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A B S T R A C T   

Given the improved understanding of sustainability, hundreds of factors are identified to have relevance to 
building energy efficiency. However, there is still a lack of knowledge about what factors play a significant role in 
energy consumption prediction for residential buildings. In the absence of this information, building energy 
consumption prediction would not be efficient. To tackle this problem, this study creates a feature engineering- 
based analytic framework to select effective factors for energy consumption prediction and assess their impli
cations. Two application cases are reported to demonstrate the efficiency improvement of energy consumption 
prediction for residential buildings. The cases use the Residential Energy Consumption Survey database that 
contains more than 270 energy use-related factors about buildings and occupants in the United States. Data 
analysis from the two cases shows that selected features achieve 97–102% of prediction power while using 
12–15% number of factors, largely reducing the dimensionality for energy prediction. The results also produce a 
list of significant features that are efficient predictors for residential energy modeling and evaluation at the 
national and regional levels. Examples of the selected features are the total number of rooms and full bathrooms, 
frequency of clothes dryer used, type of the housing unit, number of ceiling fans and television. The selected 
features explain energy use patterns and their relationships which help designer, contractors, and occupants 
better understand energy, behaviors, and the built environment. The resultant energy use patterns inform 
regional similarities, differences, and distinctive characteristics.   

1. Introduction 

Based on the U.S. Department of Energy [1], residential buildings 
account for 21% of the total energy consumption in the United States. 
Energy consumption prediction in residential buildings is important for 
designers and engineers but is difficult to achieve because energy con
sumption depends on diverse factors such as environmental conditions, 
building technology, resident demographics, occupant behavior, heat
ing, ventilation and air conditioning (HVAC) systems, and appliance use 
[2]. Occupants in residential buildings have greater influences on en
ergy consumption since they are more independent to control building 
systems such as HVAC and appliances [3,4]. Moreover, the occupant 
behavior in residential context is more complicated compared to that in 
commercial context due to the higher variability and uncertainty [5,6]. 
The stochastic nature of occupant behavior leads to various energy 
consumption [7]. 

A comprehensive understanding of factors that influence building 
energy consumption is necessary to design and build sustainable homes. 
However, the large number of technical and behavioral factors that are 
related to energy use in residential buildings prevent from identifying 
their relationships and increase the difficulty of building energy 
modeling. Existing models can address energy modeling for single res
idential buildings but are difficult to model residential buildings at the 
community or city scale. This is because, along with the increase of 
scale, the number of factors dramatically increases, resulting in expen
sive computational cost and low accuracy. Building energy modeling 
includes parameter calibration with optimization technique which is 
computationally intensive. This becomes more problematic as the 
number of factors requiring parameter calibration increases [8]. In the 
absence of solutions to address the problem, accurate and prompt energy 
consumption prediction in residential buildings would remain 
challenging. 
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The objective of this study is to create a feature engineering-based 
analytic framework that can identify effective factors to improve 
large-scaled energy consumption modeling in residential buildings. The 
effective factors reduce the dimensionality of parameters and improve 
the efficiency in energy modeling. This study also provides two appli
cation cases to demonstrate the framework’s usage and validate effec
tive factors’ prediction power. In the two application cases, the 
Residential Energy Consumption Survey (RECS) database by DOE was 
analyzed: one at the national level and the other at the regional level. 
The effective factors identified from the two case advance the under
standing of how the factors interact and collectively impact home energy 
consumption. Implications of adopting this framework are discussed to 
inform the architecture, engineering, and construction (AEC) industry 
about energy modeling improvement. 

2. Background 

2.1. Energy consumption modeling for residential buildings 

Improvement in building thermal properties and technological 
advancement of energy efficient appliances help to reduce building 
energy consumption. Given the applications of new building technolo
gies and stricter requirements to use energy efficient appliances, yet 
residential building energy consumption has not decreased [9]. This 
indicates a strong impact of occupant behavior and living style and 
emphasizes the significant role of occupant behavior in residential 
building energy modeling. Therefore, many theoretical models are 
developed to explain residential building energy consumption consid
ering occupant behavior. Darby [10] stated that energy consumption 
can be reduced by up to 20% when efficient energy feedback is provided 
to residents. Wood and Newborough [11] reported that energy savings 
can increase more than 10% through more specific information strate
gies for occupants. Ouyang and Hokao [12] reported that occupant 
behavior improvement allow for an average of 14% energy savings in 
residential buildings. 

Compared to buildings’ physical properties, occupant behavior is 
more difficult to quantify and assess. Recent studies [13–16] have 
focused on energy uses of appliances in household to measure occupant 
behavior since appliance usage reflects on occupant behavior patterns at 
varying weekdays and times. However, limitations still exist in these 
models which underline pieces of relevant factors. More rational and 
systematic models are needed to explain relationships of occupant be
haviors, HVAC systems, appliances, and the built environment, and to 
improve energy prediction for residential buildings. 

Recent studies in building have used feature selection and feature 
engineering to explain building energy consumption. Zhang et al. [17] 
proposed a feature engineering method using the residential building 
energy data from the Pecan Street Project in Texas. They analyzed and 
ranked 124 features using exploratory data analysis, random forest, and 
principal component analysis. Zhang and Wen [18] proposed a feature 
selection procedure for commercial buildings using a wrapper method 
but this model only addressed energy modeling in a single building. 
Although these studies tried feature selection and feature engineering 
approaches, they overlooked the characteristics of residential buildings 
and occupant behavior data. There is still a lack of framework to guide 
feature selection for residential buildings based on the relationships 
among energy related factors, and thus a lack of understanding of 
effective factors for residential building energy prediction. Also, they 
less focused on reducing the dimensionality of the factors and evaluating 
the functionality of the selected factors. Thus, the framework presented 
in this study helps select effective factors to predict energy consumption 
in residential buildings and evaluate the efficiency and functionality of 
the selected factors. 

2.2. Factors related to energy use in residential buildings 

The DOE’s Energy Information Administration (EIA) produce and 
manage the RECS national database of energy consumption. The RECS 
energy use data are collected every three years since 1978 [14]. The 
RECS database includes annual household energy consumption data and 
associated 270 factors such as energy fuel type, building geometry in
formation, household demographics, and appliance information [15]. 
EIA merges data from energy suppliers and residential units to estimate 
energy use for appliances, heating, cooling, and other end devices [19]. 
In particular, a subset of RECS factors reflect occupant behavior pat
terns, including geographic location, household equipment and appli
ances, family structure, income, and local electricity price [14]. 
Therefore, the RECS provides a comprehensive and exclusive set of 
factors related to energy use in residential buildings. The factors include 
energy consumption, occupant behavior, and building technologies, 
which are useful for energy consumption modeling. 

The RECS provides a reliable source of data for researchers to study 
building energy efficiency and develop building energy models. San
quist, Orr, Shui and Bittner [14] used the 2005 RECS data to perform 
lifestyle analysis of energy consumption in residential buildings with 
multivariate statistical techniques. They identified five lifestyle factors 
that were associated with behavior patterns: air conditioning, use of 
laundry usage, use of personal computer, climate zone, and use of TV. 
The lifestyle factors explain 40–54% of variance in energy consumption 
when considering household and market characteristics such as income, 
access to natural gas, and local electricity price. Diao, Sun, Chen and 
Chen [15] identified and classified occupant behavior with energy 
consumption outcomes. They extracted occupant features of five typical 
house types in New York State from the 2009 RECS data. The features 
include number of occupants, number of rooms, floor area and heated 
area and number of windows in heated area for the house types of single 
family (detached), single family (attached), apartment (2–4 units), 
apartment (5+ units), and mobile home. The information was applied to 
the behavior clusters from the ATUS by mapping the demographic in
formation of the ATUS and the RECS. Aksanli, Akyurek and Rosing [16] 
proposed a residential energy modeling method based on 
human-activities to estimate the energy consumption in residential 
buildings. They extracted appliance-related parameters from the RECS 
including the types, numbers, and frequency of usage, and associated 
them with specific actions and activities. They grouped the activities 
based on the demographic information of the occupants, such as age, 
gender, employment status, and number of household members. They 
aimed to capture the use activities based on the probabilistic time-series 
nature which is depending on demographic variables and time variables 
(time of a day, day of a week etc.). 

Nevertheless, these studies analyze only a part of the RECS’s vari
ables, for example, electricity appliances at home, building technolo
gies, occupant behavior, or demographic information, and they did not 
provide a holistic view of all related features about energy prediction. 
This study includes all aspects of the RECS variables and implements a 
comprehensive and effective framework for residential energy con
sumption prediction. 

2.3. Relationships among energy consumption, occupant, and building 

The characteristics of both occupants and the building affect energy 
consumption. Previous studies defined the associations of building 
technology, resident behavior, and energy consumption [2], and 
explained the interaction relationship between building physics, 
weather condition, and occupant behavior [17]. Accordingly, the re
lationships among energy consumption, occupant and building were 
explained as described in Fig. 1 in the preliminary study [20]. In the 
study, energy use-related factors are categorized into two groups: 
occupant and building. Each group has two sub-groups. The two 
sub-groups for the occupant group are demographic (static) information 
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such as age and gender, and the behavior (dynamic) information such as 
how often the occupant uses a certain appliance. The two sub-groups for 
the building group are technology (static or system-related) information 
such as building envelope, and appliance (dynamic and occupant 
behavior-related) information such as TV, refrigerator. The interactive 
relationship and categorization are appropriate to analyze the RECS 
data. The four sub-groups help to analyze the contextual meaning of the 
selected features and suggest strategies for applying the selected features 
to further studies or policy makings. 

3. Framework development 

Based on the literature about energy consumption, occupant, and 
building (Fig. 1), an analytic framework was developed to reduce 
dimensionality of predictors and assess extracted features. The core of 
the framework is machine learning, a data driven technology. Machine 
learning involves searching a large space of possible hypotheses to find 
one that best fits the observed data and any prior knowledge held by the 
learner. Machine learning is concerned with answering questions such 
as what is the best strategy for choosing a useful next training experi
ence, what is the best way to reduce the learning task to one or more 
function approximation problems, and so on [21]. The framework al
lows to analyze occupant and building data and improve the efficiency 
of energy consumption modeling. Fig. 2 displays this analytic frame
work to select factors for energy prediction and assess their conse
quences for energy saving. Unlike conventional analytic processes that 
input all energy use-related factors into energy consumption prediction 
or select factors by experience and interest, the analytic framework in
tegrates feature engineering and feature assessment processes to reduce 
the dimensionality of energy use-related factors. Four steps of the 

features engineering process are explained in the following sub-sections. 
The analytic framework was demonstrated and validated via two 

application cases of the RECS datasets: (1) a national level dataset and 
(2) four regional level datasets to evaluate the efficiency of the selected 
features. Then, the features were assessed based on the four factor sub- 
groups: appliance, behavior, demographic, and technology. The appli
cation cases are described in Fig. 3. 

3.1. Step 1: data preparation 

Features represent the energy use-related factors in the dataset. To 
prepare for feature selection, all available features were examined in the 
dataset. The data preparation shall first exclude irrelevant features such 
as data collection related flags and then group the remaining energy use- 
related features into the four sub-groups (Fig. 1). Depending on the 
analysis and comparison, the whole dataset can be divided into multiple 
sub-datasets. 

3.2. Step 2: Feature selection 

The feature selection is a machine learning process that aims to find 
faster and more cost-effective predictors. Selected features are effective 
predictors that improve prediction performance and help researchers 
better understand the underlying process [22]. This process is also called 
attribute selection, variable selection, or variable subset selection [23]. 
This study employs the Correlation-based Feature Selection (CFS) 
approach with Greedy stepwise technique. CFS evaluates the worth of a 
subset of features by considering the predictive ability of each feature in 
the subset and the degree of redundancy between the features. Feature 
redundancy is a tendency that values of features are changing system
atically with their category membership, and the evaluation formula of 
CFS puts more merits to feature subsets with a low level of redundancy 
[24,25]. Thus, CFS selects a subset of features that individually corre
lated well with the class or dependent variable, but have little inter
correlation. The correlation between two features A and B can be 
measures with the symmetric uncertainty as follows. 

U(A,B)= 2
H(A) + H(B) − H(A,B)

H(A) + H(B)

where H is the entropy function, which is based on the probability 
associated with each attribute value. H (A, B) is the joint entropy of A 
and B, which is calculated from the joint probabilities of all combina
tions of values of A and B [26]. Greedy stepwise performs a greedy 
search forward or backward through addition or deletion of any 
remaining features until the optimal performance is reached [25]. This 
research used Weka (3-8-0) for feature selection in the following 
application cases. 

Fig. 1. Interactive relationships among energy consumption, occupant, 
and building. 

Fig. 2. Feature engineering-based analytic framework.  
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3.3. Step 3: performance evaluation 

The performance evaluation is a computational process to examine 
the prediction power of selected features. Then, prediction power is 
compared between the whole features (270) and selected features using 
value engineering principle (Value = Function/Cost) [27]. The function 
refers to the prediction power measured by correlation coefficient and 
the cost refers to the number of feature reduction. 

Several studies suggested the Support Vector Machine (SVM) algo
rithm for energy consumption prediction assessment [28–32]. Also, our 
preliminary study found SVM generated the better performance on the 
data than multiple other popular algorithms such as Linear Regression, 
Random Forest, M5P Trees, and M5 Rules. In the study, those five al
gorithms were compared to examine the performance of the features 
using the whole nation data. SVM showed the best performance with the 
highest correlation coefficient and the lowest root mean squared error 
(RMSE) values in both cases [33]. The finding is consistent with many 
studies that showed SVM is suitable to predict building energy con
sumption. Ahmad et al. [28] reviewed several machine learning algo
rithms for building electrical energy consumption forecasting and they 
explained that SVM was one of the widely used and accurate methods in 
this field. Dong et al. [29] applied SVM to analyze building energy 
consumption in tropical region. Wei et al. [30], Deb et al. [31], and 
Edwards et al. [32] compared machine learning methods for building 
energy prediction and SVM was explained as one of the suitable 
methods. 

SVM was originally developed as a binary classifier that define the 
hyperplane that divide a dataset into two separate classes with the gap 
between them as wide as possible [34]. This maximum-margin hyper
plane concept applies to classification, but SVM have been developed for 
numeric prediction. Sequential minimal optimization (SMO) regression 
implements the SVM to produce a model that can be expressed with 
support vectors and can be applied to nonlinear datasets using kernel 
functions. This support vector regression function can be explained as 
follows [26]. 

x= b +
∑

i is ​ support ​ vector
αi a(i) • a  

where x is the outcome, b and αi are parameters that have to be deter
mined by the learning algorithm. The vector a is a test instance, and the 
vector a(i) are the support vectors that are selected members of the 
training set. The term a(i) • a indicates the dot product of the test 
instance with one of the support vectors, which is explained as follows. 

a(i) • a =
∑

j
a(i)jaj 

To evaluate the performance of the selected features Radial Basis 
Function kernel with C value 1 and gamma value 0.01 were used. This 
research used Python 2.7 (Scikit-learn package) for the performance 
evaluation in the following application cases. 

3.4. Step 4: Feature assessment 

The feature assessment evaluates the implications from selected 
features based on the four sub-groups explained in Fig. 1. Descriptive 
analysis and qualitative methods are used to assess whether selected 
features make sense to inform energy use, e.g., the frequency of features 
per sub-group. The characteristics of the selected features of a sub-group 
are compared with the ones of the other sub-groups and further strate
gies regarding efficient energy usage in residential buildings can be 
assessed. 

In this study, three types of error analysis are recommended to 
improve the process at the feature level, algorithm level, and data level. 
During the feature selection, each of the selected features and their 
correlation values with various feature combinations can be examined to 
select the most effective features and reduce the dimensionality. During 
the performance evaluation, different values of hyperparameters can be 
tested when running SVM and the suitable values should be selected. 
During the case studies, prediction performance on different scales of 
data can be analyzed, e.g., at the national level and regional level, to 
avoid overfitting and underfitting. 

4. Application case 1: national RECS dataset 

4.1. Data preparation 

This case used the 2015 RECS dataset that included 736 initial fea
tures and covered 5686 U S. household instances. The dataset was the 
recent round of data collection, i.e. the 14th iteration of the RECS pro
gram (EIA 2018). This study used 272 features for data analysis after 
removing imputation flags, replicate weights, and irrelevant features. 
Within the 272, the dependent variable was KWH (Electricity usage in 
kWh) and the rest were used as predictor variables. REGIONC (Census 
region) was reserved for dataset preparation, resulting in a total of 270 
predictors. Based on the characteristics, the features were grouped by 
appliance, behavior, demographic, and technology (Table 1). (1) 

Fig. 3. Application cases of the framework.  

Table 1 
Categories of Energy use-related Features.  

Category Feature Examples #Feature 

Appliance Appliances, Lighting, Internet, Number, Size, Type, 
Age, Fuel type for appliances, Energy star appliances 

81 

Behavior Frequency, Duration, Number of days/months used, 
Heating/cooling temperature set-point, Dishwasher, 
washer, dryer temperature and cycle setting, Smart 
meter data check 

32 

Demographic Occupant/family characteristics, Who pays bill, 
Receive/participate in home energy assistance 
program 

41 

Technology Building envelope, HVAC, Water heater, Fuel type for 
Tech, Thermostat, Light controller, Sensor, Smart 
meter install, Building audit, Pool, Hot tub 

116 

Total  270  
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Appliance features are the appliances that are directly related to energy 
consumption and utility bills. (2) Behavior features are occupants’ 
appliance and HVAC system usage patterns or settings that are related to 
energy consumption. (3) Demographic features are occupants’ de
mographic characteristics. (4) Technology features include building 
technologies, HVAC systems, fuel types, and climate. In the first appli
cation case, the whole national RECS dataset was used. 

4.2. Feature selection 

Table 2 lists the 36 selected features from the 270 original RECS 
features in the nation dataset. They were categorized according to the 
characteristics: appliance, behavior, demographic, and technology. 
Among the selected features, there were 9 appliance features, 3 behavior 
features, 5 demographic features, and 19 technology features. CFS is a 
correlation-based feature selection method and higher absolute corre
lation between the feature and the dependent variable means stronger 
relation between them. Table 3 lists the top 10 features with higher 
correlation values among the selected features, which are the main 
features to contribute to the prediction power of the model. Table 4 

summarizes all the selected features from nation and regions. Two 
technology features, the type of housing unit and the fuel oil used for 
water heating, were only selected in the nation dataset. 

4.3. Performance evaluation 

Table 5 shows the comparison of prediction performance of nation 
dataset pre and post feature selection. The results show that the 36 
features selected from the nation dataset provide 0.77 correlation co
efficient, indicating that they use only 13% of the total features to reach 
97% of the prediction performance with all features. When comparing 
pre-value and post-value, the value improvement is 725% in this 
dataset. 

4.4. Feature assessment 

In the nation dataset, the selected features cover all the four sub- 
groups. Among the appliance features, refrigerators, freezers, and TVs, 
and ceiling fans are good predictors of energy consumption in residential 
buildings. The selected appliance features include the number of re
frigerators used, the size of most-used refrigerator, if the most-used 
refrigerator has the through-the-door ice, the number of separate 
freezers used, the size of most-used freezer, the number of separate 
ovens, the number of televisions used, the number of cable or satellite 
boxes with DVR, and the number of ceiling fans used. Among the 
occupant behavior and demographic features, family composition, 
financial status, use patterns of swimming pool (if they have), clothes 
dryer, and TV are good predictors of energy consumption. The selected 
behavior and demographic features include the number of household 
members, the number of household members age 18 or older, the 
number of household members age 17 or younger, if a household could 
not afford repair or replacement of broken cooling equipment, and the 
number of days covered by Energy Supplier Survey natural gas billing 
data, the months swimming pool used in the last year, the frequency 
clothes dryer used, the most-used TV usage on weekends. Among the 
technology features, the house type and size and the fuel types for 
heating and cooling are key predictors of energy consumption. The 
selected technology features include the type of housing unit, the 
number of rooms and of full bathrooms, the fuel type for space heating, 
water heater, and heating hot tub, the type of air conditioner type, if 
electricity is used for space heating, water heating and cooking, urban 
type of the housing unit location, and Building America Climate Zone. 

5. Application case 2: regional RECS datasets 

5.1. Data preparation 

In the second application case, the whole national dataset was 
divided into four sub-datasets, Northeast (R1), Midwest (R2), South 
(R3), and West (R4) to identify regional similarities and discrepancies. 

Table 2 
Effective features selected from all features in national dataset.  

Category Feature Code Description 

Appliance COMBODVR Number of cable or satellite boxes with 
DVR  

ICE Through-the-door ice on most-used 
refrigerator  

NUMCFAN Number of ceiling fans used  
NUMFREEZ Number of separate freezers used  
NUMFRIG Number of refrigerators used  
OVEN Number of separate ovens  
SIZFREEZ Size of most-used freezer  
SIZRFRI1 Size of most-used refrigerator  
TVCOLOR Number of televisions used 

Behavior DRYRUSE Frequency clothes dryer used  
MONPOOL Months swimming pool used in the last 

year  
TVONWE1 Most-used TV usage on weekends 

Demographic NHSLDMEM Number of household members  
NOACBROKE Unable to use cooling equipment in the 

last year because equipment was broken 
and could not afford repair or 
replacement  

NUMADULT Number of household members age 18 
or older  

NUMCHILD Number of household members age 17 
or younger  

PERIODNG Number of days covered by Energy 
Supplier Survey natural gas billing data 
and used to calculate annual 
consumption and expenditures 

Technology AIRCOND Air conditioning equipment used  
CENACHP Central air conditioner is a heat pump  
CLIMATE_REGION_PUB Building America Climate Zone  
COOLTYPE Type of air conditioning equipment 

used  
ELFOOD Electricity used for cooking  
ELWARM Electricity used for space heating  
ELWATER Electricity used for water heating  
FOWATER Fuel oil used for water heating  
FUELH2O Fuel used by main water heater  
FUELH2O2 Fuel used by secondary water heater  
FUELHEAT Main space heating fuel  
FUELTUB Fuel used for heating hot tub  
NCOMBATH Number of full bathrooms  
POOL Heated swimming pool  
TOTROOMS Total number of rooms in the housing 

unit, excluding bathrooms  
TYPEHUQ Type of housing unit  
UATYP10 Census 2010 Urban Type  
UGASHERE Natural gas available in neighborhood  
UGWATER Natural gas used for water heating  

Table 3 
List of top ten features with high correlation values in national dataset.  

Feature Correlation Description 

TOTROOMS 0.4117 Total number of rooms in the housing unit, excluding 
bathrooms 

DRYRUSE 0.3962 Frequency clothes dryer used 
NCOMBATH 0.3862 Number of full bathrooms 
NUMCFAN 0.3708 Number of ceiling fans used 
TYPEHUQ − 0.3687 Type of housing unit 
TVCOLOR 0.3664 Number of televisions used 
PERIODNG − 0.3532 Number of days covered by Energy Supplier Survey 

natural gas billing data and used to calculate annual 
consumption and expenditures 

NUMFRIG 0.3424 Number of refrigerators used 
ELWATER 0.3244 Electricity used for water heating 
FUELH2O 0.3220 Fuel used by main water heater  
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Table 4 
List of selected features in four regions.  

Count Code Description R0 R1 R2 R3 R4 

4 NUMFRIG Number of refrigerators used X X X X X  
SIZRFRI1 Size of most-used refrigerator X X X X X  
FUELTUB Fuel used for heating hot tub X X X X X  
FUELH2O2 Fuel used by secondary water heater X X X X X  
ELWARM Electricity used for space heating X X X X X  
ELFOOD Electricity used for cooking X X X X X 

3 COMBODVR Number of cable or satellite boxes with DVR X X X X   
DESKTOP Number of desktop computers  X X X   
MONPOOL Months swimming pool used in the last year X X X X   
NHSLDMEM Number of household members X X X X   
NUMADULT Number of household members age 18 or older X X X X   
NCOMBATH Number of full bathrooms X X X X   
COOLTYPE Type of air conditioning equipment used X X X  X  
ELWATER Electricity used for water heating X X X  X  
MICRO Microwave oven used  X  X X  
SIZFREEZ Size of most-used freezer X X  X X  
NUMFREEZ Number of separate freezers used X  X X X  
TVCOLOR Number of televisions used X  X X X  
POOL Heated swimming pool X  X X X  
RECBATH Hot tub   X X X  
UGASHERE Natural gas available in neighborhood X  X X X 

2 EQUIPAUX Secondary space heating equipment used  X X    
SIZRFRI2 Size of second most-used refrigerator  X  X   
DRYRUSE Frequency clothes dryer used X X  X   
NUMCHILD Number of household members age 17 or younger X X  X   
BEDROOMS Number of bedrooms  X  X   
USENOTMOIST Number of months dehumidifier used in last year  X   X  
FUELHEAT Main space heating fuel X X   X  
CENACHP Central air conditioner is a heat pump X X   X  
FUELH2O Fuel used by main water heater X X   X  
USENG Natural gas used  X   X  
OVEN Number of separate ovens X  X X   
PERIODNG Number of days covered by Energy Supplier Survey natural gas billing data and used to calculate annual 

consumption and expenditures 
X  X X   

NGPAY Who pays for natural gas   X  X  
UGWATER Natural gas used for water heating X  X  X  
AIRCOND Air conditioning equipment used X   X X  
LGTOUTNUM Number of light bulbs installed outside the home    X X 

1 COFFEE Coffee maker used  X     
ICE Through-the-door ice on most-used refrigerator X X     
NUMCFAN Number of ceiling fans used X X     
NUMTABLET Number of tablet computers  X     
LGTIN4 Number of inside light bulbs turned on at least 4 h a day  X     
HHSEX Respondent sex  X     
DIVISION Census Division  X     
OTHROOMS Number of other rooms  X     
YEARMADERANGE Range when housing unit was built  X     
DRYRFUEL Fuel used by clothes dryer   X    
UPRTFRZR Door arrangement of most-used freezer   X    
TEMPGONE Winter temperature when no one is home during the day   X    
NOACBROKE Unable to use cooling equipment in the last year because equipment was broken and could not afford repair or 

replacement 
X  X    

CLIMATE_REGION_PUB Building America Climate Zone X  X    
METROMICRO Housing unit in Census Metropolitan Statistical Area or Micropolitan Statistical Area   X    
TOTROOMS Total number of rooms in the housing unit, excluding bathrooms X  X    
UATYP10 Census 2010 Urban Type X  X    
APPOTHER Other small appliance used    X   
DRYER Have clothes dryer in home    X   
NUMSMPHONE Number of smart phones    X   
STOVE Number of separate cooktops    X   
TOAST Toaster used    X   
TVONWE1 Most-used TV usage on weekends X   X   
ENERGYASST14 Received home energy assistance in 2014    X   
FUELPOOL Fuel used for heating swimming pool    X   
LPOTHER Propane used, other than for space heating, water heating, or cooking    X   
MORETHAN1H2O More than one water heater    X   
NHAFBATH Number of half bathrooms    X   
SOLWATER Solar used for water heating    X   
SWIMPOOL Swimming pool    X   
LGTINNUM Number of light bulbs installed inside the home     X  
LOCRFRI2 Location of second most-used refrigerator     X  
NOTMOIST Dehumidifier used     X  
SCALEG Frequency of keeping home at unhealthy temperature     X 

(continued on next page) 
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The regions in RECS data are aligned with the U.S. Census Bureau’s 
definition of regions (Table 6). 

5.2. Feature selection 

Table 4 summarizes the 76 selected features from regions (R1, R2, 
R3, and R4). The selected features were sorted by the count of the 
overlapped feature across the four regions. The results from the whole 
nation dataset (R0) were also listed as a baseline for comparison. Results 
showed 6 overlapped features from all the four regions, indicating the 
cross-region similarity. These features include the energy usage for 
space heating and cooking, fuel type for secondary water heater and hot 
tub, and the number and size of refrigerator are good predictors for four 
regions. These features are consistent with the national dataset (R0). 

5.3. Performance evaluation 

Table 5 lists the comparison of prediction performance by region pre 
and post feature selection. The results show that the 32 selected features 
from the Midwest dataset have the highest improvement of an 827% 

value, followed by 795% improvement for West, 786% improvement for 
Northeast, and 669% improvement from South. Most of the improve
ments are higher than the improvement using the whole data (725%), 
indicating that the narrowed and region-specific feature selection may 
generate a higher prediction efficiency. The 35 features selected from 
the Northeast dataset provide 0.78 correlation coefficient, indicating 
that they use only 13% of the total features to reach 102% of the pre
diction performance with all features. Similarly, 32 selected features 
from Midwest (correlation coefficient = 0.75) use 12% of the total 
features to reach 98% of the prediction performance; the 40 selected 
features from South (correlation coefficient = 0.72) use 15% of the total 
features to reach 99% of the prediction performance; and the 33 selected 
33 features from West (correlation coefficient = 0.76) use 12% of the 
total features to reach 97% of the prediction performance. 

5.4. Feature assessment 

The selected features reveal unique energy use patterns in each re
gion. (1) In the Northeast, appliances (e.g., coffee maker, tablet com
puters, refrigerator through-the-door ice), demographics (e.g., gender), 
building technology (e.g., years), and behavior (e.g., interior lighting 
usage) are highly correlated with total energy consumption. Compared 
to other three regions where heated tub or swimming pool are good 
predictors for energy consumption, lighting usage, small appliance 
usage show a higher prediction power due to relatively longer night 
hours and diverse population and lifestyle. (2) In the Midwest, appli
ances (e.g., fuel type of clothes dryer and freezer door type), behavior (e. 
g., winter temperature setting when unoccupied), demographics (the 
respondent’s unaffordable financial status), building technology, espe
cially environmental features (e.g., climate zone by Building America, if 
the housing is located in urban or suburban, metropolitan or micro
politan area) are highly correlated with total energy consumption. 
Compared to other three regions where microwave, size of most used 
freezer are good predictors for energy consumption, the location of the 
housing unit regarding climate and urbanicity show a higher prediction 
power. (3) In the South, appliances (e.g., clothes dryer, smart phone, 
separate cooktops, toaster, and other small appliances), behavior (e.g., 
TV usage on weekends), demographics (e.g., home energy assistance), 
and building technology (e.g., fuel type for pool, propane use, additional 
water heater, solar energy use) are highly correlated with total energy 
consumption. Compared to other three regions where air conditioning 
type, electricity use for water heating are good predictors for energy 
consumption, unique energy types, extra use of water heating and 
swimming pool use show a higher prediction power. (4) In the West, 
appliances (e.g., number of light bulbs inside the home, additional 

Table 4 (continued ) 

Count Code Description R0 R1 R2 R3 R4  

TVONWD1 Most-used TV usage on weekdays     X  
WASHLOAD Frequency clothes washer used     X  
SDESCENT Respondent is Hispanic or Latino     X  
BACKUP Back-up generator     X  
WALLTYPE Major outside wall material     X  

Table 5 
Performance comparison of selected features by region.  

Dataset Correlation Coefficient (Function) #Features (Cost) Value (Function/Cost) 

Pre Post Post/Pre Pre Post Post/Pre Pre Post Post/Pre 

Nation 
Region 

0.7975 0.7704 97% 270 36 13% 0.002954 0.021400 725% 

Northeast 0.7624 0.7765 102% 270 35 13% 0.002824 0.022186 786% 
Midwest 0.7687 0.7536 98% 270 32 12% 0.002847 0.023550 827% 
South 0.7305 0.7243 99% 270 40 15% 0.002706 0.018108 669% 
West 0.7875 0.7650 97% 270 33 12% 0.002917 0.023182 795%  

Table 6 
U.S regions, divisions and states.  

Region Code #Instances Division State 

Northeast R1 794 New 
England 

Connecticut, Maine, 
Massachusetts, New 
Hampshire, Rhode Island, 
Vermont    

Mid- 
Atlantic 

New Jersey, New York, 
Pennsylvania 

Midwest R2 1327 East North 
Central 

Illinois, Indiana, Michigan, 
Ohio, Wisconsin    

West North 
Central 

Iowa, Kansas, Minnesota, 
Missouri, Nebraska, North 
Dakota, South Dakota 

South R3 2010 South 
Atlantic 

Delaware, Florida, Georgia, 
Maryland, North Carolina, 
South Carolina, Virginia, 
District of Columbia, West 
Virginia    

East South 
Central 

Alabama, Kentucky, 
Mississippi, Tennessee    

West South 
Central 

Arkansas, Louisiana, 
Oklahoma, Texas 

West R4 1555 Mountain Arizona, Colorado, Idaho, 
Montana, Nevada, New 
Mexico, Utah, Wyoming    

Pacific Alaska, California, Hawaii, 
Oregon, Washington  
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refrigerator, dehumidifier), behavior (e.g., unhealthy temperature 
setting at home, TV usage on weekdays, frequency of clothes washer 
use), demographics (e.g., if the respondent is Hispanic/Latino or not), 
and building technologies (e.g., back-up generator, exterior wall type) 
are highly correlated with total energy consumption. Compared to other 
three regions where cable or satellite boxes, desktop, swimming pool 
use, number of household members and grown-ups, and number of 
bathrooms are good predictors for energy consumption, building ma
terials, respondent’s race/ethnicity, lighting, and temperature settings 
show a higher prediction power. 

6. Discussion 

The selected features improve the modeling efficiency for residential 
buildings when considering variables. Fig. 4 exhibits that the selected 
features achieved more than 97% of the prediction performance while 
using less than 15% of total features. It demonstrates that the analytic 
feature engineering framework is efficient to predict energy consump
tion for residential buildings. Also, the selected features resulting from 
the feature engineering framework improve the resource efficiency for 
energy modeling and computation and highlight unique patterns of 
energy use for American households. 

The selected features have implications for better understanding the 
energy use patterns between regions. (1) In Northeast and Midwest, 
secondary space heating equipment usage is a predictor, suggesting that 
the two regions are colder where secondary space heating equipment is 
necessary and useful for energy prediction. (2) In Northeast and South, 
the number of children in households, the frequency of clothes dryer 
usage, number of bedrooms, and size of the secondary refrigerator (if 
they use) are predictors, suggesting that the two east coastal regions 
have a bigger family size and need extra room, dryer use, and refriger
ator. (3) In Northeast and West, dehumidifier usage, fuel type for space 
and water heating, and air conditioner type are predictors, suggesting 
that the two regions contain diverse types of building across a long range 
of years that their equipment varies. (4) In Midwest and South, the 
number of separate ovens and the number of days covered by Energy 
Supplier Survey natural gas billing data are predictors, suggesting that 
cocking at home is important for families in these two regions. (5) In 
Midwest and West, who pays for natural gas and natural gas usage for 
water heating are predictors, suggesting that less natural gas as an 
alternate energy source is available for homes in the two west coastal 
regions. (6) In South and West, air conditioning use and the number of 
light bulbs installed outside the home are predictors, suggesting that the 
two southern regions have a higher temperature and a longer time for 
night activities. 

7. Conclusion 

In this study, an analytic machine learning-based feature engineering 
framework has been developed to select and assess factors to improve 
energy prediction efficiency by reducing the dimensionality of the fac
tors. Based on the value engineering principle, the two implications 
cases show that the selected features achieve considerable improvement 
in efficiency to predict energy consumption in residential buildings. 

This study contributes to residential building energy modeling and 
evaluation. (1) The presented analytic framework adds values on resi
dential energy prediction process by improving the efficiency. The 
process combined feature selection and energy prediction algorithms 
together and applied them to the domain of residential energy data 
analysis. The predictor reduction helps to enable more economic and 
feasible energy data collection. In the energy management system (EMS) 
market, an enormous number of sensors are installed, or numerous 
questions are included in the survey to collect energy consumption 
related data. The results from this research suggest the most efficient 
factors to be included in those sensor installations or surveys, and reduce 
the required number of sensors or questions. (2) The results provide a list 
of efficient features for predicting energy consumption in residential 
buildings. The features effectively explain energy use patterns and their 
relationships which help residential designer, constructors, and occu
pants understand energy, behaviors, and the built environment. The 
resultant energy use patterns inform regional similarities, differences, 
and distinctive characteristics. The specific regional characteristics help 
develop optimal energy policies strategies to promote energy savings. 
Scholars and construction managers can use this framework to produce 
suggestions for region-specific decision making, for example, in regional 
retrofit projects. In addition, this framework can be extended to other 
energy survey or sensor-measured datasets and research domains. 

A limitation of this study is related to RECS dataset. The RECS uses 
the four census regions rather than more detailed regional features at 
state or county level, or ASHRAE climate zones. In the RECS, behavior- 
and time-related activities are less detailed than appliances, building 
technology, demographic information, and energy use. The RECS 
dataset lacks HVAC use behavior such as thermostat set-point temper
ature for heating or cooling seasons. The dataset limitation might lose 
important energy-usage predictive features. In the future, state or 
county level geographical data and behavior-related features can be 
further examined in detail by using datasets from smart meters and 
home sensors. 
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