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Abstract

Binary neutron star mergers (NSMs) have been confirmed as one source of the heaviest observable elements made
by the rapid neutron-capture (r-) process. However, modeling NSM outflows—from the total ejecta masses to their
elemental yields—depends on the unknown nuclear equation of state (EOS) that governs neutron star structure. In
this work, we derive a phenomenological EOS by assuming that NSMs are the dominant sources of the heavy
element material in metal-poor stars with r-process abundance patterns. We start with a population synthesis model
to obtain a population of merging neutron star binaries and calculate their EOS-dependent elemental yields. Under
the assumption that these mergers were responsible for the majority of r-process elements in the metal-poor stars,
we find parameters representing the EOS for which the theoretical NSM yields reproduce the derived abundances
from observations of metal-poor stars. For our proof-of-concept assumptions, we find an EOS that is slightly softer
than, but still in agreement with, current constraints, e.g., by the Neutron Star Interior Composition Explorer, with
R1.4= 12.25± 0.03 km and MTOV= 2.17± 0.03Me (statistical uncertainties, neglecting modeling systematics).

Unified Astronomy Thesaurus concepts: Nucleosynthesis (1131); R-process (1324); Population II stars (1284);
Neutron stars (1108)

1. Introduction

Metal-poor stars in the Galaxy, deficient in iron produced by
supernovae (SNe), provide records of the nucleosynthetic
events that first enriched the interstellar medium and the
prenatal gas out of which these stars formed. One of these
nucleosynthetic signatures found among very metal-poor stars
([Fe/H]<−2.0)6 is the elemental production by rapid neutron
capture (the r-process). Stars with extreme levels of enrichment
by the r-process account for only about 5% of metal-poor stars
in the Milky Way’s halo (Barklem et al. 2005; Beers &
Christlieb 2005). Due to their low iron content, the source of
the relatively high abundances of trans-iron elements implies a
high yield, potentially short delay time type of nucleosynthetic
event (Cowan et al. 1991; Argast et al. 2004; Cowan et al.
2021, and references therein).

The observational confirmation of r-process production by
neutron star mergers (NSMs) through GW170817 (Abbott et al.
2017) and its corresponding lightcurve SSS17a/AT 2017gfo
(Coulter et al. 2017; Cowperthwaite et al. 2017; Drout et al.
2017; Kilpatrick et al. 2017; Shappee et al. 2017) demonstrates
at least one astrophysical site for the source of r-process
elements in the universe (Kasen et al. 2017). Questions still
remain, however, about whether double neutron star (DNS)
systems can merge with sufficiently short delay times and if
they can produce sufficient r-process yields to account not only
for the majority of the abundances in individual metal-poor

stars, but also for the abundance spread among metal-poor stars
with r-process elements, e.g., in [Eu/Fe] (Matteucci et al.
2014; Cescutti et al. 2015; Ishimaru et al. 2015; Côté et al.
2019; Safarzadeh et al. 2019).
Some evidence, albeit indirect, for a prolific r-process site

like NSMs as the progenitors of the r-process rich metal-poor
stars can be found outside the Galaxy. The discovery of the
large fraction of stars with extreme r-process enrichment in the
ultrafaint dwarf galaxy Reticulum II that far exceeds the Milky
Way’s own mere 5% point to small satellite galaxies as the
natal birth sites of metal-poor stars (Ji et al. 2016; Roederer
et al. 2016). Stars with appreciable levels of r-process
enrichment, but not quite as high as those in Reticulum II,
could have originated in more massive ultrafaint galaxies, as
evidenced by the identification of such a star in Tucana III
(Hansen et al. 2017). The Galactic halo’s metal-poor stars
having originated in small, early galaxies is also commensurate
with the hierarchical merger origin of the Milky Way (Searle &
Zinn 1978; Schlaufman et al. 2009; Tumlinson 2010). In these
small galaxies, a prolific (perhaps single) event like an NSM
could eject enough r-process material to account for the high
[Eu/Fe] abundances observed in systems like Reticulum II and
Tucana III (e.g., Safarzadeh & Scannapieco 2017; Safarzadeh
et al. 2019; but see also Tarumi et al. 2020). Due to their low
mass, such systems would have low star formation rates and
could retain their metal-poor nature for longer, possibly
alleviating the necessity that NSMs must have short delay
times.
Although NSMs are so far the only r-process site with direct

observational confirmation, contributions by black hole–NS
mergers (NSBHs), by exotic types of SNe (collapsars, or
magneto-hydrodynamic jet-driven SNe), and other theoretical
sites (e.g., dark matter induced NS implosions; Bramante &
Linden 2016; Fuller et al. 2017) should still be quantified in
order to understand the evolution of elements in the Galaxy
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(see, e.g., Cameron 2003; Pruet et al. 2004; Surman &
McLaughlin 2004; Winteler et al. 2012; Nishimura et al. 2015;
Mösta et al. 2018; Siegel et al. 2019; Miller et al. 2020). In
addition, even assuming NSMs are the only r-process
formation sites, many incompletely understood mechanisms
are critical ingredients in any forward model to predict the r-
process abundance in the universe, not only in metal-poor stars,
but also in our solar system. For example, the production of the
heavy elements observed in stars fundamentally relies on the
microphysics of nuclei far from stability, the magneto-
hydrodynamics and (neutrino) radiative transfer of merging
compact objects, and an estimate of how often merging NS
binaries form over all cosmic time. A comprehensive answer to
this complex problem requires a full integration of theory with
observation and experiment, both in astrophysics and in nuclear
physics. In this work, we focus on the microphysics in the
production of elements in NSMs: how the nuclear equation of
state (EOS) shapes NSM yields.

Instead of a forward-modeling approach by predicting
expected r-process yields from theory, recent work has used
observed r-process abundances to constrain nuclear physics
inputs. Such “reverse engineering” has been accomplished for,
e.g., predicting the masses of rare-earth nuclei from the solar r-
process abundances, assuming a variety of thermodynamic
conditions (Mumpower et al. 2017; Vassh et al. 2021), and by
solving for the masses of the progenitor merging NSs from
stellar abundance measurements (Holmbeck et al. 2021a). In
this paper, we take a similar reverse-engineering approach to
build an entirely phenomenological EOS inferred by the r-
process abundances in metal-poor stars. Section 2 describes the
population of metal-poor stars and their r-process abundances
from which we will reverse engineer a neutron star EOS. Next,
the theoretical input for our model framework is discussed in
Section 3, including the population of coalescing NS binaries,
descriptions of their ejecta yields, the model for the EOS itself,
and constraints that we will apply on the EOS. Our reverse-
engineering approach and how all of the theoretical and
observational aspects work together to build an EOS is
described in Section 4, and Section 5 presents the results from
our reverse-engineering model.

2. Observations of Metal-poor Stars

The elemental r-process pattern is surprisingly robust for
neutron-rich conditions (such as that found in NSMs; e.g.,
Korobkin et al. 2012; Just et al. 2015), with two significant
exceptions: the lightest r-process elements—38Sr, 39Y, and
40Zr—and the heaviest—90Th and 92U. The near-constancy of
the r-process pattern is observationally supported by the r-
process enhanced, metal-poor stars themselves (Cowan et al.
1999; Sneden et al. 2008). When scaled, the abundance
patterns of these stars are in nearly perfect agreement among
the lanthanide elements, but up to 1 dex of variation can exist at
the extrema of the r-process pattern, i.e., at Sr and Th
(Mashonkina et al. 2014; Siqueira Mello et al. 2014; Ji et al.
2016). These elements can be extremely sensitive to r-process
conditions like the initial electron fraction, ( )= + -Y n n ne n p n

1,
of the ejecta (Eichler et al. 2019; Holmbeck et al. 2019, 2021a).
Therefore, we seek a sample of metal-poor stars with
measurements of Sr and Th to quantify the extent of
composition variation in r-process enhanced metal-poor stars.
We also choose stars with Dy to compare the Sr and Th
production to the lanthanide abundance of the r-process

patterns. Unfortunately, definitive measurements of only 29
stars with these three elements exist currently in the literature.
These 29 stars are the same as in Holmbeck et al. (2021a) and
can be found in Table 2 therein. Requiring Th inherently biases
our sample toward stars that are already highly r-process
enhanced ([Eu/Fe]>+0.7), since these high-enhancement
stars only constitute a minority of metal-poor stars with r-
process elements. If we seek to account for the r-process
abundances in the majority of metal-poor stars, we need to
consider the much larger population of metal-poor stars that do
not have Th measurements.
The R-Process Alliance (RPA) has released Sr, Ba, Eu, and

Fe abundance determinations for nearly 600 stars based on
“snapshot” high-resolution spectra. These abundances are
sufficient to quantify the extent of r-process enhancement
within each star. First, we take stars in all RPA data releases to
date (Hansen et al. 2018; Roederer et al. 2018; Sakari et al.
2018a, 2018b, 2019; Ezzeddine et al. 2020; Holmbeck et al.
2020) and take those that lie within a similar metallicity range
as the initial 29-star sample (−3.3 [Fe/H]−1.5). From
this trimmed list, we then pick stars that have [Ba/Eu]<−0.5
to eliminate those that could have obtained their heavy
elements from the slow neutron-capture process rather than
the r-process. These cuts leave 240 stars with definitive Ba and
Eu measurements (i.e., no upper/lower limits) from the RPA
spanning a wide range of [Eu/Fe] abundances. We take this
sample as representative of the frequency of various levels of r-
process enrichment in the Galaxy. Figure 1 shows our 29 star
sample compared to these 240 r-process stars in the RPA. The
29 stars with Th measurements skew toward higher values of
[Eu/Fe], while the stars in the RPA sample on average favor
lower [Eu/Fe] values. We interpret this skew as observational
in nature; stars already enhanced in r-process elements will
have correspondingly high actinide abundances, allowing Th to
be detected more readily in their spectra. Therefore, we assume
that Th ought to be present in the remaining 240 RPA stars as
well. Ideally, we would use these 240 stars directly, but since
most do not have reported Th measurements, we adjust the 29
star sample to occupy a similar [Eu/Fe] distribution as the
much larger RPA sample.
First, we bin the data in [Eu/Fe] abundance bins of 0.2 dex

and count how many stars in the RPA and 29 star samples are

Figure 1. Normalized [Eu/Fe] histograms of stars with measurements of Sr,
Dy, and Th (purple line) compared to a larger sample of metal-poor stars.
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in each bin. The 0.2 dex bin size is on the order of the typical
[Eu/Fe] abundance uncertainty (see, e.g., Holmbeck et al.
2020). The ratio of the abundance histograms of the 29 star
sample and 240 star sample in [Eu/Fe] abundance provide a
weight by which to scale the 29 star sample and shape it to be
representative of a broader range of metal-poor stars with r-
process elements that do not presently have Th measurements.
This rescaling inherently assumes that, although the 29 star
sample is not representative in [Eu/Fe], it is representative in
[Th/Eu]. Next, we build the observational sample based on
these weights.

To build our “complete” observational sample, we place the
29 stars in ( )log Sr Dy versus ( )log Th Dy abundance
space,7 accounting for measurement error and the rescaling
weights described above. Our estimate for the density is
therefore a weighted two-dimensional kernel density estimate:
p(a)∝∑iwiK(a− ai, Σ), where K(x, Σ) is a normal distribu-
tion, Σ is the diagonal covariance matrix reflecting abundance
errors (typically about 0.2 dex), and wi are the weights
identified via the ratios above. We do not propagate statistical
uncertainty in the scaling weights. In practice, we build this
density estimate via a weighted Monte Carlo procedure. For
each of the 29 stars, we randomly scatter N points drawn from
two Gaussians, representing the two abundance ratios. The
centroid and 1σ spread of the Gaussian correspond to the star’s
abundance measurement and reported 1σ uncertainty (typically
less than 0.2 dex). Then, the two-dimensional Gaussian is
scaled by the weight found previously from the ratio of the
[Eu/Fe] bin counts. Figure 2 shows the combined two-
dimensional histogram after this series of random selections
and rescaling. The original 29 stars are also shown. Note that,
although many stars with Th measurements have comparatively
low Sr/Dy abundances (1.0), the high [Eu/Fe] ratios in these
stars are not very common, as shown in Figure 1. Therefore,
the population of resampled observations with low Sr is
diminished, and the relatively higher Sr/Dy abundance
signature occurs more frequently.

This resampled population is an attempt to describe the
expected Sr/Dy and Th/Dy abundances of metal-poor stars in
the Galaxy that do not presently have measurements for these
elements. We will use this population as the “observations”
from which to build an EOS, essentially requiring that the EOS
effect on NSM ejecta is such that the total NSM yields
reproduce this two-dimensional distribution.

3. Theoretical Model

We can construct a forward model for the r-process
abundances in metal-poor stars from some assumptions about
how and how many NSs merge (a DNS population) and the
physical properties of those NSs (determined by the EOS). To
summarize and visualize how the masses and EOS enter the
elemental yield calculation, Figure 3 shows a schematic of the
input, output, and intermediate steps that relate NS masses and
an EOS to abundance observations in our model. First, a DNS
population and EOS are chosen, with the EOS being the free
parameter. The three different cases we explore in this work
(discussed in the following subsections) differ in the input DNS
distribution. Then, the NS masses and the EOS enter into a
series of analytic functions and nucleosynthesis network
models to finally output total elemental yields for all NSMs
in the DNS population list. Finally, these model output
abundances are compared to the observational abundances
discussed in Section 2 to determine how successful the chosen
EOS is at reproducing the observations. Using a Markov Chain
Monte Carlo (MCMC) algorithm, a new EOS is chosen and
this process repeated to generate a posterior on the unknown
EOS for each (three) of our input DNS variations. We expand
on each of these steps in the following sections.

3.1. DNS Populations

This section describes the DNS populations we use for this
study, which will combine with the EOS input to determine
specific NSM yields. First, we use a theoretical formation
model (population synthesis) to estimate the past history of
NSMs in our Galaxy. We will apply this DNS model to two
cases in this work. Then, we consider the case for the current
DNS population, with the underlying assumption that the r-
process producing NSMs were of systems similar to present-
day DNS systems in the Milky Way.
The continuously updated StarTrack code estimates the

evolution of single and interacting binary stars, both individu-
ally and as populations (Belczynski et al. 2008). Frequently
applied to interpret (and calibrated against) astronomical
observations of several types—including binary pulsars and
gravitational-wave observations—this code provides a useful
benchmark to explore plausible self-consistent models for the
Galactic binary population. After reviewing several recent
studies (Dominik et al. 2012, 2013, 2015; Belczynski et al.
2016a, 2020, 2016b; Wysocki et al. 2018; Drozda et al. 2020),
we choose the M15 model (submodel B) in Belczynski et al.
(2016b) with strong pair-instability (pulsation) SNe and modest
NS natal kicks (σ= 130 km s−1; Wysocki et al. 2018). This
model successfully reproduces compact object merger rates
from the third observing run of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo collabora-
tion, remains qualitatively consistent with known constraints
on the maximum NS mass (MTOV), and is consistent with
(most) observed Galactic pulsar masses.

Figure 2. Observational values of ( )log Sr Dy and ( )log Th Dy from 29
stars (white points) and the inferred distribution computed by the rescaling
process (colors).

7 Here, ( ) ( )= +A N Nlog log 12A H , where NA is the number density of
element A.
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We translate the M15 simulation (of a fiducial cosmological
volume, as in Dominik et al. 2015; Belczynski et al. 2016a) to
our application of the Milky Way as follows. Since we are
interested only in the distribution and not the (highly uncertain)
overall scale factor, we disregard overall normalization. In
addition, because DNSs typically merge fairly quickly, we can
ignore small differences between cosmological and galactic star
formation history. We can therefore identify the relative
likelihood of NSMs by the weighted data (M1,i, M2,i, si), where
si represents the star formation, metallicity, and population-
weighted likelihood of the M1,i−M2,i mass pair, as described in
previous work by Dominik et al. (2015). For computational
efficiency, we keep only those mass pairs that are in the top
99% of the most frequent merging systems in the population
synthesis model, i.e., those with  ( )´s s0.01 maxi i . Of
several thousand unique mass combinations, these top 99%
account for roughly 50% of all unique merging DNS systems in
the population synthesis model output. Although we are
potentially ignoring cases that might eject significant amounts
of r-process material, our choice to work in abundance ratios
rather than absolute abundances effectively removes the
sensitivity to total ejecta mass. At most, we are removing
cases that would contribute at the 1% level in Sr/Dy−Th/Dy
abundance space, at the benefit of doubling our computational
efficiency.

Figure 4 shows the masses of the merging DNSs in the
StarTrack model in purple, weighted by their likelihood (si).
The most likely merging system has M1≈ 1.35 Me and
M2≈ 1.1 Me. Note that there are no systems in this model with
M1,2> 2.0 Me, and none within the first mass gap, as a
consequence of the model choices in Belczynski et al. (2016b)
and Wysocki et al. (2018). We will test two cases using this
DNS population: one with a constraint on the maximum mass
of a nonrotating NS (“with MTOV”) and one without such a
constraint (“no MTOV”). These two cases will be discussed in
more detail in Section 3.2.
Next, instead of using a synthetic DNS population, we can

also use the observed mass distribution of NSs in the Milky
Way. As a third, alternative, case we reconstruct the EOS
informed by inferences about the mass distribution of
individual Galactic NSs. Specifically, we assume the primary
NS mass is drawn from a mixture of two normal distributions,
with a primary peak at 1.34Me and a secondary at 1.78Me
(from Alsing et al. 2018; see also Özel et al. 2012). We draw
the secondary mass based on the mass-ratio distribution from
Farrow et al. (2019): essentially a Gaussian peaked at q= 1,
where q> 0.69 with 99% confidence. We choose 500 random
selections from these distributions to represent the primary and
secondary NS masses in the binary system. This DNS
population is equivalent to assuming that the NSM progenitors
of the r-process material in the Galaxy were of DNS systems

Figure 3. Schematic flow of the model calculations and an indication in which section each is discussed.
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similar to existing DNS binaries currently known in the Milky
Way. The primary and secondary masses for this empirical
distribution are also shown in Figure 4 in yellow. On average,
this hypothesized Galactic DNS distribution predicts a much
broader total mass distribution for DNSs than the observed
distribution of known Galactic DNSs (see, e.g., Farrow et al.
2019), but extends to total masses more consistent with
GW190425 (Abbott et al. 2020). Except for the input DNS
population, this third case (“Alsing+”) will use the same
method and constraints as the “with MTOV” case that uses the
M15 model for the DNS masses.

Considering that the metal-poor stars likely originated in
ultrafaint dwarf galaxies like Reticulum II and Tucana III, the
correlation between [Fe/H] and time becomes unclear and
prevents imposing a delay-time distribution on these merger
pairs. Rather, we instead consider the cumulative effect that the
entire population of NSMs would have had on the r-process
abundance ratios.

3.2. EOS Parameters

Within the framework of this paper, the EOS bridges the
DNS masses with theoretical descriptions of NSM yields and,
therefore, with a total abundance distribution that can be
compared to observations of metal-poor stars. Since the EOS is
the unknown parameter, we will use an MCMC method to
build an EOS from the abundance observations themselves.
First, let us discuss a basis for building an EOS. To smoothly
explore an EOS parameter space, we consider a four-parameter
spectral-decomposition representation, described by Lindblom
(2010) and implemented in LALSUITE (LIGO Scientific
Collaboration 2018). The energy density as a function of the
pressure, ò(p), is described by the adiabatic index, Γ:

( ) ( )G =
+

p
p

p

dp

d
. 1





In the spectral-decomposition representation, the EOS can be
expressed as an expansion of the adiabatic index:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )å gG =x xexp , 2
k

k
k

where ( )=x p plog 0 , and p0 is the minimum pressure. In the
LALSUITE implementation, k goes from 0 to 3, and the EOS is
therefore defined by four γk values. With some constraints on
these parameters, arbitrary EOSs and NS mass–radius curves
can be constructed. LALSUITE provides a robust set of built-in
functions to construct a neutron star EOS from

g and find
properties such as the radius and tidal deformability as
functions of the NS masses. Our method utilizes this capability
of LALSUITE to smoothly explore the

g parameter space and
find the EOS-dependent properties needed by the ejecta yield
descriptions.

There are several constraints from both dense-matter theory
and NS observations available to guide the EOS parameter
choices. In addition, not all allowed combinations of

g lead to
physical EOSs. First, rather than consider the entire

g
parameter range nominally allowed by LALSUITE, we use the
transformation and corresponding limits from Appendix B of
Wysocki et al. (2020) to explore only those combinations that
are physically allowed. These transformed parameters will be
referred to as

g¢.

Next, we fold in constraints from observation and theory.
There are no direct constraints on the

g parameters since these
are merely the representations to build the EOS (but see Jiang
et al. 2020). However, solving the TOV equations with the
EOS parameters does allow direct comparison with astronom-
ical observables. Of primary importance is the maximum
nonrotating NS mass, MTOV. We use the updated mass of
PSR J0740+6620 as a lower limit that MTOV must satisfy for
the EOS (Fonseca et al. 2021; Riley et al. 2021). This limit is
implemented by adopting a cumulative distribution function
(CDF) of a normal distribution ( ) with the centroid and 1σ
spread from the measurements of PSR J0740+6620, namely,

( ( ))m sxCDF , , , where μ= 2.072 and σ= 0.07. This CDF
enforces MTOV of at least 2.072Me—with some room for
uncertainty at the lower end—but imposes no upper limit. An
upper limit on MTOV has been suggested from the remnant
mass of the GW170817 merger event based on inferences that
the remnant probably collapsed somewhat quickly (0.1 s) into
a black hole (e.g., Margalit & Metzger 2017; Shibata et al.
2019; Kawaguchi et al. 2021). One of our model cases enforces
MTOV at a somewhat higher 2.30± 0.15Me limit (“with
MTOV”) to include this observational constraint. As a second
case (“no MTOV”), we release the upper limit on MTOV and
allow the model to explore solutions with arbitrarily high NS
masses, accommodating the possibility that the GW170817
remnant did survive longer.
On the microphysics side, both theory and experiment offer

some constraints on the EOS. These constraints place limits on,
e.g., the symmetry pressure, L, and the nuclear incompressi-
bility, K∞, at saturation densities (ρ0≈ 2.8× 1017 kg m−3, or
n0≈ 0.17 fm−3). Tight constraints on K∞ exist from experi-
ment; however, these values are defined for symmetric nuclear
matter, whereas the EOSs defined with LALSUITE assume
neutron star material in β-equilibrium. Therefore, we imple-
ment limits on the somewhat more loosely constrained, but
more analytically straightforward, parameter L. For an EOS,
the pressure can be expressed as

( ) ( )=p n n
d

dn
, 32 

Figure 4. Masses of the primary and secondary NSs in the M15 StarTrack
model (purple) and the Galactic distribution (gold).
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where n is the nucleon number density instead of the mass
density, ρ. On a plot of energy density per nucleon versus
number density, L is proportional to the slope at nuclear
saturation:

( )=L n
d

dn
3 4

n
0

0



( ) ( )=
n
p n

3
. 5

0
0

In this form, L can be straightforwardly evaluated with the
functions available in LALSUITE. Energy density versus density
curves can be calculated directly by LALSUITE; however, we
caution that these values are the volumetric energy and mass
densities, respectively. Therefore, we take the pressure-versus-
mass densities from LALSUITE and convert the mass density to
a number density by dividing by the nucleon mass plus the
typical binding energy per nucleon (≈−16MeV). Note that
this approximation is only valid around nuclear saturation. In
addition, this transformation to obtain L may be different from
the “true” value by a few MeV. In this way, we can obtain L for
an EOS using the functions available in LALSUITE. When
evaluating the likelihood of a particular EOS (discussed in
Section 4), we calculate L from Equation (5) and prefer EOSs
within a liberal range of 30MeV L 100MeV, as deter-
mined by theory and experiment (e.g., Dutra et al. 2012;
Lattimer 2012; Tews et al. 2019; Piekarewicz 2021). These
limits are imposed as a likelihood in the model, which will be
discussed in Section 4.

3.3. Ejecta Yields

With a population of merging DNSs in hand (two cases to be
tested with the StarTrack M15 model and one with the Alsing
et al. 2018 distribution), we can compute the total, EOS-
dependent r-process yields for each merger in our DNS list. We
use Equation (6) from Krüger & Foucart (2020) to quantify the
NSM dynamical ejecta and Equation (S4) from Dietrich et al.
(2020) for the disk mass. The amount of mass that is lost
through winds (neutrino-driven or viscous) from the accretion
disk is assumed to be a constant fraction of 40% of the total
disk mass as in, e.g., Radice et al. (2018). (We will discuss the
implications of this assumption in Section 5.) In addition to
depending on the NS masses, these fit choices also depend
directly on physical properties of NSs such as the radius,
compactness, and tidal deformability. Since these properties are
EOS-dependent, the ejecta fits can be expressed as functions of
the NS masses and the EOS, so the net ejecta can be expressed
as ( )g = +m M M m m, , 0.4ej 1 2 dyn disk, where

g represents the
EOS parameters, described in Section 3.2.

The available fits to NSM ejecta come with significant
uncertainties, mostly as a result of fitting across multiple groups
and simulations that may differ in their implementations. To
account for these uncertainties, we allow the computed ejecta
masses and lifetimes to vary from (truncated) normal distribu-
tions. Each distribution is centered at the expected value given
by each equation and has a spread corresponding to the
uncertainty of the fit (for details, see Radice et al. 2018; Krüger
& Foucart 2020; Lucca & Sagunski 2020). For each DNS
merger pair in the population synthesis output, we draw
N= 200 samples from this truncated-normal distribution such

that each NSM gives some statistical spread of masses rather
than one discrete value; i.e., in the expressions above, each
mdyn and mdisk is a set of length N that accounts for uncertainty
in each corresponding relationship. We then multiply each of
these ejecta masses by the appropriate trajectory-dependent
nucleosynthesis output to produce overall outflow yields. We
also allow for a similar spread in the corresponding
nucleosynthetic compositions produced by the dynamical and
post-merger outflows to obtain a distribution of outflow yields.
All nucleosynthesis output is based on previous calculations in
Holmbeck et al. (2019) and Holmbeck et al. (2021a) that use
the FRDM2012 nuclear mass model (Möller et al. 2012) for
theoretically calculated nuclear reaction and decay rates.
For the dynamical ejecta composition, we use the thermo-

dynamic evolution of a trajectory from the 1.4–1.4Me NSM
simulations of S. Rosswog (Piran et al. 2013; Rosswog et al.
2013) as in Korobkin et al. (2012). The initial composition may
vary based on the EOS and masses of the merging NSs, so we
choose final abundances from a nucleosynthesis network
calculation that starts with a merger-dependent Ye as in
Holmbeck et al. (2019), where the initial Ye is calculated using
Equation (10) from Nedora et al. (2021). Since a spread in Ye
may be expected in the dynamical ejecta, we apply some
variation on the initial Ye. The Gaussian is centered at the
calculated Ye and given a 1σ spread of 0.01, motivated by the
values in Table 1 of Nedora et al. (2021). Therefore, we
calculate the final abundances for a range of initial Ye values
and combine those abundances with weights from a normal
distribution. We draw the same number of samples (N= 200)
as for the ejecta masses from this normal distribution to obtain
a set of abundances, Adyn, of dimension N× 3, where there are
N yields for each of the three elements we study here: Sr, Dy,
and Th.
Similarly, the composition of the post-merger outflows may

be influenced by the lifetime (τ) of the remnant massive NS
before it collapses into a BH (Lippuner et al. 2017). We draw
random samples of the lifetime of the merger remnant based on
the uncertainty in the lifetime fit from Lucca & Sagunski
(2020). Then, lifetime-dependent r-process yields from Holm-
beck et al. (2021a) are used to find the ultimate merger-
dependent disk wind abundances, Adisk.
Finally, these random samples drawn from Ye and τ for the

dynamical and disk compositions are multiplied with their
corresponding ejecta masses and added to obtain the final
yields:

( ) ( )= +Y A Am m0.4 .dyn dyn disk disk

Note that Y also has dimensions of N× 3. For each merging
DNS pair, the Sr/Dy and Th/Dy abundance ratios are
computed by an element-wise division of the corresponding
columns in Y. The final N-sized set of two abundance ratios is
added to a two-dimensional distribution in abundance space as
in Figure 2, after being weighted by the likelihood factor, si, for
that merging pair. (For the Alsing+ case, si= 1.) Including
these systematic uncertainties of the ejecta masses, the remnant
lifetime, and the dynamical ejecta Ye significantly increases
computation time, but it allows flexibility in the model that
would otherwise be too highly constrained by the literature fits
to the simulations, especially as those fits update with new
available data.
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4. MCMC Method

Above we have connected theoretical merger outflows to
stellar r-process abundance observations through a four-
parameter, spectral-decomposition EOS. In this section, we
describe how we will find the EOS parameters (

g) that, given a
particular DNS population (M15 and the Alsing et al. 2018
distribution), best match observed r-process abundances in
metal-poor stars. We use an MCMC method to sample these
parameters and find the spectral-decomposition representation
that would best reproduce the abundance distribution. In our
calculation, we only reconstruct an abundance distribution, not
the overall amount of r-process material. Therefore, all scale
factors associated with uncertainties in the total amount of
material ejected and in the DNS merger rate factor out of our
conclusions.

We build an EOS from
g¢ as described in Section 3.2 and

choose a prior on
g¢ such that R1.4 is uniform. In terms of this

coordinate system, our likelihood has four factors: a lower limit
on MTOV from pulsar observations; an optional upper limit on
MTOV from GW170817; a constraint on the symmetry energy,
L; and, finally, an estimate of the likelihood of current
observations, given our model. The first three terms in the
likelihood are represented as a product of cumulative
distribution functions:

( ) ( )º -CDF 1 CDF CDF . 6M Lobs PSR TOV

The first CDF represents the applied constraints on the lower
limit of MTOV from the mass measurement of PSR J0740
+6620:

( ( ))= MCDF CDF , 2.072, 0.07 .PSR TOV 

The second term corresponds to an optional upper limit on
MTOV, covering the cases we explore here.

⎧

⎨
⎩

( ( ))

( ( ))
=

+

M M
M

M

CDF
CDF , 2.3, 0.15 with
0 no
CDF , 2.3, 0.15 Alsing

M

TOV TOV

TOV

TOV

TOV





Lastly, the constraint on L is given a very broad CDF from
theory:

( ( ))[ ( ( ))]= -L LCDF CDF , 30, 5 1 CDF , 100, 5 .L  

We use CDFs instead of a hard limit so that the parameter
space still has a finite probability of exploring even extreme
regions.

Because we have already performed a nonparametric
estimate of the abundance distribution from the underlying
observations, we cannot compare our forward model to each
individual observation with single-event log-likelihoods (e.g.,

( )p xln k ). Instead, we start with the KL divergence (Kullback &
Leibler 1951) to estimate the population-averaged difference in
log-likelihood when drawing a fixed number of events from
this sample. The average per observation increment in log-
likelihood will be (see, e.g., O’Shaughnessy 2013)

( ∣ )á ñ = D P Qln ,KL

where P is the observations, Q is the model, and DKL is the KL
divergence between the two:

⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ ) ( ) ( )
( )ò=D P Q dx P x

P x

Q x
ln .KL

To account for the effective number of observations entering
into the divergence from the original RPA sample, we can
multiply this log-likelihood by an overall constant. Because
this expression will go to infinity if the two distributions do not
have matching support, we for practical applications instead
use the Jensen−Shannon (JS) divergence (Lin 1991):

( ∣ ) ( ∣ )= +D D P M D Q M
1

2

1

2
,JS KL KL

where M= (P+Q)/2. Thus, for the likelihood of r-process
abundances, we use

( )º -e , 7r
n Deff JS

where we adopt neff= 20. The total likelihood when we include
other constraints on the EOS is therefore = robs   :

( ) ( )= - -eCDF 1 CDF CDF . 8M L
n D

PSR TOV
eff JS

All that is left now is to run the MCMC sampler to explore
the

g¢ parameter space. For 32 walkers, a burn-in stage of 500
steps is more than sufficient for convergence. After burn-in, we
allow the MCMC sampler to continue for another 3000 steps,
resulting in nearly 100,000 individual samples for our three
cases: the M15 model for the DNS population (1) with and (2)
without a constraint on MTOV, and (3) the Alsing et al. (2018)
DNS distribution with the MTOV constraint.

5. Results and Discussion

Figures 5 and 6 show the EOS and mass–radius curves,
respectively, for the MCMC posteriors of our three cases using
the functions available to LALSUITE. The maximum-likelihood
solutions for each case are shown as thick lines, while 100
random samples from the posterior distributions are shown as
thin, faint lines. The median and standard deviation of the
MTOV, R1.4, and L for each of the three posteriors are listed in
Table 1. The entire posterior distributions for the three cases
can be found at Holmbeck et al. (2021b). In Figure 5, the
inferred EOS from GW170817 is shown in gray (Abbott et al.
2019). The contours in Figure 6 show posterior distributions

Figure 5. Posterior samples (thin lines) and maximum likelihood (thick lines)
NS EOSs for the case in which a constraint on MTOV is used (teal) and when
there is no such constraint (pink). The gray band indicates the 50% (darker) and
90% (lighter) confidence intervals for the EOS inferred from GW170817.
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from NICER and XMM-Newton measurements (PSR J0030
+0451 from Miller et al. 2019 and PSR J0740+6620 from
Miller et al. 2021). Neither constraints on the EOS from
GW170817 nor on the NS radius from the NICER/XMM-
Newton measurement were included in our model.

5.1. M15: with MTOV and no MTOV

For the two cases that use the M15 model for the DNS
population, Figure 5 shows some agreement with the EOS
derived for GW170817. The two sets of posterior samples are
tightly constrained at low densities (perhaps due to the
constraint on L), but diverge at higher densities. This
divergence is unsurprising since NSs are reasonable probes
of the low-density EOS, and only the most massive NSs offer
insight into densities greater than 6ρ0 (Lattimer 2012).

The mass–radius curves derived for these EOSs in Figure 6
are slightly softer than the NICER/XMM-Newton median
value, though there is still reasonable agreement within 2σ of
their derived radii. Including agreement with the NICER/
XMM-Newton in the likelihood function does not significantly
change these results. Both M15 cases lead to EOS solutions
narrowly grouped in mass–radius at M∼ 1.35 Me, most likely
do the high frequency of DNSs with M1= 1.35 Me in the M15
model (see Figure 4). However, for the “no MTOV” case, the
posterior solutions sometimes violate causality, as indicated by
the pink curves extending into the gray region in Figure 6. The
two families of solutions are nearly identical in the ejecta
parameters they predict, indicating some degeneracy when the
spectral-decomposition parameters are propagated to ejecta and
abundance observables through the NS mass–radius relation-
ships. For the most common case in the StarTrack model of a
1.35–1.1Me merger, both cases predict a wind mass of about
9× 10−2 Me and a much smaller dynamical mass of about
6.5× 10−3 Me. The two cases also give the same dynamical
ejecta Ye of about 0.17. Therefore, a 1.35–1.10Me merger
would likely produce the same kilonova signature with
either of the two maximum-likelihood solutions in the
with-/no-MTOV cases. For a 1.40–1.35Me merger, the

predicted wind mass differs by about 20% between the two
solutions, which could leave a distinguishable signature in the
associated kilonova.
Figure 7 shows the Th/Dy and Sr/Dy abundances and the

difference between the model and observations produced by the
maximum-likelihood solution for the “with MTOV” case. The
model reasonably reproduces the most prominent feature in the
abundance space of Figure 2 occurring at Sr/Dy≈ 1.25 and
Th/Dy≈−1.15, though the peak Th/Dy is somewhat lower.
A couple of distinguishable artifacts also appear in the output
abundances: first, a “spur” at high Sr/Dy. This feature
commonly occurs for quite low-mass, low-asymmetry mergers.
Because of their low total mass, the wind outflows from the
long-lived remnant accretion disk drive the Sr abundances to
high values. That said, the dynamical masses for mergers with
M1∼ 1.2 Me and q 0.9 will be small, but not zero. Although
the dynamical mass may be very low, actinide production can
still be sufficiently high to contribute a significant fraction of
the total Th that is ejected. This spur therefore represents a
limiting case in which low asymmetries and low masses drive
not only high Sr production, but also a low-mass tidal tail that
is rich in actinides.
Second, with the ejecta equations employed here, there

appears to be a diagonal floor in which the ejecta cannot
simultaneously be rich in Sr/Dy and deficient in Th/Dy.
Conditions producing this lower edge are ones with q 0.9 and
total masses M1+M2≈ 2.6–2.9. At the very lowest Th/Dy are
mergers with M1,2∼ 1.45 Me. Conditions close to the solar
abundances are typically produced by mergers with M1,2∼ 1.3
Me. These conditions produce long-lived remnants that have
the same wind compositions and relatively small wind ejecta
masses. Going from the upper right of the edge to the lower left
(i.e., increasing the total binary mass), the contribution by the
dynamical ejecta is increased. In nearly symmetric cases, low
tidal deformabilities lead to dynamical 〈Ye〉 values that struggle
to produce significant amounts of Th, but have a high yield of
Dy. Their low-Th and high-Dy abundances on average bring
the total Th/Dy and Sr/Dy yields down from pure-wind
abundances as the NS masses increase. Therefore, this edge can
be thought of as the limiting wind composition case with an
increasing amount of moderately low-Ye dynamical ejecta
contributing to the total outflows. Both the high-Sr/Dy spur
and the low-Th/Dy floor indicate limits in the computational
method from both the compositions and the total ejecta masses.
However, it is worth noting that the extension of the
“observations” into the low-Th/Dy, high-Sr/Dy region—
below the diagonal floor—are not populated by an actual
observational measurement in a metal-poor star. Rather, recall
the distribution was given a random spread to account for
observations that statistically could have these particular
abundance combinations in our attempt to build a complete
sample by removing some observational bias. Therefore, it may
be possible that no such combination exists in metal-poor stars
that have primarily r-process origins of their heavy element

Figure 6. Posterior samples (thin lines) and maximum likelihood (thick lines)
mass–radius curves for the case in which a constraint on MTOV is used (teal)
and when there is no such constraint (pink). For comparison, two existing
theoretical EOSs (SFHO, dotted, and DD2, dashed) are shown, along with
recent pulsar measurements from NICER (shaded contours). The upper-left
gray shaded region indicates where causality is violated (R > 2.9 GM).

Table 1
Median and One-sigma Confidence Interval for Neutron Star and EOS

Properties for Each Case

Model MTOV (Me) R1.4 (km) L (MeV)

with MTOV 2.17 ± 0.03 12.25 ± 0.03 44 ± 4
no MTOV 2.46 ± 0.15 12.28 ± 0.04 46 ± 5
Alsing+ 2.18 ± 0.02 13.47 ± 0.41 64 ± 9
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material. More observations of metal-poor stars (currently
underway, e.g., through RPA efforts) could shed light on the
reality of this limit.

The abundances show some sensitivity to the percentage of
the total disk mass that escapes from the system (assumed to be
40% here). Since most of the Sr that is produced in our model
is from the wind component, altering this disk-to-wind fraction
has the largest effect on the Sr/Dy abundances. Increasing
(decreasing) this fraction effectively moves the output
abundances to the right (left) on Figure 7, up to the diagonal
abundance floor. In order to compensate for the surplus
(deficiency) of Sr from increasing (decreasing) the ejecta
fraction, the EOS must lead the merger to eject relatively less
(more) Sr compared to Dy. Changing the Sr/Dy ratio can be
achieved most notably by changing the NS compactness. Soft
EOSs with relatively smaller NS radii will eject more
dynamical ejecta for q 0.9, moderately low-mass systems,
such as those in the DNS populations that use the M15
population synthesis model. With more Dy, the large Sr/Dy
values that are achieved by higher disk-to-wind fractions are
effectively reduced. Therefore, we expect that increasing
(decreasing) the disk-to-wind fraction will lead to inferred
EOSs that are more (less) compact. However, exploring the
sensitivity of our model to this fraction would require a
separate study, and for now we recognize it as an area for
improvement.

There is one feature that is virtually absent in the model
output: the lobe at moderately high Th and low Sr. To produce
low Sr, the dynamical ejecta must be very high. However, NS
−NS mergers with massive dynamical ejecta require high
asymmetries and masses. Such massive, asymmetric cases will
correspondingly produce a high Sr abundance from the disk
outflows as well. In other words, in this model, a massive
dynamical ejecta component will always come with a similarly
massive (or even more massive) wind component. Therefore,
this low-Sr/Dy region could possibly be populated if there
were very little to no wind ejecta at all. An r-process source
that may realize this case—and one that this model neglects—is
an NSBH merger. Theoretically, disk wind outflows would not
exist in the NSBH merger case, and the mass outflows would
be entirely dynamical: perhaps rich in Th and poor in lighter r-
process elements like Sr. Therefore, it is possible that the most

Sr-poor abundances that could not be reproduced by the NS
−NS mergers in this work could have NSBH origins instead.
The StarTrack output also provides these NSBH binaries, and
we reserve computing and including their nucleosynthetic
outflows for future work.

5.2. Alsing+

The two cases that use the M15 model for the DNS
population both produce reasonable agreement with all
available data: the EOS from GW170817, the NS radius and
mass measurements from NICER/XMM-Newton, and the r-
process abundances of metal-poor stars. Here, we look at how
the (Alsing et al. 2018) DNS distribution fares with our MCMC
model to see if we can obtain additional agreement with the
current distribution of DNS systems in the Galaxy.
While the two M15 cases show reasonable behavior for their

posterior EOS samples, the Alsing+ case rather proceeds to
very extreme values for the EOS parameters, which can be seen
by the large fluctuations in the slope of the EOS in Figure 5. To
reconcile the Alsing et al. (2018) DNS distribution with the
observed abundances, a very extreme EOS is needed, perhaps
even beyond the limits and constraints supplied to the model.
For this case, there is no agreement with the GW170817 EOS
at low densities. On the other hand, the posterior mass–radius
curves for the Alsing+ case agree rather well with the NICER/
XMM-Newton values, preferring a stiffer EOS than the cases
that use the M15 model. Finally, Figure 8 shows the resulting
abundances for the best-fit EOS case using the Alsing et al.
(2018) NS mass distribution. There is nearly no agreement with
the r-process abundance data, and the results group tightly
around high Th/Dy and Sr/Dy values. This particular feature
consists of the symmetric mergers with M1,2≈ 1.4, the main
peak in the Alsing et al. (2018) distribution in Figure 4. The
“wisps” of abundances around the data result from the slightly
asymmetric cases that appear in the Alsing et al. (2018)
distribution.
The clear failure of this model indicates that this estimate of

the present-day NS mass distribution (and the associated
assumption that DNSs can form with primaries drawn from this
distribution) cannot be reconciled with the r-process abun-
dances in metal-poor stars, under all of the other constraints
and assumptions supplied to the model. This conclusion is in

Figure 7. Left: model output with observational contours from Figure 2 overlaid in white. The solar value is indicated by the red star. Right: difference from
observations for the maximum-likelihood model as well as normalized contours corresponding to the JSD values between the model and observations.
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contrast to earlier work (Holmbeck et al. 2021a), which claims
agreement between r-process stars and the Galactic DNS
distribution (e.g., for the DD2 EOS). The largest source of
difference between that work and the present model might
possibly be the description of the dynamical ejecta Ye. In this
model, we employ a relationship between the Ye of the
dynamical ejecta and the NS properties, including the EOS
(i.e., from Equation (10) of Nedora et al. 2021). Since the
results are sensitive to this description, a robust and systematic
study of dynamical ejecta Ye as a function of NS properties
would greatly benefit this type of work.

6. Summary and Outlook

In this work, we perform a proof-of-concept calculation
showing how to combine information from metal-poor stars,
population synthesis models, EOS calculations, and NSM
ejecta properties to build a unique EOS for neutron stars. Our
calculation estimates and propagates many recognized sys-
tematic uncertainties into our final result. Our recommended
best model is the “with MTOV” case, which suggests a
somewhat soft EOS. This phenomenological EOS is one in
which the majority of r-process material in metal-poor stars can
be described by mergers between binary NSs from a stellar
population that simultaneously produces binary BH, NS−NS,
and NS−BH mergers that agree with their inferred rates from
LIGO−Virgo detections. Our EOS additionally finds agree-
ment with measurements by NICER and EOS constraints
inferred from GW170817.

As demonstrated by the failure of the “Alsing+” case to
reproduce the observations, the model is quite sensitive to our
input choices and does not by design guarantee a plausible
outcome for the EOS. For example, using observationally
inappropriate (uniform) weights for the RPA stars also leads to
an implausible EOS. The agreement that our “with MTOV”

model finds with NS observations, r-process abundances of
metal-poor stars, and EOS constraints from theory and
observations is a result of our specific input choices, notably
the abundance distribution of metal-poor stars and the
population of merging DNSs.

We recognize that several uncertainties accompany our
method, notably: uncertain predictions of the mass distribution
of merging NSs and whether they can populate the mass gap
(Drozda et al. 2020), the dependence of the dynamical ejecta
composition (Ye) on the merging NS masses and EOS
(including the effect of neutrino interactions; Goriely et al.
2015; Martin et al. 2018; Vincent et al. 2020), the fraction of
the NSM accretion disk that can eventually become unbound,
and the nuclear mass model that determines properties of r-
process nuclei far from stability (Mumpower et al. 2016). Much
work remains to be done in refining the model input for this
method, and we are hopeful that recent and upcoming progress
in the observational, theoretical, and experimental sectors will
help uncover the fundamental structure of NSs and the
properties of unstable nuclei that participate in the r-process.
Degeneracies in our results might be broken in the future by
combined effects on direct observables such as kilonovae (e.g.,
Barnes et al. 2021; Zhu et al. 2021). These improvements will
be necessary to assess and propagate more modeling
systematics into our overall uncertainty budget for the EOS.
The fact that our model results fare so well despite the model

uncertainties and assumptions indicates the potential power that
lies in the observed r-process abundances of metal-poor stars.
We encourage using these stars as an additional, albeit indirect,
source of data for microphysics studies of the r-process.
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