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Given the improved understanding of sustainability, hundreds of factors are identified to have relevance to
building energy efficiency. However, there is still a lack of knowledge about what factors play a significant role in
energy consumption prediction for residential buildings. In the absence of this information, building energy
consumption prediction would not be efficient. To tackle this problem, this study creates a feature engineering-
based analytic framework to select effective factors for energy consumption prediction and assess their impli-
cations. Two application cases are reported to demonstrate the efficiency improvement of energy consumption
prediction for residential buildings. The cases use the Residential Energy Consumption Survey database that
contains more than 270 energy use-related factors about buildings and occupants in the United States. Data
analysis from the two cases shows that selected features achieve 97-102% of prediction power while using
12-15% number of factors, largely reducing the dimensionality for energy prediction. The results also produce a
list of significant features that are efficient predictors for residential energy modeling and evaluation at the
national and regional levels. Examples of the selected features are the total number of rooms and full bathrooms,
frequency of clothes dryer used, type of the housing unit, number of ceiling fans and television. The selected
features explain energy use patterns and their relationships which help designer, contractors, and occupants
better understand energy, behaviors, and the built environment. The resultant energy use patterns inform
regional similarities, differences, and distinctive characteristics.

1. Introduction A comprehensive understanding of factors that influence building

energy consumption is necessary to design and build sustainable homes.

Based on the U.S. Department of Energy [1], residential buildings
account for 21% of the total energy consumption in the United States.
Energy consumption prediction in residential buildings is important for
designers and engineers but is difficult to achieve because energy con-
sumption depends on diverse factors such as environmental conditions,
building technology, resident demographics, occupant behavior, heat-
ing, ventilation and air conditioning (HVAC) systems, and appliance use
[2]. Occupants in residential buildings have greater influences on en-
ergy consumption since they are more independent to control building
systems such as HVAC and appliances [3,4]. Moreover, the occupant
behavior in residential context is more complicated compared to that in
commercial context due to the higher variability and uncertainty [5,6].
The stochastic nature of occupant behavior leads to various energy
consumption [7].
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However, the large number of technical and behavioral factors that are
related to energy use in residential buildings prevent from identifying
their relationships and increase the difficulty of building energy
modeling. Existing models can address energy modeling for single res-
idential buildings but are difficult to model residential buildings at the
community or city scale. This is because, along with the increase of
scale, the number of factors dramatically increases, resulting in expen-
sive computational cost and low accuracy. Building energy modeling
includes parameter calibration with optimization technique which is
computationally intensive. This becomes more problematic as the
number of factors requiring parameter calibration increases [8]. In the
absence of solutions to address the problem, accurate and prompt energy
consumption prediction in residential buildings would remain
challenging.
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The objective of this study is to create a feature engineering-based
analytic framework that can identify effective factors to improve
large-scaled energy consumption modeling in residential buildings. The
effective factors reduce the dimensionality of parameters and improve
the efficiency in energy modeling. This study also provides two appli-
cation cases to demonstrate the framework’s usage and validate effec-
tive factors’ prediction power. In the two application cases, the
Residential Energy Consumption Survey (RECS) database by DOE was
analyzed: one at the national level and the other at the regional level.
The effective factors identified from the two case advance the under-
standing of how the factors interact and collectively impact home energy
consumption. Implications of adopting this framework are discussed to
inform the architecture, engineering, and construction (AEC) industry
about energy modeling improvement.

2. Background
2.1. Energy consumption modeling for residential buildings

Improvement in building thermal properties and technological
advancement of energy efficient appliances help to reduce building
energy consumption. Given the applications of new building technolo-
gies and stricter requirements to use energy efficient appliances, yet
residential building energy consumption has not decreased [9]. This
indicates a strong impact of occupant behavior and living style and
emphasizes the significant role of occupant behavior in residential
building energy modeling. Therefore, many theoretical models are
developed to explain residential building energy consumption consid-
ering occupant behavior. Darby [10] stated that energy consumption
can be reduced by up to 20% when efficient energy feedback is provided
to residents. Wood and Newborough [11] reported that energy savings
can increase more than 10% through more specific information strate-
gies for occupants. Ouyang and Hokao [12] reported that occupant
behavior improvement allow for an average of 14% energy savings in
residential buildings.

Compared to buildings’ physical properties, occupant behavior is
more difficult to quantify and assess. Recent studies [13-16] have
focused on energy uses of appliances in household to measure occupant
behavior since appliance usage reflects on occupant behavior patterns at
varying weekdays and times. However, limitations still exist in these
models which underline pieces of relevant factors. More rational and
systematic models are needed to explain relationships of occupant be-
haviors, HVAC systems, appliances, and the built environment, and to
improve energy prediction for residential buildings.

Recent studies in building have used feature selection and feature
engineering to explain building energy consumption. Zhang et al. [17]
proposed a feature engineering method using the residential building
energy data from the Pecan Street Project in Texas. They analyzed and
ranked 124 features using exploratory data analysis, random forest, and
principal component analysis. Zhang and Wen [18] proposed a feature
selection procedure for commercial buildings using a wrapper method
but this model only addressed energy modeling in a single building.
Although these studies tried feature selection and feature engineering
approaches, they overlooked the characteristics of residential buildings
and occupant behavior data. There is still a lack of framework to guide
feature selection for residential buildings based on the relationships
among energy related factors, and thus a lack of understanding of
effective factors for residential building energy prediction. Also, they
less focused on reducing the dimensionality of the factors and evaluating
the functionality of the selected factors. Thus, the framework presented
in this study helps select effective factors to predict energy consumption
in residential buildings and evaluate the efficiency and functionality of
the selected factors.

2:2. Factors related to engpey e ip pesidential bulfings..) 100501

The DOE’s Energy Information Administration (EIA) produce and
manage the RECS national database of energy consumption. The RECS
energy use data are collected every three years since 1978 [14]. The
RECS database includes annual household energy consumption data and
associated 270 factors such as energy fuel type, building geometry in-
formation, household demographics, and appliance information [15].
EIA merges data from energy suppliers and residential units to estimate
energy use for appliances, heating, cooling, and other end devices [19].
In particular, a subset of RECS factors reflect occupant behavior pat-
terns, including geographic location, household equipment and appli-
ances, family structure, income, and local electricity price [14].
Therefore, the RECS provides a comprehensive and exclusive set of
factors related to energy use in residential buildings. The factors include
energy consumption, occupant behavior, and building technologies,
which are useful for energy consumption modeling.

The RECS provides a reliable source of data for researchers to study
building energy efficiency and develop building energy models. San-
quist, Orr, Shui and Bittner [14] used the 2005 RECS data to perform
lifestyle analysis of energy consumption in residential buildings with
multivariate statistical techniques. They identified five lifestyle factors
that were associated with behavior patterns: air conditioning, use of
laundry usage, use of personal computer, climate zone, and use of TV.
The lifestyle factors explain 40-54% of variance in energy consumption
when considering household and market characteristics such as income,
access to natural gas, and local electricity price. Diao, Sun, Chen and
Chen [15] identified and classified occupant behavior with energy
consumption outcomes. They extracted occupant features of five typical
house types in New York State from the 2009 RECS data. The features
include number of occupants, number of rooms, floor area and heated
area and number of windows in heated area for the house types of single
family (detached), single family (attached), apartment (2-4 units),
apartment (5+ units), and mobile home. The information was applied to
the behavior clusters from the ATUS by mapping the demographic in-
formation of the ATUS and the RECS. Aksanli, Akyurek and Rosing [16]
proposed a residential energy modeling method based on
human-activities to estimate the energy consumption in residential
buildings. They extracted appliance-related parameters from the RECS
including the types, numbers, and frequency of usage, and associated
them with specific actions and activities. They grouped the activities
based on the demographic information of the occupants, such as age,
gender, employment status, and number of household members. They
aimed to capture the use activities based on the probabilistic time-series
nature which is depending on demographic variables and time variables
(time of a day, day of a week etc.).

Nevertheless, these studies analyze only a part of the RECS’s vari-
ables, for example, electricity appliances at home, building technolo-
gies, occupant behavior, or demographic information, and they did not
provide a holistic view of all related features about energy prediction.
This study includes all aspects of the RECS variables and implements a
comprehensive and effective framework for residential energy con-
sumption prediction.

2.3. Relationships among energy consumption, occupant, and building

The characteristics of both occupants and the building affect energy
consumption. Previous studies defined the associations of building
technology, resident behavior, and energy consumption [2], and
explained the interaction relationship between building physics,
weather condition, and occupant behavior [17]. Accordingly, the re-
lationships among energy consumption, occupant and building were
explained as described in Fig. 1 in the preliminary study [20]. In the
study, energy use-related factors are categorized into two groups:
occupant and building. Each group has two sub-groups. The two
sub-groups for the occupant group are demographic (static) information
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Fig. 1. Interactive relationships among energy consumption, occupant,
and building.

such as age and gender, and the behavior (dynamic) information such as
how often the occupant uses a certain appliance. The two sub-groups for
the building group are technology (static or system-related) information
such as building envelope, and appliance (dynamic and occupant
behavior-related) information such as TV, refrigerator. The interactive
relationship and categorization are appropriate to analyze the RECS
data. The four sub-groups help to analyze the contextual meaning of the
selected features and suggest strategies for applying the selected features
to further studies or policy makings.

3. Framework development

Based on the literature about energy consumption, occupant, and
building (Fig. 1), an analytic framework was developed to reduce
dimensionality of predictors and assess extracted features. The core of
the framework is machine learning, a data driven technology. Machine
learning involves searching a large space of possible hypotheses to find
one that best fits the observed data and any prior knowledge held by the
learner. Machine learning is concerned with answering questions such
as what is the best strategy for choosing a useful next training experi-
ence, what is the best way to reduce the learning task to one or more
function approximation problems, and so on [21]. The framework al-
lows to analyze occupant and building data and improve the efficiency
of energy consumption modeling. Fig. 2 displays this analytic frame-
work to select factors for energy prediction and assess their conse-
quences for energy saving. Unlike conventional analytic processes that
input all energy use-related factors into energy consumption prediction
or select factors by experience and interest, the analytic framework in-
tegrates feature engineering and feature assessment processes to reduce
the dimensionality of energy use-related factors. Four steps of the

Energy Use Related Features
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‘ Appliance | I Behavior |
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The analytic framework was demonstrated and validated via two
application cases of the RECS datasets: (1) a national level dataset and
(2) four regional level datasets to evaluate the efficiency of the selected
features. Then, the features were assessed based on the four factor sub-
groups: appliance, behavior, demographic, and technology. The appli-
cation cases are described in Fig. 3.

3.1. Step 1: data preparation

Features represent the energy use-related factors in the dataset. To
prepare for feature selection, all available features were examined in the
dataset. The data preparation shall first exclude irrelevant features such
as data collection related flags and then group the remaining energy use-
related features into the four sub-groups (Fig. 1). Depending on the
analysis and comparison, the whole dataset can be divided into multiple
sub-datasets.

3.2. Step 2: Feature selection

The feature selection is a machine learning process that aims to find
faster and more cost-effective predictors. Selected features are effective
predictors that improve prediction performance and help researchers
better understand the underlying process [22]. This process is also called
attribute selection, variable selection, or variable subset selection [23].
This study employs the Correlation-based Feature Selection (CFS)
approach with Greedy stepwise technique. CFS evaluates the worth of a
subset of features by considering the predictive ability of each feature in
the subset and the degree of redundancy between the features. Feature
redundancy is a tendency that values of features are changing system-
atically with their category membership, and the evaluation formula of
CFS puts more merits to feature subsets with a low level of redundancy
[24,25]. Thus, CFS selects a subset of features that individually corre-
lated well with the class or dependent variable, but have little inter-
correlation. The correlation between two features A and B can be
measures with the symmetric uncertainty as follows.

H(A) + H(B) — H(A, B)
H(A) + H(B)

U(A,B)=2

where H is the entropy function, which is based on the probability
associated with each attribute value. H (A, B) is the joint entropy of A
and B, which is calculated from the joint probabilities of all combina-
tions of values of A and B [26]. Greedy stepwise performs a greedy
search forward or backward through addition or deletion of any
remaining features until the optimal performance is reached [25]. This
research used Weka (3-8-0) for feature selection in the following
application cases.

Energy
Consumption
Prediction

into prediction modeling)

Machine Learning based Feature Engineering Process

Inputs: Step 1. Step 2. Step 3. Step 4. Outputs:
RECS Data | Feature —>» Performance Feature » Effective
Factors Preparation Selection Evaluation Assessment factors
3

Fig. 2. Feature engineering-based analytic framework.
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Fig. 3. Application cases of the framework.

3.3. Step 3: performance evaluation

The performance evaluation is a computational process to examine
the prediction power of selected features. Then, prediction power is
compared between the whole features (270) and selected features using
value engineering principle (Value = Function/Cost) [27]. The function
refers to the prediction power measured by correlation coefficient and
the cost refers to the number of feature reduction.

Several studies suggested the Support Vector Machine (SVM) algo-
rithm for energy consumption prediction assessment [28-32]. Also, our
preliminary study found SVM generated the better performance on the
data than multiple other popular algorithms such as Linear Regression,
Random Forest, M5P Trees, and M5 Rules. In the study, those five al-
gorithms were compared to examine the performance of the features
using the whole nation data. SVM showed the best performance with the
highest correlation coefficient and the lowest root mean squared error
(RMSE) values in both cases [33]. The finding is consistent with many
studies that showed SVM is suitable to predict building energy con-
sumption. Ahmad et al. [28] reviewed several machine learning algo-
rithms for building electrical energy consumption forecasting and they
explained that SVM was one of the widely used and accurate methods in
this field. Dong et al. [29] applied SVM to analyze building energy
consumption in tropical region. Wei et al. [30], Deb et al. [31], and
Edwards et al. [32] compared machine learning methods for building
energy prediction and SVM was explained as one of the suitable
methods.

SVM was originally developed as a binary classifier that define the
hyperplane that divide a dataset into two separate classes with the gap
between them as wide as possible [34]. This maximum-margin hyper-
plane concept applies to classification, but SVM have been developed for
numeric prediction. Sequential minimal optimization (SMO) regression
implements the SVM to produce a model that can be expressed with
support vectors and can be applied to nonlinear datasets using kernel
functions. This support vector regression function can be explained as
follows [26].

x=b+ Z a;a(i)ea

iis support vector

where x is the outcome, b and ¢; are parameters that have to be deter-
mined by the learning algorithm. The vector a is a test instance, and the
vector a(i) are the support vectors that are selected members of the
training set. The term a(i) e a indicates the dot product of the test
instance with one of the support vectors, which is explained as follows.

a(i)ea= Za(i)‘/.a_,-

To evaluate the performance of the selected features Radial Basis
Function kernel with C value 1 and gamma value 0.01 were used. This
research used Python 2.7 (Scikit-learn package) for the performance
evaluation in the following application cases.

3.4. Step 4: Feature assessment

The feature assessment evaluates the implications from selected
features based on the four sub-groups explained in Fig. 1. Descriptive
analysis and qualitative methods are used to assess whether selected
features make sense to inform energy use, e.g., the frequency of features
per sub-group. The characteristics of the selected features of a sub-group
are compared with the ones of the other sub-groups and further strate-
gies regarding efficient energy usage in residential buildings can be
assessed.

In this study, three types of error analysis are recommended to
improve the process at the feature level, algorithm level, and data level.
During the feature selection, each of the selected features and their
correlation values with various feature combinations can be examined to
select the most effective features and reduce the dimensionality. During
the performance evaluation, different values of hyperparameters can be
tested when running SVM and the suitable values should be selected.
During the case studies, prediction performance on different scales of
data can be analyzed, e.g., at the national level and regional level, to
avoid overfitting and underfitting.

4. Application case 1: national RECS dataset
4.1. Data preparation

This case used the 2015 RECS dataset that included 736 initial fea-
tures and covered 5686 U S. household instances. The dataset was the
recent round of data collection, i.e. the 14th iteration of the RECS pro-
gram (EIA 2018). This study used 272 features for data analysis after
removing imputation flags, replicate weights, and irrelevant features.
Within the 272, the dependent variable was KWH (Electricity usage in
kWh) and the rest were used as predictor variables. REGIONC (Census
region) was reserved for dataset preparation, resulting in a total of 270
predictors. Based on the characteristics, the features were grouped by
appliance, behavior, demographic, and technology (Table 1). (1)

Table 1
Categories of Energy use-related Features.
Category Feature Examples #Feature
Appliance Appliances, Lighting, Internet, Number, Size, Type, 81
Age, Fuel type for appliances, Energy star appliances
Behavior Frequency, Duration, Number of days/months used, 32

Heating/cooling temperature set-point, Dishwasher,
washer, dryer temperature and cycle setting, Smart
meter data check
Demographic  Occupant/family characteristics, Who pays bill, 41
Receive/participate in home energy assistance
program
Technology Building envelope, HVAC, Water heater, Fuel type for 116
Tech, Thermostat, Light controller, Sensor, Smart
meter install, Building audit, Pool, Hot tub
Total 270
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Appliance features are the appliances that are directly related to energy
consumption and utility bills. (2) Behavior features are occupants’
appliance and HVAC system usage patterns or settings that are related to
energy consumption. (3) Demographic features are occupants’ de-
mographic characteristics. (4) Technology features include building
technologies, HVAC systems, fuel types, and climate. In the first appli-
cation case, the whole national RECS dataset was used.

4.2. Feature selection

Table 2 lists the 36 selected features from the 270 original RECS
features in the nation dataset. They were categorized according to the
characteristics: appliance, behavior, demographic, and technology.
Among the selected features, there were 9 appliance features, 3 behavior
features, 5 demographic features, and 19 technology features. CFS is a
correlation-based feature selection method and higher absolute corre-
lation between the feature and the dependent variable means stronger
relation between them. Table 3 lists the top 10 features with higher
correlation values among the selected features, which are the main
features to contribute to the prediction power of the model. Table 4

Table 2
Effective features selected from all features in national dataset.

Category Feature Code Description
Appliance COMBODVR Number of cable or satellite boxes with
DVR
ICE Through-the-door ice on most-used
refrigerator
NUMCFAN Number of ceiling fans used
NUMFREEZ Number of separate freezers used
NUMFRIG Number of refrigerators used
OVEN Number of separate ovens
SIZFREEZ Size of most-used freezer
SIZRFRI1 Size of most-used refrigerator
TVCOLOR Number of televisions used
Behavior DRYRUSE Frequency clothes dryer used
MONPOOL Months swimming pool used in the last
year
TVONWE1 Most-used TV usage on weekends
Demographic =~ NHSLDMEM Number of household members
NOACBROKE Unable to use cooling equipment in the
last year because equipment was broken
and could not afford repair or
replacement
NUMADULT Number of household members age 18
or older
NUMCHILD Number of household members age 17
or younger
PERIODNG Number of days covered by Energy
Supplier Survey natural gas billing data
and used to calculate annual
consumption and expenditures
Technology AIRCOND Air conditioning equipment used
CENACHP Central air conditioner is a heat pump
CLIMATE_REGION_PUB Building America Climate Zone
COOLTYPE Type of air conditioning equipment
used
ELFOOD Electricity used for cooking
ELWARM Electricity used for space heating
ELWATER Electricity used for water heating
FOWATER Fuel oil used for water heating
FUELH20 Fuel used by main water heater
FUELH202 Fuel used by secondary water heater
FUELHEAT Main space heating fuel
FUELTUB Fuel used for heating hot tub
NCOMBATH Number of full bathrooms

POOL Heated swimming pool

TOTROOMS Total number of rooms in the housing
unit, excluding bathrooms

TYPEHUQ Type of housing unit

UATYP10 Census 2010 Urban Type

UGASHERE Natural gas available in neighborhood

UGWATER Natural gas used for water heating

Table 3 __ Journal of Building Engineering 44 (2021) 102891
List of top ten features with high correlation values in national dataset.

Feature Correlation  Description

TOTROOMS  0.4117 Total number of rooms in the housing unit, excluding
bathrooms

DRYRUSE 0.3962 Frequency clothes dryer used

NCOMBATH  0.3862 Number of full bathrooms

NUMCFAN 0.3708 Number of ceiling fans used

TYPEHUQ —0.3687 Type of housing unit

TVCOLOR 0.3664 Number of televisions used

PERIODNG —0.3532 Number of days covered by Energy Supplier Survey
natural gas billing data and used to calculate annual
consumption and expenditures

NUMFRIG 0.3424 Number of refrigerators used

ELWATER 0.3244 Electricity used for water heating

FUELH20 0.3220 Fuel used by main water heater

summarizes all the selected features from nation and regions. Two
technology features, the type of housing unit and the fuel oil used for
water heating, were only selected in the nation dataset.

4.3. Performance evaluation

Table 5 shows the comparison of prediction performance of nation
dataset pre and post feature selection. The results show that the 36
features selected from the nation dataset provide 0.77 correlation co-
efficient, indicating that they use only 13% of the total features to reach
97% of the prediction performance with all features. When comparing
pre-value and post-value, the value improvement is 725% in this
dataset.

4.4. Feature assessment

In the nation dataset, the selected features cover all the four sub-
groups. Among the appliance features, refrigerators, freezers, and TVs,
and ceiling fans are good predictors of energy consumption in residential
buildings. The selected appliance features include the number of re-
frigerators used, the size of most-used refrigerator, if the most-used
refrigerator has the through-the-door ice, the number of separate
freezers used, the size of most-used freezer, the number of separate
ovens, the number of televisions used, the number of cable or satellite
boxes with DVR, and the number of ceiling fans used. Among the
occupant behavior and demographic features, family composition,
financial status, use patterns of swimming pool (if they have), clothes
dryer, and TV are good predictors of energy consumption. The selected
behavior and demographic features include the number of household
members, the number of household members age 18 or older, the
number of household members age 17 or younger, if a household could
not afford repair or replacement of broken cooling equipment, and the
number of days covered by Energy Supplier Survey natural gas billing
data, the months swimming pool used in the last year, the frequency
clothes dryer used, the most-used TV usage on weekends. Among the
technology features, the house type and size and the fuel types for
heating and cooling are key predictors of energy consumption. The
selected technology features include the type of housing unit, the
number of rooms and of full bathrooms, the fuel type for space heating,
water heater, and heating hot tub, the type of air conditioner type, if
electricity is used for space heating, water heating and cooking, urban
type of the housing unit location, and Building America Climate Zone.

5. Application case 2: regional RECS datasets
5.1. Data preparation
In the second application case, the whole national dataset was

divided into four sub-datasets, Northeast (R1), Midwest (R2), South
(R3), and West (R4) to identify regional similarities and discrepancies.
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Table 4

Journal of Building Engineering 44 (2021) 102891

List of selected features in four regions.

Count  Code Description RO Rl R2 R3 R4
4 NUMFRIG Number of refrigerators used X X X X X
SIZRFRI1 Size of most-used refrigerator X X X X X
FUELTUB Fuel used for heating hot tub X X X X X
FUELH202 Fuel used by secondary water heater X X X X X
ELWARM Electricity used for space heating X X X X X
ELFOOD Electricity used for cooking X X X X X
3 COMBODVR Number of cable or satellite boxes with DVR X X X X
DESKTOP Number of desktop computers X X X
MONPOOL Months swimming pool used in the last year X X X X
NHSLDMEM Number of household members X X X X
NUMADULT Number of household members age 18 or older X X X X
NCOMBATH Number of full bathrooms X X X X
COOLTYPE Type of air conditioning equipment used X X X X
ELWATER Electricity used for water heating X X X X
MICRO Microwave oven used X X X
SIZFREEZ Size of most-used freezer X X X X
NUMFREEZ Number of separate freezers used X X X X
TVCOLOR Number of televisions used X X X X
POOL Heated swimming pool X X X X
RECBATH Hot tub X X X
UGASHERE Natural gas available in neighborhood X X X X
2 EQUIPAUX Secondary space heating equipment used X X
SIZRFRI2 Size of second most-used refrigerator X X
DRYRUSE Frequency clothes dryer used X X X
NUMCHILD Number of household members age 17 or younger X X X
BEDROOMS Number of bedrooms X X
USENOTMOIST Number of months dehumidifier used in last year X X
FUELHEAT Main space heating fuel X X X
CENACHP Central air conditioner is a heat pump X X X
FUELH20 Fuel used by main water heater X X X
USENG Natural gas used X X
OVEN Number of separate ovens X X X
PERIODNG Number of days covered by Energy Supplier Survey natural gas billing data and used to calculate annual X X X
consumption and expenditures
NGPAY Who pays for natural gas X X
UGWATER Natural gas used for water heating X X X
AIRCOND Air conditioning equipment used X X X
LGTOUTNUM Number of light bulbs installed outside the home X X
1 COFFEE Coffee maker used X
ICE Through-the-door ice on most-used refrigerator X X
NUMCFAN Number of ceiling fans used X X
NUMTABLET Number of tablet computers X
LGTIN4 Number of inside light bulbs turned on at least 4 h a day X
HHSEX Respondent sex X
DIVISION Census Division X
OTHROOMS Number of other rooms X
YEARMADERANGE Range when housing unit was built X
DRYRFUEL Fuel used by clothes dryer X
UPRTFRZR Door arrangement of most-used freezer X
TEMPGONE Winter temperature when no one is home during the day X
NOACBROKE Unable to use cooling equipment in the last year because equipment was broken and could not afford repairor X X
replacement
CLIMATE_REGION_PUB Building America Climate Zone X X
METROMICRO Housing unit in Census Metropolitan Statistical Area or Micropolitan Statistical Area X
TOTROOMS Total number of rooms in the housing unit, excluding bathrooms X X
UATYP10 Census 2010 Urban Type X X
APPOTHER Other small appliance used X
DRYER Have clothes dryer in home X
NUMSMPHONE Number of smart phones X
STOVE Number of separate cooktops X
TOAST Toaster used X
TVONWE1 Most-used TV usage on weekends X X
ENERGYASST14 Received home energy assistance in 2014 X
FUELPOOL Fuel used for heating swimming pool X
LPOTHER Propane used, other than for space heating, water heating, or cooking X
MORETHAN1H20 More than one water heater X
NHAFBATH Number of half bathrooms X
SOLWATER Solar used for water heating X
SWIMPOOL Swimming pool X
LGTINNUM Number of light bulbs installed inside the home X
LOCRFRI2 Location of second most-used refrigerator X
NOTMOIST Dehumidifier used X
SCALEG X

Frequency of keeping home at unhealthy temperatuel;e

(continued on next page)
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Table 4 (continued)

Journal of Building Engineering 44 (2021) 102891

Count  Code Description RO Rl R2 R3 R4
TVONWD1 Most-used TV usage on weekdays X
WASHLOAD Frequency clothes washer used X
SDESCENT Respondent is Hispanic or Latino X
BACKUP Back-up generator X
WALLTYPE Major outside wall material X

Table 5
Performance comparison of selected features by region.

Dataset Correlation Coefficient (Function) #Features (Cost) Value (Function/Cost)

Pre Post Post/Pre Pre Post Post/Pre Pre Post Post/Pre

Nation 0.7975 0.7704 97% 270 36 13% 0.002954 0.021400 725%

Region

Northeast 0.7624 0.7765 102% 270 35 13% 0.002824 0.022186 786%

Midwest 0.7687 0.7536 98% 270 32 12% 0.002847 0.023550 827%

South 0.7305 0.7243 99% 270 40 15% 0.002706 0.018108 669%

West 0.7875 0.7650 97% 270 33 12% 0.002917 0.023182 795%

The regions in RECS data are aligned with the U.S. Census Bureau’s
definition of regions (Table 6).

5.2. Feature selection

Table 4 summarizes the 76 selected features from regions (R1, R2,
R3, and R4). The selected features were sorted by the count of the
overlapped feature across the four regions. The results from the whole
nation dataset (RO) were also listed as a baseline for comparison. Results
showed 6 overlapped features from all the four regions, indicating the
cross-region similarity. These features include the energy usage for
space heating and cooking, fuel type for secondary water heater and hot
tub, and the number and size of refrigerator are good predictors for four
regions. These features are consistent with the national dataset (RO).

5.3. Performance evaluation
Table 5 lists the comparison of prediction performance by region pre

and post feature selection. The results show that the 32 selected features
from the Midwest dataset have the highest improvement of an 827%

Table 6
U.S regions, divisions and states.
Region Code #Instances  Division State
Northeast R1 794 New Connecticut, Maine,
England Massachusetts, New
Hampshire, Rhode Island,
Vermont
Mid- New Jersey, New York,
Atlantic Pennsylvania
Midwest R2 1327 East North Illinois, Indiana, Michigan,
Central Ohio, Wisconsin
West North Iowa, Kansas, Minnesota,
Central Missouri, Nebraska, North
Dakota, South Dakota
South R3 2010 South Delaware, Florida, Georgia,
Atlantic Maryland, North Carolina,
South Carolina, Virginia,
District of Columbia, West
Virginia
East South Alabama, Kentucky,
Central Mississippi, Tennessee
West South Arkansas, Louisiana,
Central Oklahoma, Texas
West R4 1555 Mountain Arizona, Colorado, Idaho,
Montana, Nevada, New
Mexico, Utah, Wyoming
Pacific Alaska, California, Hawaii,

Oregon, Washington

value, followed by 795% improvement for West, 786% improvement for
Northeast, and 669% improvement from South. Most of the improve-
ments are higher than the improvement using the whole data (725%),
indicating that the narrowed and region-specific feature selection may
generate a higher prediction efficiency. The 35 features selected from
the Northeast dataset provide 0.78 correlation coefficient, indicating
that they use only 13% of the total features to reach 102% of the pre-
diction performance with all features. Similarly, 32 selected features
from Midwest (correlation coefficient = 0.75) use 12% of the total
features to reach 98% of the prediction performance; the 40 selected
features from South (correlation coefficient = 0.72) use 15% of the total
features to reach 99% of the prediction performance; and the 33 selected
33 features from West (correlation coefficient = 0.76) use 12% of the
total features to reach 97% of the prediction performance.

5.4. Feature assessment

The selected features reveal unique energy use patterns in each re-
gion. (1) In the Northeast, appliances (e.g., coffee maker, tablet com-
puters, refrigerator through-the-door ice), demographics (e.g., gender),
building technology (e.g., years), and behavior (e.g., interior lighting
usage) are highly correlated with total energy consumption. Compared
to other three regions where heated tub or swimming pool are good
predictors for energy consumption, lighting usage, small appliance
usage show a higher prediction power due to relatively longer night
hours and diverse population and lifestyle. (2) In the Midwest, appli-
ances (e.g., fuel type of clothes dryer and freezer door type), behavior (e.
g., winter temperature setting when unoccupied), demographics (the
respondent’s unaffordable financial status), building technology, espe-
cially environmental features (e.g., climate zone by Building America, if
the housing is located in urban or suburban, metropolitan or micro-
politan area) are highly correlated with total energy consumption.
Compared to other three regions where microwave, size of most used
freezer are good predictors for energy consumption, the location of the
housing unit regarding climate and urbanicity show a higher prediction
power. (3) In the South, appliances (e.g., clothes dryer, smart phone,
separate cooktops, toaster, and other small appliances), behavior (e.g.,
TV usage on weekends), demographics (e.g., home energy assistance),
and building technology (e.g., fuel type for pool, propane use, additional
water heater, solar energy use) are highly correlated with total energy
consumption. Compared to other three regions where air conditioning
type, electricity use for water heating are good predictors for energy
consumption, unique energy types, extra use of water heating and
swimming pool use show a higher prediction power. (4) In the West,
appliances (e.g., number of light bulbs inside the home, additional
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refrigerator, dehumidifier), behavior (e.g., unhealthy temperature
setting at home, TV usage on weekdays, frequency of clothes washer
use), demographics (e.g., if the respondent is Hispanic/Latino or not),
and building technologies (e.g., back-up generator, exterior wall type)
are highly correlated with total energy consumption. Compared to other
three regions where cable or satellite boxes, desktop, swimming pool
use, number of household members and grown-ups, and number of
bathrooms are good predictors for energy consumption, building ma-
terials, respondent’s race/ethnicity, lighting, and temperature settings
show a higher prediction power.

6. Discussion

The selected features improve the modeling efficiency for residential
buildings when considering variables. Fig. 4 exhibits that the selected
features achieved more than 97% of the prediction performance while
using less than 15% of total features. It demonstrates that the analytic
feature engineering framework is efficient to predict energy consump-
tion for residential buildings. Also, the selected features resulting from
the feature engineering framework improve the resource efficiency for
energy modeling and computation and highlight unique patterns of
energy use for American households.

The selected features have implications for better understanding the
energy use patterns between regions. (1) In Northeast and Midwest,
secondary space heating equipment usage is a predictor, suggesting that
the two regions are colder where secondary space heating equipment is
necessary and useful for energy prediction. (2) In Northeast and South,
the number of children in households, the frequency of clothes dryer
usage, number of bedrooms, and size of the secondary refrigerator (if
they use) are predictors, suggesting that the two east coastal regions
have a bigger family size and need extra room, dryer use, and refriger-
ator. (3) In Northeast and West, dehumidifier usage, fuel type for space
and water heating, and air conditioner type are predictors, suggesting
that the two regions contain diverse types of building across a long range
of years that their equipment varies. (4) In Midwest and South, the
number of separate ovens and the number of days covered by Energy
Supplier Survey natural gas billing data are predictors, suggesting that
cocking at home is important for families in these two regions. (5) In
Midwest and West, who pays for natural gas and natural gas usage for
water heating are predictors, suggesting that less natural gas as an
alternate energy source is available for homes in the two west coastal
regions. (6) In South and West, air conditioning use and the number of
light bulbs installed outside the home are predictors, suggesting that the
two southern regions have a higher temperature and a longer time for
night activities.

7. Conclusion Journal of Building Engineering 44 (2021) 102891

In this study, an analytic machine learning-based feature engineering
framework has been developed to select and assess factors to improve
energy prediction efficiency by reducing the dimensionality of the fac-
tors. Based on the value engineering principle, the two implications
cases show that the selected features achieve considerable improvement
in efficiency to predict energy consumption in residential buildings.

This study contributes to residential building energy modeling and
evaluation. (1) The presented analytic framework adds values on resi-
dential energy prediction process by improving the efficiency. The
process combined feature selection and energy prediction algorithms
together and applied them to the domain of residential energy data
analysis. The predictor reduction helps to enable more economic and
feasible energy data collection. In the energy management system (EMS)
market, an enormous number of sensors are installed, or numerous
questions are included in the survey to collect energy consumption
related data. The results from this research suggest the most efficient
factors to be included in those sensor installations or surveys, and reduce
the required number of sensors or questions. (2) The results provide a list
of efficient features for predicting energy consumption in residential
buildings. The features effectively explain energy use patterns and their
relationships which help residential designer, constructors, and occu-
pants understand energy, behaviors, and the built environment. The
resultant energy use patterns inform regional similarities, differences,
and distinctive characteristics. The specific regional characteristics help
develop optimal energy policies strategies to promote energy savings.
Scholars and construction managers can use this framework to produce
suggestions for region-specific decision making, for example, in regional
retrofit projects. In addition, this framework can be extended to other
energy survey or sensor-measured datasets and research domains.

A limitation of this study is related to RECS dataset. The RECS uses
the four census regions rather than more detailed regional features at
state or county level, or ASHRAE climate zones. In the RECS, behavior-
and time-related activities are less detailed than appliances, building
technology, demographic information, and energy use. The RECS
dataset lacks HVAC use behavior such as thermostat set-point temper-
ature for heating or cooling seasons. The dataset limitation might lose
important energy-usage predictive features. In the future, state or
county level geographical data and behavior-related features can be
further examined in detail by using datasets from smart meters and
home sensors.
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