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Electrons confined in silicon quantum dots exhibit orbital, spin, and valley degrees of freedom. The 
valley degree of freedom originates from the bulk band structure of silicon, which has six degenerate 
electronic minima. The degeneracy can be lifted in silicon quantum wells due to strain and electronic 
confinement, but the “valley splitting” of the two lowest-lying valleys is known to be sensitive to atomic 
scale disorder. Large valley splittings are desirable to have a well-defined spin qubit. In addition, an 
understanding of the intervalley tunnel coupling that couples different valleys in adjacent quantum dots is 
extremely important, as the resulting gaps in the energy-level diagram may affect the fidelity of charge- 
and spin-transfer protocols in silicon quantum-dot arrays. Here we use microwave spectroscopy to probe 
variations in the valley splitting, and the intra- and intervalley tunnel couplings (tij and t ij ) that couple dots 
i and j in a triple quantum dot. We uncover large variations in the ratio of intervalley to intravalley tunnel 
couplings t 12/t12 = 0.90 and t 23/t23 = 0.56. By tuning the interdot tunnel barrier we also show that t ij 
scales linearly with tij , as expected from theory. The results indicate strong interactions between different 
valley states on neighboring dots, which we attribute to local inhomogeneities in the silicon quantum well. 
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I. INTRODUCTION 

Continuous research on electron spin qubits defined in 
silicon quantum dots has led to increasingly impressive 
levels of quantum control, with recent demonstrations of 
high single-qubit fidelities [1–3] and > 90% two-qubit gate 
fidelities [4,5]. Progress has been fueled by an investment 
in high-quality Si/Si0.7Ge0.3 heterostructures [6,7], coupled 
with the advent of accumulation-mode device designs that 
are less sensitive to disorder and enable fine control over 
quantum-dot electrons [8–11]. For example, through time- 
domain control of the quantum-dot confinement potential, 
it is now feasible to shuttle a single charge down an array 
of nine silicon quantum dots in approximately 50 ns [12]. 
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Control of valley states in Si quantum devices, espe- 
cially those based on Si/Si0.7Ge0.3 heterostructures, is an 
outstanding challenge [13–15]. While spin-1/2 electrons 
are often viewed as a canonical two-level system, the 
valley degree of freedom in the electronic band struc- 
ture of silicon can give rise to low-lying valley-orbit 
states [16–18]. For single quantum dots, low-lying valley 
states inhibit spin initialization and readout routines that 
are based on energy-dependent tunneling [19]. Moreover, 
spin-valley mixing leads to spin-relaxation hotspots when 
the Zeeman splitting of the single-electron spin state is 
comparable to the valley splitting [20–23]. 

Complications associated with valley splitting are exac- 
erbated in silicon quantum-dot arrays. The lifting of the 
z-valley degeneracy that gives rise to valley splitting is 

set by the abruptness of the electronic interfaces that break 
inversion symmetry [24]. Spatial inhomogeneities in the 

structure of the quantum well therefore lead to dot-to-dot 
variations in the valley splitting [25–27]. In Si/Si0.7Ge0.3 

systems the valley splitting often lies between 25–300 μeV 
[22,28–33]. Due to tighter confinement in the z direc- 
tion, valley splittings > 200 μeV have been observed in 

Si-MOS systems [34–36]. 
 
 

2691-3399/21/2(2)/020309(10) 020309-1 Published by the American Physical Society 

http://dx.doi.org/10.1103/PRXQuantum.2.020309
mailto:petta@princeton.edu
https://creativecommons.org/licenses/by/4.0/


F. BORJANS et al. PRX QUANTUM 2, 020309 (2021) 

020309-2 

 

 

P
 

P
 

P
 

D S 

B4 

D P
 

P
 

P
 

S  
 

d 
(n

m
) 

± 
± 

± 

�i

 
 

± 

±
 

 

 

The magnitude of the valley splitting is generally suffi- 
cient to understand the consequences on individual spins 
in isolated quantum dots. However, the intravalley tij and 
intervalley t ij tunnel couplings, which depend on the so- 
called valley-orbit phase, will influence the energy-level 
structure of a linear array of tunnel-coupled quantum dots. 
In particular, the location of anticrossings in the energy- 
level diagram will be set by the valley splitting of each 
dot EVS,i, and the magnitude of the avoided crossings 
in the energy-level diagram will be set by tij and t ij [37–
40]. Nonadiabatic transitions, Landau-Zener- 
Stuckelberg-Majorana interference, and leakage into 
higher-lying energy levels may all influence the fidelity 
of spin-transfer protocols [41–43]. Moreover, the spe- 
cific configuration of valley states can strongly affect 
multielectron exchange coupling in the quantum-dot 
device [44]. 

Here we investigate valley splitting and intervalley tun- 
nel coupling using microwave spectroscopy. A triple quan- 
tum dot (TQD) is embedded in a superconducting cavity 
in the circuit quantum electrodynamics device architecture 
(cQED) [45]. The dipole moment of an electron con- 
fined in a quantum dot couples to the electromagnetic 
field of the superconducting cavity [46–50]. By probing 
the microwave transmission through the cavity we sen- 
sitively map out the energy-level structure of the TQD. 
To take a first step towards measuring the spatial depen- 
dence of valley parameters, we extract the valley splitting 
of each dot and the intra- and intervalley tunnel couplings 

been demonstrated in a GaAs TQD [54]. However, due to 
isotopic enrichment, silicon spin qubits offer much longer 
spin coherence times and may enable operation deep in the 
strong coupling regime, once the complications stemming 
from the presence of valley states are overcome. 

 
II. VALLEY STATES IN SILICON 

The band structure of bulk silicon has six degener- 
ate conduction-band minima that are located close to the 

boundary of the first Brillouin zone, as depicted in Fig. 1(a) 
[13,55]. Due to the slight difference in lattice constant of 
the Si quantum well and the surrounding Si0.7Ge0.3 buffer 
layers, the Si quantum well is under tensile strain, which 

increases the energy of the x, y valleys relative to the 
z valleys [6]. Sharp quantum-well interfaces break inver- 

sion symmetry and couple the two z valleys, resulting in 
valley splitting [13]. 

Specifically, the Hamiltonian of the subsystem consist- 
ing of the ±z valleys on dot i can be written in the 
{|i, +z∗ , |i, −z∗} basis as 

HV,i = 
( 

0
∗ 
�i

 
, (1) 

with complex valley coupling matrix element �i = 
|�i|e−iφi  [25,42]. The eigenstates of this system are 

(a) (b) Si  Ge 
6 

in the TQD. We find significant variations in the quantum- 
dot valley parameters across the approximately 200-nm 
length scale of the device. Valley splittings range from 
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Si 
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38–63 μeV and the intervalley tunnel coupling t  between 0.7 0.3 0.3 0.8
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dots 1 and 2 is nearly 2 times larger than t23. These results 
have important implications on future experiments aimed 
at demonstrating coherent spin shuttling in quantum-dot 
arrays and reinforce the need for additional improvements 

(c) 
 

Si 
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in the growth of Si/Si0.7Ge0.3 heterostructures, especially 
interface abruptness. 

Beyond providing fundamental insight into the nature 
of the valley degree of freedom in Si/Si0.7Ge0.3 quantum 
devices, our results pave the way for coherent coupling 
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of resonant-exchange (RX) spin qubits to microwave- 
12 (μeV) 12 (μeV) 

frequency photons. Coherent coupling of a single spin to 
a single photon has been achieved in silicon double quan- 
tum dots (DQDs) using a combination of electric dipole 
coupling and spin-orbit coupling generated by the fring- 
ing field of a micromagnet [51–53]. With RX qubits, the 
electric field of a cavity photon couples to spin through 
the exchange interaction. High-fidelity gate operations 
have been demonstrated with electrically tunable RX spin 
qubits, which can operate at zero magnetic field. This 
increases compatibility with superconducting cavities [3] 
and allows for scalable control of the qubit frequency. 
Strong coupling of a RX spin qubit to a photon has recently 

FIG. 1.  Valley physics in silicon. (a) First Brillouin zone of sil- 
icon, with six degenerate conduction-band minima. Tensile strain 
in the Si quantum well separates the z valleys from the x, y 
valleys, while vertical confinement lifts the degeneracy of the 
z valleys. (b) TEM image of the Si/Si0.7Ge0.3 quantum well. 

(c) Schematic cross section of a DQD with corresponding energy 
levels. An ideal Si/Si0.7Ge0.3 quantum well with abrupt interfaces 
(left) leads to large and uniform valley splittings, and no inter- 
valley tunnel coupling, while a realistic quantum well with soft 
interfaces and step edges (right) will have small, nonuniform val- 
ley splittings, and strong intervalley tunnel coupling between the 
quantum dots. Corresponding energy-level diagrams are shown 
in the bottom graphs. 
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|i, ±∗ = (1/
√

2) |i, +z∗± eiφi |i, −z∗ , with eigenenergies 
E± = ±|�i|. Consequently, the valley splitting of dot i is 
EVS,i  E+ E−  2 �i and φi is the valley-orbit phase. 
The magnitude and phase of �i are physically rooted in the 
local properties of the quantum well [25,42]. For example, 
spatial variations in interface abruptness and disorder will 
cause �i to be a function of position in the plane of the 
quantum well, �i = �i(x, y), hence the term “valley-orbit 
coupling.” 

While the valley-orbit phase does not immediately affect 
the energy levels of a single quantum dot, its conse- 
quences are evident when considering a system of two 
tunnel coupled quantum dots (dots i and j ). In the basis 
{|i, +z∗ , |i, −z∗ , |j , +z∗ , |j , −z∗}, the Hamiltonian can be 

the average intensities for Si and Si0.7Ge0.3 only span- 
ning a few ( 5) lattice sites over the displayed range. 
However, even a small number of atomic steps in the 
interface can have a large impact on the valley phase 
difference and overall structure of the DQD energy-level 
diagram [16,24,37,39]. A uniform (step-edge-free) inter- 
face in the region of the DQD corresponds to the limit δφij 
= 0, which results in a set of bonding-antibonding charge 
states for each of the valleys [see Fig. 1(c), left panel]. 
Realistic quantum wells will have less abrupt interfaces 
and step edges that result in intervalley tunnel coupling 
[see Fig. 1(c), right panel]. For example, with δφij = π/2, 
there are four avoided crossings in the energy-level dia- 
gram, indicating the presence of both valley-conserving 
and nonconserving charge transitions between dots i and 
j . Moreover, smooth, disordered interfaces will generally 

 
 H (E 

Eij  
2 

) = 
⎜� 

�i tc 0 
Eij  0 tc 

⎞ 

⎟ , (2) 

yield smaller EVS that exhibit dot-to-dot variations [25]. 
Comprehensive studies of the full set of valley parameters 
have so far not been conducted. Microwave spectroscopy 

ij ij Eij  
2 

0 tc �∗
j 

�j 
Eij  
2 

of a TQD in the cQED architecture provides an opportunity 
to sensitively probe the spatial variation of valley states in 
a silicon quantum device. 

with tunnel coupling tc between identical z-valleys of dots 
i and j . We neglect the coupling of opposing z valleys 
between the quantum dots, as it is a higher-order coupling 
contribution [25]. The energy-level detuning between dots 
i and j is defined by Eij μi μj with corresponding 
decoupled chemical potentials μi(j ). 

We diagonalize the local single-dot valley dynam- 
ics of dots i and j by transforming into the basis 
i, , i, , j , , j , , where refers to the bond- 

ing and antibonding valley state combinations. We 
obtain ⎛ Eij  + EVS,i 0 tij t  ⎞ 

 
III. EXPERIMENTAL SETUP 

In this experiment a half-wavelength λ/2 supercon- 
ducting cavity with resonance frequency fc 6.76 GHz 
and photon loss rate κ/2π 1.4 MHz is coupled to two 
Si/Si0.7Ge0.3 TQDs [Fig. 2(a)]. The TQDs are fabricated 
using an overlapping gate architecture [29]. The center 
pin of the cavity is galvanically connected to the cavity- 
coupler gate “CP,” as shown schematically in Fig. 2(b). 
Along with screening gates S1 and S2, the CP gate is 
part of the first of three overlapping Al gate layers [57]. 
Plunger (barrier) gates are defined in the second (third) alu- 2 

 
H (Eij ) = ⎜ 

Eij  
2 t ij 

ij 

tij , ⎟ 
minum layers and the layers are electrically isolated from 
one another by a native Al2O3 oxide barrier. 

ij t∗ij 
t i∗j 

t i∗j 
t∗ij 

Eij 
2 + EVS,j 0 

0 − Eij 
 
 

(3) 

The TQD chemical potentials are controlled with 
plunger gates P1–P3, while the interdot barriers and barri- 
ers to the source (S) and drain (D) reservoirs are controlled 
by gates B1–B4. To enhance the dot-cavity coupling, the 

with intra- and intervalley tunnel coupling tij (1/2)tc(1 
e−iδφij ) and t ij  (1/2)tc(1 e−iδφij ), and valley phase dif- 
ference δφij φi φj [42,56]. This Hamiltonian results in 
four energy bands with two intravalley and two intervalley 
anticrossings determined by tij and t ij , respectively. 

In practice, the valley splitting and phase are strongly 
dependent on the valley coupling dynamics at the 
Si/Si0.7Ge0.3 quantum-well interfaces. Figure 1(b) shows 
a high-resolution TEM image of the heterostructure. The 
varying Ge content causes an intensity contrast between 
the different layers of the heterostructure. To the right, we 
plot the average of the grayscale pixel intensity for each 
row of the image. The interface is of fairly high qual- 
ity. This is expressed by the smooth transition between 

CP gate is designed to wrap around dot 3, which effectively 
adds a potential barrier between dot 3 and the D reservoir, 
in addition to the barrier defined by gate B4. A SEM image 
of the TQD is shown in Fig. 2(c), with a white dashed 
line indicating the long axis of the TQD. Details related 
to the fabrication of similar devices have been presented 
elsewhere [58]. The data sets in this paper are acquired 
from the TQD located at the right antinode of the cavity 
(denoted RTQD). 

We map out the TQD charge stability diagram 
[Fig. 2(d)] by measuring the normalized cavity transmis- 
sion A/A0 as a function of the gate voltages VP1 and 
VP3 [46]. When sweeping VP1 and VP3 we observe nearly 
horizontal charge transitions in the cavity response that 

∗
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0 
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FIG. 2. Cavity-coupled TQD. (a) Optical image of a superconducting cavity coupled to two TQDs. (b) Schematic of the TQD device 
with cavity coupler gate (CP). (c) False-color SEM image of the TQD. (d) Large-scale charge stability diagram of the TQD. The 
dashed black lines indicate the three quantum-dot charge transitions. Features corresponding to two-level systems (TLSs) are indicated 
by black arrows. (e) Charge stability diagram in the single-electron regime. The blue star indicates the (1,0,0)-(0,1,0) interdot transition 
and the red triangle indicates the (0,1,0)-(0,0,1) interdot transition. (f) Schematic of the operating points indicated by the symbols in 
(e). Due to the geometry of CP, the microwave coupling to dot 3 is strongest, as indicated by the thickness of the black arrows. 

 
correspond to charge transfer between dot 1 and the S 
reservoir. As a result of the mutual charging energy, the 
dot-1 charge transitions shift abruptly when an electron is 
added or removed from dot 3 (see vertical dashed line). 
As the CP gate limits the tunneling rate to the D reser- 
voir in the few-electron regime, no direct cavity response 
is observed for dot-3 charge transitions. The absence of 
dot-1 transition shifts for VP3 below the indicated vertical 
dashed line however allows us to verify the single-electron 
occupation of dot 3. Due to cross-coupling of the gate volt- 
ages VP1 and VP3 to dot 2, we observe angled dot-2 charge 
transitions in the data, which interact with the dot-1 and 
dot-3 charging transitions. 

For the remainder of the paper, we operate in the 
single-electron regime. By performing pairwise sweeps 
of VP1/VP2 and VP2/VP3, we tune the device towards the 
(1,0,0)-(0,1,0)-(0,0,1) transition shown in Fig. 2(e) (see 
Appendix A). Here we use the virtual gates VE = (VP3 − 
VP1)/2 + V0 and V� = (VP1 + VP3)/2 + V0 to access the 

 
asymmetric geometry of the CP gate creates an electric 
field gradient across all three dots, allowing us to observe 
a signal at both interdot charge transitions. 

 
IV. CAVITY RESPONSE TO VALLEY STATES 

To gather insight into the TQD valley physics we 
sketch the low-lying TQD energy levels as a function of 
the detuning E13 between dots 1 and 3 in Fig. 3(a). In 
this regime the (1,0,0)-(0,1,0) and (0,1,0)-(0,0,1) interdot 
charge transitions can be analyzed independently. Each 
interdot transition involves four energy levels. Focusing 
on the (1,0,0)-(0,1,0) transition the four relevant levels are 
1,  and 2,  . 

The microwave cavity is sensitive to charge dynam- 
ics within the TQD due to dipole coupling between the 
electron trapped in the device and the cavity electric field 
[46,47]. In general, the cavity response A/A0 is strongest 
near charge avoided crossings in the energy-level dia- 
gram [see blue, red, and green arrows in Fig. 3(a)]. At 

E � 
0 different charge states of the TQD. Voltage offsets VE and low temperatures where kBTe ∓ EVS,i, with Boltzmann 

0 are used to move the (0,1,0) charge state to the ori- 
gin. In this tuning configuration, the tunneling rates to the 
S and D reservoirs are suppressed relative to fc, and the 
primary cavity response stems from the (1,0,0)-(0,1,0) and 
(0,1,0)-(0,0,1) interdot charge transitions. We denote these 
transitions with a blue star and a red triangle, respectively, 
and show a schematic of the device cross section in 
Fig. 2(f). The cross section corresponds to the device area 
indicated by the white dashed line in Fig. 2(c). The 

constant kB and electron temperature Te, the electron pri- 
marily resides in the ground state and the excited valley 
states are not prominent in the cavity response. Partic- 
ipation of the excited valley states 1,  , 2,  , 3, 
in the cavity response can be increased by raising the 
temperature and thermally exciting the charge accord- 
ing to the Boltzmann distribution with occupation prob- 
ability pi e−Ei/kBTe / i e−Ei/kBTe , with state energy Ei 
[30,56]. Increasing the electron temperature, such that 
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repulsion from the excited valley states 1, and 2, 
reduce its effective energy splitting. 

Next to the strong central feature we observe two sim- 
ilar, but fainter, arches. These arches correspond to the 
thermally occupied intervalley transitions 1,  2, 
(red arrows). We note that tuning t12 by adjusting VB2 
affects both the inter- and intravalley signatures in the data. 
Moreover, the position of the side arches can be quali- 
tatively understood by looking at the energy diagram in 
Fig. 3(a). Raising EVS,1 will move the 1, 2,  tran- 
sition towards more negative detuning. Similarly, EVS,2 
affects the horizontal positioning of the right-side arch via 
a shift of the 1, 2, transition. From this quali- 
tative analysis and the larger spacing between the left and 
center feature, we deduce EVS,1 > EVS,2. To understand the 
vertical positioning of the arches, we focus on the strongest 
cavity signal at the maxima of the arches indicated by 
the blue (red) arrows. At these points the intra(inter)valley 
transition energies are dominated by the contribution of the 

FIG. 3.  Cavity response in the single-electron regime at Te 

350 mK. (a) Energy bands of the TQD, with valley split- 
tings denoted by EVS,i. At low temperatures, only the transition 

corresponding couplings t12(t 12) and coincide with hfc. The 
observation that these points are reached at different val- 
ues of t12 for the two side arches indicates that in fact t 12 between the lowest energy states (blue) is visible in the cav- changes with detuning in our system, i.e., t = t (E). This 

ity response. By increasing temperature, intervalley transitions 
suggests that also t = t (E) 

12 12 

(0,1,0) transition as a function of t12 and the detuning E12 between 
dots 1 and 2. The colored arrows correspond to the transitions 
highlighted in (a). (c) A/A0 in the vicinity of the (0,1,0)-(0,0,1) 
transition as a function of t23 and E23. Insets in (b),(c) show the 
simulated cavity response. 

 
 
 

kBTe EVS,i, is effective at increasing the visibility of the 
higher-lying intervalley transitions in the cavity response 
(red transitions). In practice, the excited intravalley tran- 
sitions (green transitions) are still masked by the larger 
participation of the ground-state intravalley transitions at 
nearly the same voltage and are therefore not visible 
here. Nevertheless, the cavity-response data are sufficient 
to extract the valley splittings, and intra- and intervalley 
tunnel couplings. 

Figure 3(b) displays the cavity transmission A/A0 as a 
function of the interdot detuning E12 and tunnel coupling 
t12 with Te 350 mK, which is achieved by actively 
heating the mixing chamber plate of the dilution refrig- 
erator (see Appendix B). Here the detuning is plotted in 
units of mV, as the lever arm varies slightly as a function 
of t12. The ground-state transition 1, 2, corre- 
sponds to the center arch that is most pronounced in the 
data. With E12 0, the cavity response is the strongest 
around t12/h 4 GHz (h is Planck’s constant), where the 
energy difference of the coupled states is most insensitive 
to noise on the detuning axis E12 and the transition energy 
is resonant with the cavity E2 − E1 = hfc. In contrast to 
the valley-free case [50,57], here E2 − E1 < 2t12, as level 

dependence. Specifically, with t12(E  0)/h  3.5 GHz, t 
is large enough for the 1, 2, transition to be 
resonant at positive detuning, while it is too small at nega- 
tive detuning leaving the 1,  2, transition below 
resonance. Unless the detuning dependence is explicitly 
specified, we identify tij  tij (E  0) and t ij  t ij (E  0). 
We assume that this detuning dependence is caused by 
cross capacitance between the plunger gates and the tunnel 
barrier potential. 

For the (0,1,0)-(0,0,1) transition [Fig. 3(c)], we observe 
similar behavior for the 2,  3, intravalley transi- 
tion. However, the 2, 3, intervalley features do 
not appear in the shape of two arches next to the main fea- 
ture, but they merge into one bigger arch at much higher 
t23. The qualitative differences between the datasets indi- 
cates a variation of the valley parameters across the TQD. 
The asymmetries caused by the variation of t and t can be 
reproduced by input-output simulations shown in the insets 
of Figs. 3(b) and 3(c) [59]. 

 
V. QUANTITATIVE EXTRACTION OF THE 

VALLEY PARAMETERS 

We now quantitatively analyze the cavity response data 
in light of the theoretical background given in Sec. II. The 
energy levels in the vicinity of the (1,0,0)-(0,1,0) transi- 
tion are plotted in Fig. 4(a). The dashed lines indicate the 
expected energy levels with no tunnel coupling, while the 
solid lines show the energy levels with |t12|/h = 2.9 GHz 
and |t12|/h = 2.6 GHz. We denote the intravalley transi- 
tion |1, −∗ ↔ |2, −∗ as (i), and the intervalley transitions 
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fc, causing a pronounced reduction of the cavity transmis- 
sion at positive detuning. As (i) is below resonance, we 
observe two additional minima in A/A0, corresponding to 
the two detuning values where Q/h  fc. Finally, when 
t12 /h  2.9 GHz, the ground-state intravalley transition 
(i) and both intervalley transitions (ii) and (iii) lie below 
resonance, so that there are in theory six detuning values 
at which either Q/h or Q /h  fc. However, the central 
four resonance conditions lie pairwise close to each other, 
such that their corresponding features merge into two cen- 
tral transmission minima [see lower portion of Figs. 3(b), 
and 4(c)]. 

To determine the TQD valley parameters we quantita- 
tively analyze linecuts similar to those shown in Fig. 4(c). 
Superimposed on the data are best fits obtained by numer- 

–100 0 
12 (μeV) 

100 
2.0 

3.0  3.5  4.0  4.5  5.0 
|t|/h (GHz) 

ically diagonalizing the Hamiltonian in Eq. (3) for each 
value of E12 and feeding the resulting energies into cavity 
input-output theory, where the cavity signal is calculated 

FIG. 4. Quantitative analysis of the cavity response. (a) 
Energy-level diagram for |t12|/h = 2.9 GHz. Transitions Q and 
Q are energetically accessible at Te = 350 mK. (b) Transition 

based on the coherent coupling of the cavity to the delocal- 
ized electron and the decoherence of the coupled systems 
[60]. To generate the level diagram, we treat t12 = |t12| 

frequencies Q/h and Q /h as a function of E12 for the four values 
of t12 indicated in (c). The minima in the transition frequencies and t 12 = |t 12| as real valued parameters for the fits, which 
are labeled (i)–(iii). (c) Line cuts extracted from Fig. 3(b) for dif- 
ferent t (fits are shown in black). The line cuts correspond to the 
low t regime, resonant regimes for both intra- and intervalley 
transitions, and the high t regime. (d) Extracted intervalley tun- 
nel coupling rates tij /h as a function of tij /h for both interdot 
transitions. 

 
 

1, 2, as (ii) and (iii), respectively. We plot the 
intra- and intervalley transition frequencies Q/h and Q /h 
as a function of E12 in Fig. 4(b), and the cavity frequency fc 
is shown for comparison. An appreciable cavity response is 
observed near detunings E12 where Q/h or Q /h  fc. Q/h 
exhibit a single minimum corresponding to the ground- 
state intravalley transition (i) close to E 0. Similarly, the 
two intervalley transitions (ii) and (iii) lead to two minima 
in Q /h at finite detuning. 

We next utilize Figs. 4(a) and 4(b) to identify the fea- 
tures in the cavity-response data. Four linecuts extracted 
from Fig. 3(b) data set are plotted in Fig. 4(c), and 
show the evolution of A/A0 as a function of E12 as 
t12 is reduced. Qualitatively, the complexity of the cav- 
ity response increases as t12 /h is reduced from 4.6 to 
2.9 GHz. At t12 /h  4.6 GHz, both transition energies 
lie above resonance for the whole range of E12, with Q/h 
only approaching fc at E12 0. At this point, the inter- 
valley features are very weak and only the intravalley 
transition (i) contributes to an appreciable dispersive sig- 

leaves the energy levels unaffected [42,56]. To account 
for the observed asymmetry in Fig. 3(b) intervalley tunnel 
couplings at positive and negative detuning, we parameter- 
ize a small linear dependence of the intravalley coupling 
on detuning tij (Eij )  tij (Eij  0)  aij Eij . Fit parameters 
of the Hamiltonian are EVS,i, tij (Eij  0), aij , leverarm αij 
and the valley phase difference δφij , which is defined by 
t ij /tij tan(δφij /2). We take into account the finite pop- 

ulation of the excited states at Te 350 mK via the Boltz- 
mann distribution. In addition, we fit the charge-cavity 
coupling rate gij /2π . The inhomogenous broadening of the 
features caused by charge noise is implemented by a Gaus- 
sian convolution of standard deviation σij . Combining the 
results from the linecut fits we find g12/2π 37 MHz 
and σ12   9 μeV. The charge decoherence rate γ12/2π 
32 MHz is extracted in a separate measurement by probing 
the ESR linewidth. Similar data (not shown) are acquired 
near the (0,1,0)-(0,0,1) transition, with best-fit parameters 
g23/2π  23 MHz, γ23/2π 39 MHz, and σ23  7 μeV. 

We first extract the valley splitting of each quantum dot. 
Analyzing the linecuts yields EVS,1 63 μeV and EVS,2 
53 μeV, whereas the data from the (0,1,0)-(0,0,1) tran- 
sition yields EVS,2 50 μeV and EVS,3 38 μeV. The 
magnitude of the valley splitting is consistent with previ- 
ous measurements on similar devices [30]. Crucially, the 
values of EVS,2 obtained from the two independent mea- 
surements are self-consistent and imply that the valley 
splittings are insensitive to small variations in the plunger 

nal in the cavity transmission. At t12 /h  3.9 GHz, both 
(i) and (ii) are nearly resonant with the cavity, leading 
to a strong suppression of A/A0 at E12 0, and a local 
minimum at negative E12. Reducing the tunnel coupling 
further to |t12|/h = 3.5 GHz, (iii) is nearly resonant with 

gate voltages. 
Next, we extract values of |t12| for multiple values of 

|t12|, as shown in Fig. 4(d). We expect a linear rela- 
tionship between |tij | and |tij | described by the formula 
|t ij /tij |=  tan(δφij /2). We determine the scaling relation 
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ing in vastly reduced spin liftetimes [34]. Small valley 
splittings also limit the use of Pauli spin blockade for 
singlet-triplet readout in silicon [61]. With larger valley 
splitting, a device as studied here will also allow the cou- 
pling of a resonant exchange-based encoded spin qubit 
to a superconducting cavity, opening the door to scalable 
spin-photon links. 

Considering efforts to transport spins down large 
quantum-dot arrays [12], spatial variations in the val- 

FIG. 5. Single-electron occupation of the TQD. (a) Cavity 
transmission A/A0 as a function of plunger gate voltages VP1 and 
VP2, showing charge stability diagram of dots 1 and 2 with dot 3 
empty. (b) A/A0 asa function of VP2 and VP3, showing charge sta- 
bility diagram of dots 2 and 3 with dot 1 accumulated to extend 
the reservoir. 

 
 

to be t 12/t12  0.90 for the (1,0,0)-(0,1,0) transition with 
a12 0.02. Similarly, we extract t23/t23 0.56 for the 
(0,1,0)-(0,0,1) transition with a23 0. Using these scaling 
relationships, we find valley phase differences δφ12 
84◦ and δφ23 58◦. The substantial valley phase differ- 
ences point toward a level diagram closely resembling that 
shown in Fig. 4(a), with the intra- and intervalley tunnel 
couplings leading to four avoided crossings. In contrast, 
an abrupt and uniform Si/Si0.7Ge0.3 interface would yield 
δφ12=0, with only nonzero intravalley couplings [left panel 
of Fig. 1(c)]. 

 
 

VI. CONCLUSION AND OUTLOOK 

In conclusion, we use microwave spectroscopy to probe 
the energy-level structure of a Si TQD containing a single 
electron. Consistent with previous work, we find signif- 
icant variations in the valley splitting across the device 
[22,28–32]. Going beyond previous work, we capitalize 
on the sensitivity of cQED microwave spectroscopy to the 
curvature of the quantum-dot energy levels to probe vari- 
ations in the intervalley tunnel coupling. Consistent with 
theory, we find that the intervalley coupling scales linearly 
with the intravalley coupling. Moreover, examination of 
both the (1,0,0)-(0,1,0) and (0,1,0)-(0,0,1) interdot charge 
transitions allows us to probe variations in the valley-orbit 
phase. Significant variations in the valley phase difference 
δφij over the small approximately 200 nm length scale 
of the device highlights the importance of improving the 
Si/Si0.7Ge0.3 interface quality. We expect that experimen- 
tal characterizations similar to those performed here may 
be achieved with reflectometry setups utilizing external 
resonant circuits [60]. 

Our results indicate a significant variation of the valley 
splitting and valley-orbit phase across the TQD. Vari- 
able valley splittings can impact single-qubit operation 
and readout, as rapid spin-valley mixing occurs when the 

ley phase difference δφij could be especially problematic. 
From the Landau-Zener model, the nonadiabatic transition 
probability at an avoided crossing is exponentially depen- 
dent on the square of the coupling matrix element. Ideally, 
the intervalley gaps in the level diagram would be zero 
or small, limiting mixing into excited valley states dur- 
ing spin shuttling. The nonzero valley phase difference, 
and its variation across the device, could very well impact 
the performance of spin-shuttling protocols. Looking for- 
ward, the measurements presented here can be used to 
provide valuable feedback on the quality of interfaces in 
the Si/Si0.7Ge0.3 system. 
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APPENDIX A: CHARGE STABILITY DIAGRAMS 

In this appendix we show additional data exemplifying 
the pairwise sweeps used to achieve the single-electron 
regime in the TQD. As the dot 3 to drain transition is 
opaque, we operate using the dot 1 to source transition 
and the capacitive interdot interactions to determine the 
charge occupation in the array. In Fig. 5(a) we show the 
charge stability diagram of dots 1 and 2 while keeping 
dot 3 empty. We increase VB1 to allow for fast tunneling 
between the source lead and dot 1. The first dot-1 elec- 
tron transition is clearly visible, with the higher transition 
becoming smoother as the tunneling rate increases. From 
the absence of capacitive jumps in the dot-1 transition, we 
can infer the last electron transition of dot 2, indicated with 
the vertical black dashed line. 
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Nat. Nanotechnol. 14, 747 (2019). 
[4] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, 

R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hud- 
son, K. M. Itoh, A. Morello, A. Laucht, and A. S. Dzurak, 
Fidelity benchmarks for two-qubit gates in silicon, Nature 
(London) 569, 532 (2019). 

[5] X. Xue, T. Watson, J. Helsen, D. Ward, D. Savage, 
M. Lagally, S. Coppersmith, M. Eriksson, S. Wehner, 
and L. Vandersypen, Benchmarking Gate Fidelities in 

FIG. 6. Tunnel coupling calibration in the TQD. (a) t12 is 
extracted as a function of VB2 by fitting the input-output model 
described in the main text to line cuts of Fig. 3(b) data. (b) Sim- 
ilarly, t23 is extracted as a function of VB3 using line cuts of 
Fig. 3(c) data. 

 

To access the single-electron regime for dots 2 and 3, we 
accumulate dot 1 such that we can now see the extended 
source to dot-2 transition in Fig. 5(b). This allows us to 
directly find the last electron in dot 2 and again infer the 
last dot 3 transition by the missing capacitive shifts in 
the dot-2 transition for lower VP3. Here, the vertical black 
dashed line indicates the last electron transition for dot 3. 
Combining the information gathered from these pairwise 
sweeps, we tune the TQD into the single-electron regime. 

 
APPENDIX B: CALIBRATING THE INTERDOT 

TUNNEL COUPLING 

We show the calibration of the intravalley tunnel cou- 
plings used in Figs. 3(b) and 3(c) in this appendix. The 
data for these figures are taken by stepping the barrier gate 
voltages VB2(VB3) (vertical axis) and sweeping the detun- 
ing (horizontal axis). We then fit our input-output model 
for different values of the barrier gate voltages and extract 
the tunnel coupling for each line cut. The extracted tunnel 
couplings can be well fit by a linear dependence (see Fig. 6) 
allowing us to continuously convert the vertical axis from 
units of barrier gate voltage to tunnel coupling. 
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