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Abstract

Modern parallel platforms, such as clouds or servers, are often shared among
many different jobs. However, existing parallel programming runtime systems
are designed and optimized for running a single parallel job, so it is generally
hard to directly use them to schedule multiple parallel jobs without incurring
high overhead and inefficiency. In this work, we develop AMCilk (Adaptive
Multiprogrammed Cilk), a novel runtime system framework, designed to sup-
port multiprogrammed parallel workloads. AMCilk has client-server architec-
ture where users can dynamically submit parallel jobs to the system. AMCilk
has a single runtime system that runs these jobs while dynamically reallocating
cores, last-level cache, and memory bandwidth among these jobs according to
the scheduling policy. AMCilk exposes the interface to the system designer,
which allows the designer to easily build different scheduling policies meeting
the requirements of various application scenarios and performance metrics, while
AMCilk transparently (to designers) enforces the scheduling policy. AMCilk also
enables its use in cloud environment where other processes may be sharing the
system with AMCilk. In this scenario, an external scheduler can change the re-
source availability for AMCilk and AMCilk seamlessly adapts to these changes.

The primary feature of AMCilk is the low-overhead and responsive preemption
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mechanism that allows fast reallocation of cores between jobs. Our empirical
evaluation indicates that AMCilk incurs small overheads and provides signifi-
cant benefits on application-specific criteria for a set of 4 practical applications
due to its fast and low-overhead core reallocation mechanism.
Keywords: multiprogrammed, parallel computing, Cilk, cloud
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1. Introduction

In recent years, the number of cores on multiprocessor and multicore sys-
tems has been increasing at a rapid rate. With this trend, there is an increasing
interest in running many parallel jobs on a single machine at the same time,
especially in the context of shared environments such as clouds and shared clus-
ters. However, most parallel runtime systems, such as Cilk variants [1, 2, 3, 4],
OpenMP [5], and TBB [6], are designed to run a single parallel job. To run mul-
tiprogrammed workloads, one must frequently instantiate one runtime system
for each job. Since these runtime systems are unaware of being in a multipro-
grammed environment and often assume that they have a certain number of
cores, say p (often the entire machine), dedicated to running their single job,
they create p pthreads, pin them to each of these cores and use them to execute
for the duration of the job. This leads to suboptimal performance for jobs in
these environments.

For multiprogrammed environments, the system scheduler must decide how
to allocate system resources among the different jobs in the system. This alloca-
tion depends on the performance goal of the system and different applications
with multiprogrammed workloads may have different performance goals. For
instance, an interactive web service running on a cloud may care about min-
imizing some function of the latency of the jobs. On the other hand, a real-
time application running on an embedded device may require that jobs meet
their deadlines. There has been significant theoretical research on designing

schedulers for various performance goals, e.g., minimizing some function of the
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job latencies [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and guaranteeing no deadline
misses [17, 18, 19, 20, 21, 22]. However, most of these schedulers have either
not been implemented or implemented using a custom-built system for that
application scenario.

In this work, our goal is to design a high-performance, flexible and extensible
framework for enabling multiprogrammed workloads in a shared environment.
Since the different multiprogrammed parallel workloads have various job arrival
patterns, job memory access characteristics, requirements and performance ob-
jectives, we want to design the parallel runtime system that enables the following
functionalities: (1) Online arrival: Jobs can arrive online, and the scheduler
does not need to know what jobs will arrive in the future; (2) Dynamic re-
allocation: The scheduler can dynamically increase or decrease the number of
cores allocated to a job while the job is executing; (3) Efficient execution:
The job must efficiently use the cores that are assigned to it at any moment
using an efficient parallel scheduling algorithm such as work-stealing [1]; (4)
Cache management: The job scheduler can support cache partitioning and
memory bandwidth allocation, as a complement to core allocations, to mitigate
the cache and memory bandwidth contention and support quality of service;
and (5) Exzternal Resource Control: When AMCilk is sharing a machine
with other processes (say in a shared cloud environment) an external scheduler
should be able to control the resource occupancy by the AMCilk runtime.

In most parallel runtime systems, dynamically changing the number of cores
allocated to the job is difficult and expensive for multiple reasons. Since multi-
programmed systems often run each job in its process, deallocating a core from
one job and allocating it to another often involves an operating system (OS)
call. Since the OS may not be aware of what is happening within the job, the
thread running on a deallocated core may be holding a lock or be in some un-
safe state when it is de-scheduled, compromising the efficiency of the parallel
program. Moreover, the kernel operations involved when reallocating cores are
likely to be expensive. Finally, the job scheduler may have high inter-process

communication overhead for collecting runtime information required to make
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In this paper, we take a different approach. We design AMCilk (adap-
tive multiprogrammed Cilk), a parallel runtime framework extending the Cilk
runtime systems to efficiently support multiprogrammed scenarios in a shared

environment. Specifically, AMCilk has the following features:

60 o AMCilk allows a system administrator to implement their preferred schedul-
ing policy to allocate cores among different jobs to optimize the application-
specific performance criterion by exposing an easy interface. The AMCilk
framework then transparently (to the system administrator) implements

this policy by automatically reallocating cores as dictated by the policy.

6 e AMCilk’s client-server architecture allows jobs to be submitted online,

start new jobs dynamically and return results of completed jobs to clients.

e AMCilk concurrently runs multiple parallel jobs in a single runtime sys-
tem, so that the AMCilk scheduler can access the full runtime information

of jobs and enforce core reallocation with low overhead.

70 e AMCilk develops a safe, low-cost, and responsive preemption mechanism,
which allows reallocating cores between jobs in microseconds while the
jobs are running. Thus, it has little performance penalty on the jobs.
Note that the “preemption” in this paper denotes the action of stopping
the execution of a parallel job on a processor, and the AMCilk runtime

7 system enables this preemption mechanism.

e AMCilk exposes interfaces that use the hardware-level cache partitioning
and memory bandwidth allocation to restrict the interference between jobs
and to control the quality of service when multiprogrammed jobs compete

for the last-level cache and memory bandwidth.

8 e AMCilk can be run in an environment where other processes share the

hardware resources with it. To enable this, AMCilk exposes its resource
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allocation interface to external schedulers which can then control the re-
source occupancy of AMCilk. AMCilk then seamlessly adapts to this new

resource allocation.

e In order to enable an intelligent allocation by the external scheduler, AM-
Cilk exposes its runtime information to these schedulers using a subscrip-

tion model.

Therefore, when building applications using AMCilk, system administrators
can customize the core allocation, cache partitioning and memory bandwidth
allocation policy via AMCilk interfaces, without needing to understand the im-
plementation details.

Our evaluation indicates that the overheads of starting a new job, complet-
ing a job, reallocating cores, etc., within AMCilk are small, and the core real-
location adds a minimal performance penalty on job executions. Moreover, we
implemented application scenarios using AMCilk to understand whether AM-
Cilk provides performance improvement to their application-specific criteria.
In particular, we developed four applications by implementing their scheduling
algorithms via the AMCilk policy-customization interface. The first one [10]
has the goal of minimizing the average latency of online parallel jobs, such as
those in interactive services. We find that the implementation based on AMCilk
provides a performance advantage of between 60 to 70% over the previous im-
plementation (which was used in the experiment of [10]), which uses the same
scheduling policy — the performance improvement is purely due to AMCilk’s
ability to reallocate cores faster than the previous implementation. The sec-
ond one is an elastic real-time application [22] with periodic tasks that must
meet deadlines, where some tasks can vary their demand causing other tasks
to adjust their deadlines accordingly. Again, we see that AMCilk provides bet-
ter responsiveness to the demand change, providing better performance to the
application. The third application is an application that dynamically adapts
the number of cores according to the parallelism of the applications and re-

quires that we monitor the jobs to adjust the core allocation. We see that the
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AMCilk implementation successfully adapts to the changing parallelism provid-
ing better performance than the best static allocation. The forth application
demonstrates the importance of cache and memory bandwidth partitioning in
multiprogrammed environments. In addition, the final experiment shows the
efficiency of the subscription functionality for external schedulers.

This paper extends from [23] which has been published on HiPC 2020. In
the HiPC version, we develop AMCilk, as a framework for scheduling mul-
tiprogrammed parallel workloads. In this paper, we extend AMCilk from two
aspects: (1) In the HiPC version, we assume that the physical machine dedicates
to the AMCilk runtime system. However, in the cloud environment, AMCilk
may co-run with other applications. It would be greatly beneficial if AMCilk
could expose interfaces and allow external schedulers to dynamically control the
resource occupancy of AMCilk. Thus, this paper presents the support of the
cloud environment (Section 4). (2) In the HiPC version, we introduce the AM-
Cilk policy-customization interface which allows system designers to customize
the scheduling policy of AMCilk. However, there lacks a demo to show how to
use the interfaces to prototype a scheduler. In this paper, we present a concrete
example of developing schedulers by using the AMCilk policy-customization

interface (Section 3.2).

2. Background

AMCilk is implemented for the Cilk language using a home-grown Cheetah
runtime system, which is similar to Intel’s Cilk Plus runtime system [4]. Cilk [2]
is a parallel programming language that extends C, while Cilk Plus was designed
later for C++. Here we describe the key features of Cheetah that are critical
for understanding the design of AMCilk.

Cilk Plus language and Cheetah runtime system. Cilk Plus extends
C++ with additional keywords, principally including spawn and sync. A func-
tion that is spawned may execute in parallel with the continuation of its parent

function. The sync keyword indicates that all function instances spawned by
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the current function must return before the next instruction. Therefore, the
programmer expresses the logical parallelism of the program, while the Cheetah
runtime system is responsible for scheduling this program on the given number
of cores. The compiler and linker compile the program by inserting calls to
the runtime system at function spawn, return, and sync. The program’s main
function is compiled as the cilk main function, while the newly added main
function performs runtime initialization by creating p threads, one for each
core, and pins them on their cores. It also sets up data structures for scheduling
this program on these threads. One key data structure is a worker for each
thread, which keeps track of information about that thread from the perspective
of the program — for most of this paper, we will use the term worker and thread
interchangeably. After initialization, the runtime calls the cilk main function

to begin executing the program.

Work-Stealing. Work-stealing [1] is a theoretically good and practically effi-
cient scheduling algorithm used by many programming languages and libraries,
such as Cilk variants [1, 2, 3], OpenMP [5], and Intel's TBB [6]. Same as
common Cilk variants, in the Cheetah runtime system, each worker maintains
its own deque (a double-ended queue) of stack frames and pushes/pops stack
frames from the bottom of the deque. If a worker’s deque is empty, it becomes
a thief, picks a random victim among the other workers, and steals the frame

from the top of the victim’s deque and starts executing it.

THE Protocol. A worker pushes and pops frames from the bottom of its
own deque, while a thief might steal work from the top of another worker’s
deque. Therefore, if there is only one frame on a deque, any thief who tries to
steal it must synchronize with the owner to ensure consistency. The Cheetah
runtime system employs the THE protocol [3] to perform the synchronization
efficiently. The THE protocol uses three shared atomic variables: T, H, and E.
T and H mark the head and tail of the deque, and E is an exception pointer
and marks a place where T cannot cross over.

Generally, E and H both point at the head of a deque, while T points at
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the tail. When a worker pushes a frame on the deque, it simply increments T.
When a thief tries to steal from the top of the deque, it grabs the lock of the
victim’s deque and increments E. If E < T, the thief steals the top frame and
increments H; otherwise, it gives up and restores E. It then releases the deque
lock. When a worker tries to pop a frame, it decrements T and then compares
it with E. If E<T, then the worker can pop without getting any locks. If E >
T, the worker calls an exception handler within the runtime system. Generally,
this means that some thief is trying to steal while the victim is trying to pop.
In this case, the victim also tries to get the deque lock, and either the thief or
the victim wins based on who gets the lock.

This E pointer can also be used to trigger exceptions of other kinds —
essentially, by setting E to be larger than T, we can force the thread to enter
the exception handling routine within the runtime system and then modify
the exception handling routine to perform other operations. We will use this
functionality in AMCilk to inform the worker to perform core reallocations —

described in Section 3.

3. AMCilk Scheduling Framework

This section describes the key implementation details of the AMCilk schedul-
ing framework. In particular, AMCilk uses a client-server architecture (§3.1)
to support online arrival and completion of jobs. This design also separates the
responsibility between the system administrator and users. The users simply
submit their jobs to a server while the server runs the parallel jobs concurrently
in a runtime system. The scheduling policy of the server is managed by the
system administrator.

The AMCilk scheduling framework provides policy-customization inter-
faces (§3.2) that allow system administrators to easily and flexibly customize
the scheduling policy that allocates shared resources, including cores, last-level
cache, and memory bandwidth, to concurrent parallel jobs. In particular, AM-

Cilk provides an integrated and easy-to-use interface that implements a de-
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centralized AMCilk scheduler (§3.3), which is called automatically at pre-
defined events such as job arrivals, job completions, and timer interrupts.

The scheduler may change the allocation between jobs while the jobs are
running — to support this, we implemented a responsive and low-cost core
reallocation mechanism (§3.4). This preemption mechanism makes a good
trade-off between the system overheads, responsiveness to the scheduling deci-
sions, and transparency to user programs, by leveraging the exception mecha-
nism in the Cilk runtime.

Finally, to retain the theoretical guarantees of work-stealing for a parallel
job, the AMCilk scheduling framework augments work-stealing within each job
on the assigned cores with an efficient work resumption mechanism (§3.5).
It ensures that when a core is taken away from a job (decided by the scheduling
policy and enforced by the preemption mechanism), the leftover work of this
job on the core gets completed in a timely manner by other cores allocated to

this job.

3.1. Client-Server Architecture

Figure 1 illustrates the conceptual client-server architecture of AMCilk. A
client (i.e., user) creates a job request struct, which stores the program id
(indicating which program to run) and its input parameters. It submits the
job request to the server via a pipe. AMCilk has a dedicated request receiver
thread (pinned to a dedicated core) that listens for requests and on receiving
a request, pushes it into a FIFO job request buffer. The AMCilk scheduler
takes job requests from the head of the buffer, parses the request, and prepares
to run the executable of the corresponding program. When a job finishes, the
server sends the result to the client. The result is the return value or the location
where the return value stored. Both request receiver and AMCilk scheduler are
nonblocking — they do not wait for a job request to complete before starting
on the next one.

AMCilk runs multiple Cilk jobs in a single runtime system. Recall that

(Section 2) the original Cilk runtime system is designed to run a single job,
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Figure 1: AMCilk’s Client-Server Architecture.

where the main function of the job’s executable initializes the runtime and calls
cilk main as an entry into the user code. In contrast, the AMCilk runtime
system is pre-initialized as a server and sets up the basic data structures needed
to execute jobs. The parallel programs are pre-compiled and pre-linked with the
runtime system and have their cilk main functions. To run multiple jobs, the
server runs each job within a data structure called a container which contains
all the metadata required to run Cilk jobs. Since jobs arrive and leave online, the
number of active containers changes over time. However, creating a container
from scratch is relatively expensive, so AMCilk creates a pool of containers at
initialization and reuses the containers. When a new job arrives, the server
selects an inactive container and calls the appropriate cilk_main function to
start executing the job. When all containers are busy', any new arriving job is
buffered. When a container becomes available, it picks a job from the buffer in

a FIFO order.

8.2. Policy-Customization Interface

AMCilk provides an interface that allows the system administrator to cus-
tomize the policy for allocating cores, cache, and memory bandwidth between
concurrent jobs. We provide some useful allocation policies “out of the box” —
these are the policies we used in our case studies described in Section 6, namely

(1) DREP; (2) ELASTIC_RT; and (3) PARALLELISM _FB. System administra-

IThis case rarely happens, since we use a large pool — we set the number of container to

be equal to the number of cores used for executing jobs.

10
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tors can design their own policies and implement them using a simple interface
provided within AMCilk.

The reallocation decision interface is event-driven. AMCilk provides four
events: (1) START_JOB; (2) EXIT_JOB; (3) TIMER; (4) REQUESTED. When any
event happens, the job_scheduler(e) function is called — this is the function
that the system administrator implements in order to design their own core-
allocation policy. The job_scheduler(e) has an argument e indicating which
event triggerred the current function call (to the job_scheduler(e)). The sys-
tem administrator can use this argument to distinguish different events and
define appropriate response to different events (or ignore some events).

Within this function implementation, the system administrator can use pre-
defined functions to both get information about the current state of the runtime
system and to change the allocation of cores, memory bandwidth and cache. In
general, to perform core-reallocation, one must (1) analyze the runtime infor-
mation; (2) make a core-reallocation decision; (3) assign cores to jobs. AMCilk
collects the runtime information in the backend, and the interface exposes the
information to the system administrator, like the number of running jobs, the
number of available cores and the current scheduling state showing which core
belongs to which job. The interface also exposes in-depth runtime details, like
the number of cycles when each core was working vs. stealing in the previous
interval. Within job_scheduler(e), the system administrator can call various
functions to access this information and use this information to make scheduling
decisions. The scheduling decisions can be communicated to the AMCilk sched-
uler by using setter functions — for example, AMCilk defines core_id to denote
a core and container_id to denote a container, and the system administrator
can use give_core_to_container(core_id, container_id) to allocate a core
to a container. AMCilk will then automatically enforce this reallocation using
a safe, responsive, and low overhead preemption and core reallocation method
described in Section 3.4.

Using the policy-customization interface can greatly simplify the system im-

plementation. For example, Figure 2 shows an implementation of DREP sys-

11
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//DREP implementation with AMCilk interface
void job_scheduler(enum PLATFORM_SCHEDULER_TYPE e) {
container_id_t new_p, stop_p, tmp_p;
if (e==NEW_PROGRAM) { //when a new job begins
new_p = get_new_program_container();
for (int i=2; i<get_total_num_core(); i++) { //randomly get cores for the new job
int rand = util_random_selector(get_num_running_job());
//rand==0 with probablity of 1/get_num_running_job()
//rand===0 when get_num_running_job()==1 (the new job is the first job).
if (rand==0) give_core_to_container(new_p, i); //give core i to container new_p
//by default, a new container occupies no core unless we do give_core_to_container
}
} else if (e==EXIT_PROGRAM) { //when a job completes
stop_p = get_stop_program_container();
for (int i=2; i<get_total_num_core(); i++) {
if (container_use_core(stop_p, i)) { //core i was used in the stop program
tmp_p = random_pick_unfinished_container(); //give the core i to a random job
if (tmp_p!=NULL) give_core_to_container(tmp_p, i);

Figure 2: Implementation of DREP scheduler via AMCilk policy-customization interface.

tem [10] in AMCilk with the policy-customization interface. DREP is a system
designed for online scheduling of multiprogrammed parallel jobs to minimize
average flow time. Basically, when a new job arrives, for each core, the DREP
scheduler gives this core to the new job with probability of p = 1/n; where n; is
the number of unfinished jobs. When a job finishes, for each core, the scheduler
randomly picks an unfinished job to give that core. As shown in Figure 2, the
system is implemented in simply 18 lines (without comments), and no system
details are needed in the implementation.

AMCilk provides a similar interface to customize cache partitioning and
memory bandwidth allocation policies. Again, the system administrator can
access runtime information via the interface, like cache misses, and the admin-
istrator can use the interface to allocate cache blocks and set maximum memory
bandwidth usage of each container. Note that AMCilk is extensible, and sys-
tem experts could develop their own runtime information collectors and events

under our scheduling framework.

3.8. Decentralized AMCilk Scheduler

The AMCilk scheduling framework enables concurrent running of multi-
ple parallel jobs and reallocates computing resources, including core, last-level

cache, and memory bandwidth, between jobs according to the customized schedul-

12
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ing policy. Figure 3 zooms into the architecture of the scheduler itself. The Run-
time Monitoring Module keeps track of the runtime information, such as core
utilization, of running jobs (stepl) and sends the information to the Resource
Allocation Module (step2). The Resource Allocation Module decides how many
resources should be allocated to each job based on the scheduling policy (which
was implemented by the system administrator) and sends the decision to the
Resource Enforcement Module (step3), which fulfills the allocation to jobs via

their containers (step4).

AMCilk
Scheduling Policy

| Job1 | [ Job2 | «=+[ JobM |§RunningJobs
1T

5 =4
2 |Runtime Monitoring Resource
<:| Module Enforcement Module

Monitor job runtime information
Send the runtime information
Send scheduling decision
Enforce resource reallocation
Initialize the scheduling scheme

—

AMCilk Scheduler

Request Receiver
Resource
Allocation Module

Receive external scheduling decision
Adapt the scheduling scheme

NoOaMN =

Shared resources: multiple cores, last-level cache and memory bandwidth

Figure 3: AMCilk scheduling framework.

The AMCilk scheduling framework provides interfaces that allow the sys-
tem administrator to easily customize the scheduling policy for its application
scenario in the Resource Allocation Module (step 5). Furthermore, AMCilk ex-
poses an interface that allows external systems to control the resources used by
AMCilk via sending the demand to the request receiver thread (step 6), which
invokes the AMCilk scheduler to enforce the allocation demand (step 7).

To perform the cache partitioning and memory bandwidth allocation decided
by the scheduling policy, Resource Enforcement Module calls the interfaces pro-
vided by third-party infrastructures. For example, Intel RDT [24] that we use
in this work provides interfaces for allocating last-level cache and memory band-
width to core groups. So the AMCilk scheduler groups the cores assigned to
each running job and calls Intel RDT to perform the allocation to the core
groups.

To support concurrent execution and dynamic core allocation of multiple

13
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parallel jobs, AMCilk decouples the concept of the core (physical processing
unit) and the worker (software abstraction of a core). For a machine with p
cores (excluding the core dedicated to the request receiver thread), AMCilk
creates p workers (threads) for each container dedicated to a job, and each
of these workers is pinned to a different core. Hence, each core has multiple
workers, one for each container. The Resource Enforcement Module ensures
that each running job occupies a disjoint set of cores according to the core
allocation decision, by activating at most one worker on each core. An example

snapshot is shown in Figure 4.

AMCilk Scheduler
Container Pool

Active Container 1

ZIINENERIEIE
271 = B IR AR
] o o ] ° 5 5 _
= Active
Sleeping
Active Container 2 Scheduler]

I
21212

1 Pinned
DO E ® @ oo

Figure 4: Runtime snapshot. Container 1 is allocated with 4 cores with 4 active workers,

@—{ Request Receiver Thread
orker
Worker
Worker

while Container 2 is allocated with 2 cores.

For each job, the cores allocated to this job must complete its work us-
ing a modified work-stealing scheduler that we augmented to support three
novel functionalities needed by the AMCilk scheduling framework: decentral-
ized scheduling, core reallocation, and work resumption. We explain the decen-
tralized scheduling here and the other two mechanisms in the next subsections.

Although a core is dedicated for the AMCilk scheduler (leaving p — 2 cores
allocated by the scheduling policy for executing jobs?), instead of a dedicated
centralized thread for the scheduler, each container handles its own allocation

by setting its worker 1 be a dedicated scheduler worker when starting a job

20ne core is dedicated for the AMCilk scheduler, and one core is dedicated for receiving

job requests, leaving p — 2 cores to execute jobs.

14
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and removing a job. Specifically, to start a new job from the request buffer,
a container from the container pool is activated by waking up its worker 1.
This worker prepares all the necessary data structures for this job and decides
which cores should be allocated to this job, based on the customized scheduling
policy provided by the system administrator. This will trigger reallocation so
that these cores are allocated to this new job. At this point, the cilk main
function of this new job is called and the job execution begins. When a container
completes a job, one random worker returns from the cilk main and enters the
runtime. This worker will activate the worker 1 of its container before putting
itself to sleep. Then this worker 1 will clean up the data structures for this job,
trigger the core reallocation per the scheduling policy, and inactivate itself (and
this container) once done. If other scheduling events occur, for instance, due to
external triggers or timing triggers, a dedicated thread pinned on core 1 for the
AMCilk scheduler will wake up to make the new scheduling decision and trigger

the core reallocation.

3.4. Responsive and Low-Cost Core Reallocation

During job execution, the scheduling policy may decide to change the core
allocation of jobs, i.e., some job(s) must give some of their cores to other jobs,
and some job(s) may reclaim the cores it gives out in the previous scheduling,
triggering AMCilk’s core reallocation mechanism. Reallocating a core = that is
currently used by job a to job b involves two procedures: putting the running
worker of job a on core x to sleep and waking up the worker of job b on core x.
The second procedure can be achieved by simply sending a signal to wake up
the corresponding thread. If the woken-up worker has some work on its deque,
then it resumes working on its deque. Otherwise, it immediately starts stealing.

The first procedure, namely worker preemption where a worker stops
working and goes to sleep, is the key to core allocation. This operation must
be safe (i.e., we don’t want to preempt a worker while it is holding a lock, for
example), responsive (i.e., given a reallocation decision, the worker should go

to sleep as soon as possible), and low overhead (i.e., its overhead should have
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minimal impact on performance).

There are a few options for implementing worker preemption. One possi-
bility is to use the priority mechanism of the operating system (OS). Say the
scheduling policy decides to allocate a core x to job b while it is currently al-
located to job a. The containers for both jobs have a thread pinned to core =,
so the scheduler could increase the priority of the job b’s thread on core z and
decrease the priority of the job a’s thread. One disadvantage of this method is
that this context switch has high overheads. More importantly, it is difficult to
ensure correctness and performance since the thread of job a might be holding a
lock when it is put to sleep by OS, causing it to block other threads from doing
work.

To ensure that the thread is put to sleep when it is safe to do so, another
approach, taken by Agrawal et. al [10], is to allow worker preemption only
when the worker attempts to steal. In particular, on receiving the decision that
a worker w must be put to sleep, the corresponding work-stealing scheduler
waits until worker w has no work on its deque and is about to steal. At this
point, it puts the thread to sleep. This is, in some sense, the safest and easiest
place to implement a preemption within the runtime system since, as described
in Section 2, the worker is not working on anything and does not have any
work on its deque. However, this mechanism would not be very responsive since
the worker may not steal for a long time. Therefore, the time between the
occurrence of the decision that some core x should be moved from job a to job
b and the time when job a actually puts its worker on core z to sleep can be
huge.

In contrast, we employ the middle road and use the exception mechanism
of the Cilk runtime system (described in Section 2) to implement preemption.
When the AMCilk scheduler decides to take away core x from a job, it sets the
exception pointer (E) of the worker w on core z to a large number. When worker
w finishes its current frame, it finds that £ > T and jumps to the exception
handling routine. This routine then sets up the state indicating that worker w

is now inactive and puts the associated thread to sleep. It is important to note
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that the preempted worker may still have work on its deque but it may never
be woken up again, so efficient work resumption, explained in Section 3.5, is
needed to complete the work left on this deque by other workers of the same
job.

Our design choice for worker preemption is reasonably responsive since it
implements preemption at frame (function) boundaries — the worker to be pre-
empted is preempted as soon as it finishes the function it is currently execut-
ing. For most fine-grained parallel code, the individual functions are reasonably
small. In addition, since the preemption is handled by the runtime system, it

can ensure that the thread is not holding locks when it is preempted.

8.5. Efficient Work Resumption Mechanism

As discussed above, since AMCilk implements preemption at frame bound-
aries, a worker w of job a can go to sleep while there is still work (frames) on
its deque. This work must be resumed by some workers of job a so that job
a can successfully complete. To facilitate work resumption, each worker has
a status field. Before an active worker w goes to sleep, it first checks if its
deque has any remaining work. If there is remaining work, it marks its status as
inactive_with work; otherwise, it marks its status as inactive_without_work.

All workers of the job are stored in an array of size p, where p is the
number of (active and inactive) workers. This array is sorted to store all the
inactive_with_work workers at the beginning and the active workers in the
middle, followed by all the inactive without_work workers. We also maintain
two auxiliary pointers pointing to the last location storing an inactive with work
worker and the first location storing an inactive_without_work worker, as

shown in Figure 5.

Iast_inactive_\clith_work first_inactive_v\iithout_work

3lals|1]2]7[8]1w0][e]o

inactive_with_work workers  active workers inactive_without_work workers

Figure 5: A job’s worker array, storing all its workers sorted in a way that makes it easy for

active workers to mug and steal.
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In addition to the above data structures, we implement the key operation,
called mugging, for efficient work resumption. Recall that, in original work-
stealing, when a worker runs out of work, it randomly picks a victim and steals
work from the top of the victim’s deque. In AMCilk, when an active worker
of job a runs out of work (i.e., its deque is empty), it first checks the worker
array to see if there are any inactive_with work workers. If so, it picks one
as the victim and mugs the victim’s worker by swapping the victim’s nonempty
deque with its own empty deque. It then moves the victim to the last portion of
the worker array (the inactive_without_work portion, since this worker now
has an empty deque) and updates both auxiliary pointers. Once there is no
inactive_with_work worker, regular work-stealing among the active workers is
resumed efficiently by storing the active workers contiguously. With the help
of the two auxiliary pointers, AMCilk avoids the unsuccessful steal attempts
from sleeping workers with empty deques.

Our design for the work resumption mechanism has the advantage that it
maintains the theoretical and practical performance guarantees provided by
work-stealing [1]. Intuitively, these guarantees depend on the fact that if there
are d total deques for a job, then d random steal attempts will reduce the
critical-path length of the job with high probability. However, if we have more
deques, we need more steal attempts to make progress. In AMCilk, if there
are sleeping workers with nonempty deques, we prioritize making their deques
empty and never steal from sleeping workers with empty deques. Therefore, if
the job has x active workers, this design only needs x steal attempts to reduce
the critical-path length — in systems with many jobs, the number of cores may
be much larger than x and this design is efficient. The theoretical guarantees
provided by some multiprogrammed application scenarios [13] depend on this

mechanism.
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4. Support for Shared Cloud Environments

Thus far, we have presented AMCilk as though it fully occupies the entire
physical machine. However, in some shared environments such as clouds, the
AMCilk process may share the resources, such as cores and memory bandwidth,
with other processes. In these scenarios, an external scheduler, like a cluster
scheduler, should be able to dynamically control the resource occupied by the
AMUCilk process.

This section introduces the key features of AMCilk that allow the AMCilk
system to run in such shared cloud environments. In particular, AMCilk run-
time system supports: (1) Subscription of runtime information — an external
scheduler can monitor the runtime information of each job running in the AM-
Cilk process; (2) Resource occupancy control — an external scheduler can set
the upper bound of resources used by the entire AMCilk process (AMCilk will
still control how to allocate resources to each of its own jobs based on the
mechanisms described in the previous section); (3) Admission control — the
external scheduler can set the maximum buffer length for arriving jobs for AM-
Cilk, thereby providing admission control for AMCilk jobs. As a result, the
external scheduler can gather runtime information for the AMCilk process, use
this information to decide how much resources to provide the AMCilk process,
and also put constraints on the buffer length and the resource occupancy of the
entire AMCilk process. Note that this external scheduler is outside of AMCilk

and AMCilk has no control over it.

4.1. Subscription of runtime information

There are three components in the runtime information provided by AM-
Cilk: (1) hardware usage, including processors, memory, last-level cache, off-chip
memory bandwidth. This is the basic information showing how busy the AM-
Cilk system is. However, this hardware usage information is often misleading.
Recall that each parallel job running in the AMCilk is executed by a work-

stealing scheduler. If a job is allocated more processors than its parallism, some
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worker of the job can be busy for stealing attempts. In this case, although the
processor usage is high, this job does not need as many as the processors it is
allocated. Thus, it may be useful for the external scheduler to know (2) the
internal runtime information for each job, such as working cycles and stealing
cycles to know the actual resource utilization for each job. Furthermore, the
external scheduler need to distinguish whether the AMCilk system is overloaded
when the resource utilization is high. Therefore, AMCilk exposes (3) the length
of request buffer to the cluster scheduler.

AMCilk also provides interfaces which allow system designers to define any
metric based on the runtime information, and AMCilk system automatically
exposes the metric to the external scheduler via the subscription. For example,
if the external scheduler needs to know the current average flow time of jobs, the
system designer sets the AMCilk to gather the flow time of each jobs and sets
a time window to calculate the average within the window. Currently, AMCilk
supports the subscription of average flow time, maximum flow time, minimum
flow time and percentile latency. System designers can either choose one of these
metrics or design their own metric — AMCilk will then calculate this metric
and provide the information through to the subscriber.

The subscription is implemented following publish—subscribe pattern, which
decouples the AMCilk and the external scheduler and reduces data size in com-
munications. Since the external scheduler may be located at a different machine,
the runtime information should be visible by a different machine. The AMCilk
system runs as a publisher which periodically updates the runtime information
to keep updated. Noting that the external scheduler may not need all runtime
information that AMCilk exposes. Thus, the runtime information is organized
in key-value pairs, where keys are the name of resources, like ”stealing_cycle”.
The runtime information is updated in a transactional manner — either all keys
are updated or no key is updated. The external scheduler runs as a subscriber.
By providing the keys of interest, the external scheduler can get the specific

values for those keys from the latest runtime information on demand.
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4.2. Resource Occupancy Control and Admission Control

AMCilk runtime exposes interfaces to the external scheduler to control the
occupancy of three resources: (1) the number of processors; (2) last-level cache;
(3) off-chip memory bandwidth. When the external scheduler decides to adapt
the resources occupied by the AMCilk process, the AMCilk process leverages
the mechanisms we described in Section 3 to adapt to these new resources. In
particular, once the AMCilk runtime receives a request to adapt resource oc-
cupation from the external scheduler, the internal AMCilk scheduler runs and
changes the allocation of its jobs based on its current policy. Once the en-
forcement is done, AMCilk notifies the external scheduler. Since the resource
reallocation of jobs in the AMCilk is fast, the external scheduler can adapt the
resource occupancy of AMCilk with low latency. Note that given a change in
resources, the actual allocation of resources to the jobs running under AMCilk
is based on the scheduling policy provided to AMCilk via the AMCilk interface.
Therefore, when running in a shared environment, system designers must pro-
vide scheduling policies which can intelligently respond to resource changes to
get maximum benefit from this feature.

Recall that the AMCilk runtime system runs as a server which receives job
requests from clients. Once a job request is received, this request is appended
to a request buffer. If the resources owned by the AMCilk runtime is insuffi-
cient to handle the request frequency, the number of buffered job may increase
unboundedly causing long delays in processing of jobs. In order to avoid this,
we allow the external scheduler to do dynamic admission control where it
can change the AMCilk’s maximum buffer length by communicating with the
AMCilk server. Then the AMCilk still admits the jobs in a first-come-first-serve
order, but it rejects any requests which cause the buffer size to grow larger than

the maximum buffer length.
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5. Evaluation

We evaluate AMCilk performance using two types of benchmarks. In this
section, we try to understand the efficiency of AMCilk implementation by quan-
tifying the system overhead and examining the advantage of cache and memory
bandwidth allocation functionalities. In the next section, we will try to under-
stand the tmpact of AMCilk on multiprogrammed applications to see if AMCilk
can provide a performance boost for their application-specific metrics.

We conducted the evaluation on a machine with two 2.40GHz Intel Xeon
Gold 6148 Processors and 754GB memory. Each processor has 20 physical cores
with 27.5 MB L3 Cache, and the system has 40 physical cores in total. The two
processors support Intel RDT which provides capabilities for cache and memory
allocation and monitoring. The Linux version is 4.15.0. AMCilk uses Intel(R)
RDT Software Package® to control the hardware-level cache partitioning and
memory bandwidth allocation. In the experiments, we disabled hyperthread-
ing. Two cores are reserved for the request receiver and the AMCilk scheduler,

respectively; the remaining 38 cores are used to execute jobs.

5.1. System Overhead

We first conduct experiments to quantify the time costs of the four core
functionalities that AMCilk promises (as discussed in Section 3): (1) starting a
job; (2) removing a job; (3) core reallocation; (4) work resumption.
Experimental Design. We measured the overhead by instrumenting each in-
dividual operation and running a latency-sensitive application [15]. We develop
a simple client to generate the workload. The workload includes a series of online
requests. The work of each request is random and follows Bing Search Server
Request Work Distribution [15]. Each request is computationally intensive
and each request is parallelized by using parallel-for loops. Note that since we

evaluate the time span of scheduling actions on parallel jobs, the result will not

3The package is open source and maintained at https://github.com/intel/intel-cmt-cat.
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change much between different computations since the individual functions are
reasonably small for most fine-grained parallel code. We use Poisson distribu-
tion to decide inter-arrival time between requests. By configuring the average
number of requests that arrive per second, we can set the utilization of the sys-
tem. We wanted to examine whether the load affects the overhead and varied
the total load of the application, i.e., machine utilization from 60% to 90%,
by changing the average number of requests arrived per second. We observed
that the machine utilization has a very small impact on the overhead, so we
only report the results for a machine utilization of 75%. The experiments were
run long enough, and we measured the time to run each operation for 100,000
times and report the mean and standard deviation. To improve the readability
of boxplots, we randomly sample 1,000 of the 100,000 measurements to draw
Figure 6. We found 15 outliers in the measurements in total, and we removed
the outliers when calculating the maximum latency (and 50th/95th/99th/99.5th

percentile).

Evaluation Results. As explained in Section 3.3, starting a job includes
taking a job from the request buffer, setting up the container for this job, and
allocating resources to this job. In our evaluation, this functionality takes 295 us
on average with a standard deviation of 489us. Half of the measurements take
no more than 291us, and almost all measurements are no more than 440us.
In particular, the 95th percentile is 369us, and the 99th percentile is 414us,
and the 99.5th percentile is 440us, and the maximum measurement is 8834 us.
Note that allocating resources to a new job often involves reallocating cores,
so this time cost is dominated by core reallocation (272us). Recall that in our
design, containers are created at AMCilk system initialization and are reused
upon job arrivals. We evaluate this design choice with an experiment where
we create containers from scratch every time a new job arrives. As expected,
always creating containers is significantly more expensive with a mean overhead
of 4379us, due to the cost of creating pthreads for workers and allocating and

(more importantly) initializing the data structures for the closures, frames, and
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Figure 6: Time cost of key funcationalities

fibers that the runtime system uses.

Removing a job involves deallocating cores (and other resources) of the
completed job and releasing the container back to the container pool. This
functionality costs 10.0us on average with a standard deviation of 21.5us. Half
of the measurements take no more than 8.71us, and almost all measurements
are no more than 197us. In particular, the 95th percentile is 12.8us, and the
99th percentile is 61.2us, and the 99.5th percentile is 197us, and the maximum
measurement is 457us. Removing a job takes a significantly shorter time than
starting a job because it only deallocates cores. The reallocation of these cores
is either performed in starting a new job or performing the core reallocation for
the active jobs based on the scheduling policy.

Core reallocation includes deciding the resource allocation for jobs ac-
cording to the customized scheduling policy and enforcing the decision. Of the
272us average overhead (std. 480us). Half of the measurements take no more
than 267us, and almost all measurements are no more than 401us. In particular,
the 95th percentile is 345us, and the 99th percentile is 384us, and the 99.5th
percentile is 401us, and the maximum measurement is 8812us. On average only
17.5us is spent on making the decision, so enforcing the decision introduces the
major overhead. Recall that enforcing the decision involves putting a worker to
sleep for one job and activating a worker for another job. Activating a worker

costs 57.5us, while putting a worker to sleep costs 85.2us. The latter operation
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takes more time because it includes waiting until the worker reaches the frame
boundary. Obviously, this overhead would be significantly higher if the worker
has to reach a steal boundary instead.

Work resumption starts when a worker with a non-empty deque goes
to sleep and ends when another worker successfully jumps to the user code
after finding and mugging this nonempty deque of a sleeping worker. This
functionality costs 7.20us on average with a standard deviation of 7.50us. Half
of the measurements take no more than 5.54us, and almost all measurements
are no more than 53.2us. In particular, the 95th percentile is 16.4us, and the
99th percentile is 32.8us, and the 99.5th percentile is 53.2us, and the maximum
measurement is 220us. For resuming the work of inactive workers, we could let
a thief steal from the victim’s deque one frame at a time, instead of mugging the
entire deque. To verify our choice of mugging, we measure the overhead of both
operations. We observe that a mugging operation costs 0.363us (std. 0.204us),
which is actually less than the cost of 1.44us (std. 3.00us) of a successful steal.
This result is as expected since a successful steal involves taking multiple locks,
manipulating data structures, and promoting the child frame to make it ready
for a potential future steal. Mugging is much simpler; we just grab a lock and
change some pointers around. Therefore, mugging not only reduces the number
of active deques, but also has a smaller overhead.

The experiments show that all operations have small average costs, but their
variations are not negligible. The variations come from contention, instead of
noise. In particular, the measured time includes the operation of locking data
structures before modifying them. Therefore, the cost is higher when we have
to wait on the lock. Additionally, some optimizations — there are fast paths

and slow paths depending on the particular situation — also lead to variation.

5.2. Cache partitioning and memory bandwidth allocation

Since the overheads of cache and memory bandwidth allocation of AMCilk
are the same as Intel RDT, we do not measure these costs. Instead, we demon-

strate their capability of reducing interference in a scenario where data-intensive
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parallel jobs co-run with streaming applications.

Experimental Design. We use a parallel_sort program, which takes an
array as the input and returns the sorted array, as the data-intensive job. We
randomly generate an array with 50,000,000 64-bit elements. We use AMCilk
to run 4 such jobs concurrently, where each job is allocated with 4 cores. We
also design a parallel streaming job that repeatedly loads data from memory,
modify the data, and store the data into the memory. When co-running with
the 4 data-intensive jobs, this streaming job is allocated with the remaining
cores in the platform. We measure the running time of the 4 data-intensive
jobs in 4 cases: (1) only running the 4 jobs; (2) co-running the 4 jobs with the
streaming job; (3) partitioning the cache between the 4 jobs and the streaming
job; (4) restricting the memory bandwidth usage of the streaming job. For each

case, we record the running time for 1,000 times.

Evaluation Results. As shown in Table 1, when co-running with the stream-
ing job, the data-intensive job‘s running time increases by 13.4%. With cache
partitioning (CP), the job running time reduces by 2.8%. With memory band-
width allocation (MBA), where we restrict 10% for the streaming job, the job
running time decreases back to the time of running alone. This simple experi-
ment shows that cache and memory bandwidth allocation can effectively reduce
interference between jobs and providing this functionality is crucial to enable

the design of efficient multiprogrammed systems using AMCilk.

Table 1: Running time of data-intensive jobs

(1) Alone (2) Co-run (3) Co-run+CP (4) Co-run+MBA
Mean (second)  1.86 2.11 2.05 1.87
Std. (second) 0.0264 0.0600 0.0360 0.0286
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6. Case studies

Multiprogrammed applications are ubiquitous. In this section, we present
five concrete examples of multiprogrammed application scenarios with differing
needs. We implemented all five scenarios using AMCilk on the hardware used
in Section 5 and ask the following question: does the AMCilk implementation
provide improved performance to these applications for the criteria that these
applications care about — in other words, do the responsive and low-overhead
core reallocation and cache partitioning and memory bandwidth allocation pro-
vide a measurable impact on the application-specific performance of these ap-

plications?

6.1. Online Scheduling to Minimize Average Flow Time

In the context of interactive services, users send requests to the service,
and the service must process the requests while optimizing some service-wide
performance criteria. We consider the online scenario where the jobs (compu-
tation done to satisfy requests) are parallel and the service does not know the
characteristics of the jobs (such as their running times or arrival times). One of
the most commonly used quality-of-service metrics is the average flow time
of all jobs, where the flow time of a job is the elapsed time between the job’s
arrival time and its completion time.

Several scheduling algorithms have been designed and theoretically analyzed
for minimizing average flow for parallel jobs [7, 8, 9, 10]. The only one that has
been implemented is the Distributed Random Equi-Partition (DREP)
algorithm [10], which was shown to have good performance theoretically and
practically. Given the DREP scheduler, when a job arrives at time ¢, each pro-
cessor decides to give itself to the new job with probability 1/n; where n; is
the number of unfinished jobs at time t. When a job completes, each processor
assigned to that job randomly picks an unfinished job and gives itself to the
picked job. Agrawal et al.’s implementation [10] shows their scheduler design

has strong practical performance, but the performance can significantly increase
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Figure 7: Average flow time with Bing Search Workload (left) and Finance Workload (right).
Flow time is measured as the time span from the moment when a request arrives at the system
to the moment when the system completes the request. AMCilk implements preemptions at
frame boundaries and this experiment compares the result to preemptions compared at steals

as proposed by prior work.

further if the DREP scheduler is implemented based on AMCilk system, due
to a faster core reallocation mechanism. In particular, in Agrawal et al.’s im-
plementation [10], preemption only occurs at steal boundaries (as described in
Section 3). When a new job arrives, the DREP scheduler allocates certain cores
to it which were allocated to other jobs. The cores only stop working on their
current jobs and start working on the new jobs when their deque becomes empty
and they try to steal. In contrast, AMCilk implements preemptions at frame
boundaries, leading to more responsive reallocations.

We compared the frame-boundary preemption of AMCilk and the steal-
boundary implementation* using the workload distribution from real applica-
tions: bing search workload and finance server workload [15]. For each workload,
we vary the average number of jobs arrived per second to generate three different
system loads: low, medium, and high loads, where the average system utiliza-

tions are approximately 60%, 75%, and 90%. For each setting, we randomly

4The implementation in [10] was based on the Cilk Plus runtime system. For a fair com-
parison with AMCilk, we implemented their steal-boundary preemption in the Cilk-based

Cheetah runtime system.
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Figure 8: Average flow time with different request frequency with Bing Search Workload.
Flow time is measured as the time span from the moment when a request arrives at the

system to the moment when the system completes the request.

generate 100,000 jobs and record the average flow time. Figure 7 shows the
results for the bing search workload and the finance workload. The result indi-
cates that the frame-boundary implementation reduces the average flow times
by 60-70% compared to the steal-boundary implementation for the bing search
workload, and the reduction of average flow time is even larger for the finance
workload. Figure 8 compares both systems by increasing the job arrival rate
of the Bing workload. We can see that AMCilk supports the job arrival rate
of up to 230 jobs per second without being overloaded (where overloading is
indicated by having the average flow time increase unboundedly as time passes)
while the frame-boundary implementation supports at most 160 jobs per second
— an improvement of 43.8%, indicating that fast preemption can indeed lead

to measurable impact on service-level performance for this application.

6.2. Elastic Parallel Real-Time Scheduling

In cyber-physical systems, such as autonomous vehicles and robotics, sen-
sors periodically collect environment data, and the computing component must
process the data to calculate the control demands by the end of the period.
Abstractly, such a system contains a set of real-time tasks — each task 7; is
defined by a tuple {C;,T;}, where C; is the maximum execution requirement
of each job of the task and the task can release jobs with a period (minimum

inter-arrival time) of T;. In the simplest scenario, each job has a deadline of T;
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— it must complete in T} time after it is released.’

We are interested in parallel real-time tasks where the jobs of real-time
tasks may contain internal parallelism — in particular, we focus on elastic
real-time tasks [22]. In this model, tasks can change or tolerate a change in
their utilizations U; = C;/T; (by changing either C; or T; or both) due to the
change in the physical system — for instance, if the system enters a less stable
state and requires a more expensive or faster control algorithm. The tasks that
can increase its utilization are demanding tasks. To satisfy the utilization
increase of a demanding task, additional cores must be given to this task (to
meet its deadline) by reducing the cores given to the non-demanding tasks. Orr
et al. [22] established an elastic scheduling algorithm to calculate the core
allocation for all tasks when a demanding task changes its demand — the details
are complex and not relevant to this discussion — the key is that the platform
running these applications must be able to reallocate cores among jobs due to
external stimuli.

Orr et al. [22] conducted experiments on elastic scheduling using OpenMP;
however, they did not have access to a platform with responsive and low-cost
core reallocation mechanism while jobs were running. In their system, after the
elastic scheduler computes a new allocation, a demanding task gets additional
cores only after the currently running jobs of non-demanding tasks have com-
pleted. Hence, the delay between demanding more cores and actually getting
these cores depends on the other tasks’ period. In contrast, AMCilk allows re-
allocation at any time during the job’s execution, so the demanding tasks get
additional cores much more quickly.

We demonstrate the benefit of fast reallocation on the performance of elastic
task systems by running a simple experiment with 2 tasks. Both tasks calcu-
late the 42nd Fibonacci number. Note that the performance in this application
scenario depends on the latency of core reallocation, which is evaluated in Sec-

tion 5. We vary Task 1’s period from 10 to 600 milliseconds, while fixing Task

5In the general setting, the deadline may be different from the period.
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Figure 9: Elastic scheduling with task 1 and task 2. The period of task 1 reduces to 1/3
of its original value at an arbitrary time while the period of task 2 remains the same. We
show the deadline miss rate (vertical axis) of the task 1 with different original task 1’s period

(horizontal axis).

2’s period as 50 milliseconds. For each setting, we run task 1 for 1000 iterations.
We randomly select 10 iterations to let task 1’s period be reduced to 1/3 of its
original value and let this change lasts for a random length from 1 to 10 itera-
tions. Figure 9 shows task 1’s deadline miss rate — the number of jobs missing
their deadlines divided by the total number of jobs. In real-time systems, the
goal is to not miss any deadlines. Since AMCilk allows for fast core reallocation
regardless of tasks’ period, task 1 never misses any deadlines. In contrast, the
deadline miss rate of Orr et al.’s system depends heavily on the periods of the
two tasks. As task 1’s period gets smaller (compared to task 2’s period), task 1
misses more deadlines.

The ability of AMCilk to reallocate cores with predictable delays that are
independent of job periods is a huge advantage for real-time systems. The goal
of real-time system is to provide an a priori guarantee on the timing properties
of the system. AMCilk makes it easier to provide such guarantees, since the
predictable delays can be incorporated into the a priori timing analysis, while

this is harder to do so when the delay depends on the job characteristic.
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6.3. Adaptive Scheduling Using Parallelism Feedback

Fine-grained multithreaded jobs, such as those written using Cilk, can change
parallelism as they execute. Thus, statically allocating a fixed number of cores
when a job arrives is often inefficient, as the number of cores that can be used
by the job depends on whether it is in its low- or high-parallelism phases. Thus,
Agrawal et al. [13] proposed an adaptive scheduling strategy that dynamically
adapts the number of cores allocated to a job based on an estimate of the
job’s dynamic parallelism. Given a job, this scheduler periodically collects the
number of steal-cycles and work-cycles and mug-cycles on each processor al-
lotted to the job in runtime and uses this information to decide whether the
job needs more processors or whether a program occupies too many processors.
The scheduler dynamically adapts the number of processors of the program ac-
cordingly. While the details are not relevant, this scheduler monitors all jobs’
runtime characteristics and periodically changes the core allocation based on
these characteristics.

We implemented this adaptive scheduling algorithm using AMCilk. This
implementation demonstrates an interesting feature of AMCilk that the previ-
ous examples don’t. For DREP, the core allocation changes only when new jobs
arrive or when jobs complete. In elastic scheduling, core allocation changes due
to external signals. In adaptive scheduling, AMCilk monitors the internal char-
acteristics of the jobs and changes the allocations based on these characteristics.

We evaluate the AMCilk implementation of adaptive scheduling using a
simple experiment with 2 jobs that change their parallelism frequently: each
job repeatedly switches between high- and low-parallelism phases for 10 times,
where the phase of one job is opposite to the other job. In the high-parallelism
phase, the job has one large parallel for-loop with 12,800,000 iterations, while
in the low-parallelism phase, the job has 4000 small parallel for-loops, each with
100 iterations. AMCilk should capture the switch between the high- and low-
parallelism phases of the two jobs quickly and adapt the core allocation of the
two jobs responsively. As a result, the running time for both jobs should be

smaller than the static partition case for better core utilization.
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Figure 10: Adaptive scheduling. We run two jobs at the same time with three schedulers
(horizontal axis): (1) No partition where each job occupies all cores, and so every core has
two jobs running; (2) Eql-partition where each job exclusively uses half of number of cores
in system; (3) A-STEAL where each job gets cores on demand according to its runtime

parallelism (our scheduler).

According to [13], the period of core adaptations should be long enough
to amortize the time for core reallocations. Since AMCilk core reallocation is
272us, we gradually decrease the period from 10ms to 0.5ms and explore the
value of the period such that the running time of the two jobs is minimal.
Finally, we set the period as 1ms in our experiment.

There is no existing implementation of adaptive scheduling, so we compare
against static allocations. We measure the running times of the jobs and normal-
ized them using the running time of 1.65 seconds when each job run individually
on all (38) cores. As shown in Figure 10, if we do not partition the cores and let
the two jobs share the 38 cores, their running times become 2.4 times of their
solo running times. If we statically and equally partition the cores, i.e., giving
each job 19 cores, they complete in 2.32 and 2.34 seconds. Using the AMCilk im-
plementation of adaptive scheduling (with a reasonable setting of parameters),
the two jobs complete in 1.86 and 1.87 seconds — 19.8% and 20.1% reductions
over equal-partition. This is because our implementation is able to monitor
the parallelism of jobs and give fewer cores (about 8 cores) to the job in the
low-parallelism phase and more cores (about 30 cores) to the job in the high-
parallelism phase. More specifically, when a job changes from low-parallelism
to high-parallelism, it experiences 8 times of getting more cores decided by the

adaptive scheduling policy, which takes 47.9 milliseconds in total. The func-
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tionalities provided by AMCilk makes it possible to implement the adaptive

scheduling efficiently for multiple parallel jobs with dynamic parallelism.

6.4. Co-scheduling Throughput and Tail-sensitive Jobs

The previous experiments have explored the impact of the fast core-reallocation

ability of AMCilk. The final experiment explores the impact of its cache and

memory bandwidth partitioning functionality. On many shared platforms, throughput-

oriented applications and latency-sensitive applications may be scheduled to-
gether — for instance, an interactive application and a streaming application
may share the system. While the applications may occupy disjoint cores, they
share memory resources such as the last-level cache and memory bandwidth.
Therefore, the latency-sensitive application may have unexpected performance
slow down due to interferences.

As explained in Section 3, modern hardware often enables cache partition-
ing and memory bandwidth allocation to control the interference between jobs
and improve the quality of service. AMCilk exposes these functionalities to the
AMCilk scheduler through an easy-to-use interface allowing the system admin-
istrator to manage cores, last-level cache, and memory bandwidth at the same
time.

To understand the impact of these functionalities on performance, we run one
latency-sensitive application along with a streaming application. The streaming
application runs in parallel and repeatedly loads data from memory, modifies
it, and stores it back. The latency-sensitive application is an interactive ser-
vice where clients send requests to the service and the service tries to minimize
average flow time (using the DREP scheduler described above in Section 6.1).
Since we wish to understand the impact of cache and bandwidth, each job in this
latency-sensitive application is a sorting job (since sorting is moderately memory
intensive) and the size of jobs vary — 95% of the jobs are short (sorting 500, 000
numbers) and the other 5% are long (sorting 50,000,000 numbers). We run the
latency-sensitive application on cores 2-23 and the streaming application on

cores 24-39. In the experiment, the strategy of cache partitioning and band-
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Figure 11: We co-run streaming and latency-sensitive jobs with four settings (horizontal
axis): (1) No CP/MBA where neither cache partitioning nor memory bandwidth allocation
is set between the two jobs; (2) CP where only cache partitioning is set; (3) MBA where
memory bandwidth allocation is set; (4) CP+MBA where both cache partitioning and memory
bandwidth allocation are set. We run the four settings with two workloads (shown in legend):
(1) Medium workload where the frequency of job requests is medium; (2) High workload where
the request frequency is high.

width allocation is simple, since we only want to emphasize the importance of
the two functionalities. We allocate a small number of cache columns and a little
memory bandwidth to the streaming application while giving a large amount
of cache and bandwidth to the latency-sensitive application. The allocation of
the cache and memory bandwidth does not change throughout the execution.
We compare the average flow time of jobs of the latency-sensitive application
between the settings with the cache and memory bandwidth partitioning and
the setting without the partitioning.

Figure 11 shows the impact of the streaming application on the average flow
time of the interactive application. As a baseline, we ran the interactive appli-
cation alone (without the streaming application) and use its average flow time
to normalize the results of different co-running scenarios. When co-running
without any cache or memory bandwidth partitioning, the average flow time
increases to 5.29 times for medium load and 18.3 times for high load. Only
applying cache partitioning already improves the performance significantly, es-
pecially for medium load where the impact of the streaming application virtually
disappears. In the setting, we only give 3 cache columns to the streaming appli-

cation while we give 8 columns to the interactive application. Cache partitioning
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has minimal impact on its performance since the streaming application itself is
insensitive to cache size. For high load, we see further improvement as we ap-
ply memory bandwidth allocation. In the setting, we give 10% bandwidth to
the streaming application and 90% bandwidth to the interactive application.
Finally, we get virtually all of the performance back when we use both cache
partitioning and memory bandwidth allocation. Noted that reducing memory
bandwidth allocation does have an impact on the streaming application — caus-
ing about 150% slowdown (reducing the processing speed from 1855.64 to 724.14
Mflop/sec).

This experiment shows that it is crucial to use cache partitioning and mem-
ory bandwidth allocation if we wish to get good performance in multipro-
grammed environments. AMCilk allows system administrators to easily access

these functionalities using an easy-to-use interface.

6.5. Subscription of runtime information

We now show that the subscription of runtime information is efficiently im-
plemented in AMCilk. Since the overhead incurred by the collection of runtime
information is negligible, and the information publishing does not block the
critical path of the job execution, we focus on presenting the timing precision to
see whether the information in the subscription represent the runtime internals
of AMCilk accurately.

We developed a program which has two phases — a high parallelism phase
and a low parallelism phase — and the program alternates between the two. The
high-parallelism phase keeps all processors busy and almost all the processors
are idle during the low parallelism phase. Recall that when a worker runs out
of work, it tries to steal work from others. When parallelism is low, workers
have a hard time finding work and therefore, they repeatedly steal. Therefore,
we expect many steal attempts during the low parallelism phase and very few
steal attempts during the high-parallelism phase.

We used this benchmark to measure the accuracy of the information pub-

lished by the AMCilk runtime system. We set the information to be published
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Figure 12: The number of steal cycles on processor 2 in the subscription of runtime informa-
tion. We run a program which repeatedly switch between high-parallelism phase (red) and
low-parallelism phase (white). At 0.1 second intervals, we measure the steal cycles (vertical
axis) of processor 2 which is the total time (nanoseconds) the processor 2 spends on work
stealing in the previous interval. This information is published to the subscriber and the

black line represents the subscriber’s view of this information.

every 0.1 seconds. Figure 12 shows the number of steal cycles on processor 2
(as an example), collected by an external process (on the same machine) via the
subscription of AMCilk runtime information. The red zone is the time when the
program is in the high-parallelism phase. The white zone is the timing when
the program is in the low-parallelism phase. The black line denotes the number
of steal cycles viewed by the external process via the subscription. We see that
when the program enters the low-parallelism phase (white), the number of steal
cycles dramatically increases, and the subscriber is able to see this change quite
rapidly. Similarly, when the program enters the high-parallelism phase, the
number of steal cycles drops to 0 and the subscriber is able to see this change
rapidly after it happens. This experiment provides evidence that the subscriber
can rapidly get an accurate view of the runtime information allowing it to make

appropriate scheduling decisions.

7. Related Work

7.1. Dynamic core reallocation between parallel jobs
The primary feature of AMCilk is the fast and low-overhead core reallocation

mechanism between parallel jobs. There has been intensive prior work over a
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decade ago. Some prior works [25, 26, 27] consider dynamic core reallocation
between parallel jobs in threading primitives. In these works, the parallel job
is implemented with lightweight threads. AMCilk is different from these works
since the parallel jobs running in AMCilk are written in fork-join primitives with
language support. As a result, the problem and the design of core reallocation
in AMCilk are different from those prior works. Moreover, AMCilk is ready to
use since existing legacy written in Cilk language can run in AMCilk without
any modification.

Similar to AMCilk, there are prior works [28, 29, 30, 31] that consider dy-
namic core reallocation between the applications written in fork-join primitives
with language support. However, the parallel job in these prior works executes
in a work-sharing model, where each worker iteratively takes a chunk of work
from a centralized queue and processes it. AMCilk is different from those prior
works, where the parallel job executes in the work-stealing model. In the work-
stealing model, the work is assigned to workers in a decentralized manner. Thus,
the problem and the solution of core reallocation in AMCilk are different from
those prior works.

There are prior works [10, 32, 33, 34] that consider the dynamical core re-
allocation between the applications in the work-stealing model. However, in
these works, putting a worker to sleep is either achieved at the steal boundary
or lacking in description. In Cilk-AP [35], putting a worker to sleep is achieved
at the frame boundary. However, Cilk-AP handles the leftover work of a sleep-
ing worker by work stealing. On the other hand, AMCilk handles the leftover
work by mugging, which maintains the number of deques to steal to be equal
to the number of cores of a job. Thus, AMCilk keeps the theoretical bound
of the work-stealing scheduler [1]. Moreover, none of those systems supports
customizable scheduler nor cache and memory bandwidth management. In ad-
dition, those systems do not support resource occupancy control or admission
control, or subscription of runtime information. On the other hand, AMCilk
supports all these functionalities, which makes AMCilk be an efficient runtime

system for multiprogrammed parallel applications in shared environments.
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7.2. Scheduling multiprogrammed parallel workloads

There is extensive theoretical work on scheduling multiprogrammed parallel
workloads in various situations and for different metrics. For example, Ed-
monds et al. [36] designed a dynamic equipartitioning strategy, which provides
a variety of theoretical advantages. For online systems, researchers have con-
sidered minimizing average flow time [7, 8, 9, 10], maximum flow time [11, 12],
makespan [13] and tail-latency [14, 15, 16]. Various real-time scheduling poli-
cies for parallel jobs also require support for multiple jobs running in a single
machine [17, 18, 19, 20, 21, 22]. AMCilk is specifically designed to support the
above types of scheduling algorithms in an efficient manner.

Several platforms were implemented for various real-world applications, from
interactive cloud services [37, 14, 15, 10] to parallel real-time systems [17, 38,
22]. Among them, some platforms can only run the jobs of the specifically
modified application program [37, 14, 17]; some create one runtime system for
each program and can only support their particular scheduling algorithms [38,
22]; the others use one runtime for multiple jobs, but do not support responsive
core reallocation nor the different scheduling algorithms [15, 10]. AMCilk is
an efficient platform that meets the requirements of real-world applications and
various scheduling algorithms.

In addition, there is intensive prior work on co-scheduling the mix of parallel
applications for various performance goals [39, 40, 41, 42, 43, 44, 45, 46], which
relies on dynamic core reallocation between the applications and exposure of
application runtime. We believe that the fast core reallocation and the support
of the shared environment of AMCilk make those co-scheduling designs efficient

in implementations.

8. Conclusion

We presented AMCilk, a framework for multiprogrammed parallel work-
loads based on the Cilk runtime system. AMCilk allows system administra-

tors to customize scheduling policies to support various application scenarios
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and performance metrics via the low-overhead and responsive core reallocation
mechanism and cache and memory bandwidth partitioning. Supporting mul-
tiprogrammed workloads efficiently and flexibly is crucial when running large
scale systems. While AMCilk is designed for shared memory systems and for
a particular language, we believe that the lessons learned in the implementa-
tion and performance evaluation of AMCilk are more generally applicable in
the design of both small and large-scale systems, such as servers and clouds.
The fact that we were able to implement the different applications described in
Section 6 indicates that it is possible to design a unified framework that can
be easily customized for specific application needs. In addition, our experience
with the applications indicates low-overhead and responsive preemption can sig-
nificantly impact the performance of these applications along with the metrics
that these applications care about. On the other hand, running different jobs in
the same runtime system potentially causes issues. The most obvious problem
is the safety issue when different jobs share the memory, where one job may ex-
pose the data to another job. To mitigate this safety issue, a memory allocation
mechanism for jobs is highly desirable. In particular, a global variable created
by a job should be only visible to the threads within the same job. It would be
greatly beneficial to have such constructors when multiprogrammed jobs run on

the shared memory platform.
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