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Abstract—The tidal waves of modern electronic/electrical de-
vices have led to increasing demands for ubiquitous application-
specific power converters. A conventional manual design pro-
cedure of such power converters is computation- and labor-
intensive, which involves selecting and connecting component
devices, tuning component-wise parameters and control schemes,
and iteratively evaluating and optimizing the design. To automate
and speed up this design process, we propose an automatic frame-
work that designs custom power converters from design specifi-
cations using reinforcement learning. Specifically, the framework
embraces upper-confidence-bound-tree-based (UCT-based) rein-
forcement learning to automate topology space exploration with
circuit design specification-encoded reward signals. Moreover,
our UCT-based approach can exploit small offline data via the
specially designed default policy to accelerate topology space ex-
ploration. Further, it utilizes a hybrid circuit evaluation strategy
to substantially reduces design evaluation costs. Empirically, we
demonstrated that our framework could generate energy-efficient
circuit topologies for various target voltage conversion ratios.
Compared to existing automatic topology optimization strategies,
the proposed method is much more computationally efficient —
it can generate topologies with the same quality while being up to
67% faster. Additionally, we discussed some interesting circuits
discovered by our framework.

Index Terms—design automation, power converter topology de-
sign, upper-confidence-bound tree (UCT), reinforcement learning

I. INTRODUCTION

Power converters are ubiquitous in electronic/electrical de-
vices. With the proliferation of customized electrical sys-
tems [1], such as electric vehicles, self-powered IoT, wear-
able/implantable biosensors, the need for custom power con-
verters is rapidly increasing to provide diverse supply power
standards. The design specifications, such as voltage conver-
sion ratio, power efficiency, and output ripple, differ signif-
icantly from application to application. To meet these spec-
ifications, conventional manual circuit optimization is time-
consuming and relies heavily on existing circuit topologies, as
illustrated in Figure 1. The expensive design process has dra-
matically hindered the development of novel power converters
for fast-paced and innovative custom designs. Hence, there is
a pressing need for an automatic circuit design framework
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Fig. 1: Given a custom power converter design task, the conventional
manual approach relies heavily on known topologies and is labor-
intensive, computationally expensive, and time-consuming. In con-
trast, our automatic power converter design framework can explore
the design space more effectively, thereby immensely decreasing the
development time and cost without compromising the performance.

that can efficiently search and generate high-quality power
converter topologies from the design specifications.

However, how to automate the power converter topology
design remains a challenging task. Firstly, topology generation
for electronic circuits or integrated circuits (IC) lacks thorough
investigation. The state-of-art analog/mixed-signal (AMS) IC
design automation mainly addresses device sizing or parameter
optimization for a fixed circuit structure [2]–[9]. People have
also investigated automation methods to accelerate the phys-
ical implementation of AMS ICs when schematic/topology
design is already done [10]–[14]. More recently, researchers
have started looking into circuit synthesis [15]–[17]. But
some of them require substantial domain knowledge, which
greatly hindered their generality. Others explore the enormous
topology space via exhaustive search, metaheuristic search, or
gradient descent, which may not be as efficacious in the non-
continuous topology space as for other design tasks.

Fundamentally, automated topology generation is inherently
difficult, as it faces challenges due to the immense search
space and severe data discontinuity. In fact, the search space
increases exponentially with circuit complexity, and the enor-
mous number of possible topologies prohibits exhaustive or
random search. Further, metaheuristic search strategies may
get stuck in a restricted set of topologies and thus output sub-
optimal results unless the number of random samples becomes
large enough. Moreover, unlike device parameters such as
transistor width and length, a small shift in the component
connections of one topology will very likely lead to significant
changes in the circuit performance. As such, search algorithms



or optimization methods that rely on continuity between “sim-
ilar topologies”, such as genetic search or gradient descent,
may become less effective in reducing search efforts.

Finally, it is time-consuming to evaluate the performance
of generated topologies properly. For power converters, this
is often a more severe problem because they are usually
nonlinear and dynamically controlled switching circuits, which
require long simulations to reach their steady states. The
conventional Spice simulation [18] is able to provide high-
fidelity evaluation results, but this comes with the cost of
a long simulation time to achieve the desired precision and
control scheme exploration. The evaluation cost per topology
can be as high as minutes, making the topology exploration
process prohibitively time-consuming.

Contribution. We present a design automation framework
for power converter circuit design and optimization to address
the above challenges. The main contributions are as follows:

• We propose the first automatic power converter design
framework that intelligently explores the power converter
topology space and generates high-quality candidate cir-
cuits based on custom design specifications. As shown
in Figure 1, our framework can efficiently locate well-
performing topologies with appropriate control schemes
and also has the potential to generate novel topologies
under specific design constraints.

• For the first time, our framework applies reinforce-
ment learning (RL) using the upper-confidence-bound-
tree (UCT) to circuit topology generation. We construct
the UCT structure to sufficiently capture the semantic of
topologies to explore the topology space more efficiently.
Moreover, this UCT structure is able to exploit offline
knowledge, which is obtained from a few suitable topolo-
gies with smaller sizes and encapsulated into our specially
designed default rollout policy, and further accelerate the
topology space exploration.

• As the long-running circuit evaluation is the bottleneck of
fast topology exploration, we detect isomorphic topolo-
gies and adopt a hybrid circuit evaluation approach. A
State-Space Averaging method is used during the explo-
ration, which reduces the time cost of circuit evaluation
by orders of magnitude, and a high-fidelity Spice transient
simulation is used to validate circuit candidates generated
by the exploration and filter out the over-optimistic ones.

• We conduct extensive experiments on 5-component (13-
port) power converter design tasks. Evaluation results
demonstrate that our proposed automatic framework can
produce energy-efficient circuits for varying voltage con-
version ratios. Furthermore, compared to baseline strate-
gies (i.e., genetic search and random search algorithms)
adapted from other circuit design tasks, our frame-
work can generate constraint-satisfied and highly efficient
topologies while needing fewer queries to circuit evalua-
tion. Hence, it is up to 70%, 56%, and 50% faster than
the baseline strategies for the experimented buck, boost,
and buck-boost converter design tasks, respectively.

II. BACKGROUND

With the demands of custom electronics, application-
specific design automaton of analog/mixed-signal (AMS) and
radio-frequency (RF) power management circuits starts to play
vital roles in accelerating high-quality electronic circuit de-
signs. However, the traditional manual design routines are in-
herently time-consuming and rely heavily on domain expertise.
To reduce the cost and improve the design quality, mainstream
research about circuit design automation are three folded:
(1) automating the device parameter optimization for known
circuit topologies; (2) automating the physical implementation
for known circuit topologies and parameters; (3) automating
the circuit synthesis that directly generates topologies.
Parameter Optimization. Great efforts have been de-
voted to automating the parameter optimization for prede-
termined topologies. For example, [2] proposed geometric-
programming-based optimization, [3], [4] used regression and
convex/polynomial optimization, and [5] applied a Bayesian
optimizer, [6], [7] both adopted model-based reinforcement
learning to find the optimal device parameter combinations
for analog circuits. Additionally, [8] encoded circuits using
graph convolutional neural networks to transfer the parameter
optimization knowledge learned between two topologies or
between technology nodes of the same circuit.
Physical Implementation. The physical implementation au-
tomation for integrated circuits (IC), such as device placement
and routing, also plays a vital role for many high-performance
AMS/RF circuits. For example, analog generators were pro-
posed in [10], [11], which directly build analog circuit layouts.
[12] applied a data-driven approach to check layout symmetry,
which is crucial in high-quality AMS physical layout. A
feed-forward equalization transmitter layout generator was
introduced in [13], which significantly reduced layout time.
[14] presented a novel detailed routing framework for AMS
layout synthesis to address the sensitive net coupling issues.
Topology Optimization. In contrast to parameter optimiza-
tion and physical implementation that target fixed topologies,
recent works have started investigating circuit topology opti-
mization. Specifically, [15] proposed a graph neural network
(GNN) model that learns to simulate the electromagnetic
properties of distributed circuits. Via back-propagating the
gradient, this GNN model can also be used to optimize the
circuit parameters and topology. However, due to the special
electromagnetic property of coupling decays in distributed
circuits, an “edge” in a circuit topology is determined by the
physical distance between two nodes and its impact on the cir-
cuit is continuous and decomposable. In comparison, the edge
in a power converter topology is determined by whether the
two components are connected in the circuit, and removing one
edge may utterly change the performance of the circuit (e.g.,
from valid to invalid). Hence, the gradient back-propagation
approach with the GNN model in [15] cannot be directly
applied to the power converter design task. For topology
synthesis for large analog integrated circuits, [16] presented
a graph-grammar-based circuit topology representation, which
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hierarchically decomposes a circuit until reaching the basic
predefined building block. To reduce the search space, this
work focused on designing meaningful decomposition rules
and circuit formation rules that domain experts manually add
while the generation is performed using an exhaustive search
within the representation space. For searching in the circuit
topology space, [17] developed a genetic search algorithm,
where the device types of components in the topology is
essentially fixed. We extend it to allow changing component
types and compare it with our proposed framework.

AI-assisted Power Electronic Design. The advancements
of artificial intelligence (AI) and IC design automation have
introduced marvelous opportunities for power electronic cir-
cuit design automation [19]. Existing works have been looking
into methods that greatly reduce circuit evaluation time by ad-
vancing surrogate models that approximate the system dynam-
ics (e.g., electromagnetic properties, thermal characterization,
and wire costs) with lower computational efforts [15], [20]–
[22]. Researchers have also applied AI techniques and shown
some successes in modeling and optimizing other aspects of
power electronic systems, such as component model, system
parameters, and post-layout performance [8], [9], [23], [24].

III. PROBLEM STATEMENT

We investigate the automatic power converter design prob-
lem with topology generation, device type selection, and
control parameter tuning. This section first describes the
custom design specifications of power converters considered
in this work, followed by their topological representation and
parameters. Next, we formulate the problem as an optimization
problem with encoded custom design specifications.

Custom Design Specifications. We consider two primary
design metrics of power converters, namely, voltage conver-
sion ratio γ and power conversion efficiency η, as shown in
Figure 2. The voltage conversion ratio is the ratio of the output
voltage to the input voltage, i.e., γ = Vout/Vin, and is the main
constraint for the generated power converter. Generating power
converter designs with higher power conversion efficiencies
is the optimization goal of the custom design task. Other
constraints include the number of components in the converter
topology and the types of available devices. The design
task evaluated in this work only considers devices including
capacitors C, inductors L, phase-I switches Sa, and phase-II
switches Sb, but it can be easily extended to other device types.

Topological Representation and Parameters. A candidate
power converter design consists of a topological represen-
tation s and a switching control parameter d. Specifically,
the topological representation contains a set of components
with ports and edges connecting the ports. Each component
has a device type (from the set of available devices) with
device parameters (e.g., inductance, capacitance, and transistor
dimensions) and two ports (i.e., left and right ports). Note
that each component is nondirectional — switching all the
connections of its two ports results in the same circuit, despite
needing different indexes to distinguish the two ports in

Design Specifications
- Voltage Conversion Ratio (γ)
- Power Conversion Efficiency (η)
- Number of Components
- Available Device Types

- External Terminals

Candidate Designs

L SaC Sb

Gnd VoutVin

- Topological Representation
- Component Device Types

- Control Parameter

Fig. 2: Custom power converter design task from design specifications
to candidate designs.

the topological representation. Additionally, there are three
external terminal ports: the input voltage port Vin, the output
voltage port Vout, and the ground port Gnd. The edges in
the topological representation specify the connections between
the components’ ports and the terminal ports. The switching
control parameter specifies the duty cycle of a candidate
design, which often affects the output voltage. In this work, the
design task involves designing the device types of components,
the edges connecting ports, and the control parameter, while
the device parameters for each device type are predefined.
Thus, this work focuses mainly on the challenging topology
design problem and leaves the integration with existing device
parameter optimization methods as future work.

Circuit Evaluation. Given a generated power converter
circuit with topological representation s and control parameter
d, the Spice-based transient simulation is conducted to obtain
the voltage conversion ratio γs,d and power efficiency ηs,d.

Circuit Generation Objective. Given the custom design
task with a target voltage conversion ratio γ0, the goal of
our framework is to automatically generate the topological
representation s (with chosen component types and edges)
and configure the control parameter d of the power converter
circuit. Specifically, the objective can be described as:

s∗, d∗ = arg max
s∈S,d∈D

[Uγ0(γs,d, ηs,d)], (1)

where S and D denote the set of topological representations
and the set of control parameter configurations. Uγ0 is a utility
function that evaluates a circuit design’s conversion ratio and
efficiency for the custom design task with target conversion
ratio γ0. Specifically, the utility function is formulated as:

Uγ0(γs,d, ηs,d) = ηs,d · δ(γs,d, γ0). (2)

In our formulation, δ measures how close the obtained con-
version ratio γs,d and the target conversion ratio γ0 are. In our

experiments, we use δ(γ, γ0) = 1.1
−
(

15(γ−γ0)

|γ0|

)2

. The utility
function equals 0 when the topology is invalid or incomplete.

IV. FRAMEWORK

In this work, we propose an automatic power converter
design framework that utilizes a reinforcement learning mech-
anism to efficiently explore the topological representation
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Fig. 3: UCT-based Topology Generation Overview: The generation
starts with a topology having empty components and 3 terminals. It
first makes device selections (shown in green) and then connects ports
of components and terminals (shown in blue), where the actions are
specially designed to reduce isomorphism and invalid circuits. The
look-ahead tree construction and action score calculation (shown in
purple) follow the UCT algorithm, which utilizes upper confidence
bound in exploitation and exploration trade-offs. To improve the
sample efficiency and rollout speed, we designed a default policy
and adopted a fast evaluation technique (shown in orange).

space and locate candidate designs with high utility scores. We
formulate the circuit generation task as a sequential decision-
making problem. Instead of synthesizing the entire topology all
at once, the component device types and connections between
ports are added step by step, as illustrated in Figure 3. This
multi-step formulation allows physics-aware connection prun-
ing and removes many isomorphic topologies by construction.
We further improve the topology generation by incorporating
offline knowledge from the pre-collected dataset through a
default policy. Finally, to address the issue of costly circuit
evaluation, we use a State-Space Averaging technique to
evaluate different parameter configurations of the same circuit
and validate the output candidates via Spice simulations.

A. Sequential Circuit Topology Generation

We formulate topology generation as a sequential decision
task. In particular, we model the topology generation as a
Markov Decision Process, namely a 4-tuple of 〈S,A, T,R〉,
representing the state set S, action set A, state transition
function T , and reward function R. As shown in Figure 3,
the topology generation always starts with an empty topology

of the power converter and has two phases with multiple steps:
the device type selection phase and connection selection phase.

In the t-th step, the state st ∈ S is a partial or complete
topology of the power converter circuit. Inspired by the simple
fact that circuit topology is a graph, each state st maintains a
component set, a port set, and an adjacency matrix specifying
the connections between each pair of ports. The action set At
depends on the current state st. For a state in the device type
selection phase, an action at ∈ At decides whether a device
type is selected for a component. For the connection selection
phase, an action either decides to skip adding more connec-
tions or decides which port is connected to the port under
consideration. Given our state and action formulation, the state
transition is a deterministic function st+1 = T (st, at), which
maps the current partial topology and the action choice to the
next topology. The reward function Rγ0 encodes the custom
design objective Uγ0 in Equation 2 such that Rγ0(st, at) =
maxd Uγ0(γst+1,d, ηst+1,d)−maxd′ Uγ0(γst,d′ , ηst,d′). The op-
timization objective is to find an action sequence that maxi-
mizes the final topology’s power efficiency:

a∗0:T = arg max
a0:T

T∑
t=0

Rγ0(st, at) (3)

Note that the above objective requires computing the maxi-
mum utility over the different control parameters. The effective
way to compute this utility will be presented in Section IV-E.

B. Upper-Confidence-Bound-Tree-based Topology Generation

A UCT-based Reinforcement Learning method is used
to optimize the action sequence. UCT is a popular Monte
Carlo Tree Search algorithm for large state-space sequential
decision-making optimization problems, which suits the large
topological representation space in our problem formulation.
At a high level, UCT builds a look-ahead tree and greedily
selects an action based on the actions’ estimated scores at each
step. In our proposed framework shown in figure 3, each tree-
node of UCT corresponds to a partial or complete topology
(i.e., a state) and each tree-edge corresponds to a device type
or connection selection (i.e., an action).

To accurately estimate the action scores Q, UCT performs
multiple look-ahead rollouts (also called simulations in RL
literature), which sample the remaining action sequence fol-
lowing a default policy and evaluate the quality of the samples
in terms of reward. UCT is an anytime optimization algorithm
with three parameters, the number of look-ahead rollouts, the
maximum depth (uniform for each rollout), and an exploration
parameter. In general, the larger the number of rollouts and
the depth parameter are, the slower UCT is, but the better
it is. Compared to other Monte Carlo Tree Search algorithms,
UCT utilizes the Upper Confidence Bound in the tree building
process to provide improved estimations of action scores. UCT
computes a score for each action at at a state st as the sum
of the exploitation and exploration terms, as follows:

QUCT(st, at) = QMC(st, at) +

√
log(n(st))

n(st, at)
(4)
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Here, QMC is the Monte Carlo average of the sum of rewards
obtained from the look-ahead rollouts, i.e., QMC(st, at) =
1
M

∑M
m=1

∑T
t′=tR(smt′ , a

m
t′ ), where m identifies a look-

ahead rollout in the total M rollouts. The exploration term√
log(n(st))/n(st, at) is the Upper Confidence Bound, where

n(st) is the number of visits for the state node st and n(st, at)
the number of visits of the action at at state st. UCT selects
the action to rollout greedily with respect to this summed score
using the look-ahead tree. Once the input-parameter number
of rollouts are produced each to the maximum depth, UCT
returns the exploitation term for each action at the root node.

C. Combining Knowledge into UCT via Action Pruning

As discussed above, UCT estimates a state-action pair’s
score QMC(st, at) more accurately when more rollouts are
performed and the total number of rollouts is fixed according
to the affordable computation cost. Hence, pruning the action
space can improve UCT’s search efficiency. Therefore, we
design several physics-informed action pruning strategies to
reduce the actions that lead to invalid or isomorphic topologies.

Reduce Invalid Topologies. Based on the knowledge of
electronic circuits, we pose a set of constraints when adding
connections to avoid generating invalid power converter cir-
cuits. Specifically, we do not include an action a of connecting
two ports into the candidate action set A if adding this
connection leads to one of the following situations: (1) a
shortcut; (2) a direct connection between terminal ports VIN,
VOUT, or GND; (3) a prohibited path; (4) a disconnected
circuit. Here, the prohibited paths are the paths that violate
basic circuit principles. For example, if we connect VIN and
GND only with an inductor, it is equivalent to a power shortcut.
A circuit is considered disconnected if there is at least one
port not connected to any of the terminal ports via any paths
of connections after the generation process. Together with the
action pruning rules described below for connection selection,
we can identify such disconnected topologies early in the
generation process. Specifically, if there is no more allowed
connection that can be added to a port and there is no path
connecting this port to any of the terminal ports, then this
partial topology will eventually become a disconnected circuit
even if additional connections are selected between other ports.
Thus, we mark the corresponding state as a terminal state with
a reward of 0, so no more actions can be taken from this state.

Reduce Isomorphic Topologies. Combining the states repre-
senting isomorphic topologies can also improve UCT’s search
efficiency, since the rewards of rollouts from all these states
can be collectively used to estimate the score more accurately.
Hence, we propose the following methods to reduce the
generated isomorphic topologies by construction.

First, we split the device type selection phase into multiple
rounds, where each round has an ordered set of available
device types, e.g., {Sa, C, L} in the second round. The set in
the first round includes all device types. The ordering of device
types is set to Sa, Sb, C, and L. In each step of a round, each
available device type is considered for selection, e.g., selecting

one Sa for a component or skipping adding Sa. If a device
type has been skipped in the current round, it will be removed
from the set of available device types for the next round. For
instance, if we have added one Sa and one L but skipped C
in the second round, the set for the third round becomes {Sa,
L}. The device type selection phase ends when the number
of selected devices is equal to the number of components. In
this way, every state in this phase is unique (i.e., representing
different device selections), while all combinations of device
selections can be generated.

Next, for the connection selection phase, we number all the
ports where the terminal ports have the smallest indexes. We
consider each port for adding connections with other ports
one by one. Although a connection in a converter topology
is not directed, we only allow a port with a smaller index
to be connected to a port with a larger index. Thus, this
connection can only be added once. In addition, since a device
is nondirectional, we always have its left port be connected
before its right port when both ports have no connection.
Following the above rules, many actions that lead to states
representing isomorphic topologies are pruned.

D. Combining Knowledge into UCT via Default Policy

Due to the large space of topologies, the computation cost
for finding a good topology can be high even after action
pruning. Hence, we further improve the effectiveness of UCT
by replacing the random default policy with a data-driven
one. In particular, we randomly generate some topologies
with fewer components and evaluate their efficiencies and
conversion ratios. For example, we collect a small data set with
3-component topologies for the design task of 5-component
topologies. Among them, we find the good topologies with
higher rewards and collect their device selections and all
paths of connections between the terminal ports. Exploiting
the information obtained from good topologies with smaller
sizes, we develop the following two default policies for the
two topology generation phases.

Node Selection. We collect the number of times a device
selection combination C (e.g., {Sa, Sa, L}) occurring in
the good topologies, denoted by nd(C). This information is
encoded into the default policy, such that its probability of a
device selection combination C ′ is approximately proportional
to the collected device selection distribution. Specifically, we
calculate the weight of a device selection combination C ′

as w(C ′) =
∑
C⊆C′ nd(C). The total weight is defined

as Wd =
∑
C′′ w(C ′′). Then the probability of the device

selection combination C ′ generated by the default policy is
Pd(C ′) = w(C′)/Wd+εd∑

C′′ (w(C′′)/Wd+εd)
, where εd is a small constant

that decides by how much the default policy follows the
collected distribution. In our experiments, εd is set to 0.01.

Edge Selection. We also collect the number of occurrences of
a good path of connections between any two of the terminal
ports (VIN, VOUT, and GND) in the good topology data set,
denoted as nd(p). When considering a port e for adding a con-
nection onto the current partial topology st, we first construct
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a set of all possible good paths P (e, st). A path in P (e, st)
must contains port e and adding this path to st cannot lead to
invalid topologies (e.g., shortcuts). Next, for any connection
(e, e′) allowed to be added to st, we calculate the weight of
taking this action as w(e, e′) =

∑
p∈P (e,st)&(e,e′)⊆p nd(p).

Similar to node selection, we can calculate the total weight
of all allowed actions as Wp =

∑
(e,e′′) w(e, e′′). Then the

probability of the connection selection action (e, e′) generated
by the default policy is Pp(e, e′) =

w(e,e′)/Wp+εp∑
(e,e′′)(w(e,e′′)/Wp+εp)

,
where εp is a small constant and is set to 0.4 in the evaluation.
Note that although the weights are calculated using the good
paths in the data set with fewer components, longer paths with
more components can be generated with the help of εp.

With the default policies, we can bias UCT towards search-
ing the topology space that may contain high-reward ones.

E. Efficient Evaluation via State-Space Averaging

The reward function used by UCT is a computational
bottleneck as it requires evaluating different control parameters
for different topologies sampled by all the rollouts. Simulation
software, such as NGSpice [18], often takes a long time
to evaluate one topology with fixed parameters. To speed
up the circuit evaluation, we instead adopt the State-Space
Averaging approach [25]. This approach shares the major
computation among the circuits with the same topology but
different parameters, which makes it a faster surrogate model
in estimating a large number of parameters.

Specifically, State-Space Averaging characterizes the trans-
fer properties of switching stages of a power converter circuit.
By dividing the circuit into phases-I and phase-II sub-circuits,
deriving state-space equations, and averaging state changes
with the corresponding duty-cycles (i.e., d and 1−d), it derives
the estimated output voltage and power efficiency.

We compared the computation times of State-Space Av-
eraging versus NGSpice. Figure 4 shows that the evaluation
time per topology under State-Space Averaging is significantly
lower compared to moderate-fidelity and high-fidelity simula-

tions. The advantage of State-Space Averaging is even higher
when more parameter configurations of one topology (e.g., the
same topology with different duty cycles) need to be evaluated.
This is because deriving state-space equations is the most
expensive step of State-Space Averaging, but these equations
remain the same as long as the topology remains the same.
Hence, increasing the number of parameter configurations per
topology does not increase the evaluation time much under
State-Space Averaging, while simulations must be performed
for each parameter configuration of the same topology.

Despite its speed advantage, State-Space Averaging has a
disadvantage — it is only accurate if the circuit is linear
during operations. Nonlinear effects, such as discontinuity
in conduction or enforced switch dead-zone, will introduce
errors. As such, the state-space method usually overestimates
the efficiencies of topologies. To address this issue, we take a
hybrid circuit evaluation approach. During topology search, a
topology is evaluated by State-Space Averaging. With the opti-
mistic nature of State-Space Averaging, it covers all qualified
topologies. Once the top topology candidates are generated,
NGSpice simulation will be invoked to offer ground-truth
evaluation for the final topology and control scheme selection.

V. EVALUATION

We evaluate our framework across a spectrum of custom
design tasks with different conversion ratios and compare its
performance with baseline algorithms. We also conduct an
ablative study on the effectiveness of the proposed data-driven
default policy. Finally, we discuss the nonconventional power
converter topologies discovered by our framework.

A. Experiment Setup

We conduct the evaluation on the power converter design
task with five components, each with two ports. Together with
the three external ports (Vin, Vout, and Gnd), the design
space contains topologies with a total of thirteen ports. The
component device types have fixed device parameters and
include capacitors C (10µF ), inductors L (100µH), phase-
I switches Sa, and phase-II switches Sb For external ports,
we consider an input resistor of 0.1Ω for Vin and an output
resistor of 100Ω and an output capacitor of 10µF for Vout.
The candidate control parameter (i.e., duty cycle) ranges from
0.1 to 0.9, with a step size of 0.1. We configure the frequency
as 1MHz for both analytic evaluation and simulation. We
set the input voltage to 100V , and the target voltage outputs
are chosen from the range of -300V to 300V . Additionally,
a topology with a conversion ratio smaller than -5 or larger
than 5 will be considered invalid. In NGSpice simulation, the
transient simulation time is set as 60s.

B. Implementation Details and Competitive Algorithms

In this section, we describe the implementation details of
our UCT-based framework and the baseline algorithms.

Hash Table. Both the UCT-based and baseline algorithms
may query the circuit evaluation about a topology more
than once. To avoid unnecessary circuit evaluation costs,
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we implemented a hash table to cache the efficiencies and
conversion ratios of the topologies that have been queried
during each experiment. Therefore, in our experiments for both
the proposed algorithm and baselines, all the queries to the
circuit evaluation are about unique topologies.

Implementation Details of Proposed Algorithm. There
are two important implementation details of our UCT-based
topology generation algorithm. First, we use the number of
rollouts to decide the number of explorations each run of the
UCT-based topology generation. In each rollout, we expand
a UCT tree-node and execute a rollout to get a complete
topology. However, the number of rollouts can be larger
than the number of queries, since we only query the circuit
simulation when a rollout leads to a valid topology that is
not in the hash table. Second, different from the common
UCT design that completely reconstructs a new tree for each
step, we inherit the sub-tree corresponding to the selected
action from the tree of the previous step to make full use of
the collected information. This operation makes our UCT-DP
algorithm converge faster.

Random Search (RS). Random Search is a strategy that
starts with an empty topology, randomly selects device types,
and then randomly connects ports until reaching a complete
topology. Note that, if a port already has connections to other
ports, then it is not required to connect to yet another port.
Thus, in this case, RS may skip adding more connections
to this port with a probability of 0.8. RS uses the same
reward function as UCT, along with the same prohibitive paths
that prevent generating invalid topologies. After searching a
prefixed number of complete circuit topologies, RS outputs
the one that has the highest reward.

Genetic Search (GS). We implemented another popular
heuristic-based search algorithm, namely Genetic Search, for
the power converter design task [26]. GS starts with 15 random
topologies. In each round, GS selects 3 topologies with the
highest rewards from the current generation and uses them as
parents to generate offspring by mutation. We implemented the
following mutation types: (1) A crossover randomly selects
a component that exists in two parents and exchanges the
connections of this component [17]; (2) A component change
randomly changes the device type of a random component
in a parent; (3) A connection insertion randomly selects and
connects two unconnected ports in a parent; (4) A connection
removal removes a random connection of a parent; (5) A
connection switch selects a random connection of a parent
and changes one of the connection’s ports to another random
port; In each round, the above mutation types are chosen with
probabilities of {20%, 10%, 30%, 20%, 20%}, respectively.

C. Experiment Results

Custom Design Tasks. We first evaluated our UCT-based
framework on different custom design tasks for power con-
verters. The design tasks can be classified into three settings,
including buck-boost, buck, and boost converters. For each
target voltage conversion ratio, we run our framework five
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Fig. 5: Average power efficiencies of power converters generated
by the proposed framework for custom design tasks with increasing
voltage conversion ratios. From left to right in different colors and
shades, the target converter types are buck-boost, buck, and boost.

times and compute the average efficiency of the generated
topologies. Figure 5 shows the average power efficiencies
under our framework for different voltage conversion ratios.
Results show that our framework can successfully find high-
performing topologies for most settings. The average efficien-
cies for smaller conversion ratios tend to be lower, mainly
because these buck-boost converters are more sensitive to their
duty cycles. For example, if we change the step size of the
duty cycle from 0.1 to 0.05, our framework can discover a
better topology with an efficiency of 0.89 for the design task
with a conversion ratio of −2.5.

Comparison with Baseline Algorithms. We compared our
UCT-based approach with RS and GS on buck-boost, buck,
and boost converters. Since all these algorithms are anytime
algorithms (i.e., the performance monotonically increases as
more computation is used), we compared their performances
conditioned on their computation costs, measured by the
number of queries to circuit evaluations. Figure 6 reports the
average reward of topologies generated by each algorithm. For
all types of converters, our UCT-based approach, named UCT-
DP, outperforms both RS and GS, while GS is comparable
with or slightly outperforms RS. When the number of queries
is around 110, UCT-DP achieves 83%, 35%, and 37% higher
rewards compared with GS for buck-boost, buck, and boost
converters, respectively. In terms of computation efficiency,
results show that, compared to GS, UCT-DP needs up to 63%,
52%, and 67% fewer queries to obtain the same average re-
wards for buck-boost, buck, and boost converters, respectively.
We also observe that all the algorithms (especially RS and
GS) perform slightly worse for buck-boost converters, which
may be caused by the step size of duty cycles as discussed
above. Overall, the results demonstrate the efficacy of our
UCT-based approach to discover high-quality topologies using
only a small number of queries.

Ablative studies on default policies. In Section IV, we
described how we incorporate offline knowledge using default
policies. In this experiment, we examine the effectiveness of
the default policies by performing an ablation study. Figure 7
presents the average rewards with and without the two default
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Fig. 6: Average rewards under UCT-DP vs. GS vs. RS with increasing numbers of unique queries to circuit evaluations. The x-axis shows
increasing numbers of queries to circuit evaluations for unique topologies. The y-axis is the obtained reward calculated using the power
efficiency and voltage conversion ratio of the best candidate circuit generated by an algorithm, averaging from 200 runs.
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Fig. 7: Ablative studies of UCT-based approaches without default pol-
icy (UCT), with node selection default policy (UCT-DP-Node), with
edge selection default policy (UCT-DP-Edge), and with both node
and edge selection default policies (UCT-DP) for boost converters.

policies, namely node selection and edge selection, for the
boost converter design task. The results for other power
converter types are similar. Not surprisingly, UCT-DP with
both default policies performs the best. We also observe
that UCT with edge selection only (UCT-DP-Edge) performs
significantly better than with node selection only (UCT-DP-
Node). This is partly because choosing good connections
among the exponentially many connections is more challeng-
ing. Moreover, since device type selections are performed in
the first phase before connection selections, the node selection
default policy is only used by the rollouts during the first
phase. In contrast, the edge selection default policy is used by
all the rollouts, so it has a higher impact on the performance.

D. Discussion on New Topologies

Our automatic power converter design framework generates
topologies that meet design targets. Besides classical power
converter topologies, it is also able to find interesting un-
conventional topologies that both satisfy specifications and
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Fig. 8: An example of unconventional power converter circuit dis-
covered by our framework.

have high power efficiencies, such as the one in Figure 8.
These automatically generated topologies have the potential
to shed light on fundamental circuit innovations. With close
collaboration with human experts, our framework can help to
discover innovative circuits that have not been studied.

VI. CONCLUSION

In this work, we proposed a UCT-based power converter
topology generation framework, which explores the design
space automatically. We incorporated physics-informed con-
straints and data-driven default policies to reduce the design
space and improve the efficiency of our framework. Addition-
ally, we adopted a hybrid circuit evaluation with both the fast
State-Space Averaging method and the accurate high-fidelity
simulation. Finally, evaluations showed that our framework
can generate near-optimal circuit topology for buck-boost,
buck, and boost converters. Compared to the alternative ap-
proaches, our framework can discover better circuit topologies
with reduced computational costs.
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Breaking Results: Analog Circuit Generator based on Deep Neural Net-
work enhanced Combinatorial optimization,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019, pp. 1–2.

[11] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. NikoliC, and
E. Alon, “BAG2: A process-portable framework for generator-based
AMS circuit design,” in 2018 IEEE Custom Integrated Circuits Con-
ference (CICC), 2018, pp. 1–8.

[12] M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N. Sun,
and D. Z. Pan, “S3DET: Detecting System Symmetry Constraints for
Analog Circuits with Graph Similarity,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), 2020.

[13] S. Han, S. Jeong, C. Kim, H.-J. Park, and B. Kim, “GUI-Enhanced
Layout Generation of FFE SST TXs for Fast High-Speed Serial Link De-
sign,” in 2020 57th ACM/IEEE Design Automation Conference (DAC),
2020, pp. 1–6.

[14] H. Chen, K. Zhu, M. Liu, X. Tang, N. Sun, and D. Z. Pan, “Toward
Silicon-Proven Detailed Routing for Analog and Mixed-Signal Circuits,”
in 2020 IEEE/ACM International Conference On Computer Aided De-
sign (ICCAD), 2020, pp. 1–8.

[15] G. Zhang, H. He, and D. Katabi, “Circuit-GNN: Graph Neural Networks
for Distributed Circuit Design,” in International Conference on Machine
Learning. PMLR, 2019, pp. 7364–7373.

[16] Z. Zhao and L. Zhang, “An Automated Topology Synthesis Framework
for Analog Integrated Circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 39, no. 12, pp.
4325–4337, 2020.

[17] z. Rojec, A. Burmen, and I. Fajfar, “Analog circuit topology synthesis
by means of evolutionary computation,” Engineering Applications of
Artificial Intelligence, vol. 80, pp. 48–65, 2019.

[18] P. Nenzi and H. Vogt, “Ngspice users manual version 23,” 2011.
[19] S. Zhao, F. Blaabjerg, and H. Wang, “An Overview of Artificial

Intelligence Applications for Power Electronics,” IEEE Transactions on
Power Electronics, vol. 36, no. 4, pp. 4633–4658, 2021.

[20] Y. Zhang, Z. Wang, H. Wang, and F. Blaabjerg, “Artificial Intelligence-
Aided Thermal Model Considering Cross-Coupling Effects,” IEEE
Transactions on Power Electronics, vol. 35, no. 10, pp. 9998–10 002,
2020.

[21] T. Wu, Z. Wang, B. Ozpineci, M. Chinthavali, and S. Campbell, “Au-
tomated Heatsink Optimization for Air-Cooled Power Semiconductor
Modules,” IEEE Transactions on Power Electronics, vol. 34, no. 6, pp.
5027–5031, 2019.

[22] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim, “Tp-gnn:
a graph neural network framework for tier partitioning in monolithic 3d
ics,” in 2020 57th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2020, pp. 1–6.

[23] K. Hakhamaneshi, N. Werblun, P. Abbeel, and V. Stojanović, “Bagnet:
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