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Nitrogen atoms are found in a multitude of biologically 
important molecules and play a crucial role in modu-
lating the structure and function of DNA, proteins and 
metal coordination compounds1,2. Countless biologically 
active natural products and pharmaceuticals contain 
N atoms, such that general methods for the predicta-
ble and efficient formation of C–N bonds are highly 
desirable. A common and effective way to transform 
C=C or C–H bonds into new C–N bonds is through a 
transition-​metal-​catalysed nitrene transfer (NT) reac-
tion. The first evidence for such a reaction came from 
Kwart and Khan, who, in 1967, observed Cu-​catalysed 
decomposition of a sulfonyl azide3,4. Since this initial 
report, catalytic functionalization of organic molecules 
via metal–nitrene intermediates RNMLn has become a 
topic of intense interest in organic synthesis5–17.

There are two major ways to introduce C–N bonds 
into organic molecules through NT: the NR can add 
to a C=C bond (aziridination; Fig. 1a) or insert into a 
C–H bond (amination). Although numerous exam-
ples of racemic NT promoted by a variety of transition 
metals are known8–10,13,14,16, the development of general 
enantioselective reactions has been substantially more 
challenging. Nonetheless, rapid progress continues to 
be made beyond the chiral metal complexes of ligands 
that include bis(oxazoline) (BOX) derivatives, bis(Schiff 
base)s, chiral tetracarboxylates, salens and porphyrinato 
ligands, which were all reported primarily in the 1990s. 
Excitingly, over the past 5 years, the synthetic commu-
nity has witnessed a renaissance in asymmetric NT 
chemistry, largely owing to new catalyst designs that 

mediate unprecedented enantioselective C–N bond 
formations (Fig. 1b).

This Review focuses on catalyst design strategies for 
selective, efficient asymmetric C–N bond formation 
through NT, involving both C=C aziridination and C–H 
amination pathways. Reviews that have appeared over 
the past decade only partially cover the topic of cata-
lytic, enantioselective NT18–21, and are largely limited to 
a specific transformation, such as either alkene aziridina-
tion or C–H bond amination. A comprehensive review 
of asymmetric NT methods covering alkene aziridina-
tion and C–H amination has not appeared since 2003 
(ref.22). Herein, we cover asymmetric NT reactions and 
give representative examples of the products that can be 
prepared using these methodologies. We offer insights 
into catalyst design strategies and new opportunities to 
access unexplored chemical space.

General NT mechanism
A simplified mechanism of transition-​metal-​mediated 
NT23–29 (Fig. 1a) involves initial reaction of a metal cat-
alyst MLn with a nitrene precursor RN=LG (where LG 
denotes a leaving group such as PhI, N2 or CO2) to give 
a metal–nitrene RNMLn. This reactive intermediate can 
engage a C=C bond to form an aziridine or insert into 
a C–H bond to generate an amine product. Depending 
on the electronic structure of the nitrene species, the 
reaction can occur through either a concerted or a step-
wise pathway25–28,30–32. The metal–nitrene intermediate 
typically exists in either a singlet or a triplet electronic 
ground state. Singlet metal nitrenes generally perform 
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NT through concerted pathways involving asynchro-
nous transition states. Concerted NT has been reported 
for [Rh2(O2CR)4] catalysts27, as well as Ru-​based and 
Ir-​based half-​sandwich33,34 and chiral-​at-​Ru complexes35. 
In contrast, triplet nitrene complexes afford radical 
intermediates by H-​atom transfer or radical addition to 
the alkene, followed by radical recombination. Metals 
that participate in stepwise NT include Fe, Ru, Cu, Co 
and Ag, among others17,25,26,28,32,36–38. Ru–nitrene com-
plexes can exhibit reactivity characteristic of both sin-
glet and triplet complexes, indicating that the nature of a  
metal catalyst can influence the electronic structure of 
the resulting metal–nitrene and affect the reaction out-
come. In many cases, particularly in intramolecular NT, 
radical recombination is sufficiently rapid that the ami-
nation may appear to be concerted and cannot be distin-
guished experimentally from a stepwise pathway. These 
two mechanisms have different transition state (TS) 
geometries and can lead to different stereochemical out-
comes. It is crucial to understand the interplay between 
metal–nitrene electronic structure and the mechanism 
to rationally design asymmetric NT catalysts.

D2-​symmetric Co porphyrinates
Metal–porphyrinato complexes are arguably the most 
frequently used asymmetric NT catalysts. Early work 
by Che and colleagues focused on the development 
of chiral Mniii and Ruii porphyrinato complexes for 
C–H amination of sulfamate-​derived iminoiodinane 
nitrene precursors in up to 88% enantiomeric excess 
(ee) (refs29,39–42). Inspired by these initial reports, Zhang 
and colleagues prepared [Co(P2)], a Coii catalyst sup-
ported by a D2-​symmetric porphyrinato P22− (Fig. 2a) 
that proved capable of transforming monosubstituted 
and 1,1′-​disubstituted alkenes into aziridines with 
good asymmetric induction (80–99% ee)43 (Fig. 2b). 
Another key factor to the success of this asymmet-
ric NT Coii catalyst system is the use of azide nitrene 

precursors. Phosphoryl44,45, sulfonyl43 and aryl azides46 
lose N2 in the presence of chiral amidoporphyrinato 
complexes, affording radical Coiii–nitrene intermedi-
ates that add to alkenes as part of asymmetric azirid-
ination. Computational and experimental studies 
suggest that these Coiii–nitrene radicals engage alkenes 
in a stepwise radical addition–substitution pathway32,47,48. 
2,4,6-​Trifluorophenyl azide afforded particularly high 
yields and enantioselectivities in the aziridination of 
styrene with Coii catalyst [Co(P1)], while not requir-
ing excess olefin46. Other ortho-​fluoroaryl azide sub-
strates gave similar results, with ee values up to 96% in 
enantioselective aziridinations of styrenes. Good yields 
were also observed using [Co(P4)] at lower loadings 
(5 → 1 mol%; Fig. 2c). Zhang and colleagues hypothe-
sized that a non-​covalent N–H···F interaction between  
the amide N–H of the porphyrinato and the F atoms of the  
fluoroaryl groups of a nitrene precursor stabilized the TS 
and accelerated the reaction. This unique nitrene pre-
cursor has recently also enabled enantioselective ben-
zylic C–H amination of arylacetate, arylcrotonate and 
aryltetrolate esters49.

In 2017, Zhang and colleagues reported that another 
chiral Coii complex [Co(P3)] (Fig. 2a) promotes intra-
molecular aziridination of allyl azidoformates to afford 
fused aziridine/oxazolidinone bicycles50. Although 
the majority of the [3.1.0]-​bicyclic aziridine products 
were not isolable owing to their low stability, in situ 
ring-​opening reactions afforded enantioenriched oxa-
zolidinones with high diastereoselectivity and enanti-
oselectivity. A pair of disubstituted allyl azidoformates 
with opposite alkene stereochemistry ((E)-1 and (Z)-1) 
afford the same trans-​aziridine product (E)-2 as a single 
diastereomer under the same conditions, supporting a 
stepwise radical mechanism (Fig. 2d).

The present Coii catalysts have been used to synthe-
size 6-​membered cyclic sulfamides51 and 5-​membered 
cyclic sulfonamides52, as the Coiii–nitrene intermediates 

RN MLn

RN LG

MLn

RN MLn

LG

H
C

RHN
C

R
N

C=C aziridinationC–H amination

M = Rh, Ru, Ir, Co, Mn, Fe, Cu, Ag

Singlet
Concerted

Triplet
Stepwise

(LG = PhI, N2, CO2)

N
um

be
r o

f p
ub

lic
at

io
ns

a b

0

5

10

1991–
1995

1996–
2000

2001–
2005

2006–
2010

2011–
2015

2016–
2020

15

20

25

30

35
Cu–diimine

M
2 

(RCOX)
4
 (Rh, Ru; X = O, NH)

M–porphyrin (Mn, Ru, Co)

M–salen (Mn, Ru, Ir)

M–bis(oxazoline) (Cu, Fe, Ru, Ag)

M–half-sandwich (Ir, Ru, Rh, Co)

Chiral-at-M (Ru, Os)

Period
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Fig. 2 | Asymmetric nitrene transfer reactions catalysed by Co 
complexes of D2-symmetric porphyrins. a | Porphyrinatocobalt(ii) 
catalysts with amide substituents offer coordination sites near chiral H-​bond 
donors43–46,49–55. b | [Co(P2)] outperforms [Co(P1)] in asymmetric styrene 
aziridination with trichloroethoxysulfonyl azide (TcesN3)43. c | Asymmetric 
styrene aziridination works even better when using 2,4,6-​trifluorophenyl 

azide as the nitrene precursor46. d–f | Spectroscopic evidence suggests that 
the Co catalysts participate in stepwise nitrene transfer involving radical 
intermediates50–52. g | Co-​catalysed aminations of reactive benzylic C–H 
bonds can be enantiodivergent in that a prochiral substrate can afford 
either enantiomer, depending on the catalyst used54. de, diastereomeric 
excess; ee, enantiomeric excess; HAT, H-​atom transfer; rt, room temperature.
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are also active for C–H amination. In the case of the cyclic 
sulfamides, [Co(P3)] again proved the most effective 
catalyst for the intramolecular C–H amination of sulfa-
moyl azides, leading to high yields and enantioselectivi-
ties with benzylic, allylic, propargylic and α/β-​carbonyl 

C(sp3)–H bonds51. Conducting the reaction in the pres-
ence of TEMPO (2,2,6,6-​tetramethylpiperidinyloxy) also 
affords the adduct 5 (Fig. 2e), providing evidence that 
the amination involves radical intermediates. Taking 
advantage of these prochiral intermediates, this work 
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was extended to enantioconvergent amination of race-
mic tertiary C–H bonds53. Arylsulfonyl and alkylsulfonyl 
azides are activated by the catalyst [Co(P2)] in benzylic, 
allylic and alkyl C–H bond aminations that give cyclic 
sulfonamides52. This catalyst has a more rigid confor-
mation than earlier catalysts, and this is proposed to 
induce a high degree of asymmetric induction owing 
to intramolecular N–H···O H-​bonding in the (S)-(−)-
2-​tetrahydrofurancarboxamide units. The presence of 
radical intermediates was further supported by an ole-
fin isomerization study in which the allylic C–H bond 
amination of azide (Z)-6 resulted in diastereoconvergent 
formation of sulfonamide (E)-7 (Fig. 2f).

In 2019, the Zhang group further expanded the 
scope of intramolecular C–H amination to sulfamoyl 
azides containing β-​C(sp3)–H bonds using a new class 
of chiral Coii complexes54. The 1,2-​diamine motifs were 
synthesized with high enantioselectivity by employing 
D2-​symmetric chiral amidoporphyrins that contain alkyl 
bridges across two chiral amide units on both sides of 
the porphyrin plane (H2P5 and H2P6)55. The two cata-
lysts [Co(P5)] and [Co(P6)], which differ largely by two 
ethylene groups, convert prochiral precursor 8 into the 
two enantiomers (S)-9 and (R)-9, respectively (Fig. 2g, 
left). This cavity effect was further exaggerated by using 
either 3,5-​di(tert-​butyl)phenyl or 2,6-​dimethoxyphenyl 
groups as the 5,15-​aryl substituents on the porphyrinato 
ligand. The observed enantiodivergence is remarkable 
given that only the distal alkyl bridges and the remote 
achiral substituents were changed, without altering the 
point chirality of the ligand. Density functional theory 
(DFT) calculations provided evidence for a sequence of 
enantiodetermining H-​atom transfer and stereoreten-
tive, radical recombination steps (Fig. 2g, right), as well as 
stereochemical models for the bridge-​length-​dependent 
H-​atom transfer.

Point and axially chiral metal–salen complexes
Chiral ligands derived from H2salen (2,2′-​ethylenebis 
(nitrilomethylidene)diphenol) have been staples in 
asymmetric catalysis. In 1993, Katsuki and colleagues 
demonstrated that asymmetric induction in the inter-
molecular aziridination of styrene is possible using 
[Mn(s1)]OAc (Fig. 3d), which features a salen deriva-
tive (s12−) that is chiral on account of the 1,2-​diamine 
backbone and a salicylaldehyde substituent56. In 
styrene aziridination with [N-(p-​toluenesulfonyl)
imino]-​phenyliodinane (PhI=NTs) as the nitrene pre-
cursor, [Mn(s1)]OAc gave only a moderate 61% ee. The 
point chirality of the salicylaldehyde substituent can be 

replaced with planar chirality to give [Mn(s2)]OAc,  
a catalyst that affords 94% ee (ref.57) (Fig. 3a). Matching  
the planar and axial chiralities was crucial for efficient 
asymmetric induction — the ee dropped to 13% when the  
diastereomer of [Mn(s2)]OAc was used. Despite  
the impressive improvement in enantioselectivity, the 
further development of Mniii(salen) catalysts for asym-
metric aziridination was hindered by the requirement 
for a large excess of styrene substrate, narrow substrate 
scope and a lack of understanding of the role of pyri-
dine N-​oxide additives. Asymmetric allylic and ben-
zylic C–H aminations of cyclic substrates proceed with 
up to 89% ee using a [Mn(s3)]PF6 catalyst derived from 
(1S,2S)-​trans-1,2-​cyclohexanediamine and brominated 
salicylaldehyde58 (Fig. 3b).

The catalytic efficiency and enantioselectivity of 
intermolecular olefin aziridination can be improved 
dramatically by using azides and a Ruii catalyst to read-
ily form Ru–nitrene intermediates59–63 (Fig. 3c). Thus, 
one can minimize the olefin loading by moving from 
a Mniii/iminoiodinane to a Ruii/azide system. Zhang 
and colleagues also used azide precursors in their 
Co-​catalysed NT methods development (mentioned 
in the previous section). Although p-​toluenesulfonyl 
azide (TsN3) resulted in good enantioselectivity, it gave 
only moderate catalytic turnover number (TON) when 
using the chiral catalyst [Ru(s4)(CO)], which bears a 
trans-1,2-​diaminocyclohexane backbone with point 
chirality and two 2′-​phenyl-1,1′-​binaphthyl units with 
axial chirality59. Replacing the meta-​H atoms of the Ph 
substituent with F atoms (and adding para-​Me group for 
ease of synthesis) furnishes [Ru(s5)(CO)], a catalyst that 
improves the TON by 24×, while maintaining a similar 
ee (ref.60). The greater activity was thought to result from 
the F atoms protecting the ligand from the competing 
amination of meta-​C–H bonds.

To increase the utility of asymmetric aziridina-
tion, Katsuki and Uchida studied the advantages 
of different types of azide precursors, including 
p-​nitrophenylsulfonyl azide (NsN3) and 2-(trimethyl-
silyl)ethanesulfonyl azide (SESN3)61, whose respective 
Ns-​N-​protecting and SES-​N-​protecting groups can be 
removed under mild or orthogonal conditions. However, 
these precursors are not interchangeable and must be 
paired with the appropriate Ruii catalyst, limiting gen-
eralizability. For example, a [Ru(s6)(CO)] catalyst 
bearing 2′-​Ar rings containing two meta-​Cl groups 
and a para-​SiMe3 group is efficient for styrene azirid-
ination with NsN3 but gave a lower TON with SESN3. 
The [Ru(s6)(CO)]/SESN3 combination was later found 
to also be highly compatible with vinyl ketones64. By 
2012, further catalyst tuning afforded [Ru(s7)(CO)], 
which features meta-​CF3 groups and converted a 
variety of monosubstituted and 1,2-​disubstituted ole-
fins into N-​SES-​protected aziridines with high TONs 
and synthetically useful ee values (generally ≥90%)63.  
A model based on the absolute stereochemistry of an 
aziridine product and the structure of prototypical cata
lyst [Ru(s4)(CO)], as determined by X-​ray crystallo
graphy, was proposed62 (Fig. 3c, bottom). According to 
the model, the olefin substrate approaches from the side 
of the imino group adjacent to the bottom naphthalene 

Fig. 3 | metal–salen complexes catalyse asymmetric nitrene transfer. a | Early Mniii 
catalysts could mediate asymmetric styrene aziridination but required large excesses  
of styrene and a pyridine N-​oxide additive56,57. b | Asymmetric Mniii-​catalysed allylic and 
benzylic C–H aminations with iminoiodinanes can proceed with up to 89% ee (ref.58).  
c | Ruii catalysts improve on the early Mniii systems to effect asymmetric aziridination  
with efficient stereochemical induction and without the need for excess styrene or 
additives59–63. d | A variety of salen2− ligands can support Mn, Ru and Ir for asymmetric 
nitrene transfer (NT)56–66. e | Improved Ruii-​catalysed intermolecular asymmetric C–H 
amination66. f | An Ir catalyst mediates intramolecular benzylic C–H amination65.  
g–i | Mechanistic studies of asymmetric NT suggest that chiral [Ru(salen)CO] derivatives 
perform NT through a concerted pathway63,66. ee, enantiomeric excess; rt, room 
temperature; TON, turnover number.
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ring of the s42− ligand. The bulkiest substituent of the 
incoming alkene points up and away from the N-​sulfonyl 
group to minimize steric repulsion, as the N-​sulfonyl 
group is pushed to the front by the 2′-​aryl substituent 
on the rear left side (drawn in bold). As a result, the 

(S)-​aziridine product forms when Ru is supported by a 
(R,Ra)-​salen2− ligand.

The [Ru(s5)(CO)] catalyst described above, which 
was developed for olefin aziridination65, can also effect 
intermolecular amination of benzylic and cis-​allylic 
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C–H bonds with high enantioselectivity using SESN3. 
For example, indane is converted into a chiral derivative 
with high selectivity66 (Fig. 3e). If, instead, intramolecular 
C–H amination of arylsulfonyl azides is desired, one can 
use the Iriii complex [Ir(s8)(p-​tolyl)] to accomplish effi-
cient synthesis of benzosultams through regioselective 
and enantioselective benzylic C–H amination64 (Fig. 3f).

Katsuki and Uchida have carried out several exper-
iments to elucidate the behaviour of Ru(salen)–nitrene 
intermediates (Fig. 3g–i). Combining cis-​β-​methylstyrene 
and SESN3 with catalyst [Ru(s7)(CO)] affords a 
cis-​aziridine as a single diastereomer63 (Fig.  3g). 
Examining the C–H amination of the radical clock 10 
with [Ru(s5)(CO)] gave two diastereomeric amination 
products 11 in low yields with no ring-​opened product 
detected66 (Fig. 3h). Finally, a cis-​β-​ethylstyrene substrate 
affords both the C–H amination product 12 and the 
aziridination product 13, with no experimental evidence 
of radical intermediates66 (Fig. 3i). These results suggest 
that Ru(salen) catalysts perform NT through a concerted 
mechanism, although the existence of short-​lived radical 
species cannot be completely ruled out.

Dirhodium catalysts
In the late 1990s, Müller and colleagues reported the 
first examples of asymmetric induction in intermo-
lecular aziridination67 and C–H amination68 using an 
iminoiodinane precursor and a RhiiRhii catalyst featur-
ing an axially chiral binaphthyl phosphate ligand. This 
ligand type was soon replaced by optically active carbo
xylato and carboxamidato ligands (Fig. 4c), which are  
more modular69–79. In 2003, Hashimoto and colleagues  
described the dirhodium tetracarboxylate [Rh2(C1)4] as 
part of a general protocol for the intermolecular ami-
nation of cyclic benzylic C–H bonds with NsN=IPh 
in moderate ee (70–84%)69. The [Rh2(C1)4] catalyst 
performed substantially better than its unchlorin-
ated analogue and was later used in desymmetriza-
tion of adamantane derivatives70. Reddy and Davies  
improved this catalyst by replacing each tBu group with 
a 1-​adamantyl to give [Rh2(C3)4], a more general cata-
lyst that tolerates acyclic benzylic C–H bonds71 (Fig. 4a). 
More recently, Dauban’s group further optimized the 
chemistry by developing [Rh2(C4)4], the fluorinated ana-
logue of [Rh2(C3)4], which operates on in situ-​generated 
PfbsN=IPh (Pfbs = pentafluorobenzylsulfonyl) as a 

nitrene precursor72,73 (Fig. 4b). This practical Rh-​catalysed 
C–H amination reaction needs only low catalyst load-
ings, obviates the need for excess substrate, can be 
carried out on a gram scale and has great potential in 
process chemistry. The benzylic C–H amination toler-
ates a wide variety of both electron-​withdrawing and 
electron-​donating aryl substituents on ethyl arenes, 
although the ee erodes when the aryl side chain is 
longer than Et. The benzylic amination product 14 was 
obtained in 88% yield and 82% ee on a multi-​gram scale, 
while 15 was obtained in 70% ee. In addition, the Pfbs 
protecting group can be readily removed by treating the 
products with pyridine in MeCN/H2O to afford the free 
amines in quantitative yield.

In a series of intramolecular C–H aminations, Reddy 
and Davies demonstrated that optically active oxazolid-
inones (β-​amino alcohol motifs) can be generated in 
moderate ee (43–82%) using [Rh2(C3)4] as the catalyst71 
(Fig. 4d). Lebel et al.’s method to generate Rh–nitrene 
intermediates from N-​tosyloxycarbamates80 was used 
to selectively activate one of the two prochiral benzylic, 
aliphatic and allylic β-​C(sp3)–H bonds, albeit with lim-
ited substrate scope. In contrast, the synthesis of enan-
tioenriched γ-​amino alcohol motifs by Rh-​catalysed 
NT required a new valerolactam-​derived dinuclear Rh 
catalyst to achieve a high level of asymmetric control in 
the cyclization of sulfamate esters79. Zalatan and Du Bois 
showed that the previously used dirhodium tetracarboxy
lates derived from α-​amino acids gave poor asymmetric  
induction (0–20% ee). A decrease in ee over the course 
of the reaction indicated that catalyst degradation may  
be the major reason for low enantioselectivity. Thus, more  
electron-​donating carboxamidato ligands were evaluated 
to enhance backbonding of the Rh centres to the π-​acidic 
nitrene ligand, thereby stabilizing the Rh–nitrene inter-
mediate. Indeed, a valerolactam-​derived [Rh2(A1)4] 
catalyst showed a promising ee of 54% when tested 
with sulfamate ester 16, which has benzylic γ-​C(sp3)–H 
bonds (Fig. 4e). Replacing the phthalimidyl group in the 
catalyst with a secondary sulfonamide enables intra-
molecular H-​bonding between the N–H group and the 
carbonyl oxygen in [Rh2(A2)4], further enhancing cat-
alyst stability and giving oxathiazinane 17 in 85% yield 
and 92% ee. The catalyst could induce good-​to-​excellent 
enantioselectivity (>80% ee) on 3-​aryl-​substituted pro-
pyl and cis-​homoallyl sulfamate esters. The improved 
oxidative stability of [Rh2(A2)4] relative to [Rh2(A1)4] is 
evidenced by the respective RhiiRhiii/ii redox potentials 
(330 and 120 mV versus saturated calomel electrode).

There is often more than one reactive site in a sub-
strate, so chemoselectivity and regioselectivity are 
important considerations in the development of asym-
metric NT methodologies. For example, a [Rh2(A2)4] 
catalyst heavily favours C–H insertion over aziridina-
tion when both a reactive C–H bond and a C=C bond 
are present in a substrate such as 18 (ref.79) (Fig. 4f). 
Although trans and terminal olefins did not perform as 
well as cis olefins in terms of asymmetric induction, the 
allylic C–H amination versus C=C aziridination (i/A) 
ratios were still >20:1. This remarkable chemoselec-
tivity, as compared with a generic RhiiRhii NT catalyst  
such as [Rh2(OAc)4], raised the question as to whether the  

Fig. 4 | Dirhodium tetracarboxylates and tetracarboxamidates catalyse asymmetric 
nitrene transfer. a | RhiiRhii tetracarboxylates mediate asymmetric C–H amination of 
acyclic benzylic C–H bonds69,70. b | An improved catalyst bearing more electron-​poor 
ligands performs C–H amination even at very low loadings72,73. c | Aside from RhiiRhii 
complexes of chiral carboxylato ligands, those of carboxamidato ligands can also catalyse 
asymmetric nitrene transfer65–72,74. d | As with the intermolecular benzylic C–H aminations, 
RhiiRhii species can mediate intramolecular asymmetric reactions71. e,f | The carboxami-
dates are useful for asymmetric intramolecular C–H bond amination79. g | The cyclopropyl 
ring in a radical clock substrate would open were radical intermediates involved in the 
RhiiRhii-​catalysed C–H bond amination. The intact ring suggests that the reaction is 
concerted79. h | Asymmetric aziridination of silyl enol ethers affords ketones with chiral 
α-​C centres in high ee (ref.74,75). i | The same reaction with silyl ketene acetals affords 
intact esters with chiral α-​C centres76. j | Asymmetric allylic C–H bond amination of cyclic 
silyl enol ethers instead gives ketones with chiral β-​C centres77. k | Intermolecular 
asymmetric benzylic C–H bond amination relies on H-​bonding for enantioselectivity83. 
ee, enantiomeric excess; rt, room temperature; TS, transition state.
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mechanism of NT changes from the concerted asynchro-
nous pathway generally accepted for dirhodium tetra
carboxylates to a stepwise pathway. However, subjecting 
a radical clock substrate 19 to the reaction conditions 
gave no ring-​opened products, suggesting that a stepwise 
NT pathway is likely not operative (Fig. 4g).

In an extension of their previous work, Hashimoto 
and colleagues discovered that enantioenriched 
α-​amino ketones can be synthesized from silyl enol 
ethers by enantioselective aziridination followed by 
ring-​opening74,75. The best enantioselectivity and reac-
tion rate came when using o-​NsN=IPh in combination 
with [Rh2(C2)4], the fluorinated analogue of [Rh2(C1)4] 
(Fig. 4h). The utility of this Rh-​catalysed NT protocol 
was further demonstrated by an asymmetric formal 
synthesis of (–)-​metazocine74 and a total synthesis of 
(–)-​ritodrine75 from an easily accessible α,β-​unsaturated 
enone. The chemistry was also applied to silyl ketene 
acetals derived from methyl phenylacetates to provide 
phenyl glycine derivatives in high yields and excellent 
ee (ref.76) (Fig. 4i). Interestingly, when cyclic silyl enol 
ether 20 was subjected to the same conditions, desilyl-
ation afforded only β-​amino ketone 21 — no trace of 
the expected α-​amino ketone was observed77 (Fig. 4j). 
This result suggests that cyclic silyl enol ethers prefer to 
undergo allylic C–H amination instead of C=C azirid-
ination, which is partially due to the low reactivity of 
(E)-​silyl enol ethers towards aziridination. The β-​amino 
ketone 21 was then carried forward to achieve an  
asymmetric formal synthesis of (−)-​pancracine.

In 2013, Bach and colleagues showed that intro
ducing a chiral octahydro-1H-4,7-​methanoisoindol- 
1-​one skeleton into a known [Rh2(esp)2] (esp2− = α,α,α′,α′-​ 
tetramethyl-1,3-​benzenedipropionato) NT catalyst81,82 
can enable regioselectivity and enantioselectivity 
in intermolecular benzylic C–H bond amination of 
3-​benzylquinolones83 (Fig. 4k). The chiral portion of the  
new [Rh2(esp*)2] catalyst can engage in two-​point 
H-​bonding with substrates containing an adjacent 
H-​bond acceptor and donor84–86. This substrate bind-
ing is consistent with the observed regiocontrol and 
enantiocontrol in substrate 22. The C2-​symmetric Rh 
catalyst was also used for the asymmetric conversion of 
3-alkenylquinolones into 2,3-​dihydrofuro[2,3-​b]quino
lines through a cascade aziridination and intramole
cular ring-​opening87. This strategy to tether the chiral 
octahydro-1H-4,7-​methanoisoindol-1-​one unit to a 
known NT catalyst for asymmetric induction through 
H-​bonding was again demonstrated with the hetero-
leptic complex [AgiLL′]+, which features one achiral 
1,10-​phenanthroline derivative and a similar chiral 
ligand with a H-​bonding donor. The complex efficiently 
catalysed site-​selective and enantioselective C–H amina-
tion of CH2 groups in 2-​quinolones and 2-​pyridones88. 
As with [Rh2(esp*)2], the reaction outcome was rational-
ized by nitrene C–H insertion occurring within a chiral 
H-​bonded metal complex that targets only one of two 
prochiral methylene C–H bonds in both a site-​selective 
and an enantioselective manner.

In terms of catalysts for asymmetric NT, the tetra-
carboxylate paddle-​wheel architecture has been pre-
dominantly associated with RhiiRhii species. Although 

Du Bois and colleagues have shown that achiral RuiiRuiii 
tetracarboxylates and tetraamidates are highly efficient 
in NT owing to their high 1e− oxidation potentials25, chi-
ral analogues have not been realized until very recently. 
Matsunaga and colleagues showed that mixed-​valent 
paddle-​wheel salts [Ru2((S-​BPTPI)4)]BArF

4 (BPTPI− is 
a 3-(benzene-​fused-​phthalimido)-2-​piperidinonate; 
BArF

4
− = tetrakis[3,5-​bis(trifluoromethyl)phenyl]borate) 

and [Ru2(C1)4]BArF
4 can aminate benzylic and cis-​allylic 

C–H bonds in good yields and enantioselectivity (91–
95% ee)78, similar to the Rh system that Du Bois and 
colleagues described previously. Indeed, cyclic voltam-
metry indicates that the two RuiiRuiii catalysts are more 
resistant to oxidation than their RhiiRhii analogues.

Metal BOX complexes in asymmetric NT
C2-​symmetric BOX ligands are among the most widely 
used chiral ligands in metal-​catalysed asymmetric syn-
thesis because of their ease of synthesis, modularity and 
demonstrated ability to induce high levels of enantiose-
lectivity in diverse transformations89. Since the early 
examples of Cui(BOX)-​catalysed enantioselective azirid-
inations reported by Evans et al.90,91 and Lowenthal and 
Masamune92, several BOX-​supported metal complexes 
have been developed and used as efficient asymmet-
ric NT catalysts93–103. In 2007, Dauban and colleagues 
reported that [Cu(CH3CN)4]PF6 combines with the 
2,2′-​isopropylidene-​bis[(4S)-4-​tert-​butyl-2-​oxazoline] 
((S,S)-​tBu-​BOX) ligand to form an active catalyst for 
enantioselective intramolecular aziridination of homoal-
lylic sulfamate esters with up to 84% ee (ref.94). This first 
example of asymmetric synthesis of bicycloaziridines 
using intramolecular NT was unfortunately limited to 
1,2-​disubstituted alkenes for good enantioinduction. 
In 2017, the scope and efficiency of intramolecular 
aziridinations was further improved by Schomaker and 
colleagues by using a AgClO4/(S,S)-​tBu-​BOX catalyst to 
operate on carbamate ester substrates. The system tol-
erated both 1,2-​disubstituted and 1,2,2-​trisubstituted 
alkenes to generate [3,6]-​carbamate-​tethered bicy-
clic aziridine 28 in good yield and with ee up to 92%96 
(Fig. 5a). Interestingly, X-​ray crystallography showed 
that the absolute configuration of the asymmetric cen-
tres formed using the Agi catalyst was inverted relative 
to the product using Dauban and colleagues’ Cui com-
plex, despite both group 10 metals being coordinated 
to (S,S)-​t-​Bu-​BOX. This result implies a significant 
geometric difference in the enantiodetermining TS 
between the two catalysts.

Further development of the Agi(BOX) system by 
Schomaker and colleagues enabled intramolecular 
asymmetric amination of propargylic C–H bonds with 
up to 99% ee (ref.97) (Fig. 5b). This was inspired by earlier 
work demonstrating that Agi supported by an achiral 
BOX ligand can effect efficient intramolecular γ-​C–H 
amination of carbamate esters104. Taking advantage of 
the modularity of the BOX scaffold, a new Min-​BOX 
ligand was designed according to a structure–activity 
relationship analysis of BOX ligand derivatives and the 
enantioselectivities of the respective Agi catalysts for 
carbamate ester substrates bearing γ-​alkynyl groups. 
Although many aryl-​substituted BOX ligands are known 
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for asymmetric catalysis, the Min-​BOX ligand uniquely 
features a fully substituted stereocentre adjacent to the 
coordinating N atom and bulky meta-​tBu groups on 
the aryl ring. The fully substituted C centre, where H is 

substituted with a Me group, is particularly interesting, 
as it might be expected to reduce facial discrimination in 
the enantiodetermining TS. Schomaker and colleagues 
also demonstrated that the size of the alkyne substituent 
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Fig. 5 | metal complexes of bis(oxazoline) ligands catalyse asymmetric 
nitrene transfer. a | Cui and Agi derivatives catalyse asymmetric 
intramolecular aziridination94,96. b | Agi-​catalysed propargylic C–H bond 
amination proceeds with good yields and ee (ref.97). c | Bis(oxazoline) (BOX) 
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oxazoline rings can be chiral. d | The Ruii precatalyst [Ru(PyBOX)Br2(C2H4)] 
enables asymmetric intramolecular C–H bond amination95. e | The PyBOX 
ligand can also support Feii to realize alkene aminofunctionalization100,101. 
dr, diastereomeric ratio; ee, enantiomeric excess; TS, transition state. Part b 
adapted with permission from ref.97, ACS.
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correlates with enantioselectivity by establishing a lin-
ear free-​energy relationship using the modified Taft 
equation and Charton’s steric parameters105–109. As pre-
dicted from the relationship, an alkyne substituted with 
a bulky SitBuPh2 group resulted in the highest 99% ee, 
while an alkyne with Me afforded lower 90% ee (Fig. 5b). 
DFT calculations were conducted to investigate the 
effects of Min-​BOX’s fully substituted C centres located 
α to the coordinating N atoms and the meta-​alkyl sub
stitution of the aryl ring on enantiodetermining H-​atom 
transfer110–113. The TS leading to the (R) configura-
tion of the C–H amination product was favoured by 
1.7 kcal mol−1 over the structure leading to the (S) pro
duct. This minimizes steric strain between the alkyne, 
the fully substituted C centre and the aryl substituents,  
in accordance with experimental observations.

Derivatives of the 2,6-​bis(oxazolin-2-​yl)pyridine 
(PyBOX) ligand have been successfully used in asym-
metric NT reactions in combination with Ru and Fe 
salts. The larger binding site offered by the rigid terden-
tate PyBOX ligand supports a Ruii centre in the isolable 
octahedral complex [Ru(PyBOX)Br2(C2H4)]114. Blakey 
and colleagues demonstrated that a cationic variant of 
this complex, generated by abstraction of one Br− with 
AgO3SCF3, effectively catalyses intramolecular C–H 
amination of sulfamate ester substrates containing ben-
zylic or trans-​allylic C–H bonds95 (Fig. 5d). Intriguingly, 
substrates with cis-​allylic C–H bonds led to decreased 
enantioselectivity and macrocyclization side products. 
Although the side reaction explains the diminished 
yield of the C–H amination product, the observed low 
enantioselectivity calls for further investigation of the 
features that control the enantiodetermining step. More 
recently, Xu and colleagues reported that the same 
PyBOX ligand effectively supports a Feii centre to ena-
ble enantioselective intermolecular aminooxygenation101 
and aminofluorination100 of indene (Fig. 5e). Control 
experiments suggest the presence of a C-​centred radi-
cal intermediate generated through radical addition of 
a putative Fe–nitrene. This mechanism differs from the 
classical aziridination–ring-​opening pathway because 
the radical intermediate is proposed to be oxidized  
by the resulting high-​valent Feiii intermediate through 
single-​electron transfer to generate a carbocation, which 
subsequently combines with either BzO− or F−. The same 
catalytic system was also used to achieve enantioselective 
intramolecular indole aminooxygenation of indoles in 
the absence of an additional nucleophile (74–99% ee)98 
and intramolecular olefin aminochlorination in the 
presence of nBu4NCl as a Cl− source (54–91% ee)99.

Emergence of new catalyst scaffolds
As we noted above, recent advances in enantioselective 
C–N bond formation involve new catalyst scaffolds 
distinct from the traditional metal complexes discov-
ered during the early development of asymmetric NT. 
These newer catalysts include half-​sandwich com-
plexes bearing a polyhapto ligand bound to a metal 
centre, chiral-​at-​metal complexes and a Rh catalyst 
supported by a chiral diene115. Among these paradigms, 
the half-​sandwich and chiral-​at-​metal complexes 
are the most promising next-​generation catalysts for 

enantioselective NT because they tolerate a wide variety 
of substrates and multiple metal centres.

Half-​sandwich complexes and dioxazolone precursors. 
In contrast to previous NT systems that use azides and 
sulfamate/carbamate-​derived iminoiodinanes as nitrene 
sources, the half-​sandwich catalysts (Fig. 6) are exclu-
sively compatible with 3-​substituted 1,2,4-​dioxazol-5-​
ones. These precursors lose CO2 to give acyl nitrene 
intermediates, which can participate in NT but are also 
typically prone to undergoing Curtius rearrangement. 
Thus, one of the challenges with these systems is curb-
ing this rearrangement reaction that produces isocyanate 
by-​products. Chang and colleagues first demonstrated 
that the Curtius rearrangement is effectively suppressed 
by using metal complexes of electron-​donating mono-
anionic LX-​type ligands for racemic amidations116. The 
same team later found that switching to an enantioen-
riched amine–amido ligand to give [Ir(h1)] (Fig. 6c) still 
suppressed this side reaction and gave excellent ee in 
intramolecular C–H amidation34 (Fig. 6a, left). Notably, 
the generation of a cationic, coordinatively unsaturated 
Ir centre through Cl− abstraction (addition of NaBArF

4 
precipitates NaCl) is crucial to enabling formation of the 
Ir–nitrene intermediate that leads to the desired C–H 
amidation. Only the isocyanate side product is obtained 
when NaBArF

4 is not added. The authors hypothesized 
that intramolecular H-​bonding between substrate and 
catalyst is crucial in stabilizing the desired diastere-
omeric adduct in which the Ph group is in an equatorial 
position in the half-​chair TS, with the (S)-​configuration 
at the metal centre (Fig. 6a, right). The effect of non-​
covalent interactions in providing high enantioinduction 
was supported by DFT calculations, characterization 
of a structural analogue Ir–amido and examination of  
catalysts with modified H-​bonding strength.

Subsequent to Chang and colleagues’ report, the  
groups of Yu and Chen independently reported analo
gous transformations using a Ru half-​sandwich 
[Ru(h2)]33 or a modified Ir complex [Ir(h3)]117 with 
enhanced catalytic efficiency, respectively. Finally, 
Yoshino, Matsunaga and colleagues reported the enan-
tioselective C(sp3)–H amination of thioamides catalysed 
by a hybrid Coiii complex [Co(h5)]/chiral carboxylic 
acid (CCA) system118 (Fig. 6d). A similar thioamide 
desymmetrization reaction, albeit with lower enantiose-
lectivity, was realized when CCA was replaced with not 
a mono-​protected α-​amino acid but a 2-​aryl ferrocene 
carboxylic acid119. Shi and colleagues also constructed 
a planar-​chiral system by enantioselective amidation 
of ferrocenes using a combination of [Co(h5)] and 
mono-​protected α-​amino acid120. The metal–CCA 
hybrid system was later applied in (Cp*)Rh-​catalysed 
asymmetric C–H amidation of 8-​alkylquinolines121. 
Although the new strategy of combining an achiral 
half-​sandwich metal complex with a CCA promises a 
general and modular catalyst for asymmetric NT, the 
CCAs used in the previous methods were structur-
ally quite distinct from each other and the origin of  
enantioinduction was not always clearly rationalized.

In 2020, Blakey, Baik and colleagues tackled one of the 
long-​standing challenges in asymmetric NT chemistry: 
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achieving highly chemoselective, regioselective and 
enantioselective intermolecular allylic C–H amidation122. 
The development of a novel planar-​chiral Rhiii indenyl 
complex [Rh(h4)] using dioxazolone precursors enabled 
the selective introduction of an amide group at the allylic 
C–H bond of a terminal olefin (Fig. 6b). The experimen-
tal results, combined with a thorough DFT investiga-
tion, suggested that the catalytic cycle forms a (Cp*)
Rhii–π-​allyl intermediate in the rate-​determining and 
enantiodetermining C–H cleavage step. The dioxazolone 
then binds at the vacant coordination site, followed by 
loss of CO2 to furnish an imido complex, which under-
goes the regiodetermining reductive C–N coupling to 
selectively produce the terminal over the internal olefin. 
DFT calculations predicted a large kinetic barrier dif-
ference (5.0 kcal mol−1) between the two TSs that lead 

to the two possible C–N coupled products. This energy 
difference was attributed to the asymmetric character 
of the indenyl ligand forming a weaker allylic Rh–C 
bond with C1, which is more easily attacked by the N 
atom than C3. Owing to the presence of the Rh–π-​allyl 
intermediate, internal olefin substrates that generate a 
symmetrical π-​allyl complex during NT are well toler-
ated. In contrast, an unsymmetrical 1,2-​disubstituted 
internal styrenyl substrate required a sterically 
demanding tert-​butyl dioxazolone nitrene precursor 
to maintain good regioselectivity to the conjugated  
amide product, at the expense of yield (23%).

Chiral-​at-​metal catalysts. The catalysts for enantioselec-
tive NT that we have described so far all include chiral 
ligands coordinated to metal(s). Meggers and colleagues 
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Fig. 6 | Chiral half-sandwich complexes for asymmetric nitrene transfer. a | A chiral Iriii half-​sandwich complex 
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amination typically feature a hydrocarbon 6e− donor ligand and anionic co-​ligands33,34,117,122. d | A Coiii half-​sandwich 
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recently introduced a new class of chiral-​at-​metal cata
lysts (Fig. 7) that do not feature chiral ligands. These  
catalysts typically consist of achiral N-​heterocyclic 
carbene and pyridine-​derived ligands that support a 
stereogenic metal centre in a Λ or Δ absolute configu-
ration123–125. This design is presently limited to catalysts 
having two non-​symmetrical bidentate and two mono-
dentate ligands coordinated to a metal. Despite this lack 
of structural diversity, the design may provide unique 
opportunities to develop structurally and electronically 
distinctive chiral transition metal catalysts.

Applying the chiral-​at-​metal design strategy, Ru 
and Os catalysts induce enantioselectivity in a vari-
ety of intramolecular benzylic C–H aminations, 
including the syntheses of pyrrolidines (76–99% ee)126 
(Fig. 7a), 2-​imidazolidinones (up to 91% ee)127 (Fig. 7b), 
4-​imidazolidinones (up to 95% ee)128 (Fig. 7c), γ-​sultams 
(76–84% ee; Fig. 7d) and 2-​oxazolidinones (76–84% ee)129 
(Fig. 7e). Furthermore, a highly efficient Λ-ru3 catalyst 
was used to synthesize γ-​lactams by mainly targeting 
benzylic and propargylic C–H bonds (70–99% yields) 
with high ee (80–90%)35. 1,4,2-​Dioxazol-5-​ones were 
employed as nitrene precursors to afford optically active 
γ-​lactams through intramolecular C–N bond forma-
tion (Fig. 7f). Interestingly, the relative stereochemistry 
at the metal centre is key in suppressing the undesired 

Curtis rearrangement from the acylnitrene intermediate.  
A non-​C2-​symmetric chiral-​at-​Ru catalyst Λ-ru3 gen-
erated the γ-​lactam 29 in 92% yield and 90% ee. Instead, 
using the C2-​symmetric diastereomer C2-ru3 gives 
isocyanate 30 as the major product. The C2-​symmetric 
catalyst Λ-ru2, used in the enantioselective syntheses 
of 2-​imidazolidinones127 and 4-​imidazolidinones128, also 
favoured the Curtius rearrangement pathway exclusively. 
The authors attributed this to the non-​C2-​symmetric 
arrangement of the strongly electron-​donating remote 
N-​heterocyclic carbene ligands, which resulted in a more 
nucleophilic Ru–nitrene intermediate that favours C–H 
amination over the Curtius rearrangement. This hypoth-
esis was supported by DFT calculations, with Hirshfeld 
charge analysis showing increased nucleophilicity of the 
nitrene fragment from the non-​C2-​symmetric Λ-ru1 
catalyst.

Conclusions
Asymmetric NT reactions are a powerful means to 
generate valuable N-​containing products from simple 
starting materials. Although substantial progress has 
been made in selected enantioselective NT reactions 
over the past 30 years, this Review describes both tra-
ditional and relatively undeveloped catalyst designs 
that have emerged. Future directions and challenges to 
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be addressed for asymmetric NT include: avoiding the 
use of precious metals (Rh, Ir and Ru), realizing inter
molecular aziridination of densely substituted olefins, 
promoting intermolecular asymmetric amination of 
allylic, propargylic and aliphatic C–H bonds and devel-
oping more robust intramolecular C–H aminations 
to furnish valuable β-​amino and γ-​amino alcohols. 
Moreover, the direct generation of unprotected aziri-
dines and amines through safe and environmentally 
friendly external oxidants is desirable from a practical 
point of view. Two other important goals for future cata
lyst development include obtaining excellent chemo
selectivity and regioselectivity when there is more than 
one reactive site present in the substrate, as well as having  
a modular and generalizable chiral catalyst to achieve 

synthetically useful enantioselectivities (>90% ee). Steric 
and electronic modularity of new ligand scaffolds will 
be particularly important to expand the scope of asym-
metric NT chemistry. The examples described in this 
Review suggest that both the electronic features of the 
metal–nitrene fragment and a highly ordered enantio-
determining TS are crucial in achieving high reaction 
efficiency and selectivity. Although there are problems to 
be solved in the area of asymmetric NT, the recent emer-
gence of new catalyst platforms and the re-​evaluation 
of traditional catalysts will stimulate further develop-
ments towards more practical and generally applicable  
synthetic methodologies.
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