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Pluvial flooding is a serious hazard in inland U.S. cities. City managers and communities are increasingly
interested in reducing their pluvial flood risk through the development of green infrastructure (GI) features. This
research explores the relationship between pluvial flood exposure and GI placement in three inland cit-
ies—Atlanta, Phoenix, and Portland-and analyzes the variation of sociodemographic variables in census block
groups (CBG) located in pluvial flood zones. Using the Arc-Malstrgm method, we estimated areas of pluvial
flooding in the CBGs of our selected cities by relating pluvial flood area to the density of GI in CBGs and assigning
CBGs one of four classifications: i) managed (large flood area, abundant GI), ii) prepared (small flood area,
abundant GI), iii) vulnerable (large flood area, scarce GI), and iv) least concern (small flood area, scarce GI).
Then, using the historical GI data, we examined the proportionality of GI investment over time to pluvial flood
area. We found relationships between GI density, flood area, ethnic and racial minority populations, age,
educational attainment, and median household incomes that indicated inequalities and potential discrimination
in flood risk management, but also some evidence of equitable and appropriate management given differences in
flood risk, especially in Phoenix and Portland. In Atlanta, newer GI installation prioritized white and wealthy
neighborhoods where relatively higher flood risk exists (less equitable). Our classification framework may assist
city flood risk managers to distribute GI more equitably according to equitability and need.

1. Introduction surfaces include, but are not limited to, rooftops, walkways, patios,

driveways, parking lots, storage areas, and concrete or asphalt (Sca-

In the United States, the extent of urban areas relative to total land
area is estimated to increase from 3.1% in 2000 to 8.1% in 2050, an
increase in area of 392,400 km?, which is larger than the state of
Montana (Nowak & Walton, 2005). Over the 20th century, the most
noticeable sign of urbanization is land transformation to impervious
surfaces (Greiner, Shtob, & Besek, 2020). Impervious surfaces convert
the majority of incident precipitation to runoff. Common impervious

lenghe & Marsan, 2009; Strohbach et al., 2019). Between 2012 and
2017, impervious surface areas increased on average by 326,000
ha/year (Nowak & Greenfield, 2020) and will continue to increase un-
less development practices are reformed.

Many studies have explored the adverse roles impervious surfaces
play in the hydrological cycle (Walsh et al., 2005; Vamvakeridou-
lyroudia et al., 2020; La Rosa & Pappalardo, 2020). The rise of
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impervious areas in cities has increased the frequency of flood occur-
rence, primarily by replacing land-cover types that would convert a
greater proportion of precipitation to infiltration (Cutter, Emrich, Gall,
& Reeves, 2018). Major rain events occurring in regions with large
impervious areas are the primary source of urban flooding, causing
enormous losses of property and life (Cutter et al., 2018). This type of
flooding, known as pluvial flooding, occurs because rates of precipita-
tion exceed the capacity of natural and engineered drainage systems to
store rainwater or convey it safely away from buildings and people
(Rosenzweig et al., 2018). The coupling of intensifying storm events
driven by climate change and increasing areas of impervious surfaces is
exacerbating urban pluvial floods (Trenberth, 2011; Dong, Esmalian,
Farahmand, & Mostafavi, 2020).

The rapid growth of urban areas (Grimm et al., 2008) often coincides
with increasing social and economic inequality. Decades of research
have shown that communities of color suffer disproportionate damages
from various forms of natural disasters, such as hurricanes, tropical
storms, and tornadoes (Fothergill & Peek, 2004; Peacock & Girard,
1997; Peacock, Dash, & Zhang, 2006), as well as flooding (Zahran,
Brody, Peacock, Vedlitz, & Grover, 2008). Most studies have focused on
the vulnerability of racial and economic minorities to fluvial floods,
leaving out the pluvial flood association. For example, research shows
that aside from multidimensional poverty (Bahls, 2011; KewalRamani,
Gilbertson, & Ann Fox, 2007), minority racial and ethnic groups are
more likely than their white peers to be negatively impacted by fluvial
flooding (Knighton, Hondula, Sharkus, Guzman, & Elliott, 2021; Mess-
ager, Ettinger, Murphy-Williams, & Levin, 2021). Similar inequitable
patterns exist for disaster mitigation (Eisenman, Cordasco, Asch,
Golden, & Glik, 2007; Hartman & Squires, 2013) and the deployment of
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green infrastructure (GI; Dai, 2011; Heynen, Perkins, & Roy, 2006;
Nesbitt, Meitner, Girling, Sheppard, & Lu, 2019).

With increasing interest in the causes and impacts of pluvial flood-
ing, and given the disproportionate impact and exposure of racial and
ethnic minorities to other forms of flooding, we identify a need to
explore the possibility of differential exposure of racial and ethnic mi-
norities to pluvial flooding. Though many cities have deployed GI with
the primary intent of managing water quality rather than quantity
(Rosenzweig et al., 2018), models have shown that GI can be effective at
reducing the risk of pluvial flooding (Pappalardo, La Rosa, Campisano,
& La Greca, 2017; Maragno et al., 2018). Researchers have specifically
recommended the usage of GI to reduce pluvial flood risk (Lawson et al.,
2014). Yet deployment of, and access to, GI in cities can be inequitable,
leaving racial and ethnic minority and economically disadvantaged
populations with relatively fewer nearby GI elements, but also more
reliant on GI for ecosystem services, than their majority and economi-
cally advantaged counterparts (De Sousa Silva, Viegas, Panagopoulos, &
Bell, 2018; Lin, Meyers, & Barnett, 2015).

Thus, in this study, we explore how urban green infrastructure (GI) is
distributed in Atlanta (GA), Phoenix (AZ), and Portland (OR) at the
census block group (CBG) scale (U.S. Census Bureau, 2011), in order to
highlight potential opportunities for urban planners to increase envi-
ronmental equity in the siting of GI, as it relates to pluvial flood risk.
Although the appropriate definition of GI depends on the context in
which the term is used (Sussams, Sheate, & Eales, 2015), for the pur-
poses of this study, we define GI as the following: GI is an interconnected
network of green space that conserves natural ecosystem values and
functions and provides associated benefits to human populations
(Benedict & McMahon, 2002).
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Fig. 1. A conceptual framework for understanding the distribution and implications of urban pluvial flood risk and green infrastructure (GI) in urban communities.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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While racial inequality has been well studied, there is a notable lack
of literature exploring the relationships between the distribution of
pluvial flood zones, GI that can manage stormwater, racial and ethnic
minorities, and economically marginalized populations. Existing
stormwater and GI manuals specifically address GI implementation ef-
forts in Atlanta (Chattahoochee Riverkeeper, 2019), Phoenix (AECOM,
2020), and Portland (City of Portland, 2019; City of Portland, 2020).
These manuals reveal the priorities of city governments in implementing
GI with stakeholder participation for equitable access. This study may
then be viewed as a supplement to such efforts in our cities, but may
provide a basis on which cities without such manuals might begin to
address environmental equity as it pertains to flooding.

Equitable distribution refers to a form of distribution that is neither
excessive nor insufficient, but is based upon justice and fairness (Hay-
ward, 2007). Our conceptual framework (Fig. 1) describes the distri-
bution of pluvial flood risk and GI, and we argue that this distribution
has implications for sociodemographic variables discussed in this paper.
This analysis can help us better understand flood-related risks and
implement GI in a more equitable manner to ensure environmental
justice for all residents. Therefore, in this study, we relate patterns of GI
distribution to pluvial flood risk. With the help of a GIS-based spatial
analysis, we answer the following research questions:

Q1: How are GI, racial groups, and economically disadvantaged
groups distributed with respect to areas at risk of pluvial flooding?

Q2: What are the sociodemographic characteristics of CBGs that are
prepared, managed, vulnerable, or of low concern to pluvial flooding?

Q3: Is GI distribution becoming more or less concentrated in CBGs of
racial and ethnic minorities and among economically disadvantaged
groups?

2. Study area

The study area consists of three inland US cities—Atlanta, Phoenix,
and Portland—that are prone to pluvial flooding. These cities are diverse
in terms of physical and social characteristics (Table 1 and Fig. 2),
providing scope for comparative analysis. All cities in this study are
growing in population (U.S. Census Bureau, 2020) and have long his-
tories of pluvial flooding, with major pluvial flooding events occurring
in the past 15 years (Chang, Yu, et al., 2021b; Ferguson & Ashley, 2017;
Yang, Smith, & Niyogi, 2019). Future climate models show precipitation
increases for most parts of the United States, and, particularly in the
Northeast, Southeast, and Northwest, the number of extreme rainfall
events expected to occur in a given year is expected to increase (Hayhoe
et al., 2018). These changes in annual precipitation and in the number of
extreme precipitation events are expected to increase even further in
response to the expansion of urban areas (Georgescu, Broadbent, Wang,
Krayenhoff, & Moustaoui, 2021; Hayhoe et al., 2018).

Additionally, our study cities are notable for featuring detectable
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inequalities in assessing green space among various socioeconomic and
racial/ethnic groups. In Phoenix, AZ, tree canopy cover in neighbor-
hoods is negatively correlated with the proportion of the neighborhood
population that is low-income Hispanic (Jenerette, Harlan, Stefanov, &
Martin, 2011; Nelson, Grubesic, Miller, & Chamberlain, 2021); and in
Atlanta, GA, tree canopy is negatively correlated with poverty and
renter-occupied housing (Koo, Boyd, Botchwey, & Guhathakurta, 2019).
In Portland, impoverished and non-white populations have greater
exposure to extreme heat and less access to refuge to escape from it
(Voelkel, Hellman, Sakuma, & Shandas, 2018).

Furthermore, we selected our study cities because racial diversity
varies among the three cities. While Atlanta has the highest proportion
of Black people (54.3%), Phoenix has the highest proportion of Hispanic
people (43.9%). Portland is majority white (70.3%), but the Asian
population (7.8%) is proportionately highest among the three cities.
Additionally, we have previous research experience examining flood
risk and sociodemographic characteristics in these cities (Chang, Palla-
thadka, et al., 2021a). Beyond research experience, we also have a body
of lived experience in them to draw on, which is critical for identifying
potential errors in flood risk, land cover, and sociodemographic
analyses.

3. Data and methods
3.1. Background on the Arc-Malstrgm method

To estimate areas where pluvial flooding is likely to occur during
intense precipitation events, we employed the Arc-Malstrgm method
developed by Balstrom and Crawford (2018). This method uses high-
resolution digital elevation models (DEMs), typically generated
through LiDAR methods, to create a one-dimensional model of sinks in
the landscape, hereafter referred to as blue-spots, as well as the hydro-
logical pathways between blue-spots. This method also calculates the
areas and potential storage volumes of blue-spots before they are
considered filled. Once a blue-spot fills to its capacity, any excess water
flows through the identified hydrological pathways to the next blue-
spot, and upon filling this blue-spot flows through its respective hy-
drological pathway, and so on until the parcel of water reaches either a
blue-spot that does not fill to capacity or until the hydrological pathway
meets the DEM boundary.

The Arc-Malstrgm method assumes that the rainfall rate exceeds
rates of infiltration and evapotranspiration in the landscape, and also the
rate at which any drainage infrastructure can effectively remove water
from the surface. As such, the Arc-Maelstrgm method is most accurate
when modeling pluvial flooding that occurs as a result of very intense (e.
g., of 100-year return period or more) storms, such as monsoons and
cloudburst events. Arc-Malstrgm produces more accurate estimates of
pluvial flooding in areas where there is very low infiltration, such as

Table 1
Key social and physical characteristics of the three study cities.
Study city
Characteristic Atlanta Phoenix* Portland
Climate (Mean annual precipitation, annual temperature range) 1263 mm 211 mm 915 mm
11.7-22.2°C 17.2-30.6 °C 7.8-17.2°C
Impervious Surface Areas % (2016) 40% 52% 56%
Population (2018) 470,684 1,575,554 665,667
Population Density (2018) 1328/km? 1240/km?> 1773/km?
Average Annual Population Growth Rate (2020) 1.67% 1.54% 0.59%

White: 35%

Black: 54.3%
Hispanic: 4.6%

Asian: 3.8%

Native American: 1.0%

Demography (2018)

White: 41.5%

Black: 6.7%

Hispanic: 43.9%
Asian: 3.4%

Native American: 2.0%

White: 70.3%

Black: 5.6%

Hispanic: 9.9%

Asian: 7.8%

Native American: 1.3%

*Phoenix boundary slightly readjusted to fit the study area based on DEM coverage area.
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Fig. 2. Study areas classification based on land-cover characteristics of National Land Cover Database (NLCD) 2016 (Dewitz, 2019).

urban areas with extensive impervious surfaces, and less accurate esti-
mates in areas with natural land-cover types or engineered land covers
that promote infiltration.

The original Arc-Malstrgm model was designed for use in Python 2.7
(Python Software Foundation, 2021) environments and has not been
maintained to function on more recent Python releases. In order to run
the model on more recent Python architecture, we used the Septima fork
(Septima.dk & Balstrom, 2020) of the original Arc-Malstrgm repository
(Septima.dk & Balstrom, 2016), which as of June 2020 ran on Python
3.6.

3.2. Required inputs for Arc-Malstrom

To simulate a high-intensity precipitation event, that would likely
generate substantial damages in our study cities, and that would over-
whelm infiltration and drainage systems in each of our cities, we used
precipitation amounts representative of 100-year return-period storms
with 24-hour durations, that were representative of storms of such re-
turn periods and durations in each of our cities. For Atlanta and Phoenix,
we used the National Oceanic and Atmospheric Administration’s
(NOAA) rainfall atlas, Atlas 14 (NOAA, 2020), to determine represen-
tative precipitation amounts for a 24-hour storm event. Atlas 14 does not
contain rainfall estimates for the Pacific Northwest region of the US, so
for Portland, we calculated rainfall intensity (in/hr) for a 100-year storm
event via the following equation provided in Portland’s Sewer Design
Manual (2019):

Table 2
Input data for Arc-Malstrgm model for our study cities of Phoenix, AZ; Atlanta,
GA, and Portland, OR.

Study city
Arc-Malstrgm input Atlanta, GA Phoenix, AZ Portland, OR
data
Precipitation data NOAA Atlas  NOAA Atlas IDF curve from City of
(Publication year) 14 (2018) 14 (2018) Portland Sewer Design
Manual (2019)
Digital elevation model 1.83m 0.914 m 0.5 m (2014)
resolution (2016) (2014)
(Publication year)
y = 0.0255In(x) +0.0805 (€8]

In this equation, y is the rainfall intensity (in/hr) and x is the return
period of interest. We solved for intensity after using 100 years for x,
and multiplied the resulting value by 24 to account for a 24-hour day,
and converted this value to centimeters for use in the Arc-Malstrgm
model. The precipitation values for 100-year return period, 24-hour
duration storm events for Atlanta, Phoenix, and Portland that we used
in the Arc-Malstrgom method were 8.7 c¢cm, 19.1 cm, and 12.1 cm,
respectively. For input DEMs to the Arc-Malstrgm model, we used the
most recent, highest resolution topographic datasets available for each
of our cities (Table 2). The Arc-Malstrgm model produces more accurate



A. Pallathadka et al.
estimates of blue-spot dimensions with higher resolution DEM inputs.
3.3. Arc-Malstrgm model setup and post-processing

We input into the Arc-Malstrgm code each city’s respective precipi-
tation values and DEMs, and limited the model’s outputs to blue-spots
whose depths would be greater than 5 cm. This depth accounts for the
margins of error in the vertical resolution of the DEM data, and also
selects blue-spots whose depths would be impactful on pedestrians, cy-
clists, and potentially even damage buildings that are level with the
surrounding area. After running the model, we then removed all blue-
spots with areas <12 m?, the area of a typical U.S. parking space. This
threshold area of blue-spots was selected so that our identified areas of
flooding would likely impair a primary mode of transportation, auto-
mobiles, in addition to being a nuisance for pedestrians and cyclists. This
threshold area of blue-spots is also greater than the resolution of any of
our input DEMs, making these blue-spots identifiable by any of our
models.

3.4. Green infrastructure data background and selection

Local city governments produce and administer all GI datasets uti-
lized in this study (Table 3). We investigated whether the GI systems
were publicly funded before adding them to the analysis. For the scope
of this analysis, we consider the entire network of green spaces (e.g.,
street planters, rain gardens, bioswales) as a single system rather than
isolating specific types within it because the GI definition is fluid, and
practical applications of specific types vary from city to city. Hence,
viewing GI as a single system allows us to conduct a thorough analysis of
the public GI network and relate it to flood risk and other sociodemo-
graphic variables. The private dataset is not readily available and, to be
clear, is beyond the scope of our study, as our efforts are focused on
better informing the public implementation of GI. We also did not
include soft surfaces such as parks or street trees as part of storm GI.
Thus, we acknowledge that our GI datasets may underreport the true
number of GIs placed on landscape, potentially underestimating the true
benefits of GI in mitigating pluvial flood risk.

3.5. Calculating green infrastructure density and pluvial flood risk, and
determining census block group “preparedness” for pluvial flooding

To calculate GI density at the CBG scale, we divided the number of GI
features that intersect a CBG by the area of the CBG. We used this
method of calculating GI density over other potential methods, such as
dividing GI area by CBG area, because GI in our analysis was represented
by points rather than polygons.

To characterize the blue-spot coverage for a CBG, which is a measure
of the CBG’s pluvial flood risk, we calculated the percentage of the
CBG’s area that intersected with blue-spot areas defined in section 3.1.2.
We then normalized our calculated GI density and blue-spot coverage
values between their minimum and maximum values for each study city
(Equation (2)):

jr\iJ _ Xij — Xminij )
Xmaxij — Xmini j
Table 3
Type of GI included in this study.
City Type of GI included Source
Atlanta Rain Gardens, Rainwater Harvesting, French Drains, City of
Vegetated Filter Strips, Dry Wells, Bioswales Atlanta
Phoenix Bioswales, Retention Basins, Rain Gardens City of
Phoenix
Portland Street Planters, Rain Gardens, Bioswales City of

Portland
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iis the variable being analyzed, in this case either GI density or blue-spot
coveragej is the city in which the analysis is being done: Phoenix, AZ;
Atlanta, GA; or Portland, OR.x";; is the normalized value of variable i for
a given CBG in city j.x;, j is the value of variable i for a given CBG in city j.
Xmin i, j is the minimum value of variable i for all CBGs in city j.Xpmay i, j is
the maximum value of variable i for all CBGs in city j.

Toward creating our preparedness categories, we first ranked the
CBGs of each city according to their normalized values of GI density and
blue-spot coverage. We assigned the top 25% of CBGs in terms of GI
density a preparedness category of 1, indicating that they were consid-
ered to be prepared for pluvial flooding relative to other CBGs in their
city. We assigned the top 25% of CBGs in terms of blue-spot coverage a
preparedness category of 2, indicating that they were considered to be
vulnerable to pluvial flooding relative to other CBGs in their city. We
assigned the CBGs that were ineligible for preparedness categories 1 and
2 instead a category of 3, indicating that their pluvial flood risk was
managed relative to other CBGs in their city. We assigned the remaining
CBGs preparedness categories of 0, indicating that they were considered
to be of lower concern for pluvial flooding relative to other CBGs in their
city (Chang, Yu, et al., 2021b). We named these four unique prepared-
ness categories Prepared, Vulnerable, Managed, and Low concern accord-
ing to their assigned preparedness categories (Table 4). These categories
are relative to each other and should not be interpreted in absolute
terms, although the selection of the top 25% through a quartile classi-
fication has precedence (Chang, Pallathadka, et al., 2021a; Pallathadka,
Chang, & Ajibade, 2021). For example, Chang, Pallathadka, et al.
(2021a) classified flood vulnerability areas into four quartiles and
derived the high flood vulnerability areas from the top 25% quartile.
This study modifies that approach to create four unique categories.
Given the uncertain nature of future flood risk, other cut-off points such
as the top 5 or 10%, for example, could leave out some important areas
that need to improve their preparation, thus the current selection of 25%
would ensure reasonable coverage of important areas that need to be
prepared for future extreme events.

3.6. Sociodemographic data

We used 5-year estimates of sociodemographic variables from the
year 2018, produced by the U.S. Census Bureau as part of the American
Community Survey (ACS). We selected the CBG as the unit of analysis
because it was the finest geographic resolution for which the desired
demographic sample data were available. The selected variables shown
in Table 4 have been established in prior research to be key markers of
vulnerability to pluvial flooding (Chang, Pallathadka, et al., 2021a;
Fahy, Brenneman, Chang, & Shandas, 2019). Our spatial analysis
focused on racial groups and median household income, but the spatial
regression analysis included all of the variables in Table 5. Additional
figures for the remaining variables are included in the supplementary
materials.

3.7. Hotspot spatial analysis

We used the Getis-Ord Gi* method of hotspot analysis to identify
tendencies for positive spatial clustering of demographic characteristics

Table 4

Preparedness categories for census block groups (CBGs) and their relation to GI
density and blue-spot coverage. CBGs were only ranked against other CBGs
within their same city.

Ranking
Preparedness category GI density Blue-spot coverage
Prepared Top 25% Bottom 75%
Vulnerable Bottom 75% Top 25%
Managed Top 25% Top 25%
Low concern Bottom 75% Bottom 75%
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Table 5

American Community Survey (2018) variables (5-year estimates) used for
sociodemographic analysis and hypothesized relationship with pluvial flood
risks.

American Community Hypothesized References

Survey variable name relationship

% White Population - Cutter, Boruff, & Shirley, 2003;
Chakraborty et al., 2014

% Black Population + Cutter et al., 2003; Chakraborty

et al., 2014; Pallathadka et al., 2021
Cutter et al., 2003; Chakraborty
et al., 2014; Pallathadka et al., 2021

% Hispanic Population +

% Asian Population + Cutter et al., 2003; Chakraborty
et al., 2014; Pallathadka et al., 2021
% Native Population + Rufat, Tate, Burton, & Maroof, 2015;

Pallathadka et al., 2021
Rufat et al., 2015; Chang,
Pallathadka, et al., 2021
Pallathadka et al., 2021

Median household -
income
Population with -
Bachelor’s degree
Population aged 65 and + Borden, Schmidtlein, Emrich,
above Piegorsch, and Cutter, 2007; Foster,
Leichenko, Nguyen, Blake,
Kunreuther, Madajewicz, and
Ravenborg, 2019; Chang,
Pallathadka, et al., 2021

in cities, and to distinguish between CBGs of high and low spatial as-
sociations (Getis & Ord, 1992; Ord & Getis, 1995). The hotspot method
used the fixed distance band conceptualization and the Euclidean dis-
tance method (Danielsson, 1980; Stopka, Krawczyk, Gradziel, & Ger-
aghty, 2014). We used the Getis-Ord Gi* method of hotspot analysis to
simplify the distribution of racial population groups into two broad
categories: percent white and percent non-white. We then extracted all
the hotspots for the white population and non-white population groups
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using ArcMap 10.8.1 (ESRI, 2019). Additionally, household income data
were simplified with two broad categories: high-income clusters and
low-income clusters. The threshold distances for the Getis-Ord Gi*
hotspot analysis for Atlanta, Phoenix, and Portland were 2300 m, 2500
m, and 2800 m, respectively. These threshold distances represent
approximate neighborhood boundary distances in the respective cities.

3.8. Examining the relationship between preparedness index and
sociodemographic data

We first used chi-squared tests of independence to examine potential
relationships between our sociodemographic data and our preparedness
indices. Additionally, we overlaid our preparedness indices with our
hotspot layers and calculated the percent overlap of the CBGs in each.
Finally, given the presence of spatial autocorrelation in our data (Moran,
1950), we used spatial error regression analysis to identify how socio-
demographic and GI data further explain the spatial variation of pluvial
flood risk at the CBG scale. Spatial regression analysis was conducted in
GeoDa version 1.20 (Anselin, Syabri, & Kho, 2006).

3.9. Temporal analysis of GI distribution

We explored temporal variations in GI distribution for the study
cities using publicly available data and installation year information. For
Phoenix and Portland, the GI temporal analysis was done using data
from the year 2010 to 2020, while for Atlanta, it was done using data
from the year 2015 to 2019, given that GI implementation in Atlanta is
relatively new. The old GI count was subtracted from the new GI count
to compute the difference between GI numbers. The difference was then
divided by the original values and multiplied by 100 to obtain the per-
centage change. The result was aggregated into four classes — no change,
low-increase, medium-increase, and high-increase — using a quantile

Portland

‘ Phoenix Atlanta
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I Non-White Hotspots
Not Significant
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High Income Clusters
- Low Income Clusters
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Fig. 3. Hotspot-based classification of white and non-white population groups, and median household income in Atlanta, GA; Phoenix, AZ; and Portland, OR. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



A. Pallathadka et al.

Landscape and Urban Planning 223 (2022) 104417

Portland Phoenix Atlanta
Gl Density GI Density Gl Density
0 0 0
1-76 [1-3 1-6
77113 41 710
I 114-363 I 2-170 I 20 -9
:
I cold spot k - Coldspot - Coldspot 3
Not Significant X Not Significant Not Significant
0 5 10 Hotspot 0 5 10
I Hot Spot K I Hotspot 0 20 B otsp — K N
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classification method.

4. Results
4.1. Hotspot analysis of racial groups and median household income

In all three of our study cities, our hotspot spatial analysis revealed
significant clustering of white and non-white racial groups (Fig. 3). In
Atlanta, GA, and Portland, OR, these groups were agglomerated into two
areas of the city; in Phoenix, AZ, they were agglomerated into three
areas (Fig. 3). In Atlanta, Phoenix, and Portland, the overlap between
household income hotspots, indicating high median household income,
and white population hotspots, were 100%, 97%, and 89%, respectively.

4.2. Spatial analysis of sociodemographic groups and their relations to
green infrastructure density and blue-spot coverage

In Atlanta, relatively high-GI-density areas are located in the north,
northeast, and east areas of the city while low-GI-density areas are found
in the northwest, west, south, southwest, and southeastern areas of the
city (Fig. 4). The high-GI-density areas generally coincide with the
hotspots of white populations while the low-GI-density areas were found
in the hotspots of non-white populations (Fig. 3). No GI hotspots over-
lapped with non-white population hotspots. Similar to low-density GI
areas, high blue-spot areas are found in the city’s northwest, central, and
east areas (Fig. 4). Overlap between blue-spot hotspots and white pop-
ulation hotspots was 41% and for non-white population hotspots was

25%. Relatively low-blue-spot coverage is primarily in the south,
southwest, and southeast areas of the city (Fig. 5).

In Phoenix, high-GI-density areas are located in west, south-central,
and northern areas of the city and relatively low-GI-density in central
and east-central areas of the city (Fig. 4). We found that 24% of GI
hotspots overlapped with white population hotspots, while 76% over-
lapped with non-white population hotspots. (Fig. 3). We estimated
relatively high blue-spot coverage in southwest, west, north, and central
areas of the city (Fig. 4). The southwestern and central areas of Phoenix
are relatively flat compared to the northern and southern areas of the
city; they also contain the city’s main river, the Salt River. These areas
are also characterized as hotspots for Phoenix’s non-white population
(Fig. 3). There was a 76% overlap between blue-spot hotspots and non-
white population hotspots. We found the northern and southern areas of
Phoenix to have areas of relatively lower estimated blue-spot coverage
compared to its southwestern and central areas (Fig. 5). The former
areas contain hotspots of white populations while the latter areas
contain hotspots of non-white populations (Fig. 3). Only 18% of blue-
spot hotspots overlapped with white population hotspots.

In Portland, relatively high GI-density areas are located in the
southwest, southeast, and north-central areas of the city, while low GI-
density areas are found in the north, northwest, and central areas
(Fig. 4). We found that 75% of GI density hotspots overlapped with non-
white population hotspots. Across the whole city, 14% of GI density
hotspots overlapped with white population hotspots. We estimated
relatively high blue-spot coverage in the southeast and northeast corners
of the city, with scattered coverage in the east-central areas (Fig. 5).
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Table 6

Results of ordinary least squares (OLS) and spatial error model (SER) for explaining spatial variation of pluvial flood hazard potential. N = number of census block
groups included in analysis. AIC = Akaike information criterion. ** indicates p < 0.01; * indicates p < 0.05.

Atlanta Phoenix Portland

(N =302) (N = 944) (N = 449)
Variables Coefficient SER Coefficient OLS SER Coefficient SER

OLS OLS
% Black Population 0.156**
% Hispanic Population 0.073**
% Asian Population 0.201** 0.171%*
% Native Population 0.150** 0.295* 0.324*
GI Density 0.035* 0.014+* —0.034%* —0.021%*
Median Household Income
% Population Aged 65 and Above —0.112* —0.093** 0.024**
% Population with Bachelor’s Degree 0.061** —0.144%* —0.126%*
Spatial lag coefficient 0.563%** 0.624** 0.449%*
AIC 2076.4 2031.71 6297.14 6082.7 3289.32 3246.61
R? 0.065 0.246 0.146 0.371 0.132 0.240

These areas of Portland are generally flat and low-lying and contain the
majority of the city’s non-white populations (Fig. 3). City-wide, 81% of
all blue-spot hotspots overlapped with non-white population hotspots.
Relatively low blue-spot coverage is primarily in the northwest and
southwest areas of Portland. These areas of Portland contain some
neighborhoods distinguished for their hilly terrain. Northwest Portland
is also the location of Forest Park, one of the largest urban parks in the
United States.

4.3. Spatial regression analysis

As shown in Table 6, the spatial regression analysis demonstrated
that the spatial error model performed better than ordinary least squares
regression for all three models, with higher R? value and lower Akaike
Information Criterion (AIC). In Atlanta, there are no statistically sig-
nificant variables except the spatial autoregressive coefficient (0.563)
using the spatial error model to explain the pluvial flood risk. In
Phoenix, GI density (0.014) and population aged 65 and above (0.024)
are positively associated with pluvial flood risk. In Portland, % Native
population (0.324) and % Asian population (0.171) are positively
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Table 7
Overlap between sociodemographic hotspots and preparedness categories in our
study cities. ** indicates p < 0.01.

Atlanta Managed Vulnerable Prepared Low concern
White population 5.79%** 21.5%** 40.5%** 32.2%**
Non-white population 2.07%** 11.0%** 5.520%** 81.4%%**
High income 6.52%** 18.5%** 41.3%** 33.7%**
Low-income 2.52%** 16.8%** 5.04%** 75.6%**
Phoenix Managed Vulnerable Prepared Low concern
White population 2.86%** 9.05%** 16.0%** 72.1%**
Non-white population 18.7%** 21.9%** 19.2%** 40.2%%**
High income 2.89%** 7.51%** 19.7%%** 69.9%%**
Low-income 11.5%%** 22.7%%** 14.3%** 51.6%**
Portland Managed Vulnerable Prepared Low concern
White population 1.18%** 18.8%** 11.2%** 68.8%**
Non-white population 15.6%** 27.0%** 27.9%%** 29.5%%**
High income 1.75%%** 15.8%** 21.9%%** 60.5%%**
Low-income 14.7%** 30.9%** 15.4%** 39.0%**

associated, while % population with Bachelor’s degree (—0.126) and GI
density (—0.021) are negatively associated with pluvial flood risk.
Racial variables are statistically significant in the OLS model in Phoenix,
but they are no longer significant when spatial autocorrelation is taken
into account. Relatively, Phoenix has the highest spatial lag coefficient
(0.624), while Portland has the lowest spatial lag coefficient (0.449).

4.4. Preparedness index

In Atlanta, there is a total of 302 CBGs, of which 20.2% (61) were
Prepared, 20.2% (61) were Vulnerable, 4.97% (15) were Managed, and

54.6% (165) were of Low concern (Fig. 6). White population hotspots
were more often categorized to be categorized as Managed, Vulnerable,
or Prepared than were non-white population hotspots, while non-white
population hotspots were more often categorized as Low concern (x2
(3, N =266) =71.6, p < 0.01; Table 7). Similarly, high-income hotspots
were more often categorized as Managed, Vulnerable, or Prepared than
were low-income hotspots, while low-income hotspots were more often
classified as Low concern (X2 (3, N = 266) = 50.7, p < 0.01; Table 7).

In Phoenix, there is a total of 944 CBGs (readjusted), of which 15.8%
(149) were Prepared, 15.8% (149) were Vulnerable, 9.32% (88) were
Managed, and 59.1% (558) were of Low concern (Fig. 6). White popu-
lation hotspots were more often classified as Low concern than were non-
white population hotspots, while non-white hotspots were more likely to
be categorized as Prepared, Vulnerable, or Managed than were white
population hotspots (x? (3, N = 763) = 102, p < 0.01; Table 7). High-
income hotspots were more likely to be categorized as Prepared or Low
concern than were low-income hotspots, while low-income hotspots
were more often to be categorized as Vulnerable or Managed (x? (3, N =
763) = 33.3, p < 0.01; Table 7).

In Portland, there is a total of 449 CBGs, of which we calculated
19.8% (89) to be Prepared, 19.8% (89) to be Vulnerable, 5.35% (24) to be
Managed, and 55.0% (247) to be of Low concern (Fig. 6). White popu-
lation hotspots more often were categorized as Low concern than were
non-white population hotspots, while non-white hotspots were more
often classified as Prepared, Vulnerable, or Managed (Xz (3, N =292) =
54.5, p < 0.01; Table 7). High-income hotspots were more often cate-
gorized as Prepared or Low concern than were low-income hotspots,
while low-income hotspots were more often to be categorized as
Managed or Vulnerable (X2 (3, N =292) = 25.0, p < 0.01, Table 7).

4.5. Temporal analysis on number of GI elements in cities over time

GI has increased between 2010 and 2020 in Phoenix and Portland,
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and 2015 and 2019 in Atlanta (Fig. 7). In Atlanta, high GI-increase areas
are primarily in the downtown and southern sections, while medium GI-
increase areas are in the northern sections of the city. The remaining
sections have seen little change. Newer GI developments in Phoenix can
be found in the south, west, and north sections, and they are generally
expanding in both low-risk and high-risk communities. Similarly, in
Portland, newer GI developments have been observed in low- and high-
risk communities. Portland’s high Gl-increase areas are in the north,
southeast, and towards the center in downtown.

5. Discussion
5.1. Spatial analysis of disparity in pluvial flood risk

Urban planning in the US has at many times in history been a tool
wielded by whites and the wealthy for discrimination against ethnic
minority and relatively impoverished groups (Babcock & Bosselman,
1973; Dettling et al., 2017; Hagman, 1971). Although urban-planning
ethics have been substantially re-evaluated over time (Barrett, Horne,
& Fien, 2016), the repercussions of past discriminatory planning remain
visible, and discriminatory planning still propagates in the modern era
in intentional and unintentional ways (Koo et al., 2019; Nelson et al.,
2021; Voelkel et al., 2018). Our results variably reinforce and challenge
the argument that urban resources are unequally shared, by relating the
spatial distribution of population clusters and associated GI deployment
with respect to the risk of pluvial flooding.

Summarily, in our study cities, some of the relationships between GI
density, blue-spot coverage, white and ethnic and racial minority pop-
ulations, and median household incomes indicated inequalities and the
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potential for discriminatory flood-risk management measures. For
Phoenix and Portland, low-income and non-white populations were
more likely to be exposed to pluvial flooding than were high-income and
white populations. Our results are then similar to findings of dispro-
portionate exposure of non-white populations to environmental hazards
such as fluvial flooding (Maldonado, Collins, Grineski, & Chakraborty,
2016 Messager et al., 2021) and pluvial flooding (Baker, Brenneman,
Chang, McPhillips, & Matsler, 2019; Chan & Hopkins, 2017). However,
non-white populations in Phoenix and Portland were more likely to live
among greater amounts of GI, perhaps indicating that efforts to manage
flood risk were directed appropriately toward communities more at risk.
We note that our temporal analysis showed newer GI installed in areas
with high non-white populations and blue-spot coverage. We recom-
mend that studies examining disparities in GI deployment also examine
the proportionality of deployment to natural hazard risk.

In Atlanta, many of these relationships are reversed, where white
populations tended to be more exposed to pluvial flooding and to have
greater GI density, indicating that there may be active efforts to manage
flood risk in these communities. We also found that GI increased over
time in areas with predominantly white populations. However, we
found no significant overlap between GI change and blue-spot coverage.
Given the relatively greater blue-spot coverage in white and high-
income communities, flood risk could be driving some of the GI in-
vestment in Atlanta, although the disparity in terms of equitable dis-
tribution of GI is still notable. It may be then that GI investment in
Atlanta follows wealth and the white population, in addition to flood
risk. Previous scholarship found that another form of GI, tree canopy, is
negatively correlated with poverty and renter-occupied housing in
Atlanta (Koo et al., 2019). It may be then that socioeconomic forces
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rather than need are driving GI investment in the city.
5.2. Sociodemographic variables, GI, and pluvial flood risk

The spatial error regression analysis did not produce significant
spatial relationships between sociodemographic variables and flooding
in Atlanta; however, in Phoenix, a positive association of GI and flooding
may indicate efforts toward GI deployment to address pluvial flood risk.
Also in Phoenix, the elderly population appears to be at greater relative
risk of pluvial flooding, substantiating previous research finding that the
elderly population is more vulnerable to natural disasters (Bell, Abir,
Choi, Cooke, & Twashyna, 2018). For Portland, non-white communities,
mainly Asians and Native Americans, are at substantial risk of pluvial
flooding. It has been well documented that these racial groups are
disproportionately exposed to flood hazards (Chakraborty, Collins,
Montgomery, & Grineski, 2014; Collins, Grineski, & Chakraborty,
2018), and the hotspots of pluvial flood risk coincide with Asian
immigrant communities in Portland. The population with college de-
grees, on the other hand, is less at risk of pluvial flooding, suggesting
that educational attainment may contribute to increased flood-risk
awareness in Portland (Fahy et al, 2019). Education is well-
established as a critical determinant of flood risk perception (Lechow-
ska, 2018; Zabini, Grasso, Crisci, & Gozzini, 2021), thus it may be that
our results are evidence of people acting on their flood risk perceptions.
The negative relation between GI density and blue-spot coverage in
Portland, however, highlights a gap in pluvial flood-risk management
efforts.

5.3. Implications for spatial planning

Worldwide, investment in GI has increased substantially in the last
decade (McPhillips & Matsler, 2018). This increase indicates a willing-
ness to pursue multifunctional, nature-based solutions in urban settings
(Hobbie & Grimm, 2020), and perhaps even demonstrates a more spe-
cific recognition of the efficacy of GI toward significantly reducing
pluvial flooding (Benedict & McMahon, 2002). Based on the results of
our study, we advise stakeholders to review their priorities in how GI is
distributed and align future GI investment with exposure, racial equity,
and economic vulnerability. Our results emphasize that existing
methods for the distribution of GI to address pluvial flooding may be
incongruent with cities’ stated goals of addressing environmental eq-
uity. Cities must work together with stakeholders to implement local,
community-level solutions for GI deployment based on a shared
framework (Jerome, 2017).

Atlanta, Phoenix, and Portland’s stormwater manuals reveal that
these cities strive to ensure equitable resource allocation. Our concep-
tual framework outlines a straightforward approach to analyzing the
spatial distribution of pluvial flood risk and GI, as well as evaluating how
well these equity goals are being met. Patterns of classification such as
Vulnerable, Managed, Prepared, and Low concern would better inform
stakeholders about how to deploy GI to address pluvial flood risk. Such
an approach would be useful for informing stakeholders and coming to
decisions on GI deployment (Jerome, 2017).

5.4. Temporal analysis of GI deployment and histories of green
gentrification

While GI investment is increasing in all three study cities, temporal
analysis of GI change indicated inconsistent matching of pluvial flood
risk with GI investment. In Atlanta, we found increases in GI investment
in areas with less pluvial flood risk and greater white populations,
indicating that sociodemographic factors may be the main driver of GI
investment. In Phoenix, in contrast, we found increases in GI investment
in areas of higher pluvial flood risk with greater non-white populations.
Nonetheless, even though non-white populations in Phoenix tended to
have lower median household incomes, GI investment was still more
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common in areas with higher median household incomes. It may be that
GI investment in Phoenix is biased toward wealthier non-whites, but we
leave an exploration of this possibility to future research. As a notable
precedent for this sort of exploration, Koo et al. (2019) found that
economic condition was an important interacting factor with racial and
ethnic category in the analysis of environmental equity of tree canopy
distribution in Atlanta.

If cities intend to match GI investment with flood risk and forms of
equity, they should be mindful of the pathways through which they will
accomplish such a task, lest they risk propagating or deepening histor-
ical inequities via green gentrification (Gould & Lewis, 2016), a phe-
nomenon referring to how the development of green spaces can lead to
the displacement of socially and economically vulnerable populations
by attracting residents from more advantaged socioeconomic groups
(Hackworth, 2002; Brueckner & Rosenthal, 2009, Dooling, 2009).
Certain forms and configurations of GI might promote green gentrifi-
cation (Rigolon & Németh, 2020), and researchers have recommended
pairing GI investment initiatives with policy controls on housing and
jobs in order to mitigate green gentrification or direct the value that GI
investment adds to neighborhoods to its residents (Wolch, Byrne, &
Newell, 2014). Indeed, all three of our study cities have histories of
gentrification, green or otherwise, that warrant judicious GI investment
plans (Immergluck, 2009; City of Portland, 2013a, City of Portland,
2013b; Immergluck & Balan, 2018; McPhillips & Matsler, 2018; NCRC,
2019; Richardson et al., 2020).

6. Limitations

Differences in topography, climatic conditions, data availability, and
documentation present challenges to comparative analysis between
cities. We used the Arc-Malstrgm method to estimate locations of pluvial
flood zones, and we acknowledge that this method has significant lim-
itations. For example, it does not account for routing through subter-
ranean drainage infrastructure, nor does it involve on-the-ground
verification of water networks. Further, the method is limited by the
availability of high-resolution and recent DEMs in our cities, some of
which lagged behind our sociodemographic data by four years. None-
theless, based on our discussion with modeling experts and city practi-
tioners, the general utility of the Arc-Malstrem method to indicate
potential areas of flooding during extreme precipitation events is not
disputed.

We used ACS data for identifying hotspots of white and non-white
population groups, which have their own limitations. We are aware of
some criticism of ACS data for the margin of error, which is typically
reported for census statistics at a 90 percent confidence level; however,
some scholars argue for a more desirable confidence level of 95 or 99
percent (Spielman, Folch, & Nagle, 2014). Based on a review of several
publications by local and state governments, we are confident that our
use of ACS data is representative of the actual distribution of population
based on race.

6.1. Future research

Decades of systemic racism have led to unequal distribution of risk
among various sociodemographic groups, and in recent decades the
deployment of GI has in some cases been inequitable, leading to a
continuation of inequity of investment in the safety and quality of life of
citizens based on sociodemographic characteristics (Dai, 2011; Fother-
gill & Peek, 2004; Immergluck & Balan, 2018; Zahran, Brody, Peacock,
Vedlitz, & Grover, 2008; Chapple & Thomas, 2020). Spatial analysis can
reveal unequal and disproportionate investment in GI in cities, but
knowledge of the cultural geography and political ecology of the cities is
needed to provide historical context to findings and to assess how future
GI investment may help redress historical and modern environmental
injustices. Promoting environmental equity through correction of urban
planning, government regulations, and deconstruction of residential
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segregation is essential. Future research should also engage with lessons
from green gentrification literature, by evaluating the forms, locations,
and intensity of GI investment that can lead to gentrification, as well as
by exploring various policy tools that can be used to control or redirect
added value from GI investment to local residents.

7. Conclusions

Systemic racism and racial disparities in society contribute to the
configuration and management of urban spaces. In this study, we
analyzed disparities of pluvial flood exposure and GI investment in
different sociodemographic groups. Although our analysis revealed in-
equalities and potential discrimination in GI investment, we also found
evidence of equitable and appropriate management, given differences in
flood risk among groups, especially in Phoenix and Portland. We
delineated urban pluvial flood zones and compared them with GI density
and change over time at the scale of the CBG. We classified CBGs as
Vulnerable, Managed, Prepared, and Low concern to describe the rela-
tionship between a CBG’s flood risk and the amount of GI available to
manage flood risk. In Phoenix and Portland, we found that non-white
and low-income populations were more often classified as Vulnerable
or Managed than were white and high-income populations, whereas
white and high-income populations were more often classified as Pre-
pared or Low concern. In Atlanta, non-white and low-income populations
were more likely to live in Low concern area than were white and high-
income populations, but white and high-income populations were more
likely to live in Prepared and Managed areas.

Our analysis also revealed inconsistent evidence that GI investment
in Atlanta and Phoenix was a response to pluvial flooding, as there were
also strong correlations between GI investment and certain sociodemo-
graphic variables. Finally, we conclude that risks of green gentrification
must be addressed in flood-mitigation planning.
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