
1

Holistic Resource Allocation under Federated Scheduling for
Parallel Real-Time Tasks

LANSHUN NIE∗ and CHENGHAO FAN∗, Harbin Institute of Technology, CHN

SHUANG LIN, Harbin Institute of Technology, CHN

LI ZHANG, Amazon Web Services, USA

YAJUAN LI, New Jersey Institute of Technology, USA

JING LI†, New Jersey Institute of Technology, USA

With the technology trend of hardware and workload consolidation for embedded systems and the rapid

development of edge computing, there have been increasing interests in supporting parallel real-time tasks

to better utilize the multi-core platforms while meeting the stringent real-time constraints. For parallel real-

time tasks, the federated scheduling paradigm, which assigns each parallel task a set of dedicated cores,

achieves good theoretical bounds by ensuring exclusive use of processing resources to reduce interferences.

However, because cores share the last-level cache and memory bandwidth resources, in practice tasks may still

interfere with each other despite executing on dedicated cores. Such resource interferences due to concurrent

accesses can be even more severe for embedded platforms or edge servers, where the computing power and

cache/memory space are limited. To tackle this issue, in this work, we present a holistic resource allocation

framework for parallel real-time tasks under federated scheduling. Under our proposed framework, in addition

to dedicated cores, each parallel task is also assigned with dedicated cache and memory bandwidth resources.

We study the characteristics of parallel tasks upon different resource allocations following a measurement-

based approach and proposes a technique to handle the challenge of tremendous profiling for all resource

allocation combinations under this approach. Further, we propose a holistic resource allocation algorithm

that well balances the allocation between different resources to achieve good schedulability. Additionally,

we provide a full implementation of our framework by extending the federated scheduling system with

Intel’s Cache Allocation Technology and MemGuard. Finally, we demonstrate the practicality of our proposed

framework via extensive numerical evaluations and empirical experiments using real benchmark programs.

CCS Concepts: • Computer systems organization→ Real-time system specification; Embedded soft-
ware; Embedded systems; • Software and its engineering → Real-time schedulability; • Theory of
computation→ Parallel computing models.

Additional Key Words and Phrases: parallel real-time systems, federated scheduling, resource partitioning

ACM Reference Format:
Lanshun Nie, Chenghao Fan, Shuang Lin, Li Zhang, Yajuan Li, and Jing Li. 2022. Holistic Resource Allocation

under Federated Scheduling for Parallel Real-Time Tasks. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1
(January 2022), 29 pages. https://doi.org/10.1145/3489467

∗
Both authors contributed equally to this research.

†
Jing Li is the corresponding author.

Authors’ addresses: Lanshun Nie; Chenghao Fan, Harbin Institute of Technology, CHN; Shuang Lin, Harbin Institute of

Technology, CHN; Li Zhang, Amazon Web Services, USA; Yajuan Li, New Jersey Institute of Technology, USA; Jing Li, New

Jersey Institute of Technology, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1539-9087/2022/1-ART1 $15.00

https://doi.org/10.1145/3489467

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3489467
https://doi.org/10.1145/3489467

1:2 Lin and Fan, et al.

1 INTRODUCTION
Because workload consolidation can effectively reduce the energy consumption, wiring weight,

hardware costs, and software complexity, recently there is a technology trend of consolidating even

more applications and services onto shared hardware for embedded systems and edge servers. On

the hardware side, there is a rapidly increasing penetration of multi-core/many-core CPUs into

systems, as well as an increased sharing of common resources by computing units (e.g., memory

bus and last-level cache). Moreover, the applications running in embedded systems and edge servers

today have increasingly high computation needs and stringent timing constraints. For example, an

edge server needs to provide real-time responsiveness to various applications, such as augmented

reality, video analytics and traffic light controls, that offload computation to the shared edge [40, 41].

These technology trends mean that: (1) the parallel execution is critical for satisfying the high

computation needs and meeting the stringent real-time constraints of applications; and (2) the

execution of applications is more unpredictable due to computing units sharing resources like

cache and memory bus.

Among the different scheduling policies for executing parallel real-time tasks upon multi-core

platforms, the federated scheduling paradigm [2, 7, 8, 21, 28, 43, 44] has attracted a lot of atten-

tion due to its good theoretical bounds and empirical advantages. The key idea of the federated

scheduling paradigm is to allocate a set of dedicated cores to each task that needs to run in parallel

on multiple cores to meet its deadline and force the remaining tasks to execute serially on the

remaining cores under some classical multiprocessor scheduling algorithms. Because each task

that runs in parallel has its dedicated cores for execution, there is no preemption, migration, and

interference on its cores caused by other tasks. In addition to reducing practical overheads, each of

such tasks can be analyzed in isolation, which significantly reduces the pessimism of analyzing the

schedulability of complex parallel real-time tasks. Thus, federated scheduling achieves the best

performance bounds compared to other classical algorithms, such as global earliest deadline first

and global rate monotonic scheduling.

However, in today’s multicore hardware, cores share the last-level cache and memory bandwidth

resources, so tasks may interfere with each other despite executing on dedicated cores. The inter-

ferences due to cache and memory bandwidth contention can be even more severe for embedded

platforms or edge servers, where the computing power and cache/memory space are limited.

This work aims to address the pressing demand for parallel real-time scheduling over multicore
platforms with shared cache and memory bus. Specifically, we focus on platforms with multicore

processors with L1 (and L2) caches private to each core and shared Last Level Cache (LLC), which is

connected via a shared memory bus to the shared Direct Random Access Memory (DRAM). In this

work, we take a measurement-based approach and limit our attention to addressing the contention

in the shared LLC and memory bus for parallel real-time tasks. Note that there are other sources of

interference on modern platforms, such as Miss Status Holding Registers (MSHRs) [45], DRAM

bank conflicts [23, 51], and DRAM controller [37, 42], as well as the contention in software systems

like blocking due to shared internal kernel data structures [56]. Some of these interferences (e.g.,

MSHRs contention) can be mostly incorporated into the measured worst-case execution times by

co-running the task with specially designed interfering workloads during the profiling, while some

have been mitigated by various mechanisms. We leave the integration of the proposed strategy and

the orthogonal mitigation mechanisms to other resources, such as DRAM bank-level partitioning,

as future work.

We first study the characteristics of parallel tasks upon different resource allocations following a

measurement-based approach. Since each task can be allocated with different numbers of cores,

cache partitions, and memory bandwidth partitions, profiling the worst-case execution times for

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:3

all the thousands of combinations of resource allocation can take a tremendous amount of time. To

address this issue, we propose to perform the measurement only for a small number of combinations

and apply a non-linear regression to obtain estimations for the other combinations. Next, we present

a holistic cache and memory bandwidth resource allocation strategy for parallel real-time tasks

under federated scheduling. In addition to dedicated cores, each parallel task is also assigned with

dedicated cache and memory bandwidth resources to reduce resource interferences between tasks.

We leverage the insights from the heuristic resource allocation strategy CaM[48] for allocating

cache andmemory bandwidth for sequential tasks and extend the federated scheduling system using

Intel’s Cache Allocation Technology and MemGuard for allocating cache and memory bandwidth.

To well balance the allocation between different resources and achieve good schedulability, we

develop a mixed-integer nonlinear programming (MINLP) formulation that can optimally solve this

problem. Moreover, we propose a heuristic-based greedy algorithm that has good schedulability

and short running times that are orders of magnitude faster than solving the MINLP. Additionally,

we provide a full implementation of our framework by extending the federated scheduling system

with Intel’s Cache Allocation Technology and MemGuard. Finally, we demonstrate the practicality

of our proposed framework via extensive numerical evaluations and empirical experiments using

real benchmark programs.

2 RELATEDWORK

Parallel real-time scheduling. The problem of scheduling parallel real-time tasks has been

broadly studied. The earlier works develop a task decomposition technique to apply the analysis

of multiprocessor scheduling [22, 25, 26, 33, 38, 46]. For directly scheduling parallel tasks, classic

schedulers [4, 10, 12, 27, 32, 34] and Federated Scheduling that is specifically designed for parallel

tasks [2, 21, 28, 44] have been analyzed. All of them, except for [2, 34, 42, 43], only consider

how to allocate cores to parallel tasks and do not consider the contention in cache and memory

bandwidth. Alhammad and Pellizzoni, for the first time, analyze the memory bandwidth allocation

for parallel tasks, using a theoretical approach. They model the memory time as part of the work

and calculate a task’s execution time given a certain number of cores and a certain amount of

bandwidth assigned to the task. For analyzing private cache, a private-cache-aware algorithm

is proposed for finding partitioned non-preemptive schedules for parallel tasks [34]. In contrast,

we consider both shared cache and memory bandwidth for parallel tasks and takes an empirical

approach based on measurements of WCET. E-WarP [42] is a framework that analyzes the fine-

grained memory demand of applications and uses the developed memory enveloping to perform

accurate WCET predictions under bandwidth regulation for both CPU and accelerator workload.

To analyze the fine-grained cache behavior of parallel tasks, [43] incorporates the cache-aware

BUNDLE-scheduling into federated scheduling for parallel tasks. Both works focus on analyzing

the fine-grained behaviors of individual parallel tasks and improve their execution efficiencies.

Thus, they are orthogonal to this work and can be integrated for better performance.

Allocating cache and memory bandwidth. Cache partitioning techniques, such as page col-

oring, have been studied extensively to reduce contention on cache [6, 13, 24, 54] (see [15] for

a survey). Interference due to cache has also been incorporated into scheduler design and anal-

ysis [11, 16, 39, 47, 49]. Recent processors provide more efficient hardware support for cache

partitioning [5, 20]. Analyses on memory controllers achieve deterministic memory access latency

via detailed assumptions and/or modifications to controller hardware [17, 18, 23, 30, 55]. In con-

trast, software-based techniques regulate the memory bandwidth via throttling a core when the

monitoring unit observes the excessive memory requests of the core [1, 50, 52]. CaM [48] proposes

to holistically allocate cache and memory bandwidth to sequential tasks on multicore machines.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Lin and Fan, et al.

This idea is later incorporated into the compositional analysis for real-time virtualization to provide

better timing isolation among tasks in VMs. To address shared cache and memory bus contention

while ensuring task timing requirements in virtualized systems, Maracas [49] adopts page coloring

techniques and a latency-based memory throttling approach. All the above research considers

sequential tasks, while this work extends CaM for parallel tasks with federated scheduling.

3 IMPACT OF RESOURCE ALLOCATIONS ON PARALLEL REAL-TIME TASKS
To investigate the characteristics of the worst-case execution times of parallel real-time tasks when

allocated with different amounts of cores, cache partitions, and memory bandwidth resources, in

this section, we conduct an empirical evaluation using real-world parallel applications. Specifically,

we extend parallel benchmark programs written in the widely used OpenMP [35] language using

Intel CAT [20] and MemGuard [52] for dedicating resources in our experiments. The observations

obtained from this empirical study not only motivate the importance of holistic resource allocation

for parallel real-time tasks, but also stimulates us to apply a regression function on the measurement

results. This regression function is later used to reduce the tremendous profiling effort for all

different combinations of resource allocation in the measurement-based approach.

3.1 Experimental Setup
We first describe the resource allocation implementation and experimental setup for measuring the

worst-case execution times of parallel benchmark programs upon different numbers of allocated

cores, cache partitions, and memory bandwidth partitions.

CAT. Intel’s Cache Allocation Technology (CAT) [20], which is available to Intel processors starting
with the Xeon E5 v4 family, provides software-programmable control over the amount of last-level

cache (LLC) that can be consumed by software or hardware threads. More specifically, CAT relies on

mapping each running software or hardware thread onto an intermediate construct called a Class
of Service (CLOS). Then, CLOS can be configured via the L3 capacity bitmasks to set the available

cache partitions, which associates the cache partitions with the software or hardware threads. Intel

Resource Director Technology Software Package provides the OS interface leveraging Linux kernel

extensions to achieve the assignment of cache partitions to a process (i.e., task) or a set of cores.

In our system implementation, we configure the Linux kernel via CONFIG_INTEL_RDT_A to enable

the two OS interfaces pqos_l3ca_set and pqos_alloc_assoc_set for allocating cache partitions.

For a parallel task executed on multiple dedicated cores, we use these interfaces to assign cache

partitions that are shared only by the cores of the task.

Memguard. Our implementation leverages the reservation mechanism of MemGuard [52] to

allocatememory bandwidth to parallel tasks and cores. Specifically, MemGuard utilizes the hardware

performance monitoring counter via the Linux perf_event infrastructure to monitor the last-level

cache miss of each core. Since each cache miss generates a memory access request, one can calculate

the maximumly allowed number of cache misses for a duration without exceeding the specified

memory bandwidth. When reaching this number, MemGuard throttles the computation of this core

by calling the cpu_relax(). At the end of the current duration, MemGuard resets the counter and

wakes up the core for execution. In this way, MemGuard is able to restrict the amount of memory

bandwidth used by each core. However, because the hardware counter can only monitor the cache

misses for each core, MemGuard only supports individually allocating a certain amount of memory

bandwidth to a core. But it does not allow allocating memory bandwidth that can be shared by a

set of cores or by the multiple parallel threads a process on different cores. Hence, for a parallel

task assigned with multiple dedicated cores, our implementation calculates the amount of memory

bandwidth to be allocated for each of these cores by using the number of cores to divide the desired

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:5

total amount of memory bandwidth allocated to this task. Then, we use the interface provided by

MemGuard to achieve this allocation.

Hardware. We conduct the experiments on a 14-core machine with an Intel Xeon Gold 5117

processor that supports Intel CAT. The cores in the processor share a 19.25MB L3 cache and 6-

channel 32GB DDR4 DRAM with a maximum memory speed of 2400MHz. The shared L3 cache

can be divided into 11 equal-size partitions. The processor has 8 Class of Service (CLOS) registers,

so it supports at most 8 sets of cache partitions, where each set (i.e., each CLOS) must be assigned

with at least one cache partition. We adopted the DRAM controller saturation analysis in [42] for

obtaining the maximum memory bandwidth. For the workload with stores that always result in

DRAM rowmisses, the maximummemory bandwidth without fully saturating the DRAM controller

is 7.83 GB/s. In comparison, for the read-intensive workload that always results in cache misses,

the maximum memory bandwidth without fully saturating the DRAM controller is 17.97 GB/s. We

observe that the realistic benchmark programs described below typically generate more loads than

stores. Hence, we consider a maximum guaranteed memory bandwidth of 12GB/s assuming a ratio

of roughly two stores and one load. To discretize the amount of memory bandwidth that can be

allocated to tasks, we divide the bandwidth into 20 partitions of 600MB/s each, where each task is

assigned with one or multiple partitions. This number is chosen considering the balance between

the sufficient number of partitions for the allocation and the sufficient size of each partition.

System configuration. Our experiments are run on Linux 4.15.0, where hyper-threading, Speed-

Step, and hardware cache prefetcher features are disabled to reduce the non-determinism in the

timing behavior of tasks. For both the benchmark profiling described here and the empirical evalu-

ation of our framework in Section 8, we run the benchmark programs under the Linux real-time

priorities. Note that Linux comes with a safeguard mechanism that throttles the execution un-

der real-time priorities when reaching 95% CPU utilization by default. We disable the real-time

scheduler throttling by setting sched_rt_runtime_us to −1. We further reserve one core (i.e.,

core 0) for system services, dedicated one cache partition to this core using CAT, and restrict

its memory bandwidth usage using Memguard to limit the interference from system services to

the experiments. In summary, we leave 13 cores, 10 cache partitions, and 20 memory bandwidth

partitions for running experiments.

Parallel runtime system. We use GCC 7.4.0 with OpenMP 2.0 as the compiler and runtime

system for executing parallel benchmarks. We configure OpenMP to generate and pin exactly

one thread per core using omp_set_num_threads() and pthread_setaffinity_np(), so each

parallel task uses and only uses its dedicated cores without thread migrations. To further reduce the

variation of parallel execution times, we set OMP_WAIT_POLICY as active, disallow nested parallelism

using omp_set_nested(0), and set GOMP_SPINCOUNT as infinity.

Workload. We modified 12 parallel benchmark programs to enable the allocation of dedicated

cores, cache partitions, and memory bandwidth partitions using the aforementioned interfaces

provided by OpenMP, Intel CAT, and MemGuard, respectively. The 12 benchmark programs are

converted from two widely used parallel benchmark suites that collect real-world applications

with various parallel structures and properties. Specifically, Facesim, Bodytrack, Fluid Animate
(Fluid), Swaptions, and Blackscholes are from the Princeton Application Repository for Shared-

Memory Computers (PARSEC) benchmark suites [9]; While Ray Casting (RayCast), Breadth
First Search (BFS), Comparison Sort (Sort), Dictionary, Minimum Spanning Forest (MSF),
Remove Duplicates (RemDup), Nbody are from the CMU Problem Based Benchmark Suite (PBBS

benchmark suite) [36]. Note that the PBBS benchmark programs were originally written using Cilk

Plus [19] and are converted into OpenMP. These benchmark programs cover a broad range of

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Lin and Fan, et al.

real-world applications, such as computational biology, graphics, basic building blocks, finance,

computer vision, and physics simulation algorithms. They also include different representative

parallel structures. For instance, Blackscholes performs financial analysis and is parallelized by

spawning and synchronizing OpenMP tasks; Bodytrack is a computer vision application, which

is parallelized with nested parallel for loops and has ample parallelism; In contrast, Nbody is a

scientific application and has a more complex parallel structure with both parallel for loops and

spawning tasks. The different parallel structures not only affect the speedup of the benchmark

programs, but also have impacts on their sensitivities to different allocated resources.

3.2 Impact of Core, Cache and Memory Bandwidth Allocations
The goal of this empirical study is to examine how the timing behavior of real-world parallel

applications changes, when they are assigned with different numbers of dedicated cores, cache

partitions, and memory bandwidth partitions. For brevity, we useMBW or bandwidth to refer to

memory bandwidth in the rest of the paper.

Experiment. We run each benchmark program on increasing numbers of cores, cache partitions,

and memory bandwidth partitions. Under each resource allocation, we measure the execution time

of the benchmark. The profiling is conducted in a setup thatmimics the execution environment of co-

running multiple tasks on their dedicated resources and creates as much system-level interference

as possible. Specifically, we run each benchmark under profiling at a high real-time priority.

Additionally, we co-run another interfering parallel task at a lower real-time priority and allocate

all the remaining resources to this task. Extending the method in [45, 53], this interfering program is

essentially a parallel cache-bomb and memory-intensive program that we develop by parallelizing

the Stream Benchmark [31] (similar to the benchmarks in [45]) using OpenMP. This program

generates intensive memory access requests by performing read and write operations on long-

vectors with minimum data re-use (either in registers or in cache). In addition, it runs in parallel

on the assigned cores by OpenMP parallel for loops, which frequently synchronizes using the

underlying Linux futexes. In this way, it not only compete with the benchmark under profiling

on the shared DRAM controller and MSHRs, but also tries to generate some contention over the

internal kernel data structures related to futexes.

Ideally, one would run each benchmark program hundreds or thousands of times to measure the

worst-case execution time (WCET) of a benchmark. However, with 13 cores, 10 cache partitions,

and 20 memory bandwidth partitions, there are a total of 2,600 distinct combinations of resource

allocations. Moreover, some benchmark programs take tens of seconds for one run. Hence, the

measurement of one benchmark for the 2,600 combinations takes up to half a day, even when we run

it once for each resource allocation. This circumstance motivates us to develop a regression analysis

in Section 3.3, which enables using a much smaller number of measurements to guide the initial

resource allocation for tasks. In this study, our focus is on the variety of benchmark applications

and the trend of execution times upon different resource allocations, instead of obtaining the safe

WCET values. Hence, we only measure the execution time of each benchmark under each of the

2,600 combinations once.

Results. Figure 1 shows the measurement results of four representative benchmarks. In particular,

RayCast is a graphics rendering algorithm that uses the geometric algorithm of ray tracing to render

and calculate the first intersecting triangles for rays that penetrate a 3-dimension bounding box

containing a set of triangles. BFS performs a breadth-first search on a graph with a reasonably large

size. Blackscholes calculates the prices for options using the Black-Scholes partial differential

equation, which involves expensive computation on relatively small data. Nbody calculates the

motion of particles under the influence of mutual gravitational forces in a dynamic system.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:7

(a) RayCast: #bandwidth = 1. (b) RayCast: #cache = 1. (c) RayCast: #core = 1.

(d) BFS: #bandwidth = 1. (e) BFS: #cache = 1. (f) BFS: #core = 1.

(g) Blackscholes: #bandwidth = 1. (h) Blackscholes: #cache = 1. (i) Blackscholes: #core = 1.

(j) Nbody: #bandwidth = 1. (k) Nbody: #cache = 1. (l) Nbody: #core = 1.

Fig. 1. The slowdown (i.e., 1/speedup) of benchmark programs when assigning different numbers of cores,
cache partitions, and memory bandwidth (MBW) partitions.

We calculate the speedup of a benchmark program upon a particular resource allocation. The

speedup is defined as the ratio between the execution time measured for this resource allocation

and the execution time when assigning only one core, one cache partition, and one memory

bandwidth partition, the latter of which is also the maximum execution time of this benchmark.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Lin and Fan, et al.

For better readability, we plot Figure 1 in terms of slowdown, which is the inverse of speedup. The

comparison between these three representative benchmarks reveals the following observation.

Observation 1. The impact of the core, cache partition, and memory bandwidth allocations varies
across different parallel benchmark applications.

Not surprisingly, the timing behaviors of different applications vary, since they have different

characteristics. For example, Figures 1(a), 1(d), and 1(g) show the speedup of the three benchmarks

on increasing numbers of cores and cache partitions, while the number of memory bandwidth

partitions is fixed to one. By comparing them, we can see that cache barely makes any effect on the

execution times of Blackschole and has a slightly larger impact on BFS, while it significantly affects
the execution times of RayCast. A similar trend can be seen for memory bandwidth partitions

in Figures 1(b), 1(e), and 1(h). When memory bandwidth allocation increases, the running times

of RayCast and BFS decrease dramatically. In contrast, memory bandwidth has little impact on

Blackschole, especially when it is running on more than 2 cores. This is because both RayCast
and BFS perform computation on large data, while the intensive computation of Blackscholes is

performed on much smaller data.

In general, well-written parallel tasks are sensitive to cores in most cases. In fact, in many

cases, the execution times decrease the fastest when increasing the number of allocated cores.

But the specific speedup achieved by an application when running on multiple cores depends on

the parallelism of the application. For example, Blackschole has ample parallelism and is able to

achieve near-linear speedup. In comparison, Nbody only has about a 25% reduction in execution

times when assigned with 13 cores.

Depending on the characteristics of applications, some (e.g., RayCast) are sensitive to both cache

and memory bandwidth resources, and some are only sensitive to memory bandwidth (e.g., BFS),
while the others are not sensitive to cache nor memory bandwidth (e.g., Blackschole and Nbody).
Somewhat surprisingly, from the benchmark applications that we profiled, we do not find any

benchmark that is more sensitive to cache than to memory bandwidth. We suspect that this is both

related to the memory footprint and the memory access pattern of an application.

Based on the above findings, we classify all the 12 benchmark applications into 3 large cat-

egories: cache- and MBW-sensitive benchmarks, MBW-sensitive benchmarks, and cache- and

MBW-insensitive benchmarks. As shown in Table 1, out of the 12 benchmark programs, there

are 2 cache- and MBW-sensitive benchmarks, 6 MBW-sensitive benchmarks, and 6 cache- and

MBW-insensitive benchmarks. Note that there is a continuous spectrum from being sensitive

to both cache and memory bandwidth to being sensitive to memory bandwidth only. Even for

those benchmarks that are considered MBW-sensitive, increasing the number of allocation cache

partitions can still reduce its execution times, albeit very slightly.

Observation 2. The impacts of cache and memory bandwidth partitions on the execution times of
a parallel benchmark are correlated.

Not surprisingly, this observation is also similar to what was observed for sequential tasks [48].

Figure 2 presents the speedup of Facesim under different resource allocations. We can see that

increasing the number of cache partitions reduces the execution times of Facesim more when

given 1 memory bandwidth partition; whereas increasing the number of cache partitions reduces

its execution times extremely slightly when given 10 or 20 memory bandwidth partitions. This

is because when a task receives little memory bandwidth, it can be throttled frequently due to

running out of bandwidth reservation. Increasing the cache size can reduce the frequency of

memory accesses, and thus reduce the frequency of being throttled. In contrast, the time spent on

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:9

(a) Facesim: #bandwidth = 1. (b) Facesim: #bandwidth = 10. (c) Facesim: #bandwidth = 20.

Fig. 2. The slowdown (i.e., 1/speedup) of Facesim when assigning different numbers of cores, cache partitions,
and memory bandwidth (MBW) partitions.

computing dominates the overall execution time, when the memory bandwidth is abundant. We

observe similar behavior for RayCast, Sort, and Dictionary.

Observation 3. For a particular cache and memory bandwidth allocation, the execution time
ê (thi) of a benchmark on thi dedicated cores follows the formula below:

ê (thi) = f∞ +
f1 − f∞
(thi)c

(1)

where c is some constant, f1 represents the total work, and f∞ represents the span (i.e., the execution
time on an infinite number of cores) upon the particular cache and memory bandwidth allocation.

Figure 3 shows how the execution times of RemDup, Sort and Fluid change on increasing

numbers of dedicated cores. In addition, we apply nonlinear regression using a function in the

form of Equation (1) to fit the profiling results. The design of the function is inspired by the

theoretical analysis of the running time e (p) of a parallel program when executed by a work-

conserving (i.e., greedy) scheduler on increasing numbers of cores, which is essentially following

the Amdahl’s Law [3]. In this analysis [28], the effects of cache and memory bandwidth are ignored,

and ep = e∞ +
e1−e∞
p , where e1 is the total work, e∞ is the span, and p is the number of allocated

cores. Note that this classical result is almost identical to our designed function, except that the

constant c in Equation (1) is always 1 under the theoretical analysis.

From Figure 3, we can first observe that RemDup and Sort are memory bandwidth sensitive

benchmarks, where the execution times decrease significantly given more memory bandwidth

partitions. Fluid, on the other hand, is insensitive to cache and memory bandwidth. Moreover,

the designed function can accurately approximate the trend of the measurement results for Sort
and the obtained constant c is 1. In contrast, to obtain a low error in the regression, the constant c
is 0.9 for Fluid and 1.9 for RemDup. Unlike the classical analysis that assumes linear speedup of the

parallel region, our profiling results indicate that the speedup can be superlinear or sublinear. Hence,

in our nonlinear regression, we do not restrict c to 1. We also notice that allowing different values

of c for the same benchmark upon different cache and memory bandwidth can slightly improve the

accuracy of the regression. But the variation of c is relatively small. Hence, to reduce the number

of variables in the regression, we decide to use a single constant c for the same benchmark.

Furthermore, we can see that the obtained values for f1 and f∞ for the same benchmark program

vary a lot when different numbers of cache and memory bandwidth partitions are allocated to

this benchmark. Intuitively, the cache and memory bandwidth allocation affects the latency of

obtaining the data for computing, which adds to the computation time of the benchmark.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Lin and Fan, et al.

(a) RemDup: #cache=1, #MBW=1. (b) RemDup: #cache=10, #MBW=1. (c) RemDup: #cache=10, #MBW=20.

(d) Sort: #cache=1, #MBW=1. (e) Sort: #cache=10, #MBW=1. (f) Sort: #cache=10, #MBW=20.

(g) Fluid: #cache=1, #MBW=1. (h) Fluid: #cache=10, #MBW=1. (i) Fluid: #cache=10, #MBW=20.

Fig. 3. Fitting the measured execution times of RemDup, Sort, and Fluid using nonlinear regression.

3.3 Fitting WCET using Nonlinear Regression
As discussed in Section 3.2, the enormous number of resource allocation combinations causes the

time to profile the worst-case execution time (WCET) of a benchmark program tremendously long,

if the profiling must be done for each of the combinations. This fact motivates us to investigate

applying nonlinear regression analysis to fit the measurement results of benchmarks. Our goal here

is two-fold: (1) we want to see how accurate the nonlinear regression can be when a reasonable

function is used; and (2) we want to see whether it is possible to perform the measurement only for

a small number of combinations, apply the non-linear regression, and obtain relatively accurate

estimations on the execution times.

To answer the first question, we design the following function based on Observation 3 above

for estimating the (worst-case) execution times ê (thi , cpi ,mpi) of a benchmark program when it is

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:11

assigned with thi cores, cpi cache partitions, andmpi memory bandwidth partitions:

ê (thi , cpi ,mpi) = f∞ (cpi ,mpi) +
f1 (cpi ,mpi) − f∞ (cpi ,mpi)

thc00i
(2)

where c00 is a coefficient. Similar to Equation (1), f1 (cpi ,mpi) and f∞ (cpi ,mpi) represent the work
and span of the benchmark upon cpi cache and mpi memory bandwidth partitions. And the

coefficient c00 corresponds to the parameter c in Equation (1), which can be smaller, equal to, or

larger than 1, as discussed under Observation 3.

The design of functions f1 (cpi ,mpi) and f∞ (cpi ,mpi) is inspired by Observation 2. They try to

capture the individual effect of cache or memory bandwidth allocations, as well as the correlation

between them. Specifically, they are in the following forms:

f1 (cpi ,mpi) = c11 ∗ (cpi + c12)
−c17 ∗ (mpi + c13)

−c18

+c14 ∗ (cpi + c12)
−c17 + c15 ∗ (mpi + c13)

−c18 + c16 (3)

f∞ (cpi ,mpi) = c21 ∗ (cpi + c22)
−c27 ∗ (mpi + c23)

−c28

+c24 ∗ (cpi + c22)
−c27 + c25 ∗ (mpi + c23)

−c28 + c26 (4)

where c11 to c28 are also coefficients.

Table 1. Mean Relative Error of Fitting WCET

Cache- and MBW-sensitive benchmarks:

Benchmark RayCast Facesim

MRE 0.05283 0.04706

MBW-sensitive benchmarks:

Benchmark BFS Sort Dictionary MSF RemDup

MRE 0.08200 0.03881 0.09334 0.0526 0.06961

Cache- and MBW-insensitive benchmarks:

Benchmark Bodytrack Blackscholes Fluidanimate Nbody Swaption

MRE 0.03749 0.05648 0.03948 0.00272 0.07791

Results. We use the nonlinear regression tool of curve_fit in Python scipy.optimize library

to fit the measured execution times of benchmark programs. Other nonlinear regression tools,

such as Matlab Cftool, DataFit from Oakdale Engineering, Origin from OriginLab, and 1stOpt from

7D-Soft, can also be used. We do not observe any difference in the results in terms of relative

errors when using different tools. We initialize all the coefficients (i.e., c00 to c28) to 1, since this

initialization often leads to faster convergence in practice. One could also initialize the coefficients

to any other random values. As long as the regression converges and the relative error is small, the

values of the coefficients are similar. To evaluate the performance of the nonlinear regression, we

calculate the relative error of the approximated execution times from the measured execution times

for each allocation setting and report the mean relative error (MRE). Formally, mean relative

error is calculated as

MRE =
1

n

n∑
1

|ẽ (thi , cpi ,mpi) − ê (thi , cpi ,mpi) |

ê (thi , cpi ,mpi)

Table 1 summarizes the mean relative errors of the nonlinear regression results for different

benchmark programs. Results show that the mean relative errors of the fitted execution times are

smaller than 10% for all benchmarks. The accuracy of the regression does not seem to be correlated

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Lin and Fan, et al.

to the type of benchmark programs. Note that although our experiments apply the nonlinear

regression to the measurement of execution time for one run under each allocation setting, in

principle, this approach is applicable to the WCET measurements of multiple runs.

(a) Nbody. (b) Sort. (c) Raycast.

(d) Dictionary. (e) Bodytrack. (f) Swaptions.

Fig. 4. Mean relative error of fitting the measured execution times of different benchmarks when increasing
the number of sampled data points used for the nonlinear regression: the solid line is the “global” MRE
calculated using all the 2,600 data points, while the dashed line is the “local” MSE calculated using only the
sampled data points.

Regression using a smaller number of sampled data points. Here, we explore whether using
only a small number of measurements suffices to achieve comparable accuracy with using the

measurement results of all resource allocation settings. In particular, we start with feeding the

regression with only 125 sampled data points. The samples come from the execution times when

assigning [1, 3, 5, 7, 9] cache partitions, [1, 5, 10, 15, 20] memory bandwidth partitions, and [1, 4, 7,

10, 13] cores. The 125 initial samples are specifically chosen to evenly span the entire space. Next,

we randomly sample 75 data points and add them into the regression, with the hope that more data

can improve the accuracy. We repeat this process until all the 2,600 data points have been added to

the regression.

Figure 4 presents the mean relative errors for 6 representative benchmark programs when

increasing the number of sampled data points used for the nonlinear regression. Note that in

practice, one can only calculate the mean relative error using the sampled data points. Hence, in

addition to reporting the mean relative errors calculated using all the 2,600 data points (i.e., global

data), we also report the mean relative errors calculated using only the sampled data points.

First and foremost, we can see that, for all benchmarks, using only about 250 data points the

nonlinear regression can already achieve comparable performance to using all the data points.

Therefore, our designed regression function gives the potential of significantly fewer measurements

for soft real-time systems. For hard real-time systems, after obtaining the candidate resource

allocation for a task set, one can conduct extensive profiling of WCET upon the allocated resources.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:13

If the WCET ends up exceeding the deadline, then local refinement and profiling can be performed

to adjust the resource allocation till all tasks can meet their deadlines.

We also observe that the trends of the MRE calculated using the global data and using the sample

data are not necessarily similar. This leads to a natural question of when to stop sampling more

data points (i.e., conducting more measurements). For benchmarks like Nbody, the initial 125 data
points already achieve a very low error, which means that the regression function can very nicely

approximate the true data. For the other benchmark programs, sampling another small amount of

data points as a validation set and using it to determine when to stop can be a good choice.

4 PROBLEM SPECIFICATION AND PRIOR RESULTS
The empirical study of benchmarks motivates the importance of holistic resource allocation for

parallel real-time tasks. This section presents the formal model for this scheduling problem based

on the timing characteristics of tasks observed in our measurements.

System model. We consider a machine with Nth cores, sharing an L3 cache with Ncp equal

partitions and amemory bus withNmp equal memory bandwidth partitions.We extend the federated

scheduling [28] introduced in Section 2 for scheduling parallel real-time tasks to incorporate cache

and MBW allocation. In particular, federated scheduling forces all low-utilization tasks to run

sequentially. We assume that these tasks are scheduled either by the partitioned earliest deadline
first (EDG) algorithm or by the partitioned rate monotonic (RM) algorithm on its partitioned core.

Each of the remaining high-utilization tasks is allocated with some dedicated cores, where it runs

in parallel. The resource allocation is done via the class of service (CLOS). A CLOS can either be

associated with one parallel task with a set of dedicated cores, or with one core with sequential

tasks partitioned to it. Additionally, a CLOS is assigned to a set of dedicated cache partitions and a

number of dedicated MBW partitions. The minimum number of cache and MBW partitions assigned

to a CLOS is one.

Task model. We seek to schedule a set of m tasks. Each task τk is modeled as a 3-tuple τk =
{ek (thi , cpi ,mpi),pk ,dk }, where pk is its period, dk is its deadline, and ek (thi , cpi ,mpi) is the mea-

sured WCET of the task when executed alone on thi cores with cpi cache andmpi MBW partitions.

In this work, we focus on tasks with implicit deadlines where pk = dk . Similar to [48], we de-

fine rek = ek (1,Ncp ,Nmp) as the reference WCET and calculate the reference utilization as

ruk = ek (1,Ncp ,Nmp)/pi . In addition, we also denote pek = ek (1, 1, 1) as the peakWCET of τk and

calculate the peak utilization as puk = ek (1, 1, 1)/pi . Thus, the speedup of a task under a certain

resource allocation is t_speedupk (thi , cpi ,mpi) = pek/rek . A task is schedulable if it can always

finish its execution before its deadline, and a task set is schedulable if all tasks are schedulable.

Problem/Objective. For a multicore machine with a shared L3 cache and memory bus, our goal

is to develop a strategy for allocating resources, including cores, cache, and memory bandwidth

partitions, to parallel real-time tasks, so that the task set is schedulable.

Most relevantwork. The theoretical modeling, as well as the allocation strategy for low-utilization

tasks on the partitioned cores, follows the CaM proposed by Xu et al. [48]. Here, we briefly introduce

the high-level strategy of CaM , which is slightly modified and used as the subroutine of our

proposed algorithm in Section 6. It first uses a clustering algorithm to group the tasks by their

sensitivity. It then tries to put tasks of the same group onto the same core, while maintaining the

reference utilizations of cores roughly the same. Cache and MBW partitions are assigned to the

over-utilized cores that have the maximum decrease in their total utilizations of the partitioned

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Lin and Fan, et al.

tasks. Finally, it iteratively moves tasks from over-utilized cores to under-utilized ones and re-

assigns cache and MBW partitions, until all cores become schedulable or it exceeds the maximum

allowed iterations.

The main difference between the models in this work and in [48] is that tasks are parallel and may

need to run onmultiple cores to meet their deadlines. To handle parallel tasks, we proposed to extend

federated scheduling by holistically allocating cache and MBW resources. The original federated
scheduling assigns dedicated cores to parallel tasks with high-utilizations (i.e., utilization larger

than one), forces the remaining low-utilization tasks to run sequentially, and partition these

sequential tasks on the remaining cores.

Challenge. Incorporating cache and MBW resources for federated scheduling introduces several

challenges: (1) how to distinguish high- and low-utilization tasks when a task has different uti-

lizations given different numbers of cache and MBW partitions; (2) how to allocate a reasonable

combination of cores, cache, and MBW partitions to a high-utilization task; (3) how to reserve

enough cores, cache, MBW partitions for the set of low-utilization tasks.

5 OPTIMAL ALGORITHM.
In this section, we present ourmixed-integer nonlinear programming (MINLP) with nonlinear

constraints for this resource allocation problem. Constructing the MINLP and its corresponding

constraints is not straightforward. One of the reasons is that high-utilization tasks are allocated

with dedicated cores while low-utilization tasks are partitioned onto shared cores. For example,

one needs to create MINLP variables to decide and distinguish whether a task is high- or low-

utilization. Furthermore, variables are also needed to distinguish whether a core is shared by some

low-utilization tasks or dedicated to a high-utilization task. The core shared by low-utilization

tasks needs to be allocated with at least one cache partition and one memory bandwidth partition,

in order to execute tasks. In contrast, the cores that are dedicated to a high-utilization task share

the cache and memory bandwidth partitions allocated to that task.

We address all the above challenges and develop the following MINLP formulation, which can be

solved using the existing solver in SCIP Optimization Suite [14]. The notations used in the MINLP

formulation are summarized in Table 2. All the variables except for the last one are non-negative

integers. To illustrate the intuitions for theMINLP formulation, we use the simple task set in Figure 5

as an example.

Fig. 5. An example task set with 4 tasks on 4 cores with 6 cache partitions and 12 memory bandwidth
partitions. The empty cells have a value of 0 for the corresponding variable.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:15

At a high level, the MINLP uses the binary variable βi to distinguish whether a task is high-

utilization (needs dedicated resources) or low-utilization (partitioned to a core shared with other

low-utilization tasks). For instance, in Figure 5 Task 2 is considered as a high-utilization task. Note

that a task may change from high to utilization by increasing the allocated cache and memory

partitions to reduce its execution time. Similarly, γj specifies whether a core is dedicated to a

high-util task or shared by low-util tasks. For example, Core 3 is shared by Tasks 1 and 3. The

mapping between the tasks and cores is stored in ζi, j , which is highlighted in green in Figure 5.

Depending on whether a core is shared by tasks and whether a task is assigned with multiple cores,

we can distinguish the type of a core and the type of a task, respectively.

The critical reason for the need for separate indicator variables to distinguish the type of tasks and

cores is that the cache andmemory bandwidths associated with them are different. In particular, low-

utilization tasks that are partitioned onto the same core share the cache and bandwidth partitions

associated with this core (e.g., Tasks 1 and 3 on Core 3 share 4 cache and 8 bandwidth partitions). In

contrast, a high-utilization task has dedicated cache and bandwidth partitions (e.g., Task 2 on Cores

2 and 4 has 1 cache and 2 bandwidth partitions), which are essentially shared by this task’s dedicated

cores. Hence, the constraints for cache and bandwidth partitions can only be properly formulated

when the task and core types are clear. Such information is specified by CPtaski andMPtaski for
high-utilization tasks, and by CPcorej andMPcorej for the cores shared by low-utilization tasks.

All these requirements are encoded into the MINLP constraints to obtain the optimal solution to

the resource allocation problem.

Table 2. Notations

m Number of tasks in the task set

Nth Number of cores on the hardware

Ncp Number of L3 cache partitions on the hardware

Nmp Number of memory bandwidth partitions on the hardware

αi Binary: if task i has a valid resource allocation

βi Binary: if task i is high-util with dedicated resources; or, low-util task

γj Binary: if core j is dedicated to a high-util task; or, shared by low-util tasks

ζi, j Binary: if task i executes on core j
CPtaski Number of cache partitions allocated to (high-util) task i
MPtaski Number of bandwidth partitions allocated to (high-util) task i
CPcorej Number of cache partitions allocated to (low-util) core j
MPcorej Number of bandwidth partitions allocated to (low-util) core j
ei (THi ,CPi ,MPi) Measured WCET of task i when executed on the specified resources

We now formally describe the constraints that our MINLP formulation encodes.

C1) This constraint essentially distinguishes whether a task has a valid resource allocation using

properties of the task-core mapping ζi, j . The variable αi is only used in the optimization objective

to maximize the number of schedulable tasks. When task i does not have a valid resource allocation
(i.e., αi = 0), then no cores should have been allocated to this task. When there exists a valid

allocation, the number of assigned cores should not exceed the total available cores Nth .

∀1 ≤ i ≤ m : αi ≤

Nth∑
j=1

ζi, j ≤ Nth · αi

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Lin and Fan, et al.

C2) In the task-core mapping ζi, j , high-utilization tasks (i.e., βi = 1) cannot share the same core j.
Similarly, a low-utilization task i (i.e., 1 − βi = 1) cannot be assigned to more than one core.

∀1 ≤ j ≤ Nth :

m∑
i=1

(ζi, j · βi) ≤ 1

∀1 ≤ i ≤ m :

Nth∑
j=1

(
ζi, j · (1 − βi)

)
≤ 1

C3) This constraint essentially distinguishes the type of a core using properties of the task-core

mapping. In the task-core mapping ζi, j , if core j is dedicated (i.e., γj = 1), there is exactly one

high-utilization task (i.e., βi = 1) executing on this core. Otherwise, this core is shared, so no

high-utilization task should execute on this core.

∀1 ≤ j ≤ Nth :

m∑
i=1

(ζi, j · βi) = γj

C4) This constraint essentially distinguishes the type of a task using properties of the task-core

mapping. If task i executes on one or multiple dedicated cores (i.e., γj = 1), this task must be

high-utilization (i.e., βi = 1).

∀1 ≤ i ≤ m :

Nth∑
j=1

(
ζi, j · γj

)
≤ βi · Nth

C5-1) The next four sets of constraints restrict the allocation of cache and bandwidth partitions.

First, a dedicated core (i.e., γj = 1) must share the partitions with the cores belonging to the same

high-utilization task, so it does not have any exclusive partitions.

∀1 ≤ j ≤ Nth : γj ·CPcorej = 0 ∧ γj ·MPcorej = 0

C5-2) Second, a shared core (i.e., γj = 0) must have at least one cache partition and one bandwidth

partition.

∀1 ≤ j ≤ Nth : γj +CPcorej ≥ 1 ∧ γj +CPcorej ≥ 1

C5-3) Next, a low-utilization task (i.e., βi = 0) does not have any allocated cache or bandwidth

partition. For high-utilization tasks, the number of allocated partitions is bounded by availability.

∀1 ≤ i ≤ m : CPtaski ≤ βi · Ncp ∧ MPtaski ≤ βi · Nmp

C5-4) Lastly, a high-utilization task (i.e., βi = 1) must be allocated with at least one cache partition

and one bandwidth partition.

∀1 ≤ i ≤ m : CPtaski ≥ βi ∧ MPtaski ≥ βi

C6) The next two constraints bound the total number of allocated cache (or bandwidth) partitions.

m∑
i=1

(βi ·CPtaski) +

Nth∑
j=1

(
γi ·CPcorej

)
≤ Ncp

m∑
i=1

(βi ·MPtaski) +

Nth∑
j=1

(
γi ·MPcorej

)
≤ Nmp

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:17

C7-1) The last sets of constraints make sure the task is schedulable. For a high-utilization task i that

is allocated with

∑Nth
j=1 ζi, j cores, CPtaski cache, andMPtaski bandwidth partitions, its execution

time ei should be no more than its implicit deadline pi . In addition, we also require that this task

is allocated with the minimum number of cores, i.e., reducing one dedicated core would result in

deadline misses.

∀1 ≤ i ≤ m : βi · ei
*.
,

Nth∑
j=1

ζi, j ,CPtaski ,MPtaski
+/
-
≤ pi

∀1 ≤ i ≤ m : βi · ei
*.
,
(

Nth∑
j=1

ζi, j − 1),CPtaski ,MPtaski
+/
-
≥ pi

C7-2) For a core with CPcorei allocated cache and MPcorei bandwidth partitions shared by

low-utilization tasks (i.e., 1 − γj = 1), the total utilization of these tasks cannot exceed 1.

∀1 ≤ j ≤ Nth : (1 − γj) ·
m∑
i=1

(
(1 − βi) · ζi, j ·

ei (1,CPcorej ,MPcorej)

pi

)
≤ 1

Objective: Our goal is to maximize the number of tasks that can be feasibly scheduled. This can

be formulated as follows using the indicator variable αi :

maximize
m∑
i=1

αi

Improved MINLP implementation. While being optimal, the complexity of solving this MINLP

problem is extremely high, making it very inefficient to use in practice. Moreover, the existing

solvers for MINLP need to convert the MINLP to regular nonlinear programming before adding the

integer constraints, so the non-continuous and nonlinear ek (thi , cpi ,mpi) cannot be directly used.

Instead, we must use Function (2) obtained from fitting the measured data, which further reduces

the efficiency. Thus, we further improve the implementation of the MINLP formulation.

In particular, we separate the allocation to high- and low-utilization tasks and use a brute-

force method to enumerate all the good allocations for high-utilization tasks. Once the allocation

decisions for the high-utilization tasks are made, the remaining problem becomes the resource

allocation problem for sequential (low-utilization) tasks. For this problem, there exists a mixed-

integer programming (MIP) formulation [48], which is much faster than the original MINLP

formulation for the entire task set.

Thus, the key to a good improved implementation is on deciding (1) which tasks are high-

utilization tasks and (2) how many resources should be allocated to high-utilization tasks. To

maintain the optimality of the MINLP formulation, all possible choices for the above two questions

must be verified before determining that the task set is unschedulable. However, not all choices

have equal importance — the ordering of these choices crucially affects the running time of the

implementation for most task sets. This is because once a schedulable allocation decision is found,

all the remaining choices no longer need to be verified.

With this intuition, we first construct all possible subsets of tasks in the original task set. If

one subset is chosen as high-utilization tasks, the supplement subset becomes low-utilization

tasks. Among these possible subsets, we sort them according to their total reference utilization

from large to small. Thus, the tasks with higher utilizations will be considered as high-utilization

tasks first. Next, for a considered subset, we verify all combinations of resource allocation to

these high-utilization tasks and see if any combination can make all tasks schedulable. Here, we

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Lin and Fan, et al.

prune some combinations that are clearly not feasible or reasonable. For example, if a task is not

schedulable given a set of resources, then it is also not schedulable given strictly fewer resources.

Moreover, among all the combinations that are schedulable, it is obviously more beneficial to the

remaining low-utilization tasks if strictly more resources remain. Hence, instead of running the

MIP formulation of the low-utilization tasks for all schedulable combinations, we prune those that

use strictly more resources. In this way, only the combinations at the Pareto boundary are verified,

which significantly reduces the running time of this implementation in practice.

6 HOLISTIC RESOURCE ALLOCATION FOR FEDERATED SCHEDULING
Although the improved MINLP implementation reduces the running time by a lot, it can still take

a long time to obtain the optimal results, especially when the problem size is large. Therefore,

we propose a heuristic-based strategy that has comparable or slightly worse performance with a

running time in orders of magnitude shorter than the MINLP formulation. This section first gives

an overview of our holistic resource allocation strategy and then provides details of the algorithm.

6.1 Algorithm Overview
The holistic resource allocation algorithm for parallel real-time tasks leverages the advantages of

CaM [48] and federated scheduling [28], as well as insights obtained from our empirical study using

real-world benchmarks in Section 3. In particular, our holistic algorithm is based on the following

high-level strategies.

(1) We assign dedicated cores, cache partitions, and memory bandwidth partitions to each high-

utilization task;

(2) We use the Speedup profile t_speedupk (thi , cpi ,mpi) to cluster low-utilization tasks to try to

partition tasks with similar sensitivity onto the same core, while also maintaining relatively

balanced workload between low-utilization cores;

(3) We use a dynamical threshold for distinguishing high-utilization and low-utilization tasks;

(4) We assign each available resource instance to the unschedulable task or core that receives the

largest positive benefit (i.e., the largest reduction in its utilization);

(5) We allow an unschedulable core with low-utilization tasks to exchange resources with a schedu-

lable high-utilization task, under the condition that the high-utilization task remains schedulable

and the low-utilization core has a reduction in its total utilization after the exchange.

Algorithm 1 gives the main steps of our holistic resource allocation algorithm, which composes

of five phases:

(1) Phase 1 (Lines 1–3) dynamically classifies all tasks into high- and low-utilization tasks, by

iteratively moving more tasks from low-utilization to high-utilization set. The set of high-utilization

tasks τhiдh is initialized as the tasks with high reference utilizations ruk = ek (1,Ncp ,Nmp)/pi ≥ 1.

At each iteration, one more low-utilization task with the largest reference utilization is selected by

the selectAddHT() procedure to be moved from τ low to τhiдh .
(2) Phase 2 (Lines 4–7) assigns cores, cache and MBW partitions to each high-utilization task

τk in τhiдh until it can meet its deadline (i.e., ek (thi , cpi ,mpi) ≤ dk). The allocation follows the

largest benefit first, to be explained in Section 6.2. During the assignment, any task in τ low that

was considered as low-utilization tasks but can no longer meet its deadline by running sequentially

on the remaining resources for low-utilization tasks is moved to τhiдh and participate the resource

assignment process. If the available resources are not even enough for high-utilization tasks, the

system is deemed unschedulable. Otherwise, the procedure initLR() calculates the unallocated

resources to be used for partitioning low-utilization tasks.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:19

(3) Phase 3 (Lines 8–13) tries to cluster the low-utilization tasks based on their speedup profile,

partition them on the remaining cores, and assign cache and MBW partitions to each core using

the procedure CaMAllocLR. It is almost the same as the heuristic resource allocation algorithm in

CaM [48], except for some differences in its balance procedure. In this procedure, a low-utilization

task can be migrated from one core to another. Here, we need to make sure that after the migration,

this task still remains as a low-utilization task and its original core does not become empty. If all

low-utilization tasks are schedulable on their partitioned cores, the task set is schedulable.

(4) Phase 4 (Lines 14–15) is only reached if there is some core with unschedulable low-utilization

tasks. In this case, via procedure resEx() the unschedulable low-utilization cores try to use one or

two types of resources to exchange for the other resource from high-utilization tasks that could

bring more benefit to these cores.

(5) Phase 5 (Lines 16–18) checks the schedulability of the low-utilization tasks. If the low-

utilization cores still cannot schedulable all the low-utilization tasks after the exchange, it is

possible that they contain some tasks with relatively high utilization. Thus, the next iteration

considers moving one more task to the set of high-utilization tasks. Otherwise, the task set is

schedulable.

Algorithm 1: Holistic Resource Allocator
Input: τ : task set; Nth : total number of cores; Ncp : total number of cache partitions; Nmp : total number

of MBW partitions;maxKM : the maximum iterations for KMeans;maxPerm: the maximum iterations.

Output: Schedulable or Unschedulable.

1 {τhiдh ,τ low } ← initHiдhTask (τ ,Ncp ,Nmp)

2 formaddH = 0 up to size (τ) − size (τhiдh) by +1 do

3 {τhiдh ,τ low } ← selectAddHT (τhiдh ,τ low ,maddH)

4 {τhiдh } ← allocHR (τhiдh ,Nth ,Ncp ,Nmp)

5 sched = checkSched (τhiдh)

6 if sched = unschedulable then break;

7 {N low
th ,N

low
cp ,N

low
mp } ← initLR (τhiдh ,Nth ,Ncp ,Nmp)

8 sort(clusters ← clusterTasks (τ low ,Nth ,maxKM))

9 sched = unschedulable

10 for j =maxPerm down to 0 by −1 do

11 perm_clusters ← permute (clusters)

12 {coresSched , coresU Sched , sched } ← CaMAllocLR (perm_clusters,N low
th ,N

low
cp ,N

low
mp)

13 if sched = schedulable then break;

14 τhiдh , coresU Sched ← resEx (τhiдh , coresU Sched)

15 coreslow = coresSched ∪ coresU Sched

16 sched = checkSched (coreslow)

17 if sched = schedulable then break;

18 if sched = schedulable then break;

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Lin and Fan, et al.

6.2 Procedures of the Algorithm
We now give details to the two main procedures in Algorithm 1.

Procedure allocHR() allocates resources to each high-utilization task for meeting its dead-

line. The minimum numbers of cores thmin , cache partitions cpmin , and MBW partitionsmpmin
for task τk are calculated such that ek (thmin ,Ncp ,Nmp) > dk , ek (Nth , cpmin ,Nmp) > dk , and
ek (Nth ,Ncp ,mpmin) > dk . After initializing the minimum resources, the procedure calculates the

maximum benefit of allocating one instance of resource to one unschedulable task. For example,

the benefit of allocation an additional core to τk with assignment (thi , cpi ,mpi) is calculated as

uk (thi + 1, cpi ,mpi) − uk (thi , cpi ,mpi). The benefit of allocating one cache or MBW partition can

be calculated similarly. Among all the possible allocations with different available resources and

different unschedulable tasks, the procedure will choose the one that results in the largest benefit

(i.e., the largest reduction in utilization). Hence, this choice of allocation best utilizes the resources

for high-utilization tasks.

Procedure resEx() tries to exchange resources between unschedulable cores partitioned with

low-utilization tasks and schedulable high-utilization tasks. Note that although Procedure allocHR()
makes good allocation decisions for high-utilization tasks, such a decision may not be globally

optimal for low-utilization tasks. For example, the cache may only result in a slightly better benefit

than MBW for high-utilization tasks, but allocHR() will assign all the available cache to high-

utilization tasks. With no cache left, the low-utilization tasks cannot be scheduled on the remaining

cores. At a high level, Procedure resEx() enumerates all valid resource exchange plans between a

low-utilization core and a high-utilization task. An exchange will only happen if the high-utilization

task remains schedulable and the low-utilization core has utilization benefits after the exchange.

Specifically, there are three steps in this procedure. First, if there are some empty cores not

used by any low-utilization tasks, then each of the unschedulable low-utilization cores tries to use

these empty cores to exchange for the cache and memory bandwidth resources from each of the

high-utilization tasks. This exchange is successful and will take place if both of them are schedulable

after the exchange. Note that some cores can be empty while some other low-utilization cores are

unschedulable. This is mainly because there does not remain at least one cache partition and one

memory bandwidth partition to be associated with the empty core. Hence, when this happens,

the empty cores can be used by high-utilization tasks that are already allocated with some cache

and memory bandwidth. With extra cores, these high-utilization tasks may return some cache and

memory bandwidth partitions, while being schedulable. These resources can then be used by the

unschedulable low-utilization cores to improve their schedulability.

Second, if there is no empty core available, unschedulable low-utilization cores can try to use

some of their cache and memory bandwidth resources to exchange one or more cores from high-

utilization tasks. Lastly, we can also exchange the cache and memory bandwidth resources between

low-utilization and high-utilization tasks. This may help balance these two types of resources

and obtain the minimum number of cache partitions and memory bandwidth partitions needed

for scheduling the low-utilization tasks on their cores. As a result, each core can be assigned the

minimum resources.

6.3 Complexity of the Algorithm
We first discuss the complexity of the subprocedures and then summarize the total complexity of

the algorithm. The following procedures iterate over all tasks and take O (m) time: initHighTask(),
selectAddHT(), checkSched(), and initLR(). The allocHR() procedure enumerates all unschedulable

high-utilization tasks for finding the one with the maximum benefit, and the number of times

that this process repeats is at most the number of remaining resources, so this procedure takes

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:21

O (m · (Nth + Ncp + Nmp)) time. The sort() procedure takes O (m logm) time. Since themaxKM
andmaxPerm are predetermined constants, the clusterTask() procedure iterates over all clusters
for all tasks for a constant number of iterations (i.e., O (m · Nth)). The permute() procedure takes
a constant time. The complexity of the CaMAllocLR() procedure depends on the number of low-

utilization tasks and the remaining resources. In the worst-case, all tasks are low-utilization,

which takes O (max{m logm,m · Nth ,Nth · N
2

cp · N
2

mp }) time. The resEx() procedure takes O (m ·
max{Nth ,Ncp ,Nmp }

2) in the worst-case. Therefore, the entire algorithm has a complexity of O (m ·
max{m · (Nth + Ncp + Nmp),m

2
logm · Nth ,Nth · N

2

cp · N
2

mp ,m ·max{Nth ,Ncp ,Nmp }
2}).

7 NUMERICAL EVALUATION
In this section, we conducted numerical experiments to evaluate our proposed holistic resource

allocation algorithms on task sets randomly generated using the profiling results of realistic parallel

benchmark programs in Section 3.

7.1 Experimental Setup

Workload generation. To evaluate the scalability of our proposed algorithms, we consider four

types of hardware systems. The smallest one has 13 cores with 10 cache partitions and 20 MBW

partitions, which is consistent with our real hardware platform described in Section 3. A slightly

larger one has twice the amount of resources, i.e., 26 cores with 20 cache partitions and 40 MBW

partitions. We also consider the one with three times the resources (i.e., 39 cores with 30 cache

partitions and 60 MBW partitions) and the largest one with four times the resources (i.e., 52 cores

with 40 cache partitions and 80 MBW partitions).

We vary the total reference utilization of task sets from 2 to the number of available coresm. For

each total utilization, we randomly generate 200 task sets with the desired utilization. We generate

a task’s reference utilization uniformly at random from the utilization range from 0.2 to 0.5
√
m,

wherem is the number of available cores. For each task, its WCET profile is randomly chosen from

the empirical measurements of the 12 real-world benchmark programs described in Section 3. Each

benchmark has an equal probability of being chosen unless otherwise specified. Due to the long

profiling time discussed in Section 3.3, we were only able to measure each benchmark’s execution

times upon each resource allocation combination for one time, instead of multiple times for taking

the worst-case value. Thus, the measured execution times have some variances. Hence, we refine

the WCET profiles by making sure that the WCET upon a specific resource allocation is the same

or larger than all the WCETs upon resource allocations that have strictly more allocated resources.

Additionally, the measurements are performed on our real hardware platform with a limited number

of resources (i.e., 13 cores with 10 cache partitions and 20 MBW partitions). In order to conduct

larger-scale numerical experiments considering larger machines with more resources and more

tasks, we set the WCETs upon more resources the same as the one upon 13 cores with 10 cache

partitions and 20 MBW partitions.

The period (and implicit deadline) of a task is obtained by using its reference WCET to divide its

reference utilization. For most of the experiment settings except for one, before adding a task to

the task set, we also check whether this task can meet its implicit deadline when all the available

resources of the hardware platform have been allocated to this task. If it is still not schedulable,

then we do not add this task to the task set; otherwise, the task set will also become unschedulable

no matter how resources are allocated to tasks.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Lin and Fan, et al.

(a) Schedulability comparison. (b) Average computation time. (c) Average computation time.

Fig. 6. Comparison with the optimal variations for task sets on 13 cores with 10 cache and 20 MBW partitions.

7.2 Schedulability Performance
To the best of our knowledge, there are no existing solutions that address the core, cache, and

memory bandwidth resource allocation problem for parallel real-time tasks. Therefore, in the first

experiment, we evaluate our proposed holistic algorithm by comparing it against the optimal

solution that is based on solving the mixed-integer nonlinear programming problem.

In this experiment, we consider four versions of the optimal. The first is the original MINLP

formulation (denoted as OPT) that is directly solved by the solver in the SCIP Optimization Suite [14].

The next is the improved implementation (denoted as OPT-Imp). As discussed in Section 5, the

implementation of the optimal is extremely inefficient. Even with our improved optimal variation,

the running time is still very long. Moreover, when there is no valid allocation, the solver used

by all the optimal solutions will not return any result. Therefore, we need to set a timeout for the

optimal solutions. For each task set, it is deemed unschedulable if the optimal algorithm does not

return any result by 15s, 1min, 10min, and 20min. Figure 6(a) shows the comparison results. The

original implementation with 20min running time performs the worst, simply because directly

solving the general MINLP is extremely hard. To verify that our implementation is correct, for task

sets that are schedulable using our holistic algorithm, we initialize the corresponding variables

in the MINLP formulation as the same as our generated allocation decision. Once doing that, the

MINLP solver can return in a shorter time and verify that the encoded allocation decision passes

all the optimization constraints. Compared with the improved implementation, we can see that our

algorithm has comparable performance with the improved optimal algorithm with 1min running

time limit and outperforms those that have shorter running time limits.

7.3 Running Time Efficiency
Although our holistic algorithm achieves slightly lower schedulability than the best performing

optimal variationOPT (10min0.1s), it is significantlymore efficient than any of the optimal variations.

As shown in Figures 6(b) and 6(c), the average running times of all the optimal variations grow

at an exponential rate. For example, the OPT variation that solves a single MINLP problem needs

4min on average to obtain solutions for task sets with reference utilizations that are as low as 3. For

many schedulable task sets with reference utilizations that are larger than 4.5, OPT cannot return

the valid resource allocation even if running for 2 hours.

The improved optimal variations have much faster running times, but they are still many orders

of magnitude slower than the holistic algorithm. For instance, when the task set reference utilization

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:23

is at least 5.5, OPT (10min0.1s) needs more than 1min on average to find the schedulable resource

allocations. Its running time rapidly increases to 10min when the total reference utilization is 9.5.

The fastest optimal variation OPT (10s0.1s) that has worse schedulability than the holistic algorithm

takes about 1.5min to solve for task sets with reference utilization 10. In contrast, the average

running times of our holistic algorithm are all below 24s. This computation efficiency gap between

the optimal variations and the holistic algorithm increases when there are more available resources.

Fig. 7. Experiments with a subset of bench-
marks on 13 cores.

Fig. 8. Experiments with specific type of
benchmarks on 26 cores.

7.4 Impact of Different Benchmarks
As discussed in workload generation, in all of the other experiments, we only add a randomly

generated benchmark task into the task set if this task can at least meet its deadline when mo-

nopolizing all the resources. Figure 7 motivates why it is necessary to do so. In particular, BFS,
Nbody, facesim, and MSF are memory-intensive benchmarks. Because the reference utilization is

defined as the WCET of a task on a single core with all the available cache and MBW partitions,

these memory-sensitive tasks already have high speedup given all the MBW partitions. When

their randomly generated utilizations are high, allocating all the cores to them may not achieve

sufficient additional speedup to allow them to meet their deadlines. In Figure 7, we do not check

the schedulability of a task upon task set generation. Instead, we selectively exclude some of these

4 benchmarks in the task set generation. The differences in schedulability, thus, reflect the impact

of these benchmarks.

To study the effect of different types of benchmarks, we also conduct an experiment where we

generate task sets with only one type of benchmark and compare the schedulability results to the

task sets with mixed types. Figure 8 shows that the fraction of schedulable task sets drastically

drops to 0 for task sets with cache- and MBW-sensitive tasks. In contrast, when there are more

cache- and MBW-insensitive tasks, there is a fraction of task sets schedulable at high total reference

utilizations. The noticeable difference here also implicitly and partially verifies that our classification

of benchmark programs indeed distinguishes the different characteristics of tasks.

7.5 Ablation Study of Our Algorithm
The impact of the different phases of our holistic algorithm can be observed in Figure 9(b). Specifi-

cally, version NoResEx disables the procedure resEx(), so there is not resource exchange between

low- and high-utilization tasks. Version NoL2H disable procedure selectAddHT() and use a fixed

threshold for classifying low- and high-utilization tasks. In contrast, NoMaxBene does not use

the maximum benefit strategy in procedure allocHR() for finding the best resource to allocate to

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Lin and Fan, et al.

(a) Fewer cache- and MBW-sensitive tasks. (b) More cache- and MBW-sensitive tasks.

Fig. 9. Ablation study of holistic algorithm on task sets with different percentages of cache- and MBW-
sensitive tasks on 26 cores, 20 cache partitions, and 40 MBW partitions.

a high-utilization task and uses round-robin instead. We can see that procedure allocHR() and
selectAddHT() both have large impacts on the schedulability of task sets, while procedure resEx()
almost no impact for the task sets that select benchmarks uniformly at random in Figure 9(a). Based

on our classification for benchmark programs, there are only 2 cache- and MBW-sensitive bench-

marks out of the 12 benchmarks. When a task set has few or no such benchmarks, resource

exchanges are unlikely to happen. To verify our hypothesis, we construct task sets that select a

cache- and MBW-sensitive benchmark with a probability twice the probability of selecting the

other ones. As shown in Figure 9(b), with more cache- and MBW-sensitive benchmarks, resource

exchange plays a more important role in finding a good resource allocation.

(a) Increase the number of all resources. (b) Change the number of some re-

sources.

(c) Change the task utilization range.

Fig. 10. Fraction of schedulable task sets with different task set generation parameters.

7.6 Impact of Platform Configurations and Task Parameters
Finally, we also vary the task parameters and platform configurations to evaluate their impact on

the schedulability of task sets. As expected, increasing the number of available resources allows task

sets with higher total reference utilizations to be schedulable. And the increase in schedulability is

roughly proportional to the increase in the total resources, as revealed in Figure 10(a). On the other

hand, different types of resources have different levels of impact on schedulability. As shown in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:25

Figure 10(b), decreasing the number of cache partitions by half has a smaller impact, compared to

decreasing the number of memory bandwidth partitions by half. However, this is related to the

characteristics of the randomly generated task sets. For example, if all tasks are insensitive to cache

and memory bandwidth, the decrease in both resources will have little impact on schedulability. In

Figure 10(c), we vary the range of tasks’ reference utilizations. We can see that this change has a

relatively small impact on the schedulability of task sets.

8 EMPIRICAL EVALUATION
To demonstrate the practicality of our proposed framework on real hardware platforms and evaluate

its empirical performance, we extend the federated scheduling system [29] to support cache and

memory bandwidth partitioning. The modification to the federated scheduling is similar to the

modification to benchmark programs as described in Section 3.

We first measure the system overhead of different resource allocation operations, including the

core allocation operation via pthread_setaffinity_np(), the cache partition allocation operation

via CAT, and the memory bandwidth allocation via Memguard. Results presented in Table 3 show

that the overhead of allocation cache partitions is significantly higher than partitioning cores

and setting memory bandwidth reservations. Fortunately, our proposed framework follows the

federated scheduling paradigm where the resource partitionings are performed only once before

the execution of the task sets. Therefore, the high overhead only occurs once even before the

execution of all tasks, does not impact the schedulability and efficiency of the task sets, and needs

not to be incorporated into the analysis.

Table 3. Overhead measurement

Operation Average overhead (ms) Maximum overhead (ms)

Core allocation 0.142 0.152

Cache partition allocation 569.1 570.8

Memory bandwidth allocation 4.4 4.5

We choose 3 representative benchmark programs (RayCast, Swaptions, and RemDup), one in
each type, and measure their execution times of 50 runs on all 2,600 combinations of resource

allocations. Since the measured maximum execution times of 50 runs may not be the true and safe

WCET, we inflate the maximum value by 1.1 and use the inflated WCET for task set generation.

We follow a similar procedure to that in Section 7 to randomly generated 100 task sets for each

reference utilization on 13 cores. We run each task set for a duration that is equal to 50 times the

longest period of the tasks in the set.

Although when generating task sets, we inflate the measured maximum execution time by

1.1. In the experiments, we would like to evaluate how the WCET estimates used by the holistic

algorithm affect the schedulability of task sets. Hence, we use three types of WCET estimates: (1)

the measured maximum execution time inflated by 1.1 — namely WCETx1.1; (2) the measured

maximum execution time without any inflation — namely WCETx1.0; and (3) the regression results

using 250 sampled maximum execution times inflated by 1.1 — WCETx1.1+fitting.

Note that both the greedy algorithm and the MINLP algorithms cannot generate a resource

allocation decision for a task set, if the task set is deemed unschedulable by the respective algorithm.

Additionally, it is not clear how to modify the optimal MINLP formulations to output any allocation

decision for unschedulable task sets, as the optimization constraints are violated for these task sets.

Therefore, one can only run the theoretically schedulable task sets to see if there is any deadline

miss observed during the actual execution on the hardware platform. These results are presented in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Lin and Fan, et al.

Fig. 11. Empirical experiments on 13 cores.

Figure 11 with legends WCETx1.0, WCETx1.1, and WCETx1.1+fitting. In contrast to the numerical
experiments in the previous section, here a task set is considered schedulable only if no deadline miss is
observed during the actual execution of this task set on the hardware platform.
We would also like to see how pessimistic the measured WCETs are when the workload is

consolidated onto the platform following our proposed heuristic. To achieve this, we modified our

holistic resource allocation strategy to generate one “reasonable” allocation decision, even when

the task set is deemed unschedulable. In this way, we can execute the theoretically unschedulable

task sets on the real platform to reveal the pessimism of the measured WCETs. Specifically, for

every potential allocation decision tested during the process of the heuristic-based algorithm, we

calculate the maximum of each core’s utilization given this allocation decision and the task set. We

record and output the decision that has the lowest maximum core utilization. Intuitively, this metric

helps output the allocation decision that balances the load of each core. The observed schedulability

of this best-effort approach (on top of the allocation decisions for the theoretically schedulable task

sets) with WCETx1.0 estimates is denoted as WCETx1.0+best-effort in Figure 11.

We can observe that inflating the maximum execution times introduces a small amount of

pessimism. A small number of task sets become unschedulable, because increasing the WCET

estimate causes the need for more resources to meet deadlines. Moreover, comparing the results

between WCETx1.0 and WCETx1.0+best-effort, we can see that a few theoretically unschedulable

task sets do not encounter any deadline miss during the actual execution.

Among the experimented task sets, we do not observe any deadline miss for both WCETx1.1

and WCETx1.0. In contrast, if we directly executing the resource allocation decisions made by the

algorithm using WCETx1.1+fitting estimates, there will be two tasks missing their deadlines. This

is because the estimation made by the regression algorithm over-optimistically predicts the WCETs

for some resource allocations. When the holistic algorithm happens to choose these allocations,

the involved tasks will miss deadlines. However, as discussed in Section 3, when regression with a

small number of sampled data points is used for estimating the WCETs, profiling for the chosen

resource allocation must be performed. If the profiling indicates that a task cannot meet its deadline

given this resource allocation, a local refinement can be made by adding more resources to this

task until the profiling shows that it can meet its deadline. For the particular two task sets in our

experiments, we adopt this procedure and locally refine the allocation. The two task sets become

schedulable. After this procedure, we do not observe any deadline miss for WCETx1.1+fitting.

Note that the regression results can also be pessimistic. For example, there are a few task sets

under reference utilization 3 that are deemed unschedulable using the WCETx1.1+fitting estimates.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:27

In principle, a local refinement can also be applied here to greedily search for potential resource

allocation and validate it using profiling. Overall, the empirical experiments verify the efficiency

and effectiveness of our proposed framework for parallel real-time applications.

9 CONCLUSION
In this work, we present a holistic resource allocation strategy for parallel real-time tasks executing

on multicore systems that share cache and memory bandwidth resources. Our strategy integrates

existing cache partitioning and memory bandwidth regulation mechanisms and leverages results

from resource allocation for sequential tasks and federated scheduling for parallel tasks. Based on

the insights obtained from empirical evaluations of real-world parallel benchmarks, we develop

an approach for parallel real-time tasks to improve the practicality of measurement-based models.

The numerical evaluation and proof of concept implementation demonstrate that our proposed

framework is efficient and practical.

As future work, we plan to extend our insights and mechanisms to global scheduling algorithms

and constrained deadline tasks. In addition to partitioning and isolating memory bandwidth re-

sources, incorporating the memory partitioning techniques into our framework is reserved for

future work. Finally, we would like to explore whether dynamically allocating cache and memory

bandwidth resources can further improve the performance of parallel real-time systems.

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation (USA) under Grant Numbers

CNS–1948457 and the National Natural Science Foundation of China under Grant No. U20A6003.

REFERENCES
[1] Ankit Agrawal, Gerhard Fohler, Johannes Freitag, Jan Nowotsch, Sascha Uhrig, andMichael Paulitsch. 2017. Contention-

aware dynamic memory bandwidth isolation with predictability in COTS multicores: An avionics case study. In

Euromicro Conference on Real-Time Systems (ECRTS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[2] Ahmed Alhammad and Rodolfo Pellizzoni. 2016. Trading cores for memory bandwidth in real-time systems. In

Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 1–11.
[3] Gene M Amdahl. 1967. Validity of the single processor approach to achieving large scale computing capabilities. In

Proceedings of the April 18-20, 1967, spring joint computer conference. 483–485.
[4] Björn Andersson and Dionisio de Niz. 2012. Analyzing Global-EDF for multiprocessor scheduling of parallel tasks. In

International Conference On Principles Of Distributed Systems. Springer, 16–30.
[5] ARM. 2018. Memory System Resource Partitioning and Monitoring (MPAM). https://developer.arm.com/

documentation/ddi0598/latest/.

[6] Muhammad Ali Awan, Konstantinos Bletsas, Pedro F Souto, Benny Akesson, and Eduardo Tovar. 2017. Mixed-Criticality

Scheduling with Dynamic Redistribution of Shared Cache. In Euromicro Conference on Real-Time Systems (ECRTS).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[7] Sanjoy Baruah. 2015. Federated Scheduling of Sporadic DAG Task Systems. In International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 179–186.

[8] Sanjoy Baruah. 2016. The federated scheduling of systems of mixed-criticality sporadic DAG tasks. In IEEE Real-Time
Systems Symposium (RTSS). 227–236.

[9] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University. http:

//parsec.cs.princeton.edu.

[10] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese. 2013. Feasibility analysis in

the sporadic DAG task model. In Euromicro Conference on Real-Time Systems (ECRTS). 225–233.
[11] Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di Liu, and Todor Stefanov. 2014. Automatic cache partitioning and

time-triggered scheduling for real-time MPSoCs. In International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 1–8.

[12] Hoon Sung Chwa, Jinkyu Lee, Kieu-My Phan, Arvind Easwaran, and Insik Shin. 2013. Global EDF schedulability

analysis for synchronous parallel tasks on multicore platforms. In Euromicro Conference on Real-Time Systems (ECRTS).
25–34.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://developer.arm.com/documentation/ddi0598/latest/
https://developer.arm.com/documentation/ddi0598/latest/
http://parsec.cs.princeton.edu
http://parsec.cs.princeton.edu

1:28 Lin and Fan, et al.

[13] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. 2016. Ginseng: Market-driven LLC allocation. In USENIX
Annual Technical Conference (ATC). 295–308.

[14] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick Gemander,

Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. 2020. The SCIP Optimization Suite 7.0. In Technical Report.
[15] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pellizzoni. 2015. A

survey on cache management mechanisms for real-time embedded systems. Computing Surveys (CSUR) 48, 2 (2015),
1–36.

[16] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2009. Cache-aware scheduling and analysis for multicores. In

International conference on Embedded software (EMSOFT). ACM, 245–254.

[17] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. 2018. A comparative study of predictable DRAM

controllers. Transactions on Embedded Computing Systems (TECS) 17, 2 (2018), 1–23.
[18] Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. 2015. A framework for scheduling DRAM memory accesses for

multi-core mixed-time critical systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 307–316.

[19] Intel. 2013. Intel CilkPlus v1.2. https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_

spec_1.2.htm.

[20] Intel. 2019. User space software for Intel(R) Resource Director Technology. https://github.com/intel/intel-cmt-cat.

[21] Xu Jiang, Nan Guan, Xiang Long, and Wang Yi. 2017. Semi-federated scheduling of parallel real-time tasks on

multiprocessors. In Real-Time Systems Symposium (RTSS). IEEE, 80–91.
[22] Xu Jiang, Xiang Long, Nan Guan, and Han Wan. 2016. On the decomposition-based Global EDF scheduling of parallel

real-time tasks. In Real-Time Systems Symposium (RTSS). IEEE, 237–246.
[23] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan Rajkumar. 2014. Bounding

memory interference delay in COTS-based multi-core systems. In Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 145–154.

[24] Hyoseung Kim and Ragunathan Rajkumar. 2016. Real-time cache management for multi-core virtualization. In

International Conference on Embedded Software (EMSOFT). IEEE, 1–10.
[25] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragunathan Raj Rajkumar. 2013. Parallel scheduling for

cyber-physical systems: Analysis and case study on a self-driving car. In 4th International Conference on Cyber-Physical
Systems (ICCPS). 31–40.

[26] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar. 2010. Scheduling parallel real-time tasks on multi-core

processors. In 31st IEEE Real-Time Systems Symposium (RTSS). 259–268.
[27] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. 2013. Analysis of Global EDF for Parallel Tasks. In 25th

Euromicro Conference on Real-Time Systems (ECRTS). 3–13.
[28] J. Li, Jian-Jia Chen, K. Agrawal, C.Lu, C.D. Gill, and Abusayeed Saifullah. 2014. Analysis of Federated and Global

Scheduling for Parallel Real-Time Tasks. In 26th Euromicro Conference on Real-Time Systems (ECRTS). 85–96.
[29] Jing Li, Son Dinh, Kevin Kieselbach, Kunal Agrawal, Christopher Gill, and Chenyang Lu. 2016. Randomized Work

Stealing for Large Scale Soft Real-time Systems. In IEEE Real-Time Systems Symposium (RTSS). 203–214.
[30] Yonghui Li, Benny Akesson, and Kees Goossens. 2016. Architecture and analysis of a dynamically-scheduled real-time

memory controller. Real-Time Systems 52, 5 (2016), 675–729.
[31] John D McCalpin et al. 1995. Memory bandwidth and machine balance in current high performance computers.

Computer society technical committee on computer architecture (TCCA) newsletter 2, 19-25 (1995).
[32] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Giorgio Buttazzo. 2016.

Schedulability analysis of conditional parallel task graphs in multicore systems. IEEE Trans. Comput. 66, 2 (2016),
339–353.

[33] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milojevic. 2012. Techniques optimizing the number of

processors to schedule multi-threaded tasks. In 24th Euromicro Conference on Real-Time Systems (ECRTS). 321–330.
[34] Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut. 2019. Cache-conscious off-line real-time scheduling for multi-core

platforms: algorithms and implementation. Real-Time Systems 55, 4 (2019), 810–849.
[35] OpenMP. 2013. OpenMPApplication Program Interface v4.0. http://http://www.openmp.org/mp-documents/OpenMP4.

0.0.pdf.

[36] PBBS. 2014. Problem Based Benchmark Suite. http://www.cs.cmu.edu/~pbbs.

[37] Rodolfo Pellizzoni and Heechul Yun. 2016. Memory servers for multicore systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 1–12.

[38] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. 2013. Multi-core real-time scheduling

for generalized parallel task models. Real-Time Systems 49, 4 (2013), 404–435.
[39] Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. 2015. Static task partitioning for locked caches in multicore

real-time systems. Transactions on Embedded Computing Systems (TECS) 14, 1 (2015), 1–30.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://github.com/intel/intel-cmt-cat
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.cs.cmu.edu/~pbbs

Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks 1:29

[40] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30–39.
[41] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge computing: Vision and challenges. Internet

of Things Journal 3, 5 (2016), 637–646.
[42] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2020. E-WarP: A System-wide Framework for

Memory Bandwidth Profiling and Management. In Real-Time Systems Symposium (RTSS). IEEE, 345–357.
[43] Corey Tessler, Venkata P Modekurthy, Nathan Fisher, and Abusayeed Saifullah. 2020. Bringing inter-thread cache

benefits to federated scheduling. In Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE,
281–295.

[44] Niklas Ueter, Georg von der Bruggen, Jian-Jia Chen, Jing Li, and Kunal Agrawal. 2018. Reservation-Based Federated

Scheduling for Parallel Real-Time Tasks. In IEEE Real-Time Systems Symposium (RTSS). 482–494.
[45] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. 2016. Taming non-blocking caches to improve isolation in

multicore real-time systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 1–12.
[46] Qi Wang and Gabriel Parmer. 2014. FJOS: Practical, Predictable, and Efficient System Support for Fork/Join Parallelism.

In Real-Time and Embedded Technology and Applications Symposium (RTAS), IEEE 20th. 25–36.
[47] Jun Xiao, Sebastian Altmeyer, and Andy Pimentel. 2017. Schedulability analysis of non-preemptive real-time scheduling

for multicore processors with shared caches. In Real-Time Systems Symposium (RTSS). IEEE, 199–208.
[48] Meng Xu, Linh Thi Xuan Phan, Hyon-Young Choi, Yuhan Lin, Haoran Li, Chenyang Lu, and Insup Lee. 2019. Holistic

resource allocation for multicore real-time systems. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 345–356.

[49] Ying Ye, Richard West, Jingyi Zhang, and Zhuoqun Cheng. 2016. Maracas: A real-time multicore vCPU scheduling

framework. In Real-Time Systems Symposium (RTSS). IEEE, 179–190.
[50] Heechul Yun, Waqar Ali, Santosh Gondi, and Siddhartha Biswas. 2016. Bwlock: A dynamic memory access control

framework for soft real-time applications on multicore platforms. Transactions on Computers (TC) 66, 7 (2016),

1247–1252.

[51] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014. PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms. In Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 155–166.

[52] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2013. Memguard: Memory bandwidth

reservation system for efficient performance isolation in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 55–64.

[53] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2015. Memory bandwidth management for

efficient performance isolation in multi-core platforms. Transactions on Computers (TC) 65, 2 (2015), 562–576.
[54] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards practical page coloring-based multicore cache

management. In European conference on Computer systems. ACM, 89–102.

[55] Yanqi Zhou and David Wentzlaff. 2016. MITTS: Memory inter-arrival time traffic shaping. SIGARCH Computer
Architecture News 44, 3 (2016), 532–544.

[56] Alexander Zuepke and Robert Kaiser. 2019. Deterministic futexes: Addressing WCET and bounded interference

concerns. In Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 65–76.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Impact of Resource Allocations on Parallel Real-Time Tasks
	3.1 Experimental Setup
	3.2 Impact of Core, Cache and Memory Bandwidth Allocations
	3.3 Fitting WCET using Nonlinear Regression

	4 Problem Specification and Prior Results
	5 Optimal Algorithm.
	6 Holistic Resource Allocation for Federated Scheduling
	6.1 Algorithm Overview
	6.2 Procedures of the Algorithm
	6.3 Complexity of the Algorithm

	7 Numerical Evaluation
	7.1 Experimental Setup
	7.2 Schedulability Performance
	7.3 Running Time Efficiency
	7.4 Impact of Different Benchmarks
	7.5 Ablation Study of Our Algorithm
	7.6 Impact of Platform Configurations and Task Parameters

	8 Empirical Evaluation
	9 Conclusion
	Acknowledgments
	References

