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H I G H L I G H T S  

• We developed a framework for relating pluvial flood risk and GI prevalence. 
• We related pluvial flood risk and GI prevalence to sociodemographic characteristics. 
• GI prevalence inconsistently overlapped with pluvial flood risk. 
• Non-white and low-income populations were found to be at a disadvantage. 
• Phoenix and Portland demonstrated transition to equitable flood risk management.  
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A B S T R A C T   

Pluvial flooding is a serious hazard in inland U.S. cities. City managers and communities are increasingly 
interested in reducing their pluvial flood risk through the development of green infrastructure (GI) features. This 
research explores the relationship between pluvial flood exposure and GI placement in three inland cit
ies–Atlanta, Phoenix, and Portland–and analyzes the variation of sociodemographic variables in census block 
groups (CBG) located in pluvial flood zones. Using the Arc-Malstrøm method, we estimated areas of pluvial 
flooding in the CBGs of our selected cities by relating pluvial flood area to the density of GI in CBGs and assigning 
CBGs one of four classifications: i) managed (large flood area, abundant GI), ii) prepared (small flood area, 
abundant GI), iii) vulnerable (large flood area, scarce GI), and iv) least concern (small flood area, scarce GI). 
Then, using the historical GI data, we examined the proportionality of GI investment over time to pluvial flood 
area. We found relationships between GI density, flood area, ethnic and racial minority populations, age, 
educational attainment, and median household incomes that indicated inequalities and potential discrimination 
in flood risk management, but also some evidence of equitable and appropriate management given differences in 
flood risk, especially in Phoenix and Portland. In Atlanta, newer GI installation prioritized white and wealthy 
neighborhoods where relatively higher flood risk exists (less equitable). Our classification framework may assist 
city flood risk managers to distribute GI more equitably according to equitability and need.   

1. Introduction 

In the United States, the extent of urban areas relative to total land 
area is estimated to increase from 3.1% in 2000 to 8.1% in 2050, an 
increase in area of 392,400 km2, which is larger than the state of 
Montana (Nowak & Walton, 2005). Over the 20th century, the most 
noticeable sign of urbanization is land transformation to impervious 
surfaces (Greiner, Shtob, & Besek, 2020). Impervious surfaces convert 
the majority of incident precipitation to runoff. Common impervious 

surfaces include, but are not limited to, rooftops, walkways, patios, 
driveways, parking lots, storage areas, and concrete or asphalt (Sca
lenghe & Marsan, 2009; Strohbach et al., 2019). Between 2012 and 
2017, impervious surface areas increased on average by 326,000 
ha/year (Nowak & Greenfield, 2020) and will continue to increase un
less development practices are reformed. 

Many studies have explored the adverse roles impervious surfaces 
play in the hydrological cycle (Walsh et al., 2005; Vamvakeridou- 
lyroudia et al., 2020; La Rosa & Pappalardo, 2020). The rise of 
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impervious areas in cities has increased the frequency of flood occur
rence, primarily by replacing land-cover types that would convert a 
greater proportion of precipitation to infiltration (Cutter, Emrich, Gall, 
& Reeves, 2018). Major rain events occurring in regions with large 
impervious areas are the primary source of urban flooding, causing 
enormous losses of property and life (Cutter et al., 2018). This type of 
flooding, known as pluvial flooding, occurs because rates of precipita
tion exceed the capacity of natural and engineered drainage systems to 
store rainwater or convey it safely away from buildings and people 
(Rosenzweig et al., 2018). The coupling of intensifying storm events 
driven by climate change and increasing areas of impervious surfaces is 
exacerbating urban pluvial floods (Trenberth, 2011; Dong, Esmalian, 
Farahmand, & Mostafavi, 2020). 

The rapid growth of urban areas (Grimm et al., 2008) often coincides 
with increasing social and economic inequality. Decades of research 
have shown that communities of color suffer disproportionate damages 
from various forms of natural disasters, such as hurricanes, tropical 
storms, and tornadoes (Fothergill & Peek, 2004; Peacock & Girard, 
1997; Peacock, Dash, & Zhang, 2006), as well as flooding (Zahran, 
Brody, Peacock, Vedlitz, & Grover, 2008). Most studies have focused on 
the vulnerability of racial and economic minorities to fluvial floods, 
leaving out the pluvial flood association. For example, research shows 
that aside from multidimensional poverty (Bahls, 2011; KewalRamani, 
Gilbertson, & Ann Fox, 2007), minority racial and ethnic groups are 
more likely than their white peers to be negatively impacted by fluvial 
flooding (Knighton, Hondula, Sharkus, Guzman, & Elliott, 2021; Mess
ager, Ettinger, Murphy-Williams, & Levin, 2021). Similar inequitable 
patterns exist for disaster mitigation (Eisenman, Cordasco, Asch, 
Golden, & Glik, 2007; Hartman & Squires, 2013) and the deployment of 

green infrastructure (GI; Dai, 2011; Heynen, Perkins, & Roy, 2006; 
Nesbitt, Meitner, Girling, Sheppard, & Lu, 2019). 

With increasing interest in the causes and impacts of pluvial flood
ing, and given the disproportionate impact and exposure of racial and 
ethnic minorities to other forms of flooding, we identify a need to 
explore the possibility of differential exposure of racial and ethnic mi
norities to pluvial flooding. Though many cities have deployed GI with 
the primary intent of managing water quality rather than quantity 
(Rosenzweig et al., 2018), models have shown that GI can be effective at 
reducing the risk of pluvial flooding (Pappalardo, La Rosa, Campisano, 
& La Greca, 2017; Maragno et al., 2018). Researchers have specifically 
recommended the usage of GI to reduce pluvial flood risk (Lawson et al., 
2014). Yet deployment of, and access to, GI in cities can be inequitable, 
leaving racial and ethnic minority and economically disadvantaged 
populations with relatively fewer nearby GI elements, but also more 
reliant on GI for ecosystem services, than their majority and economi
cally advantaged counterparts (De Sousa Silva, Viegas, Panagopoulos, & 
Bell, 2018; Lin, Meyers, & Barnett, 2015). 

Thus, in this study, we explore how urban green infrastructure (GI) is 
distributed in Atlanta (GA), Phoenix (AZ), and Portland (OR) at the 
census block group (CBG) scale (U.S. Census Bureau, 2011), in order to 
highlight potential opportunities for urban planners to increase envi
ronmental equity in the siting of GI, as it relates to pluvial flood risk. 
Although the appropriate definition of GI depends on the context in 
which the term is used (Sussams, Sheate, & Eales, 2015), for the pur
poses of this study, we define GI as the following: GI is an interconnected 
network of green space that conserves natural ecosystem values and 
functions and provides associated benefits to human populations 
(Benedict & McMahon, 2002). 

Fig. 1. A conceptual framework for understanding the distribution and implications of urban pluvial flood risk and green infrastructure (GI) in urban communities. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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While racial inequality has been well studied, there is a notable lack 
of literature exploring the relationships between the distribution of 
pluvial flood zones, GI that can manage stormwater, racial and ethnic 
minorities, and economically marginalized populations. Existing 
stormwater and GI manuals specifically address GI implementation ef
forts in Atlanta (Chattahoochee Riverkeeper, 2019), Phoenix (AECOM, 
2020), and Portland (City of Portland, 2019; City of Portland, 2020). 
These manuals reveal the priorities of city governments in implementing 
GI with stakeholder participation for equitable access. This study may 
then be viewed as a supplement to such efforts in our cities, but may 
provide a basis on which cities without such manuals might begin to 
address environmental equity as it pertains to flooding. 

Equitable distribution refers to a form of distribution that is neither 
excessive nor insufficient, but is based upon justice and fairness (Hay
ward, 2007). Our conceptual framework (Fig. 1) describes the distri
bution of pluvial flood risk and GI, and we argue that this distribution 
has implications for sociodemographic variables discussed in this paper. 
This analysis can help us better understand flood-related risks and 
implement GI in a more equitable manner to ensure environmental 
justice for all residents. Therefore, in this study, we relate patterns of GI 
distribution to pluvial flood risk. With the help of a GIS-based spatial 
analysis, we answer the following research questions: 

Q1: How are GI, racial groups, and economically disadvantaged 
groups distributed with respect to areas at risk of pluvial flooding? 

Q2: What are the sociodemographic characteristics of CBGs that are 
prepared, managed, vulnerable, or of low concern to pluvial flooding? 

Q3: Is GI distribution becoming more or less concentrated in CBGs of 
racial and ethnic minorities and among economically disadvantaged 
groups? 

2. Study area 

The study area consists of three inland US cities—Atlanta, Phoenix, 
and Portland—that are prone to pluvial flooding. These cities are diverse 
in terms of physical and social characteristics (Table 1 and Fig. 2), 
providing scope for comparative analysis. All cities in this study are 
growing in population (U.S. Census Bureau, 2020) and have long his
tories of pluvial flooding, with major pluvial flooding events occurring 
in the past 15 years (Chang, Yu, et al., 2021b; Ferguson & Ashley, 2017; 
Yang, Smith, & Niyogi, 2019). Future climate models show precipitation 
increases for most parts of the United States, and, particularly in the 
Northeast, Southeast, and Northwest, the number of extreme rainfall 
events expected to occur in a given year is expected to increase (Hayhoe 
et al., 2018). These changes in annual precipitation and in the number of 
extreme precipitation events are expected to increase even further in 
response to the expansion of urban areas (Georgescu, Broadbent, Wang, 
Krayenhoff, & Moustaoui, 2021; Hayhoe et al., 2018). 

Additionally, our study cities are notable for featuring detectable 

inequalities in assessing green space among various socioeconomic and 
racial/ethnic groups. In Phoenix, AZ, tree canopy cover in neighbor
hoods is negatively correlated with the proportion of the neighborhood 
population that is low-income Hispanic (Jenerette, Harlan, Stefanov, & 
Martin, 2011; Nelson, Grubesic, Miller, & Chamberlain, 2021); and in 
Atlanta, GA, tree canopy is negatively correlated with poverty and 
renter-occupied housing (Koo, Boyd, Botchwey, & Guhathakurta, 2019). 
In Portland, impoverished and non-white populations have greater 
exposure to extreme heat and less access to refuge to escape from it 
(Voelkel, Hellman, Sakuma, & Shandas, 2018). 

Furthermore, we selected our study cities because racial diversity 
varies among the three cities. While Atlanta has the highest proportion 
of Black people (54.3%), Phoenix has the highest proportion of Hispanic 
people (43.9%). Portland is majority white (70.3%), but the Asian 
population (7.8%) is proportionately highest among the three cities. 
Additionally, we have previous research experience examining flood 
risk and sociodemographic characteristics in these cities (Chang, Palla
thadka, et al., 2021a). Beyond research experience, we also have a body 
of lived experience in them to draw on, which is critical for identifying 
potential errors in flood risk, land cover, and sociodemographic 
analyses. 

3. Data and methods 

3.1. Background on the Arc-Malstrøm method 

To estimate areas where pluvial flooding is likely to occur during 
intense precipitation events, we employed the Arc-Malstrøm method 
developed by Balstrom and Crawford (2018). This method uses high- 
resolution digital elevation models (DEMs), typically generated 
through LiDAR methods, to create a one-dimensional model of sinks in 
the landscape, hereafter referred to as blue-spots, as well as the hydro
logical pathways between blue-spots. This method also calculates the 
areas and potential storage volumes of blue-spots before they are 
considered filled. Once a blue-spot fills to its capacity, any excess water 
flows through the identified hydrological pathways to the next blue- 
spot, and upon filling this blue-spot flows through its respective hy
drological pathway, and so on until the parcel of water reaches either a 
blue-spot that does not fill to capacity or until the hydrological pathway 
meets the DEM boundary. 

The Arc-Malstrøm method assumes that the rainfall rate exceeds 
rates of infiltration and evapotranspiration in the landscape, and also the 
rate at which any drainage infrastructure can effectively remove water 
from the surface. As such, the Arc-Maelstrøm method is most accurate 
when modeling pluvial flooding that occurs as a result of very intense (e. 
g., of 100-year return period or more) storms, such as monsoons and 
cloudburst events. Arc-Malstrøm produces more accurate estimates of 
pluvial flooding in areas where there is very low infiltration, such as 

Table 1 
Key social and physical characteristics of the three study cities.   

Study city 

Characteristic Atlanta Phoenix* Portland 

Climate (Mean annual precipitation, annual temperature range) 1263 mm 
11.7–22.2 ◦C 

211 mm 
17.2–30.6 ◦C 

915 mm 
7.8–17.2 ◦C 

Impervious Surface Areas % (2016) 40% 52% 56% 
Population (2018) 470,684 1,575,554 665,667 
Population Density (2018) 1328/km2 1240/km2 1773/km2 

Average Annual Population Growth Rate (2020) 1.67% 1.54% 0.59% 
Demography (2018) White: 35% 

Black: 54.3% 
Hispanic: 4.6% 
Asian: 3.8% 
Native American: 1.0% 

White: 41.5% 
Black: 6.7% 
Hispanic: 43.9% 
Asian: 3.4% 
Native American: 2.0% 

White: 70.3% 
Black: 5.6% 
Hispanic: 9.9% 
Asian: 7.8% 
Native American: 1.3% 

*Phoenix boundary slightly readjusted to fit the study area based on DEM coverage area. 
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urban areas with extensive impervious surfaces, and less accurate esti
mates in areas with natural land-cover types or engineered land covers 
that promote infiltration. 

The original Arc-Malstrøm model was designed for use in Python 2.7 
(Python Software Foundation, 2021) environments and has not been 
maintained to function on more recent Python releases. In order to run 
the model on more recent Python architecture, we used the Septima fork 
(Septima.dk & Balstrom, 2020) of the original Arc-Malstrøm repository 
(Septima.dk & Balstrom, 2016), which as of June 2020 ran on Python 
3.6. 

3.2. Required inputs for Arc-Malstrøm 

To simulate a high-intensity precipitation event, that would likely 
generate substantial damages in our study cities, and that would over
whelm infiltration and drainage systems in each of our cities, we used 
precipitation amounts representative of 100-year return-period storms 
with 24-hour durations, that were representative of storms of such re
turn periods and durations in each of our cities. For Atlanta and Phoenix, 
we used the National Oceanic and Atmospheric Administration’s 
(NOAA) rainfall atlas, Atlas 14 (NOAA, 2020), to determine represen
tative precipitation amounts for a 24-hour storm event. Atlas 14 does not 
contain rainfall estimates for the Pacific Northwest region of the US, so 
for Portland, we calculated rainfall intensity (in/hr) for a 100-year storm 
event via the following equation provided in Portland’s Sewer Design 
Manual (2019): 

y = 0.0255ln(x) + 0.0805 (1)  

In this equation, y is the rainfall intensity (in/hr) and × is the return 
period of interest. We solved for intensity after using 100 years for ×, 
and multiplied the resulting value by 24 to account for a 24-hour day, 
and converted this value to centimeters for use in the Arc-Malstrøm 
model. The precipitation values for 100-year return period, 24-hour 
duration storm events for Atlanta, Phoenix, and Portland that we used 
in the Arc-Malstrøm method were 8.7 cm, 19.1 cm, and 12.1 cm, 
respectively. For input DEMs to the Arc-Malstrøm model, we used the 
most recent, highest resolution topographic datasets available for each 
of our cities (Table 2). The Arc-Malstrøm model produces more accurate 

Fig. 2. Study areas classification based on land-cover characteristics of National Land Cover Database (NLCD) 2016 (Dewitz, 2019).  

Table 2 
Input data for Arc-Malstrøm model for our study cities of Phoenix, AZ; Atlanta, 
GA, and Portland, OR.   

Study city   

Arc-Malstrøm input 
data 

Atlanta, GA Phoenix, AZ Portland, OR 

Precipitation data 
(Publication year) 

NOAA Atlas 
14 (2018) 

NOAA Atlas 
14 (2018) 

IDF curve from City of 
Portland Sewer Design 
Manual (2019) 

Digital elevation model 
resolution 
(Publication year) 

1.83 m 
(2016) 

0.914 m 
(2014) 

0.5 m (2014)  
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estimates of blue-spot dimensions with higher resolution DEM inputs. 

3.3. Arc-Malstrøm model setup and post-processing 

We input into the Arc-Malstrøm code each city’s respective precipi
tation values and DEMs, and limited the model’s outputs to blue-spots 
whose depths would be greater than 5 cm. This depth accounts for the 
margins of error in the vertical resolution of the DEM data, and also 
selects blue-spots whose depths would be impactful on pedestrians, cy
clists, and potentially even damage buildings that are level with the 
surrounding area. After running the model, we then removed all blue- 
spots with areas <12 m2, the area of a typical U.S. parking space. This 
threshold area of blue-spots was selected so that our identified areas of 
flooding would likely impair a primary mode of transportation, auto
mobiles, in addition to being a nuisance for pedestrians and cyclists. This 
threshold area of blue-spots is also greater than the resolution of any of 
our input DEMs, making these blue-spots identifiable by any of our 
models. 

3.4. Green infrastructure data background and selection 

Local city governments produce and administer all GI datasets uti
lized in this study (Table 3). We investigated whether the GI systems 
were publicly funded before adding them to the analysis. For the scope 
of this analysis, we consider the entire network of green spaces (e.g., 
street planters, rain gardens, bioswales) as a single system rather than 
isolating specific types within it because the GI definition is fluid, and 
practical applications of specific types vary from city to city. Hence, 
viewing GI as a single system allows us to conduct a thorough analysis of 
the public GI network and relate it to flood risk and other sociodemo
graphic variables. The private dataset is not readily available and, to be 
clear, is beyond the scope of our study, as our efforts are focused on 
better informing the public implementation of GI. We also did not 
include soft surfaces such as parks or street trees as part of storm GI. 
Thus, we acknowledge that our GI datasets may underreport the true 
number of GIs placed on landscape, potentially underestimating the true 
benefits of GI in mitigating pluvial flood risk. 

3.5. Calculating green infrastructure density and pluvial flood risk, and 
determining census block group “preparedness” for pluvial flooding 

To calculate GI density at the CBG scale, we divided the number of GI 
features that intersect a CBG by the area of the CBG. We used this 
method of calculating GI density over other potential methods, such as 
dividing GI area by CBG area, because GI in our analysis was represented 
by points rather than polygons. 

To characterize the blue-spot coverage for a CBG, which is a measure 
of the CBG’s pluvial flood risk, we calculated the percentage of the 
CBG’s area that intersected with blue-spot areas defined in section 3.1.2. 
We then normalized our calculated GI density and blue-spot coverage 
values between their minimum and maximum values for each study city 
(Equation (2)): 

x̂i,j =
xi,j − xmini,j

xmaxi,j − xmini,j
(2)  

i is the variable being analyzed, in this case either GI density or blue-spot 
coveragej is the city in which the analysis is being done: Phoenix, AZ; 
Atlanta, GA; or Portland, OR.x ̂ i,j is the normalized value of variable i for 
a given CBG in city j.xi, j is the value of variable i for a given CBG in city j. 
xmin i, j is the minimum value of variable i for all CBGs in city j.xmax i, j is 
the maximum value of variable i for all CBGs in city j. 

Toward creating our preparedness categories, we first ranked the 
CBGs of each city according to their normalized values of GI density and 
blue-spot coverage. We assigned the top 25% of CBGs in terms of GI 
density a preparedness category of 1, indicating that they were consid
ered to be prepared for pluvial flooding relative to other CBGs in their 
city. We assigned the top 25% of CBGs in terms of blue-spot coverage a 
preparedness category of 2, indicating that they were considered to be 
vulnerable to pluvial flooding relative to other CBGs in their city. We 
assigned the CBGs that were ineligible for preparedness categories 1 and 
2 instead a category of 3, indicating that their pluvial flood risk was 
managed relative to other CBGs in their city. We assigned the remaining 
CBGs preparedness categories of 0, indicating that they were considered 
to be of lower concern for pluvial flooding relative to other CBGs in their 
city (Chang, Yu, et al., 2021b). We named these four unique prepared
ness categories Prepared, Vulnerable, Managed, and Low concern accord
ing to their assigned preparedness categories (Table 4). These categories 
are relative to each other and should not be interpreted in absolute 
terms, although the selection of the top 25% through a quartile classi
fication has precedence (Chang, Pallathadka, et al., 2021a; Pallathadka, 
Chang, & Ajibade, 2021). For example, Chang, Pallathadka, et al. 
(2021a) classified flood vulnerability areas into four quartiles and 
derived the high flood vulnerability areas from the top 25% quartile. 
This study modifies that approach to create four unique categories. 
Given the uncertain nature of future flood risk, other cut-off points such 
as the top 5 or 10%, for example, could leave out some important areas 
that need to improve their preparation, thus the current selection of 25% 
would ensure reasonable coverage of important areas that need to be 
prepared for future extreme events. 

3.6. Sociodemographic data 

We used 5-year estimates of sociodemographic variables from the 
year 2018, produced by the U.S. Census Bureau as part of the American 
Community Survey (ACS). We selected the CBG as the unit of analysis 
because it was the finest geographic resolution for which the desired 
demographic sample data were available. The selected variables shown 
in Table 4 have been established in prior research to be key markers of 
vulnerability to pluvial flooding (Chang, Pallathadka, et al., 2021a; 
Fahy, Brenneman, Chang, & Shandas, 2019). Our spatial analysis 
focused on racial groups and median household income, but the spatial 
regression analysis included all of the variables in Table 5. Additional 
figures for the remaining variables are included in the supplementary 
materials. 

3.7. Hotspot spatial analysis 

We used the Getis-Ord Gi* method of hotspot analysis to identify 
tendencies for positive spatial clustering of demographic characteristics 

Table 3 
Type of GI included in this study.  

City Type of GI included Source 

Atlanta Rain Gardens, Rainwater Harvesting, French Drains, 
Vegetated Filter Strips, Dry Wells, Bioswales 

City of 
Atlanta 

Phoenix Bioswales, Retention Basins, Rain Gardens City of 
Phoenix 

Portland Street Planters, Rain Gardens, Bioswales City of 
Portland  

Table 4 
Preparedness categories for census block groups (CBGs) and their relation to GI 
density and blue-spot coverage. CBGs were only ranked against other CBGs 
within their same city.   

Ranking  

Preparedness category GI density Blue-spot coverage 

Prepared Top 25% Bottom 75% 
Vulnerable Bottom 75% Top 25% 
Managed Top 25% Top 25% 
Low concern Bottom 75% Bottom 75%  
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in cities, and to distinguish between CBGs of high and low spatial as
sociations (Getis & Ord, 1992; Ord & Getis, 1995). The hotspot method 
used the fixed distance band conceptualization and the Euclidean dis
tance method (Danielsson, 1980; Stopka, Krawczyk, Gradziel, & Ger
aghty, 2014). We used the Getis-Ord Gi* method of hotspot analysis to 
simplify the distribution of racial population groups into two broad 
categories: percent white and percent non-white. We then extracted all 
the hotspots for the white population and non-white population groups 

using ArcMap 10.8.1 (ESRI, 2019). Additionally, household income data 
were simplified with two broad categories: high-income clusters and 
low-income clusters. The threshold distances for the Getis-Ord Gi* 
hotspot analysis for Atlanta, Phoenix, and Portland were 2300 m, 2500 
m, and 2800 m, respectively. These threshold distances represent 
approximate neighborhood boundary distances in the respective cities. 

3.8. Examining the relationship between preparedness index and 
sociodemographic data 

We first used chi-squared tests of independence to examine potential 
relationships between our sociodemographic data and our preparedness 
indices. Additionally, we overlaid our preparedness indices with our 
hotspot layers and calculated the percent overlap of the CBGs in each. 
Finally, given the presence of spatial autocorrelation in our data (Moran, 
1950), we used spatial error regression analysis to identify how socio
demographic and GI data further explain the spatial variation of pluvial 
flood risk at the CBG scale. Spatial regression analysis was conducted in 
GeoDa version 1.20 (Anselin, Syabri, & Kho, 2006). 

3.9. Temporal analysis of GI distribution 

We explored temporal variations in GI distribution for the study 
cities using publicly available data and installation year information. For 
Phoenix and Portland, the GI temporal analysis was done using data 
from the year 2010 to 2020, while for Atlanta, it was done using data 
from the year 2015 to 2019, given that GI implementation in Atlanta is 
relatively new. The old GI count was subtracted from the new GI count 
to compute the difference between GI numbers. The difference was then 
divided by the original values and multiplied by 100 to obtain the per
centage change. The result was aggregated into four classes — no change, 
low-increase, medium-increase, and high-increase — using a quantile 

Table 5 
American Community Survey (2018) variables (5-year estimates) used for 
sociodemographic analysis and hypothesized relationship with pluvial flood 
risks.  

American Community 
Survey variable name 

Hypothesized 
relationship 

References 

% White Population – Cutter, Boruff, & Shirley, 2003; 
Chakraborty et al., 2014 

% Black Population + Cutter et al., 2003; Chakraborty 
et al., 2014; Pallathadka et al., 2021 

% Hispanic Population + Cutter et al., 2003; Chakraborty 
et al., 2014; Pallathadka et al., 2021 

% Asian Population + Cutter et al., 2003; Chakraborty 
et al., 2014; Pallathadka et al., 2021 

% Native Population + Rufat, Tate, Burton, & Maroof, 2015; 
Pallathadka et al., 2021 

Median household 
income 

– Rufat et al., 2015; Chang, 
Pallathadka, et al., 2021 

Population with 
Bachelor’s degree 

– Pallathadka et al., 2021 

Population aged 65 and 
above 

+ Borden, Schmidtlein, Emrich, 
Piegorsch, and Cutter, 2007; Foster, 
Leichenko, Nguyen, Blake, 
Kunreuther, Madajewicz, and 
Ravenborg, 2019; Chang, 
Pallathadka, et al., 2021  

Fig. 3. Hotspot-based classification of white and non-white population groups, and median household income in Atlanta, GA; Phoenix, AZ; and Portland, OR. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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classification method. 

4. Results 

4.1. Hotspot analysis of racial groups and median household income 

In all three of our study cities, our hotspot spatial analysis revealed 
significant clustering of white and non-white racial groups (Fig. 3). In 
Atlanta, GA, and Portland, OR, these groups were agglomerated into two 
areas of the city; in Phoenix, AZ, they were agglomerated into three 
areas (Fig. 3). In Atlanta, Phoenix, and Portland, the overlap between 
household income hotspots, indicating high median household income, 
and white population hotspots, were 100%, 97%, and 89%, respectively. 

4.2. Spatial analysis of sociodemographic groups and their relations to 
green infrastructure density and blue-spot coverage 

In Atlanta, relatively high-GI-density areas are located in the north, 
northeast, and east areas of the city while low-GI-density areas are found 
in the northwest, west, south, southwest, and southeastern areas of the 
city (Fig. 4). The high-GI-density areas generally coincide with the 
hotspots of white populations while the low-GI-density areas were found 
in the hotspots of non-white populations (Fig. 3). No GI hotspots over
lapped with non-white population hotspots. Similar to low-density GI 
areas, high blue-spot areas are found in the city’s northwest, central, and 
east areas (Fig. 4). Overlap between blue-spot hotspots and white pop
ulation hotspots was 41% and for non-white population hotspots was 

25%. Relatively low-blue-spot coverage is primarily in the south, 
southwest, and southeast areas of the city (Fig. 5). 

In Phoenix, high-GI-density areas are located in west, south-central, 
and northern areas of the city and relatively low-GI-density in central 
and east-central areas of the city (Fig. 4). We found that 24% of GI 
hotspots overlapped with white population hotspots, while 76% over
lapped with non-white population hotspots. (Fig. 3). We estimated 
relatively high blue-spot coverage in southwest, west, north, and central 
areas of the city (Fig. 4). The southwestern and central areas of Phoenix 
are relatively flat compared to the northern and southern areas of the 
city; they also contain the city’s main river, the Salt River. These areas 
are also characterized as hotspots for Phoenix’s non-white population 
(Fig. 3). There was a 76% overlap between blue-spot hotspots and non- 
white population hotspots. We found the northern and southern areas of 
Phoenix to have areas of relatively lower estimated blue-spot coverage 
compared to its southwestern and central areas (Fig. 5). The former 
areas contain hotspots of white populations while the latter areas 
contain hotspots of non-white populations (Fig. 3). Only 18% of blue- 
spot hotspots overlapped with white population hotspots. 

In Portland, relatively high GI-density areas are located in the 
southwest, southeast, and north-central areas of the city, while low GI- 
density areas are found in the north, northwest, and central areas 
(Fig. 4). We found that 75% of GI density hotspots overlapped with non- 
white population hotspots. Across the whole city, 14% of GI density 
hotspots overlapped with white population hotspots. We estimated 
relatively high blue-spot coverage in the southeast and northeast corners 
of the city, with scattered coverage in the east-central areas (Fig. 5). 

Fig. 4. Distribution of GI density in Atlanta, GA; Phoenix, AZ; and Portland, OR (top); and hotspot analysis results of GI density (bottom). GI Density is the number of 
GI elements in a CBG per square kilometer of the CBG. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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These areas of Portland are generally flat and low-lying and contain the 
majority of the city’s non-white populations (Fig. 3). City-wide, 81% of 
all blue-spot hotspots overlapped with non-white population hotspots. 
Relatively low blue-spot coverage is primarily in the northwest and 
southwest areas of Portland. These areas of Portland contain some 
neighborhoods distinguished for their hilly terrain. Northwest Portland 
is also the location of Forest Park, one of the largest urban parks in the 
United States. 

4.3. Spatial regression analysis 

As shown in Table 6, the spatial regression analysis demonstrated 
that the spatial error model performed better than ordinary least squares 
regression for all three models, with higher R2 value and lower Akaike 
Information Criterion (AIC). In Atlanta, there are no statistically sig
nificant variables except the spatial autoregressive coefficient (0.563) 
using the spatial error model to explain the pluvial flood risk. In 
Phoenix, GI density (0.014) and population aged 65 and above (0.024) 
are positively associated with pluvial flood risk. In Portland, % Native 
population (0.324) and % Asian population (0.171) are positively 

Fig. 5. Distribution of blue-spot coverage in Atlanta, GA; Phoenix, AZ; and Portland, OR (top) and hotspot analysis results of blue-spot coverage (bottom). Blue-spot 
coverage is the percentage of CBG area that is covered in blue-spots. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Table 6 
Results of ordinary least squares (OLS) and spatial error model (SER) for explaining spatial variation of pluvial flood hazard potential. N = number of census block 
groups included in analysis. AIC = Akaike information criterion. ** indicates p < 0.01; * indicates p < 0.05.   

Atlanta 
(N = 302) 

Phoenix 
(N = 944) 

Portland 
(N = 449) 

Variables Coefficient 
OLS 

SER Coefficient OLS SER Coefficient 
OLS 

SER 

% Black Population    0.156**    
% Hispanic Population    0.073**    
% Asian Population      0.201**  0.171** 
% Native Population    0.150**   0.295*  0.324* 
GI Density    0.035*  0.014**  −0.034**  −0.021** 
Median Household Income       
% Population Aged 65 and Above  −0.112*   −0.093**  0.024**   
% Population with Bachelor’s Degree    0.061**   −0.144**  −0.126** 
Spatial lag coefficient   0.563**   0.624**   0.449** 
AIC  2076.4  2031.71  6297.14  6082.7  3289.32  3246.61 
R2  0.065  0.246  0.146  0.371  0.132  0.240   
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associated, while % population with Bachelor’s degree (−0.126) and GI 
density (−0.021) are negatively associated with pluvial flood risk. 
Racial variables are statistically significant in the OLS model in Phoenix, 
but they are no longer significant when spatial autocorrelation is taken 
into account. Relatively, Phoenix has the highest spatial lag coefficient 
(0.624), while Portland has the lowest spatial lag coefficient (0.449). 

4.4. Preparedness index 

In Atlanta, there is a total of 302 CBGs, of which 20.2% (61) were 
Prepared, 20.2% (61) were Vulnerable, 4.97% (15) were Managed, and 

54.6% (165) were of Low concern (Fig. 6). White population hotspots 
were more often categorized to be categorized as Managed, Vulnerable, 
or Prepared than were non-white population hotspots, while non-white 
population hotspots were more often categorized as Low concern (χ2 

(3, N = 266) = 71.6, p < 0.01; Table 7). Similarly, high-income hotspots 
were more often categorized as Managed, Vulnerable, or Prepared than 
were low-income hotspots, while low-income hotspots were more often 
classified as Low concern (χ2 (3, N = 266) = 50.7, p < 0.01; Table 7). 

In Phoenix, there is a total of 944 CBGs (readjusted), of which 15.8% 
(149) were Prepared, 15.8% (149) were Vulnerable, 9.32% (88) were 
Managed, and 59.1% (558) were of Low concern (Fig. 6). White popu
lation hotspots were more often classified as Low concern than were non- 
white population hotspots, while non-white hotspots were more likely to 
be categorized as Prepared, Vulnerable, or Managed than were white 
population hotspots (χ2 (3, N = 763) = 102, p < 0.01; Table 7). High- 
income hotspots were more likely to be categorized as Prepared or Low 
concern than were low-income hotspots, while low-income hotspots 
were more often to be categorized as Vulnerable or Managed (χ2 (3, N =
763) = 33.3, p < 0.01; Table 7). 

In Portland, there is a total of 449 CBGs, of which we calculated 
19.8% (89) to be Prepared, 19.8% (89) to be Vulnerable, 5.35% (24) to be 
Managed, and 55.0% (247) to be of Low concern (Fig. 6). White popu
lation hotspots more often were categorized as Low concern than were 
non-white population hotspots, while non-white hotspots were more 
often classified as Prepared, Vulnerable, or Managed (χ2 (3, N = 292) =
54.5, p < 0.01; Table 7). High-income hotspots were more often cate
gorized as Prepared or Low concern than were low-income hotspots, 
while low-income hotspots were more often to be categorized as 
Managed or Vulnerable (χ2 (3, N = 292) = 25.0, p < 0.01, Table 7). 

4.5. Temporal analysis on number of GI elements in cities over time 

GI has increased between 2010 and 2020 in Phoenix and Portland, 

Fig. 6. Quartile-based classification of census block groups corresponding to their combined blue-spot coverages and GI density rank. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 7 
Overlap between sociodemographic hotspots and preparedness categories in our 
study cities. ** indicates p < 0.01.  

Atlanta Managed Vulnerable Prepared Low concern 

White population 5.79%** 21.5%** 40.5%** 32.2%** 
Non-white population 2.07%** 11.0%** 5.52%** 81.4%** 
High income 6.52%** 18.5%** 41.3%** 33.7%** 
Low-income 2.52%** 16.8%** 5.04%** 75.6%**  

Phoenix Managed Vulnerable Prepared Low concern 
White population 2.86%** 9.05%** 16.0%** 72.1%** 
Non-white population 18.7%** 21.9%** 19.2%** 40.2%** 
High income 2.89%** 7.51%** 19.7%** 69.9%** 
Low-income 11.5%** 22.7%** 14.3%** 51.6%**  

Portland Managed Vulnerable Prepared Low concern 
White population 1.18%** 18.8%** 11.2%** 68.8%** 
Non-white population 15.6%** 27.0%** 27.9%** 29.5%** 
High income 1.75%** 15.8%** 21.9%** 60.5%** 
Low-income 14.7%** 30.9%** 15.4%** 39.0%**  
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and 2015 and 2019 in Atlanta (Fig. 7). In Atlanta, high GI-increase areas 
are primarily in the downtown and southern sections, while medium GI- 
increase areas are in the northern sections of the city. The remaining 
sections have seen little change. Newer GI developments in Phoenix can 
be found in the south, west, and north sections, and they are generally 
expanding in both low-risk and high-risk communities. Similarly, in 
Portland, newer GI developments have been observed in low- and high- 
risk communities. Portland’s high GI-increase areas are in the north, 
southeast, and towards the center in downtown. 

5. Discussion 

5.1. Spatial analysis of disparity in pluvial flood risk 

Urban planning in the US has at many times in history been a tool 
wielded by whites and the wealthy for discrimination against ethnic 
minority and relatively impoverished groups (Babcock & Bosselman, 
1973; Dettling et al., 2017; Hagman, 1971). Although urban-planning 
ethics have been substantially re-evaluated over time (Barrett, Horne, 
& Fien, 2016), the repercussions of past discriminatory planning remain 
visible, and discriminatory planning still propagates in the modern era 
in intentional and unintentional ways (Koo et al., 2019; Nelson et al., 
2021; Voelkel et al., 2018). Our results variably reinforce and challenge 
the argument that urban resources are unequally shared, by relating the 
spatial distribution of population clusters and associated GI deployment 
with respect to the risk of pluvial flooding. 

Summarily, in our study cities, some of the relationships between GI 
density, blue-spot coverage, white and ethnic and racial minority pop
ulations, and median household incomes indicated inequalities and the 

potential for discriminatory flood-risk management measures. For 
Phoenix and Portland, low-income and non-white populations were 
more likely to be exposed to pluvial flooding than were high-income and 
white populations. Our results are then similar to findings of dispro
portionate exposure of non-white populations to environmental hazards 
such as fluvial flooding (Maldonado, Collins, Grineski, & Chakraborty, 
2016 Messager et al., 2021) and pluvial flooding (Baker, Brenneman, 
Chang, McPhillips, & Matsler, 2019; Chan & Hopkins, 2017). However, 
non-white populations in Phoenix and Portland were more likely to live 
among greater amounts of GI, perhaps indicating that efforts to manage 
flood risk were directed appropriately toward communities more at risk. 
We note that our temporal analysis showed newer GI installed in areas 
with high non-white populations and blue-spot coverage. We recom
mend that studies examining disparities in GI deployment also examine 
the proportionality of deployment to natural hazard risk. 

In Atlanta, many of these relationships are reversed, where white 
populations tended to be more exposed to pluvial flooding and to have 
greater GI density, indicating that there may be active efforts to manage 
flood risk in these communities. We also found that GI increased over 
time in areas with predominantly white populations. However, we 
found no significant overlap between GI change and blue-spot coverage. 
Given the relatively greater blue-spot coverage in white and high- 
income communities, flood risk could be driving some of the GI in
vestment in Atlanta, although the disparity in terms of equitable dis
tribution of GI is still notable. It may be then that GI investment in 
Atlanta follows wealth and the white population, in addition to flood 
risk. Previous scholarship found that another form of GI, tree canopy, is 
negatively correlated with poverty and renter-occupied housing in 
Atlanta (Koo et al., 2019). It may be then that socioeconomic forces 

Fig. 7. Change in green infrastructure distribution in Portland (2010–2020), Phoenix (2010–2020) and Atlanta (2015–2019). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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rather than need are driving GI investment in the city. 

5.2. Sociodemographic variables, GI, and pluvial flood risk 

The spatial error regression analysis did not produce significant 
spatial relationships between sociodemographic variables and flooding 
in Atlanta; however, in Phoenix, a positive association of GI and flooding 
may indicate efforts toward GI deployment to address pluvial flood risk. 
Also in Phoenix, the elderly population appears to be at greater relative 
risk of pluvial flooding, substantiating previous research finding that the 
elderly population is more vulnerable to natural disasters (Bell, Abir, 
Choi, Cooke, & Iwashyna, 2018). For Portland, non-white communities, 
mainly Asians and Native Americans, are at substantial risk of pluvial 
flooding. It has been well documented that these racial groups are 
disproportionately exposed to flood hazards (Chakraborty, Collins, 
Montgomery, & Grineski, 2014; Collins, Grineski, & Chakraborty, 
2018), and the hotspots of pluvial flood risk coincide with Asian 
immigrant communities in Portland. The population with college de
grees, on the other hand, is less at risk of pluvial flooding, suggesting 
that educational attainment may contribute to increased flood-risk 
awareness in Portland (Fahy et al., 2019). Education is well- 
established as a critical determinant of flood risk perception (Lechow
ska, 2018; Zabini, Grasso, Crisci, & Gozzini, 2021), thus it may be that 
our results are evidence of people acting on their flood risk perceptions. 
The negative relation between GI density and blue-spot coverage in 
Portland, however, highlights a gap in pluvial flood-risk management 
efforts. 

5.3. Implications for spatial planning 

Worldwide, investment in GI has increased substantially in the last 
decade (McPhillips & Matsler, 2018). This increase indicates a willing
ness to pursue multifunctional, nature-based solutions in urban settings 
(Hobbie & Grimm, 2020), and perhaps even demonstrates a more spe
cific recognition of the efficacy of GI toward significantly reducing 
pluvial flooding (Benedict & McMahon, 2002). Based on the results of 
our study, we advise stakeholders to review their priorities in how GI is 
distributed and align future GI investment with exposure, racial equity, 
and economic vulnerability. Our results emphasize that existing 
methods for the distribution of GI to address pluvial flooding may be 
incongruent with cities’ stated goals of addressing environmental eq
uity. Cities must work together with stakeholders to implement local, 
community-level solutions for GI deployment based on a shared 
framework (Jerome, 2017). 

Atlanta, Phoenix, and Portland’s stormwater manuals reveal that 
these cities strive to ensure equitable resource allocation. Our concep
tual framework outlines a straightforward approach to analyzing the 
spatial distribution of pluvial flood risk and GI, as well as evaluating how 
well these equity goals are being met. Patterns of classification such as 
Vulnerable, Managed, Prepared, and Low concern would better inform 
stakeholders about how to deploy GI to address pluvial flood risk. Such 
an approach would be useful for informing stakeholders and coming to 
decisions on GI deployment (Jerome, 2017). 

5.4. Temporal analysis of GI deployment and histories of green 
gentrification 

While GI investment is increasing in all three study cities, temporal 
analysis of GI change indicated inconsistent matching of pluvial flood 
risk with GI investment. In Atlanta, we found increases in GI investment 
in areas with less pluvial flood risk and greater white populations, 
indicating that sociodemographic factors may be the main driver of GI 
investment. In Phoenix, in contrast, we found increases in GI investment 
in areas of higher pluvial flood risk with greater non-white populations. 
Nonetheless, even though non-white populations in Phoenix tended to 
have lower median household incomes, GI investment was still more 

common in areas with higher median household incomes. It may be that 
GI investment in Phoenix is biased toward wealthier non-whites, but we 
leave an exploration of this possibility to future research. As a notable 
precedent for this sort of exploration, Koo et al. (2019) found that 
economic condition was an important interacting factor with racial and 
ethnic category in the analysis of environmental equity of tree canopy 
distribution in Atlanta. 

If cities intend to match GI investment with flood risk and forms of 
equity, they should be mindful of the pathways through which they will 
accomplish such a task, lest they risk propagating or deepening histor
ical inequities via green gentrification (Gould & Lewis, 2016), a phe
nomenon referring to how the development of green spaces can lead to 
the displacement of socially and economically vulnerable populations 
by attracting residents from more advantaged socioeconomic groups 
(Hackworth, 2002; Brueckner & Rosenthal, 2009, Dooling, 2009). 
Certain forms and configurations of GI might promote green gentrifi
cation (Rigolon & Németh, 2020), and researchers have recommended 
pairing GI investment initiatives with policy controls on housing and 
jobs in order to mitigate green gentrification or direct the value that GI 
investment adds to neighborhoods to its residents (Wolch, Byrne, & 
Newell, 2014). Indeed, all three of our study cities have histories of 
gentrification, green or otherwise, that warrant judicious GI investment 
plans (Immergluck, 2009; City of Portland, 2013a, City of Portland, 
2013b; Immergluck & Balan, 2018; McPhillips & Matsler, 2018; NCRC, 
2019; Richardson et al., 2020). 

6. Limitations 

Differences in topography, climatic conditions, data availability, and 
documentation present challenges to comparative analysis between 
cities. We used the Arc-Malstrøm method to estimate locations of pluvial 
flood zones, and we acknowledge that this method has significant lim
itations. For example, it does not account for routing through subter
ranean drainage infrastructure, nor does it involve on-the-ground 
verification of water networks. Further, the method is limited by the 
availability of high-resolution and recent DEMs in our cities, some of 
which lagged behind our sociodemographic data by four years. None
theless, based on our discussion with modeling experts and city practi
tioners, the general utility of the Arc-Malstrøm method to indicate 
potential areas of flooding during extreme precipitation events is not 
disputed. 

We used ACS data for identifying hotspots of white and non-white 
population groups, which have their own limitations. We are aware of 
some criticism of ACS data for the margin of error, which is typically 
reported for census statistics at a 90 percent confidence level; however, 
some scholars argue for a more desirable confidence level of 95 or 99 
percent (Spielman, Folch, & Nagle, 2014). Based on a review of several 
publications by local and state governments, we are confident that our 
use of ACS data is representative of the actual distribution of population 
based on race. 

6.1. Future research 

Decades of systemic racism have led to unequal distribution of risk 
among various sociodemographic groups, and in recent decades the 
deployment of GI has in some cases been inequitable, leading to a 
continuation of inequity of investment in the safety and quality of life of 
citizens based on sociodemographic characteristics (Dai, 2011; Fother
gill & Peek, 2004; Immergluck & Balan, 2018; Zahran, Brody, Peacock, 
Vedlitz, & Grover, 2008; Chapple & Thomas, 2020). Spatial analysis can 
reveal unequal and disproportionate investment in GI in cities, but 
knowledge of the cultural geography and political ecology of the cities is 
needed to provide historical context to findings and to assess how future 
GI investment may help redress historical and modern environmental 
injustices. Promoting environmental equity through correction of urban 
planning, government regulations, and deconstruction of residential 
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segregation is essential. Future research should also engage with lessons 
from green gentrification literature, by evaluating the forms, locations, 
and intensity of GI investment that can lead to gentrification, as well as 
by exploring various policy tools that can be used to control or redirect 
added value from GI investment to local residents. 

7. Conclusions 

Systemic racism and racial disparities in society contribute to the 
configuration and management of urban spaces. In this study, we 
analyzed disparities of pluvial flood exposure and GI investment in 
different sociodemographic groups. Although our analysis revealed in
equalities and potential discrimination in GI investment, we also found 
evidence of equitable and appropriate management, given differences in 
flood risk among groups, especially in Phoenix and Portland. We 
delineated urban pluvial flood zones and compared them with GI density 
and change over time at the scale of the CBG. We classified CBGs as 
Vulnerable, Managed, Prepared, and Low concern to describe the rela
tionship between a CBG’s flood risk and the amount of GI available to 
manage flood risk. In Phoenix and Portland, we found that non-white 
and low-income populations were more often classified as Vulnerable 
or Managed than were white and high-income populations, whereas 
white and high-income populations were more often classified as Pre
pared or Low concern. In Atlanta, non-white and low-income populations 
were more likely to live in Low concern area than were white and high- 
income populations, but white and high-income populations were more 
likely to live in Prepared and Managed areas. 

Our analysis also revealed inconsistent evidence that GI investment 
in Atlanta and Phoenix was a response to pluvial flooding, as there were 
also strong correlations between GI investment and certain sociodemo
graphic variables. Finally, we conclude that risks of green gentrification 
must be addressed in flood-mitigation planning. 
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Strohbach, M. W., Döring, A. O., Möck, M., Sedrez, M., Mumm, O., Schneider, A., … 
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