4 38 100 53 170

SiNet ErosionRate [nm s−1] 3.8±3 3.3±1 5.3±3 5.7±1
3.5 (avg.) 5.5 (avg.)

CConcentration [%] at position 4 5.4±0.1 5.4±0.2 4.1±0.2 4.9±0.3
5.4 (avg.) 4.5 (avg.)

SiNet Erosion (±30) [nm] at position 3 — — — 110

SiNet ErosionRate [nm s−1] — — — 3.7±1
CConcentration [%] at position 3 9±1.6 8.7±0.2 5.4±0.4 4.9±0.2

8.8 (avg.) 5.2 (avg.)
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Eimpact∼3ZikTe+2kTi andTe∼Ti [13, 24]. A value of 140 eV for singly ionized species was employed rather
than 150 eV because of the availability of rate coefficients.

4. Results and discussion

4.1. C accumulation on the trenchfloors
EDS intensitymaps of samples S1A and S1B reveal deposition patterns of elements, including C, on the trench
floors andwere reported in [13] and [11], respectively. Figure 2 shows aC intensity line profile from S1B
trenchesmeasured by EDS along the x-direction (defined infigure 1) at y=20 μmaveraged over a 10 μmwide
band. TheC intensity increases as a function of distance from the upstreamwall and ismaximized at x∼5 μm.
This distance is consistent with the shadowing boundary of the averagedC IAD calculated byGuterl [9],
x=5.5 μm (CBykov infigure 2), and theC accumulation direction onCmicro-spheres recentlymeasured by
Bykov [25]. TheC intensity is fairly uniform in the range x∼5–7 μm, especially forT42. The decay after
x∼6–7 μm (wP1 infigure 2) is due to sputtering by theD ions having shallower incident angle thanC ions [13].
The same trend for theCpeak location for theT32 andT31 trencheswas seen infigure 6(a) of [13], where theC
EDS profiles hadmaxima at x∼5 μm, consistent with the average C ion shadowing boundary for those trenches
thatwas expected at x=5 μm.The continuous C intensity profiles near the upstreamwall (x=0–5 μm) for
those four trenches indicate broadC IADs [9].We note that there can also be impurity C ions promptly
redeposited [13] from theDiMES graphite head, and that C neutralsmay bemore uniformly deposited than
C ions.

TheGa EDS intensitymap forT42 infigure 1(b) shows the presence ofGa everywhere in the trench except
for the x-slope region. Thismeans that the implantedGa layer (the original trench floor)was not completely
eroded away by the plasma exposure except for in the x-slope region. This is in contrast to theGa EDS intensity
map forT31 shown infigure 5(b) of [13]. TheGa EDS intensity in [13] is visible in the area near x=10 μmfrom
the upstreamwall and there is a darker region around the upstreamwall and downstream region (upper half of
the EDSmap). This indicates that deposited C covered theGa-containing top layer in theD-ion shadowed
region, whileD ions sputtered theGa-containing layer away in the downstream area. The difference between the
Ga profiles for theT42 andT32 trenches arose because theGa-rich layer on the entire floor ofT42 survived the
short 10-s plasma exposure time, but theGa-rich layer for theT32 case was partially eroded by the 30-s plasma
exposure. The areawithwell-pronouncedGa intensity can be used as a reference for the original Ga-rich trench
surface. AFMmeasurements shown infigure 2 found a geometrical profile change of theT42 trenchfloor after
plasma exposure. The profile shownwas obtained by subtracting anAFMprofile of theT42 trench before
exposure fromanAFMprofile of the same trench after exposure to reveal themorphology changes. TheAFM
height of the area whereGaEDS intensity was high (x>15 μmforT42) andCdepositionwas low (confirmed
byCEDS intensity), was set to a value of ‘zero’ to indicate the height of the original trench surface. Themain
uncertainty in the height obtained by thismethod of calibration is from the thickness of the original Ga-rich
layer,∼30 nm. TheAFMprofile of theT42 trenchwas consistent with theCEDS profile, especially in the range
x>7 μm.This indicates that the deposition on the trenchfloor consistsmainly of C. Themaximumheight due
toCdepositionmeasuredwithin each trench is summarized in table 1. A height of∼100 nmwasmeasured for
the S1B samples (T41 andT42), and∼300 nmwasmeasured for the S1A samples (T31 andT32). The results are

Figure 2.CEDS intensity profiles (black) forT42 (solid) andT41 (dashed), andAFMgeometrical profile (red) for the 4- μmdeepT42
trenches. Distances labeled asCBykov andwP1 are the expected C andD ion shadowing characteristic boundaries, respectively.
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consistent with the ion fluence on each sample, since the S1B exposure timewas about three times longer than
for S1A. The thickness of∼300 nm is also relevant to a deposited C layer of∼200 nm thickness that was
measured on a carbon-sphere [25] using the same plasmas and exposure time as for S1A. Thicker C deposition
layers weremeasured in our case because these C layers weremeasured in theD ion-shadowed region, while the
C accumulated on themicro-spheres was directly exposed toD ions, causing some re-erosion. TheC deposition
ratemeasured by the trench techniquewas∼10 nm s−1 perpendicular to the sample surface.

4.2. Erosion suppression byC impurity deposition
Measurements of the trenchmorphologies withAFMcan determine the Si net erosion rate. The height of the
surface outside the trenches wasmeasured relative to theGa-rich layer on the trenchfloor before and after
plasma exposure. These height differences were used to determine the net Si erosion rate outside the trenches.
The results are summarized in table 1. Themeasured Si net erosion rates were 3.5 nm s−1 for trenchesT32 and
T42 and 5.5 nm s−1 for trenchesT31 andT42. Interestingly, for both S1A and S1B, different erosion rates were
measured at different locations on the same sample. Table 1 also shows theC concentration (at%) outside the
trenches asmeasured by EDS. TheC concentrations forT32 andT42 located nearer to the edge of the sample
discs and closer to theDiMES headwere 5.5%,which is higher than the 4.5% forT31 andT41 located at the
middle of the sample discs. Such aC concentration gradient as a function of distance from theDiMES head
boundary is consistent with the analysismade previously [13].Modelling byDing et al [6] showed previously
that the net erosion ofMowas suppressed by 20%–50%when the surface C concentration increased by 20% in a
typical C impurity concentration range of 1%–2% in the background plasma. Such a correlation betweenC
concentration and Si erosion rate can also be seen in the experiment reported herein. SiC formation due toC ion
bombardment on the Si surfacemay also be a factor, since SDTrimSP [26] calculations give that SiC has an order
ormagnitude smaller sputtering yield than amorphous Si:C for 150 eVD ions [27]. TheC ion penetration ranges
for 150 eV and 300 eV at normal incidence calculated by SRIM [18] are 1.5 and 2.2 nm, respectively. Si net
erosion on the trench floor, in areas beyond theD ion shadowing limit, was alsomeasured and is shown in
table 1. Themeasured Si net erosion for trenchesT42,T32, andT41was zerowithin the error bars.We see the
erosion rate forT31 is lower than the rate outside the trench. Those results suggest suppression of Si erosion
from the trench floor occurred because theC concentrations in these areas were 15%–60%higher than outside
the trench.

EDS analysis for theT42 andT41 trenches indicated that theGa layer survived on one of the downstream
slopes, whichwas not shadowed from either C orD ions, as shown infigure 1(b). NoGa layers were seen on the
sloping sidewalls ofT32 andT31, possibly due to the long exposure time. Figure 1(b) shows theGa-implanted
layer on the x-slope ofT42was eroded away, but it survived on the y-slope ofT42. Table 2 shows results from
MPRcalculations of the sputtering rate of Si due toD ion bombardment at the different locations indicated in
figure 1, normalized to the sputtering rate outside the trench at location 4. The sputtering rate on the trench
slopes were calculated to be about eight times higher than outside the trench due to enhancement of the incident
ionflux [ions/s·m2] and the sputtering yield [atoms/ion] by steeper ion incident angles. Therefore, the erosion
of those slopeswould be expected to bemuch larger than theGa-implanted layer thickness.

This suggests somemechanismpreventedGa erosion at the y-slope (at location 2) of trenchesT42 andT41.
Table 2 shows that theGa concentration has a positive correlationwith the redepositedC concentration after
exposure. C concentrations on the y-slopes are 20%–50%higher than on the x-slopes and outside surfaces for
each trench.MPR calculations for C ion bombardment onC layers were performed to understand this C
redeposition behavior. These calculations show that the ionflux is enhanced at both the x- and y-slopes due to
the steeper incident anglesmade by the slope geometry. If wemultiply the ion flux by the effective deposition
yield, given by (1 -RN)−Yphys, whereRN is the reflection yield [atoms/ion] andYphys is the sputtering yield
[atoms/ion], we obtain the effective deposition rate as a function of the incident angle, which is shown in table 2.
These calculations found that C depositionwas larger on the y-slope by 40% forC+ and 210% forC3+ incident
ions, relative to the x-slope. The ratio of theC concentrations on the y-slope and x-slopeweremeasured to be
40%–50% in bothT42 andT41. The negative deposition rate (i.e., net erosion rate) of C3+ indicates that
sputtering byC incident ions dominates C deposition on the flat surfaces (Locations 3 and 4). Hence, C
accumulation seen in theD ion-shadowed areamay bemainly due to incident C+ (orC2+) ions.However,
becausewe do not havemore detailed information about theC ion charge states and their background plasma
concentrations, quantitative analysis will be left to future studies using 3DMonte Carlomodeling codes such as
EROorGITR [28, 29]. Nevertheless, these results qualitatively explain the significant suppression of net erosion
of trench y-slopes. This underscores the importance of understanding the balance between net erosion and
deposition of low-Zmaterial, which is affected not only by the impurity fractions and their charge states
(energy), and also by the incident ion directions and surfacemorphology of the PFCs.
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Table 2. Summary of C andGa concentrations at different locationsmeasured by EDS, and sputtering yields and deposition rates calculated byMPR.MoreGa (less erosion)was detected, and higher C depositionwas calculated, on the y-
slope relative to the x-slope. The retention yield is defined as 1-RN.

EDS (exp.) MPR (calc.) MPR (calc.)

T42 T42 T42,T41 T42,T41

Concentration [%] Concentration [%] D+(140 eV)→Si C+(140 eV)→C C3+(300 eV)→C

Location C Ga C Ga

Avg.

Impact

Angle

Norm. Sput-

tering Rate

Impact

Angle

Norm.

Flux

Retention

Yield [/ion]
Sputtering

Yield [/ion]
Deposition

Rate [a.u.]
Retention

Yield [/ion]
Sputtering

Yield [/ion]
Deposition

Rate [a.u.]

1, x-slope 6.4±0.5 0.7±0.4 3.5±0.1 0.0±0.0 63° 7.5 48° 1.5 0.9 0.28 0.93 0.76 0.53 0.35

2, y-slope 9±1 4.7±0.4 5.2±0.2 2.9±0.1 66° 8.6 40° 1.7 0.95 0.19 1.29 0.81 0.37 0.75

3, Floor 9±1.6 4.7±0.8 5.4±0.4 3±1 80° 1
60° 1 0.76 0.41 0.35 0.61 0.8 -0.19

4, Outside 5.4±0.1 4.1±0.2 80° 1
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5. Summary

In order to investigate C impurity ion incident angles in theDIII-D divertor and obtain new information about
PFC erosion, we have exposed 30×30×3 or 4 μmdeepmicro-trenches in a Si sample to L-modeDdischarges
for a cumulative 30 s or 10 s using theDiMES facility atDIII-D. C deposition profiles on the trench floors
inferred via EDS analysis were consistent with theC ion incident directions corresponding to a polar angle of
θ∼60° (referenced to the surface normal) and azimuthal angle ofj∼−55° (referenced to the toroidal
magnetic field direction) calculated by the ERO code. The thickness of deposited C layers post-exposure was
measured byAFMof themicro-trench floors and by comparing this height to the original trench surface
identified by aGa-implanted layer formed during fabrication. TheCnet deposition rate in an area of themicro-
trenchfloor thatwas shadowed from incidentD ionswas∼10 nm s−1 during plasma exposure. AFMwas also
used tomeasure the Si net erosion rates, whichwere 3.5–5.5 nm s−1 during plasma exposure. EDSwas used
post-exposure tomeasure C concentrations outside the trenches and a correlation between theC concentration
and the Si erosion rate indicates erosion is suppressed by surface dilution fromC impurity deposition. EDS
analysis also showed that theGa-implanted surface layers remained intact on the sloping trenchwall along the
toroidal direction after plasma exposure. C concentrations on this slopingwall were 40%–50%higher than
concentrations on the slopingwall along the poloidal direction.Hence, C depositionmay explain the significant
erosion suppression on thewall along the toroidal direction.MPR calculations indicated that theC deposition
rate on thewall along the toroidal direction should be higher than one along the poloidal direction by 40% for
C+ or 210% forC3+ incident ions due to the steeper incident angle. These results reinforce the conclusion that C
impurity ion incident angles, which are determined by theC IADs and the PFC surfacemorphology, strongly
affect PFC erosion rates.
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