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Abstract

Depending upon the properties of their compact remnants and the physics included in the models, simulations of
neutron star mergers can produce a broad range of ejecta properties. The characteristics of this ejecta, in turn,
define the kilonova emission. To explore the effect of ejecta properties, we present a grid of two-component 2D
axisymmetric kilonova simulations that vary mass, velocity, morphology, and composition. The masses and
velocities of each component vary, respectively, from 0.001 to 0.1 M, and 0.05 to 0.3 ¢, covering much of the
range of results from the neutron star merger literature. The set of 900 models is constrained to have a toroidal low
electron fraction (Y,) ejecta with a robust r-process composition and either a spherical or lobed high-Y, ejecta with
two possible compositions. We simulate these models with the Monte Carlo radiative transfer code SuperNu
using a full suite of lanthanide and fourth-row element opacities. We examine the trends of these models with
parameter variation, show how they can be used with statistical tools, and compare the model light curves and
spectra to those of AT2017gfo, the electromagnetic counterpart of GW170817.

Unified Astronomy Thesaurus concepts: Transient sources (1851); Infrared sources (793); Radiative transfer
simulations (1967); Neutron stars (1108); R-process (1324)

Supporting material: machine-readable table

1. Introduction

The ejecta from neutron star mergers have long been
believed to be a source of r-process elements (Lattimer &
Schramm 1974, 1976; Symbalisty & Schramm 1982; Eichler
et al. 1989; Davies et al. 1994). Whether or not these mergers
dominate the r-process elements observed in the Galaxy
depends on the amount of material ejected and the rate of
mergers. The rate of mergers continues to evolve as
gravitational wave observations continue (Abbott et al. 2021).
Observations of GW170817 predicted a range of r-process
yields depending upon the analysis of these observations and
the nature of the simulations used to infer ejecta masses from
the observations (Coté et al. 2018). Similarly, estimates of
ejecta masses from merger calculations vary considerably
depending upon both the importance of different ejecta
mechanisms and the properties (e.g., masses, spins) of the
binary components. This paper presents the emission from a
broad range of ejecta properties to facilitate more detailed
comparisons to observations of these mergers. The current
variation in ejecta properties depends both upon aspects of the
merger models (theoretical uncertainties) and the initial
conditions of the merging binary (variations expected in
nature). Until the former is better constrained, our range of
models must include the range expected by both.

Simulations of the merger and post-merger environment of
binary neutron stars and neutron star—black hole binaries have
suggested a large number of mass ejection mechanisms,

including: tidally disrupted dynamical ejecta, post-merger
magnetohydrodynamic and viscosity-driven winds from the
remnant system (see Shibata & Hotokezaka 2019 and
references therein), shock-driven ejecta (see, for instance,
Radice et al. 2018), and cocoon outflow around the gamma-ray
burst jet (Gottlieb et al. 2018). The different results produced
by different calculations depends, in part, upon how well the
simulation technique captures these ejecta processes. The ejecta
mass from merger and post-merger simulations varies over
from less than 0.001 M, to nearly 0.1 M, (Bovard et al. 2017;
Dietrich et al. 2017; Fahlman & Fernandez 2018; Fujibayashi
et al. 2018; Radice et al. 2018; Most et al. 2019; Shibata &
Hotokezaka 2019). The masses of the binary objects have a
large impact on the amount of mass ejected (Dietrich et al.
2017). The mass of the dynamical ejecta and the properties of
the remnant also depend strongly on the neutron star equation
of state (EOS) (Sekiguchi et al. 2015; Dietrich et al. 2017)
where the remnant lifetime in turn affects the post-merger wind
properties. Simulations using full general relativity and soft
EOSs tend to produce lower tidally driven dynamical ejecta
mass (compare, for instance, Rosswog et al. 2013 and
Sekiguchi et al. 2015; note that these two calculations use
different hydrodynamic methods as well and it is possible that
the hydrodynamic scheme also produces different ejecta
masses).

Similarly, the simulated ejecta velocities also vary between
different research groups, with average velocities lying
between 0.1 and 0.6 times the speed of light, ¢ (see
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GW170817 estimates, for instance Kasen et al. 2017;
Kawaguchi et al. 2018). The velocity determines the degree
of Doppler broadening of line features in the spectra, as well as
the temperature and density at a given time. Consequently,
differences on the order of ~ 0.05—0.1 c can have a large effect
on the spectrum at a given time (see, for instance, Figure 3 of
Kasen et al. 2017).

Finally, the composition also varies considerably between
different models. Ejecta with low electron fractions produces a
robust heavy r-process, but many of the ejection mechanisms
produce ejecta that consists of a broad range of electron
fractions depending on the nature of the ejection process and
the evolution of the merged object.

All of these properties (mass, velocity, and composition)
alter the electromagnetic signature from these mergers. At this
point in time, no perfect simulation exists that captures all of
the physics correctly and the variation between models reflects
the assumptions in the different simulations. In addition, even if
simulations converged on the properties of this ejecta for a
particular progenitor binary, the range of progenitor properties
(e.g., spin and masses of the merging neutron stars) will also
produce a wide variety of ejecta properties. All of the ejecta
properties can be simplified into a two-component model (see
Korobkin et al. 2021 and references therein) which includes
one component that is very neutron-rich (primarily produced in
the tidal ejecta from the initial merger) and a less neutron-rich
component from disk winds, shock driven ejecta, etc. We will
refer to these two components as low- and high-Y, respectively.

The differences in ejecta properties seen both in simulations
and in the analysis of GW170817 have motivated a broad set of
additional studies of both ejecta morphology, composition,
masses, and velocities (Barnes et al. 2020; Fontes et al. 2020;
Heinzel et al. 2021; Kawaguchi et al. 2020; Kriiger &
Foucart 2020; Korobkin et al. 2021; Tanaka et al. 2020).
These sets of detailed kilonova models that cover a broad range
of the parameter space are essential in the analysis of kilonova
observations. Here we describe a grid of 900 2D kilonova
models, simulated with the Monte Carlo radiative transfer code
SuperNu (Wollaeger et al. 2013; Wollaeger & van Ros-
sum 2014) intended for use by observers to characterize
properties of observed kilonovae. These models vary mass,
velocity, high-Y, morphology, and high-Y, composition. The
model data used in this work are available from the LANL
CTA website.'" This paper is organized as follows. In
Section 2, we briefly review the software used to simulate
the models. In Section 3, we summarize the properties and
naming convention for the model outflows in which the
radiative transfer is simulated. In Section 4, we verify the
anticipated variation of light curves with model parameter
variation, apply some example statistical tools to the model
grid, and compare to the observed light curves and spectra of
AT2017gfo, the electromagnetic counterpart to GW170817.

2. Codes and Numerical Methods

Our model light curves and spectra are produced with the
SuperNu radiative transfer software using tabulated binned
opacity (Fontes et al. 2020) from the Los Alamos suite of atomic
physics codes (Fontes et al. 2015). For the composition and
radioactive heating from r-process elements, we use the nucleo-
synthetic results from the WinNet code (Winteler et al. 2012),

" https: //ccsweb.lanl.gov /astro/transient/transients_astro.html
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along with a decay network to determine the partitioning of energy
among the decay products. The nucleosynthesis uses the finite-
range droplet model (Moller et al. 1995), so the simulation results
do not encompass the variability from uncertainty in nuclear mass
models (Barnes et al. 2020; Zhu et al. 2021). We employ the decay
product thermalization model of Barnes et al. (2016) and use gray
Monte Carlo transport for the gamma-ray energy deposition
(Swartz et al. 1995; Wollaeger et al. 2018).

For the opacities, we employ the binned approach demon-
strated by Fontes et al. (2020). The opacity tables (including a
full suite of lanthanide and fourth-row elements) are over the
same density and temperature grid as that of Wollaeger et al.
(2018), where the opacity values are computed assuming local
thermodynamic equilibrium (LTE). This amounts to assuming
Saha—Boltzmann statistics apply to computing ionization and
excitation states (the inline SuperNu opacity calculation also
assumes LTE).

In SuperNu, the radiative transfer is restricted to LTE,
where the emissivity of the matter is simply the Planck function
multiplied by the absorption opacity. This assumption is built
into the implicit Monte Carlo time linearization that ultimately
produces the effective scattering terms (instantaneous absorp-
tion and re-emission) (Fleck & Cummings 1971). As in
previous studies, the outflow is assumed homologous, where
radius grows linearly with time at a velocity proportional to the
radius, following the velocity grid prescription of Kasen et al.
(20006). Discrete diffusion Monte Carlo (DDMC) with opacity
regrouping (Cleveland & Gentile 2014; Wollaeger & van
Rossum 2014) is used to optimize the radiative transfer. The
DDMC Doppler shift has been given a Monte Carlo
interpretation and incorporated into the opacity regrouping
framework of Wollaeger & van Rossum (2014), which
improves accuracy by removing one operator split in the
equations (R. T. Wollaeger 2021, in preparation). All
SuperNu simulations are performed in 2D axisymmetric
geometry, as in Korobkin et al. (2021).

3. Model Ejecta Properties

Although there are a number of ejecta processes, for our
models we simplify the ejecta into two components: a low
electron fraction ejecta, characteristic of the tidal ejecta that
occurs during the initial merger, and a high electron fraction
ejecta expected from the other ejection processes (wind, shock,
and cocoon ejecta). Simulations of these high-Y, outflow
mechanisms all predict roughly the same broad range of
electron fractions: Y, ~ 0.2—0.5 (see, for instance, Perego et al.
2014; Miller et al. 2019; Shibata & Hotokezaka 2019). At this
time, these different ejecta sources are difficult to distinguish.
We note that three-component models may introduce a broader
range of behavior in angular variation of light curves and
spectra, which we have not explored in the scope of this model
grid. In this section we present the model naming convention
and the set of properties used to generate the 900 models in the
data grid.

3.1. Model Nomenclature

We label models in the following way: T_m <MD > _
V<VD>_<SorP><N> m<MW>_v<VW>where T,
MD, and VD are the shape, mass, and velocity of the low-Y,
component, respectively, and S(P), N, MW, and VW, are the
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Table 1
Model Properties per Component and Associated Values

Property Values

{0.001, 0.003, 0.01, 0.03, 0.1} M,
{0.001, 0.003, 0.01, 0.03, 0.1} M,
{0.05, 0.15, 0.3} ¢
{0.05, 0.15, 0.3} ¢
Toroidal (T; Cassini oval family; Korobkin et al.
2021)
Spherical (S) or “Peanut” (P; Cassini oval family;
Korobkin et al. 2021)
Robust r-process (see Table 2)
“High-" or “mid-" latitude wind (see options “1” and
“2” in Table 2)

Low-Y, mass
High-Y, mass
Low-Y, velocity
High-Y, velocity
Low-Y, morphology

High-Y, morphology

Low-Y, composition
High-Y, composition

shape, composition, mass, and velocity of the high-Y,
component, respectively. Masses are in units of solar mass
(M) and velocities are in units of ¢. Table 1 has a summary of
the properties that form the parameter space.

In the sections that follow, we use the terms “component”
and “ejecta” interchangeably. We refer to the toroidal
component as “low-Y,” and the late-time non-toroidal comp-
onent as “high-Y,”. We use the term “wind” only in reference
to the elemental composition of the high-Y, component.

3.2. Mass—Velocity Grid

The grid of masses and velocities used in the models is
inferred from the range of values acquired from the literature on
merger, post-merger, and kilonova light-curve simulations.
Numerical simulations of tidal disruption produce low-Y, ejecta
masses from 51073 M., (Dietrich et al. 2017; Shibata &
Hotokezaka 2019) to ~0.05M for a binary neutron star
system with a stiff EOS and high mass ratio (Dietrich et al.
2017). For a black hole—neutron star binary, the ejecta mass
range goes up to ~0.1 M. (see, for instance, Kriiger &
Foucart 2020). The post-merger high-Y, ejecta can achieve a
comparable range of values (see Table 1 of Shibata &
Hotokezaka 2019). To capture this range, our grid of mass
values increases roughly by a root-decade from 0.001 to 0.1
M. We apply these five mass values to both the low- and
high-Y, component. The values of mass are listed in the first
two rows of Table 1.

Simulations of Dietrich et al. (2017) of different merger
scenarios (mass ratio and EOS) also show an average low-Y,
ejecta velocity range with error bars covering 0.1 to 0.2 ¢ for
the low-Y, ejecta velocity, consistent with the 0.15 to 0.25 ¢
(or ~ 0.3 ¢ for prompt black hole formation) range of average
velocity reported by Shibata & Hotokezaka (2019). The range
of possible values for the post-merger ejecta is comparable;
some models of GW170817 use a faster blue component
around 0.2 to 0.3 ¢ (Kasen et al. 2017) while others
have ~ 0.06 — 0.1 ¢ (Kawaguchi et al. 2018; Miller et al.
2019) for the fiducial model. The set of average velocities we
simulate are consequently from 0.05 to 0.3 ¢ for each of the two
components, shown in the third and fourth rows of Table 1.

3.3. Geometry

Ejecta morphology has been shown to alter the nature of the
kilonova emission (Korobkin et al. 2021). Ab initio simulations
of the merger produce significant tidally disrupted ejecta that is
toroidally focused (see, for instance, Rosswog et al. 2013), and
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here we assume the low-Y, dynamical ejecta is toroidal (labeled
T) in morphology. Depending on EOS and the initial binary
properties, simulations can produce more spherical dynamical
ejecta from shocks after tidal disruption (Radice et al. 2018),
but we do not consider spherical low-Y, ejecta. The high-Y,
ejecta morphology is less well-constrained, but calculations of
winds suggest the morphology has a lobed (axially focused or
“peanut-shaped”, labeled P) morphology (Miller et al. 2019;
Korobkin et al. 2021). However, we include a more traditional
spherical morphology (labeled S) for this late-time ejecta as
well in our studies. We note that a range of high-Y, ejecta
velocities have emerged in simulations (Shibata & Hotoke-
zaka 2019), and it has been argued that the smoothness of the
early blue spectra of AT2017gfo indicate a fast high-Y,
component surrounding a slower low-Y, component (see, for
instance, Kasen et al. 2017). The portion of our grid of models
with slow low-Y, and fast high-Y, components adheres to this
sort of configuration. The morphologies used for each
component are listed in Table 1.

The T and P morphologies are generated using the same
Cassini oval prescription as in Korobkin et al. 2021, and the S
morphology is generated with the semi-analytic spherical
formulae provided by Wollaeger et al. (2018). Variation over
the mass—velocity grid, summarized in Section 3.2, does not
change the intrinsic morphology of the ejecta. Increasing mass
for a particular component uniformly scales up the density
everywhere without changing the velocity coordinates, while
increasing velocity stretches the morphology without changing
the total mass. Both types of variation in the low-Y, ejecta can
act to obscure the wind when the components are super-
imposed: increasing mass increases lanthanide partial densities,
and increasing velocity covers more volume and reduces
lanthanide density.

Figure 1 displays schematics of the low-Y, T morphology
(red) combined with either the S- or P-shaped winds (blue), as
presented by Korobkin et al. (2021). Since each component is
varied over the mass—velocity grid in Table 1, Figure 1 does
not necessarily show the correct scale of the high-Y, component
relative to the low-Y, component. The model morphologies are
symmetric under reflection through the (equatorial) plane
bisecting the T morphology, perpendicular to the symmetry
axis. Due to the stochastic nature of Monte Carlo radiative
transfer simulations, equatorial reflection symmetry in the
escaping flux is not strictly enforced.

3.4. Elemental Composition

The remaining ejecta property that significantly affects the
emission is elemental composition. The compositions of our
two components are set by the Y, and consist of an r-process
composition for the low-Y, ejecta (as in Even et al. 2020) and
two different compositions for the high-Y, ejecta components,
implementing a composition from an averaged Y, nucleosyn-
thetic yield calculation. We use high (“wind 1”) and mid
(“wind 2”) latitude compositions for the high-Y, component,
with Y, values of 0.37 and 0.27 respectively (see Wollaeger
et al. 2018). In that work, the fourth-row elements were
represented by a handful of surrogate elements with calculated
opacities. In these calculations, we include the full suite of
newly calculated fourth-row elements with specific contribu-
tions enhanced to account for elements beyond the fourth row
that are not included in our opacity set. These enhancements
were done by comparing valence electron shells between our
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Figure 1. Schematics of the two combined morphologies used in the simulation
grid (Korobkin et al. 2021). All models have a toroidal (T, red) dynamical
ejecta, 450 models are simulated a spherical wind (S, blue), and 450 models are
simulated with a peanut-shaped wind (P, blue). Each component is varied over
the mass—velocity grid in Table 1, and hence is not necessarily drawn to
scale here.

fourth-row elements and those at higher Z (but potentially
different principal quantum numbers). The elemental abun-
dances are listed for each atomic number in Table 2; the wind
abundances are plotted versus atomic number in Figure 2 (with
some of the elements labeled for convenience).

The low-Y, robust r-process dynamical ejecta composition is
unchanged from Even et al. (2020) which has a simple non-
lanthanide composition relative to the wind compositions. The
impact of the lighter elements on the dynamical ejecta
composition is small due to the effect of “lanthanide
curtaining” (Barnes & Kasen 2013; Kasen et al. 2015).
Conversely, the impact of a very small fraction of lanthanides
in the wind 2 composition (~10~") is of little consequence in
light curves and spectra (Even et al. 2020).

As in previous studies, the low- and high-Y, ejecta
compositions are uniform in each component, and mixed by
mass-fraction weighting in the regions of space where the
components overlap. Consequently, despite wind 1 corresp-
onding to a “high-latitude” nucleosynthetic tracer, it is in fact
applied to all latitudes of the high-Y, component morphology
(as is the wind 2 composition).

Wollaeger et al.

Table 2

Model Abundances for the Low-Y, (Dyn. Ej.) and High-Y, (Wind 1 or Wind 2)

Components
EL VA Dyn. Ej. Wind 1 (Y, =0.37) Wind 2 (Y, = 0.27)
K 19 3.21268e-15 6.97642¢-11
Ca 20 1.17432e-04 2.52117e-08
Sc 21 2.38912e-10 4.96657e-03
Ti 22 3.14917e-05 3.09675e-07
\" 23 1.49800e-04 3.64843e-07
Cr 24 1.26889¢-01 4.73628e-02
Mn 25 e 1.81296e-03 1.19408e-06
Fe 26 5.32034e-06 8.80579¢-03 2.65509e-02
Co 27 6.53211e-04 9.01509¢-06
Ni 28 2.12761e-03 2.12444e-04
Cu 29 6.76567e-02 8.68511e-03
Zn 30 6.38433e-02 1.10971e-02
Ga 31 1.74815e-03 5.66150e-04
Ge 32 4.23957e-03 5.50677e-02
As 33 4.33796e-04 3.19672¢-02
Se 34 1.01267e-01 1.92845e-01 2.84281e-01
Br 35 2.32170e-06 2.24753e-01 2.27961e-02
Kr 36 b 2.89604e-01 8.73940e-02
Zr 40 3.72218e-01 1.37605e-02 4.64549¢-02
Pd 46 1.38800e-04 5.27557e-04 8.39116e-02
Te 52 3.85045¢e-01 5.55957e-07 2.88675e-01
La 57 5.11321e-04
Ce 58 8.65786e-04
Pr 59 8.59354e-05
Nd 60 1.49709e-03
Pm 61 5.41955e-04
Sm 62 2.03032e-03
Eu 63 1.54922¢-03
Gd 64 5.12530e-03
Tb 65 3.27066e-03
Dy 66 1.39657e-02
Ho 67 3.64017e-03
Er 68 1.10523e-02
Tm 69 2.34168e-03
Yb 70 6.44273e-03
U 92 8.83764e-02

4. Numerical Results

The effect of each of the model ejecta properties described in
Section 3 on emission can be explored with statistics, given the
size of the model grid. We present some example uses of our
model grid, including basic statistics and comparison with an
observation (AT2017gfo), using data in the expanded form of
Table 7. Specifically, in Section 4.1 we establish the diversity
in angular variation among the models, which complicates the
analysis. In Section 4.2, we examine trends in means and
standard deviations with variations in model properties and
verify consistency with associated physics. In Section 4.3, we
split the models by morphology and composition of the high-Y,
component, and explore whether a reduced set of luminosity
values can statistically distinguish the two model populations.
In Section 4.4, we explore some rudimentary ways to compare
the data set to AT2017gfo.

For all the models, given the geometry, the axial view is least
obscured by the low-Y, dynamical ejecta and the edge view is
most obscured, though the degree to which the low-Y,
component is obscured depends on the relative speed of the
high-Y, component. This is shown in Section 4.1. Since the on-
axis and edge-on views represent the two extremes of light-
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Figure 2. Representative abundances for wind 1 and wind 2 compositions
(dashed red), including all of the fourth-row elements from the periodic table.
Deviations from original abundances account for elements with Z above the
fourth row: enhanced elements share similar valence electron structure with
replaced elements. These compositions are applied to the high-Y, components
of the model grid.

curve variation with respect to viewing angle, we restrict the
data considered in Sections 4.2 and 4.3 to these views.

4.1. Vewing Angle Dependence

The degree to which the low-Y, ejecta obscures the blue
kilonova from the high-Y, ejecta depends strongly on the
relative speeds of the components. This dependence can be
seen in the weak viewing angle variation in models with faster
high-Y, ejecta and strong viewing angle variation in models
with faster low-Y, ejecta. This is demonstrated in Figure 3,
which displays g, 7, z, J, and K-band absolute AB magnitudes
versus time for two models with low-Y, ejecta velocities at
alternate extremes in the model set. Even for the lowest ratio of
low-Y, to high-Y, ejecta mass, the model with fast low-Y, and
slow high-Y, ejecta still produces substantial angular variation
in the magnitudes (bottom panel). Alternatively, leaving all
other properties unchanged, the fast high-Y, and slow low-Y,
ejecta (top panel) substantially reduces the angular variation in
the magnitudes. This phenomenon is the aforementioned
lanthanide curtaining effect (Kasen et al. 2015), arising from
the relatively high bound—bound contribution to opacity from
the lanthanide abundances in the low-Y, component (see, for
instance, Gaigalas et al. 2019; Fontes et al. 2020; Tanaka et al.
2020). The diversity of angular variation in emission due to
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Figure 3. g, r, z, J and K-band absolute AB magnitudes vs. time for all viewing
angles, for models with 0.001 M, and 0.1 M, in the low-Y, and high-Y,
component, respectively. Top: low-Y, and high-Y, ejecta speed of 0.05 ¢ and
0.3 ¢, respectively. Bottom: low-Y, and high-Y, ejecta speed of 0.3 ¢ and 0.05
¢, respectively.

changes in the relative velocity of the components complicates
the categorization of models based on other properties. Despite
this complicating factor, in the following sections we attempt to
establish expected trends collectively in the models, and
determine if model morphology or composition are discernible
as statistically distinct from the emission.

4.2. Collective Data Trends

Various kilonova and supernova light-curve studies have
established basic trends in brightness that we expect to be
reproduced in our grid of models. Specifically, we expect that
increasing ejecta mass increases brightness and broadens the
light curves in time (at least the bolometric luminosity),
increasing the ejecta velocity increases brightness and narrows
the light curves in time (shifting the peak luminosity to earlier
time), and increasing the opacity decreases the brightness and
broadens the light curves in time. These relationships have
been encapsulated in power-law relations of luminosity with
respect to mass, velocity, and opacity (see, for instance,
Arnett 1979; Li & Paczyniski 1998; Grossman et al. 2014;
Wollaeger et al. 2018).

Here we verify that our models collectively produce the
basic trends expected in two-component kilonova models with
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Figure 4. Mean of scaled logarithm of bolometric luminosity per low-Y, ejecta mass (left panels) and velocity (right panels) for axial (top panels) or edge (bottom
panels) views at days 1 (blue), 4 (orange), and 8 (green). The shaded regions are 1 standard deviation around each mean (colored correspondingly). The trends
follow the expected patterns: higher mass increases the luminosity at each time, and higher velocity tends to decrease the day 1 luminosity in the edge view. The
variance at each value is large at day 1 across properties, but drops at day 4 and 8, indicating the low-Y, ejecta properties become more significant in setting the

luminosity.

the assumed morphologies. With a large set of models
uniformly spread over the space of parameters, we may
perform some simple statistics to identify trends for certain
parameter variations. In particular, for the axial and edge
observer views, we calculate the arithmetic mean and standard
deviation, per a fixed model property, of the bolometric
luminosity, g and K bands at days 1, 4, and 8. For luminosity,
in Figure 4 we scale by 10* ergs™' and take the base 10
logarithm of the result in order to improve visibility of the
trends,

L
Lo loglo(w) , (1)

where L is the scaled log luminosity that is plotted and L is the
original luminosity in erg s—'. The day 1, 4, 8 top and side view
bolometric luminosity, g and K band magnitudes for all 900
models are listed in the expaned form of Table 7 in the
Appendix. The times are selected to sample the blue kilonova
emission from the high-Y, component (days 1-4) and the red
kilonova from the low-Y, component (days 4-8), and the g and
K bands cover the relevant extremes in wavelength of the
spectra.

Figure 4 has day 1, 4, and 8 mean log luminosities versus
low-Y, ejecta mass (left column) and low-Y, ejecta velocity
(right column), with &1 standard deviation regions shaded
about the means. The top row of panels is the axial view and
the bottom row is the edge view. The mean and standard
deviation are taken for the models over all other properties.

Consequently, each mean or standard deviation at a given mass
value is computed from 900/5 = 180 points of simulation data
at that mass. From the left column of Figure 4, we observe the
expected trend of increasing luminosity with increasing ejecta
mass. Moreover, at later times, the change in increase in
luminosity per increase in mass is more pronounced, indicating
that the low-Y, ejecta mass more strongly sets the later time
luminosity. Comparing the data at day 1 for the top left and
bottom left panels of Figure 4, the luminosity at day 1 is more
sensitive to the low-Y, ejecta mass for the edge view (bottom)
than for the axial view, consistent with the low-Y, component
having a larger effect on edge views on average. This can be
seen by comparing the ratio of the mean luminosity between
adjacent mass values: for the axial view the average increase in
brightness is 19% and for the edge view the average increase
is 36%.

As expected, the standard deviation of day 1 bolometric
luminosity is not as sensitive to low-Y, ejecta mass as at day 4
or day 8, for either the axial or edge views. This result is
consistent with the expectation that the early blue transient is
not produced by the low-Y,, lanthanide-rich component, for the
parameter ranges studied. However, it is worth noting that the
standard deviation of luminosities at days 1, 4, and 8 are all
250% of the total luminosity at the highest mass, meaning the
other ejecta properties still significantly influence the total
luminosity at late time (this notion is consistent, for instance,
with radiative emission from the high-Y, component being
reprocessed into the IR by the dynamical ejecta; the high-Y,
mass has an effect through this reprocessing).
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Figure 5. Mean of scaled logarithm of bolometric luminosity per high-Y, mass (left panels) and velocity (right panels) for axial (top panels) or edge (bottom panels)
views at days 1 (blue), 4 (orange), and 8 (green). The shaded regions are £1 standard deviation around each mean (colored correspondingly). Varying high-Y, ejecta
mass induces a significant trend in the mean luminosity at day 1; the trends for later time are consistent with reprocessing of high-Y, emission by the low-Y, ejecta.

It is more difficult to ascertain a trend in luminosity with
low-Y, ejecta velocity, partly due to there being fewer points in
the grid of models for velocity. There appears to be a weak
trend at day 1, where the mean luminosity increases in the axial
view as low-Y, ejecta velocity is increased, and decreases in the
edge view as low-Y, ejecta velocity is increased. A physical
explanation is that the higher velocity causes higher blueshift of
emission from the dynamical ejecta in the observer frame,
supporting a larger contribution to the total luminosity at early
time (before the recession of photosphere). In contrast, for edge
views, the faster low-Y, ejecta velocity more effectively
obscures any given high-Y, ejecta, which acts to lower the
total luminosity.

Figure 5 has day 1, 4, and 8 mean log luminosities versus
high-Y, ejecta mass (left column) and high-Y, ejecta velocity
(right column), with &1 standard deviation regions shaded
about the means. Relative to Figure 4, the bolometric
luminosity in both the axial and edge views is more sensitive to
high-Y, mass, varying by an order of magnitude from 0.001 to
0.1 M. In contrast to the variation with low-Y, mass, the
variation in bolometric luminosity with high-Y, mass is greater
in the axial view than in the edge view; for the axial view the
average increase in brightness between adjacent high-Y, masses
is 97%, and for the edge view it is 82%. The relative standard
deviation (standard deviation over luminosity) is lowest at day
1 in the axial view for all masses, which together with the
sensitivity of the mean indicates that the trend is sensitive to
fewer other properties than at days 4 and 8. The high-Y, ejecta
velocity does not appear to have a significant cumulative effect
on the overall brightness, where the most significant change
occurs in the edge view when going from 0.05 ¢ to 0.15 c; the

increase of this change may again be related to the high-Y,
component becoming less obscured by the low-Y, component.

Figure 6 has day 1, 4, and 8 axial g-band magnitudes versus
low-Y, ejecta mass and velocity (top row), and high-Y, ejecta
mass and velocity (bottom row). In contrast to the bolometric
luminosity, the standard deviation in the g-band magnitude at
day 1 is small compared to the mean magnitude. However, this
is partly a result of computing standard deviation in
magnitudes. As expected, we find that the variability of the
g-band with respect to the high-Y, mass is more pronounced
than with respect to the low-Y, mass. Similar to the bolometric
luminosity, the mean g-band magnitude does not have strong
trends in either low- or high-Y, ejecta velocities. The
dependence of the g-band on the high-Y, velocity is more
sensitive, but apparently non-monotonic at days 4 and 8. The
drop in the mean from 0.05 ¢ to 0.15 c¢ is consistent with a
reduced timescale of the blue transient, and the increase in the
mean from 0.15 ¢ to 0.3 ¢ is consistent with the high-Y,
component reprocessing more emission from the slower (or
equal speed) low-Y, component.

Figure 7 has the same data as Figure 6, but for the much
redder K-band. In contrast with the collective g-band results,
the brightness in the K-band is more sensitive to the low-Y,
ejecta mass (top left). Moreover, the change in mean magnitude
between the grid mass extrema is larger for later time
(comparing the day 1, 4, and 8 trend curves). This increase
in sensitivity for later time is expected in the axial view, where
the high-Y, mass plays a more dominant role in setting the
brightness across bands. The magnitude of the K-band also
trends upward for increasing high-Y, ejecta mass (bottom left),
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Figure 6. Mean g-band magnitude in axial view per low-Y, ejecta mass (top left) and velocity (top right), and high-Y, mass (bottom left) and velocity (bottom right), at
days 1 (blue), 4 (orange), and 8 (green). The g-band magnitude trend is most apparent with increasing high-Y, mass, as expected. The mean g-band is not sensitive at
day 1 to low-Y, ejecta mass, which is consistent with previous findings for early emission from two-component models (Tanvir et al. 2017).

though there is high variability across models for each mass
value.

The collective trends of emission with respect to ejecta mass
are consistent with our expectations for the behavior of two-
component kilonova models. It is more difficult to discern
trends in velocity, but the weak trends that do exist readily
correspond to well-established explanations (for example,
lanthanide curtaining when the low-Y, component is faster
than the high-Y, component). However, similar to the diversity
in angular variation between models, the large standard
deviations per fixed mass or velocity may obfuscate the
identification of other model properties. In the following
sections, we turn to the question of whether the two broadest
properties, the high-Y, morphology and composition, when
partitioned into two groups, can be statistically distinguished.

4.3. High-Y. Morphology and Composition Populations

We may test a null hypothesis that the data belong to the
same distribution (i.e., same mean and standard deviation)
when partitioned into groupings by model properties. In
particular, given the differing degrees of lanthanide curtaining
shown in Section 4.1 and the amount of variance in trends with
mass and velocity shown in Section 4.2, one may ask if broader
model properties, such as high-Y, ejecta composition or
morphology, can be statistically distinguished. Comparing
these broad groupings could be performed with an analysis of
variance, or similar statistical technique, to determine if the
groups are distinguishable by their observable photometric
properties (luminosity, magnitudes), assuming a fixed viewing
angle for all models. However, with the model set, we may not
be able to assume the observables are normally distributed;

e.g., we may not be able to assume that the frequency of
luminosity in a particular range follows a normal distribution
over luminosity bins. Considering Figure 8, we see that the
distribution of axial absolute g-band magnitudes does not
apparently follow normal distributions. While it may be
possible to transform the observational data points to get more
normal distributions, we may instead use some simple non-
parametric statistical analysis to distinguish data groups.

In the following sub-sections, we explore the application of
the non-parametric Mann—Whitney U test to find a subset (or
“sub-vector”) of data from each model that can distinguish
morphology or composition. With the sub-vector of data, we
then perform a logistic regression over the models, and apply
the resulting fitting parameters to fit the actual model data. With
this series of calculations, we intend to demonstrate that the
high-Y, composition of these models is easier to categorize into
distinct groups than the high-Y, ejecta morphology.

4.3.1. Mann—Whitney U Test of Magnitudes and Luminosity

If the distributions within the partitioned groups are
comparable in form, we may apply the non-parametric
Mann—Whitney U test which, for two groups, tallies the
number of times (U) that the samples in one group precede (in
some ordering) the samples in another (Mann & Whitney 1947),

+m(m+1) B
2

where m and n are the number of data points in each group, and
T is the sum of the ranks of the m elements from one group in
the n+m ordered ranking of the total data set (the Wilcoxon
statistic). The “ranks” are simply positions from sorting in the

U=mn T, (2)
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Figure 7. Mean K-band magnitude in axial view per low-Y, ejecta mass (top left) and velocity (top right), and high-Y, mass (bottom left) and velocity (bottom right), at
days 1 (blue), 4 (orange), and 8 (green). The magnitude collectively trends upwards for both increasing low- and high-Y, ejecta. Moreover, the trend in low-Y, ejecta
mass becomes significantly steeper at later time, indicating a growing impact of the low-Y, ejecta mass on K-band magnitude across models.

n+m size list of all the data, which implies
doritd =3 n+T
i j i

n+m
:Zk:nm+m(m+1)+n(n+1)
k

)

3)

where r; and s; are rank subsets of {1, ..., m + n} of the size n
and m groups, respectively. The minimal rank-sum of the r;
values is n(n+1)/2 (just the triangular number), which
corresponds to a U value of 0. An arbitrary ranking (with some
r;>s;) can be formed from the U=0 ranking by first
permuting r,=n with s;=n+j, then r,_;=n—1 with
sy =n + j' where j' < j, and so forth. From this procedure,
each permutation must increase the U statistic by the difference
of the old and new value for each r;, since only values of s; will

be passed over when r; is permuted. Consequently,

Uzzn:(ri—ri/)zzn:ri—zn:rilzzn:ri——n(n;_ D) ,
4)

where r;’ are the old ranks for U = 0. Substituting Equation (4)
into Equation (3) gives Equation (2). The probability of a
particular U value can be found by counting the number of
n+m rank sequences that give U from Equation (2), and
can be computed with a recurrence relation (see
Mann & Whitney 1947). We use the SciPy stats package

2 2

(Virtanen et al. 2020), which has the Mann—Whitney U test as
an intrinsic function.

The U value can be used to test the null hypothesis that the
cumulative distribution functions describing the two data sets
are the same. In Figure 8, the histograms are grouped by
high-Y, ejecta composition (top) and high-Y, ejecta morph-
ology. In these figures, it can be seen that the probability
distributions are similarly shaped but may be significantly
shifted in g-band brightness (especially for the grouping by
composition). The distributions for the K band and bolometric
luminosities are also similar for these partitions of the data.
Consequently, the conditions evidently suffice to use the
Mann—Whitney U test over the data in the expanded form of
Table 7.

Tables 3 and 4 show results of the Mann—Whitney U test for
the high-Y, morphology and composition groups, respectively.
These results include the U statistic, p-value, and common
language effect size f, which is the fraction of all possible pairs
of data from each group that support an alternative to the null
hypothesis (the null hypothesis is supported by values of f close
to 0.5; see McGraw & Wong 1992). Shaded table cells indicate
a p-value less than 0.05 (or 5%), a standard significance level
for rejecting the null hypothesis. For the morphology test, the
p-values indicate that the most significantly distinguishable
cumulative distribution functions are over the g-band magni-
tudes, with axial views providing higher significance at the
later days. This is consistent with the g-band magnitude trends
shown in Figure 9 for the on-axis view (lower panel): by day 4
there is a notable difference in the P and S morphologies for the
wind 2 composition. Thus the Mann—Whitney U test verifies
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Figure 8. Histograms for fixed high-Y, composition (top) and morphology
(bottom) of axial g-band absolute magnitudes over 30 uniformly spaced bins
between magnitude values of —18 and 1. The histograms indicate a systematic
shift between composition distributions. Medians are shown as dashed vertical
lines colored by distribution.

the apparent systematic shift between the distributions for each
composition shown in Figure 8.

In contrast, the p-values for the K-band magnitude increase
with time in both axial and edge views of the ejecta, indicating
that the morphology distributions over the K band become less
statistically distinguishable as time progresses. The sample K-
band magnitude curves in Figure 9 provide evidence for this
result as well, where the late-time curves group by morphology
and separate by composition. Moreover, only one of the six
tabulated values is significant at the 5% level, while the other
five do not reject the null hypothesis at this level. The
bolometric luminosity likewise only has one p-value less than
0.05, for the day 1 edge view of the ejecta.

The Mann—Whitney U test with partitioning in groups by
composition produces more significant differences in cumula-
tive distributions than morphology: 16 significant distribution
comparisons compared to seven for morphology at the 5%
level. The p-value for the g band is effectively zero for both
axial and edge views of the ejecta (similar to the morphology
test along the axial view, the p-value decreases toward later
time). In contrast to the morphology grouping, the K band at
late time is a strong indicator of composition in the high-Y,
component. The K-band magnitudes are close at day 1, but
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these magnitudes become systematically lower for the wind 1
composition; this trend is reflected in the lower p-values at later
time. The final noteworthy difference with the morphology test
is in the bolometric luminosity: for the composition test it is a
significant indicator in the difference between the two
populations. The difficulty of the Mann—Whitney U test in
distinguishing morphology, relative to composition, is con-
sistent with the morphology distributions being in closer
alignment in Figure 8. This pattern is noteworthy given the
impact that morphology can have in brightness (Korobkin et al.
2021).

However, the Mann—Whitney U test (as presented here) does
not test for differences in correlations among observables. For
instance, the covariance of luminosity and K-band magnitude
might be stronger for one morphology (composition) than the
other, which would be a distinguishing factor between the
morphology (composition) groups. We can calculate the
Pearson correlation coefficient (Benesty et al. 2009) among
the nine data values per model per viewing angle (g band, K
band, bolometric luminosity at day 1, 4, 8 for 36 comparisons
per model, comparing axial-to-axial, axial-to-edge, or edge-to-
edge views),

450 . (P, _(P. P, .
Povw) Y05 = a0 — o)
v 450 (P 5 (P 450 . (P P
\/Zkzl(o,fk’” ="y \/Zk:1(0},k’w) - gy
)

where i and j are indices going from 1 to 9 labeling each
observable, and oiff’v) is the value of the observable i for model
with morphology P indexed at k, in viewing angle indexed v; so
gl(g’v’w) € [—1,1] is the Pearson correlation coefficient
between i and j between viewing angles v, w € {axial, edge}.
The maximum relative difference of correlation coefficients

between morphologies is calculated as

P S
W(P’S;V’W) = max . = (P,v,w) > (S,v,w) (6)
ij |\ minflo; ", 1o}

Equation (6) applies to composition if P is replaced by “wind
1” and S is replaced by “wind 2”. Using Equation (6) for either
morphology groups or composition groups, we find that the
overall maximum relative difference in Pearson correlation
coefficients occurs for morphology in the correlation between
day 1 bolometric luminosity in the edge view and day 8
bolometric luminosity in the axial view: the correlations have
the same sign (p,(;’aXial’edge) = 0.71 and gfi’”iahedge) = 0.86),
but the correlation is stronger for the S morphology by
pf - Saxialedge) 219, For comparison the largest relative
difference in correlation between composition groups is
pt-edeeedee) 159, for the correlation between day 1 K-band
magnitude in the edge view and day 8 g-band magnitude also
in the edge view. The Pearson correlation coefficients suggest
that the impact of morphology on correlations between
observables in different viewing angles per model can further
distinguish the morphology groups. Given an observation is
viewed at only one angle from Earth, the utility of the
difference in the multi-angle correlations between the morph-
ology groups in comparing an observation to the model grid is
not readily apparent. Consequently, we focus on using the



THE ASTROPHYSICAL JOURNAL, 918:10 (17pp), 2021 September 1

Wollaeger et al.

Table 3
Results of Mann—Whitney U Test of High-Y, Ejecta Morphology (S Group vs. P Group) per Axial and Edge Views of ¢ Band, K Band, and Bolometric Luminosity
Loz U Statistic, p Value, and Common Language Effect Size f at Days 1, 4, and 8; p-values Less Than 5% Are Highlighted

g K Loy
Day U P f v p S U 14 f
1 90486 577 x 1073 0.447 116240 1.20 x 107 0.574 96588 0.232 0.477
Axial 4 78367 439 x 107° 0.387 107518 0.108 0.531 99476 0.649 0.491
8 76170.5 1.26 x 10710 0.376 100989.0 0.947 0.499 103208 0.615 0.510
1 83241.5 3.86 x 107° 0411 107800.5 0.0928 0.532 109573 0.0328 0.541
Edge 4 94800.5 0.098 0.468 104131.5 0.460 0.514 103292 0.601 0.510
8 109313 0.0386 0.540 97343.5 0.316 0.481 106616 0.168 0.526
results of the Mann—Whitney U-test in forming a grid- 1. Calculate
observation comparison in the subsequent sections.
n ¥ M = - A = ) ®)

Finally, we note that we have verified the significant
variables in Tables 3 and 4 with the Kolmogorov—Smirnov
test, which also tests if two populations belong to the same
distribution, but uses a distance metric between the partitioned
distributions (Smirnov 1948). In Section 4.3.2, we attempt to
use the Mann—Whitney U test results to inform a logistic
regression. The intent is to determine the effectiveness of this
logistic regression in observable-based categorization of
models into the morphology or composition groups.

4.3.2. Iteratively Reweighted Least-squares Categorization

The Mann—Whitney U test is a method for assessing whether
two groups of data belong to one distribution over a particular
parameter (the null hypothesis), but does not readily provide a
way to categorize new data into a group. Consequently, for an
observation or model that is not in the grid of 900, we need a
different technique to determine the probability that it belongs
to a particular category (for instance, of composition or
morphology). One simple approach is to examine the data with
the most significant p-values in Tables 3 or 4, and perform a
multivariate logistic regression on those values. Specifically,
for each model we use the data corresponding to the shaded
p-values from those tables to perform the regression, which
depends on the model property:

1. the g band and day 1 K band for morphology;
2. all data except day 1 K band for composition.

The fitted logistic can then be used to calculate a probability of
a new observation’s inclusion in one of the groups. We attempt
to fit the logistic regression parameters using an iteratively
reweighted least-squares (IRLS) procedure (Holland &
Welsch 1977), which is straightforward to implement using
matrix manipulations available in NumPy’s linear algebra
package (Harris et al. 2020). We concatenate size-m sub-
vectors Y, for each model into a 900 by m matrix Y, where m
is the number of variables over which the Mann—Whitney U
test distributions are significantly different. A logistic curve
evaluated at each of the 900 data is

1
1 + eiW()*YU'W

fi = ; (N

where wg and w are a scalar and size-m vector of weights. The
IRLS procedure numerically solves for these weights with the
following steps:
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where superscript (k) indicates evaluation at the kth
iteration, Mék) is a 900x900 matrix, u(k) is a 900 x 900
diagonal matrix formed from the vector in Equation (7),
and 7 is a 900 x 900 identity matrix.

2. Calculate

Ml(k) _ (Y[(]k))T . M(()k) X Yl(Jk)’ )

where superscript (k) indicates evaluation at the kth
iteration, M is an m+ 1 x m+ 1 matrix, and super-
script T indicates a matrix transpose.
3. Calculate
My = (G (M - Y - o, WO 4§~ i), (10)
= (k) . . - .
where M2( " is a vector of size m + 1 and y is a vector of
450 1s and 450 Os, where a 1 indicates an S morphology
or wind 2 composition.
4. Evaluate the weights for the next iteration,
k+1) o in—1 7 ®
(w0, WEED) = Oy My (an

where superscript —1 indicates a matrix inverse.

The above steps are similar to a multivariate Newton iteration
and maximize the log-likelihood of the logistic in Equation (7)
relative to the vector of true categorization, y. The computa-
tional expense for the matrix inversion is mitigated by
restricting m to be the number of significant data points from
the Mann—Whitney U test. In our calculation, the weights tend
to converge after five iterations. We constrain the number of
parameters to four for the morphology test (three g-band points
and one K-band point) and eight for the composition test (three
g-band, two K-band, and three bolometric luminosity points).
This choice implies five and nine entries for (wg, w) for the
morphology and composition tests, respectively.

Figure 10 displays the probability of group inclusion versus
model index (doubled over axial and edge views, with edge
views indexed 900—-1799) for the morphology test (top) and for
the composition test (bottom). We have used the data set used
in the regression to obtain logistic parameters, and used this
logistic fit to estimate the probability that each model is
included in its own group. Despite using the parameters
producing the lowest p-values in the Mann—Whitney U test for
morphology, the logistic regression of the morphology does not
fit the true categorization, and hence does not provide
predictive capability for new models (within the scope of the
limited data per model being used). The logistic regression for
the composition groups fares somewhat better, as can be seen
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Table 4
Same as Table 3, but for Wind 1 Group vs. Wind 2 Group
g K Lol
Day U P f U P f U p f
1 138996.5 3.60 x 10722 0.686 105100 0.323 0.519 70296.5 2.05 x 1071° 0.347
Axial 4 145124.5 2247 x 107% 0.717 115642 223 x 107* 0.571 73292.5 7.50 x 10713 0.362
8 158541.5 7.04 x 107% 0.783 123396.5 134 x 1078 0.609 72340.5 119 x 1071 0.357
1 125232.5 7.69 x 1071° 0.618 101830.5 0.882 0.503 82928.5 262 % 10°° 0.409
Edge 4 130887 2.94 x 10714 0.646 114047.5 1.03 x 1073 0.563 77066.5 5.55 x 10710 0.381
8 141209.5 1.17 x 107 0.697 126966.5 421 x 1071 0.627 70454 2.69 x 10715 0.348
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Figure 9. g-band (blue) and K-band (orange) absolute AB magnitudes for
models with 0.01 M., mass for both high- and low-Y, ejecta, 0.3 ¢ low-Y, ejecta
speed, and 0.05 ¢ high-Y, ejecta speed. The high-Y, ejecta are spherical (“S”,
wind 1 = solid, wind 2 = dotted—dashed) and lobed (“P”, wind 1 = dashed,
wind 2 = dotted). The top panel is for the edge-on view and the bottom panel is
for an axial view; as expected, the g-band is several magnitudes brighter in the
axial view.

in the closer fit to the true composition distribution, but still
suffers considerable dispersion in the probabilities (in part-
icular, the overlap in fitted probabilities between the composi-
tion groups is large relative to the mean displacement between
groups).

The results of the Mann—Whitney U test show the impact,
collectively, of changing composition and morphology of the
high-Y, ejecta. However, these group partitions into statistically
significant differences in the distribution of observables do not
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Figure 10. Fitted probabilities (orange, dotted) of the high-Y, component of
each model having S morphology (top) or wind 2 composition (bottom) vs. a
model enumeration. Also shown are the true probabilities (0% or 100%) of
inclusion in a group (blue, solid).

provide a sufficient subset of observables to categorize new
kilonova data points using the IRLS method for logistic
regression. Since we have restricted our consideration to two
angular views and three times of the g-band, K-band, and
bolometric luminosity, we may have excluded other observa-
bles that are significant indicators of morphology and
composition. We have tested several different sub-vectors per
categorization test, but note that the possibilities of sub-vector
combinations can be expanded by using more viewing angles,
broadband magnitudes, or times. Another factor that compli-
cates the categorization of these models by composition or
morphology is the diversity of the light curves over the other
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Table 5
L, Error Ranges in Bolometric Luminosity and Corresponding Number of
Models with Wind 2 Composition for the High-Y, Component

Number of Wind 2 Models

€M,18°

>1.0 329
=>0.9, <1.0 24
=>0.8, <0.9 21
=>0.7, <0.8 16
=>0.6, <0.7 16
=>0.5, <0.6 16
204, <0.5 20
2>0.3, <0.4 8

>0.2, <0.3 0

<0.2 0

properties: viewing angle, high-Y, ejecta mass and velocity,
and low-Y, ejecta mass and velocity. We are left to conclude
that either a different fitting method over a different sub-vector
of data is required, or that categorization by morphology or
composition is inefficient due to the strong effects of the other
model properties.

4.4. Comparison with AT2017gfo

We next compare AT2017gfo to our model data set using a
logistic regression, as described in Section 4.3.2. For the sub-
vector of data, we use the axial and edge luminosities at days 1,
4, and 8, given their low p-value from the Mann—Whitney U
test in Section 4.3.1. Performing a logistic regression to fit
parameter coefficients using just bolometric luminosity from
the model data set, and evaluating the resulting function at the
observed bolometric luminosity for AT2017gfo from Smartt
et al. (2017), we find a probability estimate of ~65% for a
high-Y, component with a wind 2 composition, whereas the
mean fitted probability of the data set from this regression is
~46% for wind 1 models being categorized as wind 2 and
~549% for wind 2 models being categorized (correctly) as wind
2. The goodness of fit is low, given the close mean
probabilities, but the result suggests more closely examining
models with high-Y, components that have wind 2
compositions.

If the probability from the Mann—Whitney U test-based
IRLS logistic regression is taken to reduce the consideration to
wind 2 compositions, that still leaves 450 models to consider. It
may be worth reducing the number of models considered
further with another metric that is simpler than the full spectra
at each observed time; for instance one possible metric is an L,
error measure of the bolometric luminosity,

1L Lo(5) — Lopsil

gp=—) ——,

(12)
N i Lobs,i

where ¢y is the model error at angle 6 off-axis, N is the number
of observed time points, Ly is the model bolometric luminosity
at 6, and Lgys,; is the observed luminosity at time 7;. If we have
an independent constraint that the observer angle is ~18° off-
axis, we may restrict the angular views considered for
Equation (12). This particular choice of observer angle is
motivated by recent estimation for GW170817, 6 ~ 15° — 22°
(Hotokezaka et al. 2019). Table 5 has the partitioning of the
number of models by the error calculated with Equation (12) in
the angular viewing bin containing 18°.
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Table 6
Sample Models and Corresponding Bolometric Luminosity Error
Model €M,18°
T_m0.01v0.3_P2_m0.03v0.05 1.24
T_m0.01v0.3_P2_m0.03v0.15 0.77
T_m0.01v0.3_P2_m0.03v0.2 0.70
T_m0.01v0.3_P2_m0.03v0.3 0.45

We may then examine models from a few different
luminosity error groups, for instance the models and corresp-
onding luminosity errors shown in Table 6. We have
introduced an off-grid model with an average high-Y, ejecta
velocity of 0.2 ¢ for an additional comparison. The error in
overall bolometric luminosity appears to systematically
decrease as the ejecta velocity is increased, which would
suggest that higher velocity is favored for AT2017gfo at the
given viewing angle of ~18°. However, in Table 6 we have
constrained the other ejecta properties to specific values, so this
error trend does not generally hold for all models.

Figure 11 has bolometric luminosity versus time for the
models listed in Table 6 along with the AT2017gfo data from
Smartt et al. (2017) (top left), and spectra versus wavelength at
days 1 (top right), 3 (bottom left), and 5 (bottom right) along
with VLT/X-shooter data presented by Pian et al. (2017).
Despite having the lowest error in Table 6, the model with an
average high-Y, ejecta velocity of 0.3 ¢ produces a broad
absorption feature between 1 and 2 ym at day 5 that is not
present in the observed spectrum.

This behavior implies that a more complicated error metric
may be needed to filter data, if such a step is taken before
comparing spectra. This may also imply that there is some
tension between the observation and the model, and that a fit
should account for both consistency in spectra and in
bolometric luminosity. Notably, the models with high-Y, ejecta
velocity > 0.05 ¢ are all dim in the optical range relative to
AT2017gfo by day 5; this is a consistent feature of our models,
which warrants further investigation into both the numerical
method and model assumptions.

5. Conclusions

We have simulated a broad grid of 900 two-component 2D
axisymmetric kilonova models in order to supply a basis for
model analysis and comparison to observations. Each ejecta
component ranges from 0.001 to 0.1 M., in mass and 0.05 to
0.3 ¢ in average ejecta speed. The model grid can support
constraining the range of ejected mass from an observation or
upper bound on an observation; we have indeed applied these
models for the observational studies of Thakur et al. (2020),
O’Connor et al. (2021), and Bruni et al. (2021). We emphasize
as a caveat that the grid does not exhaust the space of possible
kilonova models. For instance, this grid is not as varied in
morphology as that of Korobkin et al. (2021) or as varied in
composition as that of Even et al. (2020). Examples from these
studies that we have not included in this grid are non-toroidal
low-Y, ejecta and solar abundance r-process composition.
Moreover, as a consequence of uncertainties in the nuclear
mass models, there are uncertainties in the heating rate due to
the r-process (Barnes et al. 2020; Zhu et al. 2021) that we have
not explored in this model grid. There has also been recent
progress in non-LTE physics (Hotokezaka et al. 2021); we have
not included any non-LTE treatment in the models presented
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Figure 11. Luminosity versus time (top left), spectra versus wavelength at day 1 (top right), day 3 (bottom left), and day 5 (bottom right). All data are shown at an

estimated observer angle of 6 ~ 15° — 22° (Hotokezaka et al. 2019).

here. Thus comparisons of observations to the model grid are
limited by these model constraints, mass model uncertainties,
and limitations in fidelity.

We have explored some example uses of the model grid in
this work, including basic population statistics and comparison
to the spectra of AT2017gfo. Below is a summary of this work
and the corresponding results.

1. The models have been simulated with multifrequency
LTE radiative transfer and detailed opacities, along with
detailed radioactive heating based on nucleosynthetic
tracer points (Wollaeger et al. 2018) and the thermaliza-
tion fraction formulation of Barnes et al. (2016). These
models cover a large range of masses and velocities from
the literature, but are restricted to toroidal low-Y,
ejecta and either spherical or lobed high-Y, ejecta
morphologies (Korobkin et al. 2021).

2. Axial and edge view g-band, K-band, and bolometric
luminosity values at days 1, 4, and 8are listed in the
expanded form of Table 7. We have showcased these data
in an example involving the non-parametric Mann—
Whitney U test for determining whether different
partitions (or grouping) by properties produce statistically
distinct distributions of observable properties. For this
model set, the results imply that grouping by high-Y,
composition is more effective in producing distinct
distributions than grouping by high-Y, morphology. We
emphasize that this test is possible for this model grid
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because there are only two morphologies and two
compositions for the high-Y, component. A model set
more exhaustive in morphology and composition would
complicate this test, and generally minimize its
effectiveness.

3. Using observables over which the Mann—Whitney U test
produces statistically distinct distributions in a logistic
regression produces a low-quality fit, indicating more
data (than presented in expanded Table 7) or more
sophisticated techniques are needed to properly categor-
ize observations with respect to the model data. We do
find that the logistic regression performs better for the
grouping by composition than for the grouping by
morphology, which is consistent with the Mann—Whitney
U tests.

4. We have compared some of our model light curves and
spectra from this grid to AT2017gfo, and find that an
overly simple bolometric luminosity error estimate may
filter out models that have better spectral agreement than
lower-error models. The model spectra shown for high-Y,
velocity > 0.05c exhibit a spectral cliff at late time, as
discussed by Wollaeger et al. (2018), that is not present in
the late spectrum of AT2017gfo.

The statistical study presented here can be further expanded
using machine-learning (ML) classification methods (see, for
instance, Bishop et al. 1995; Zhang 2000). We consider more
advanced ML techniques for light-curve interpolation in
another work (Ristic et al. 2021). Interpolation should permit
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sparser initial grid requirements, which can also be achieved
with Latin Hypercube sampling (see, for example, Stein 1987).
The grid we have presented here is uniform, but could be
extended via Latin Hypercube sampling to account for new
parameter variation. One potential impediment to Latin
Hypercube sampling is the lack of an informed joint probability
distribution over the model input. More observations, ab initio
merger simulations, and population synthesis may help to
estimate this probability distribution and enable efficient Latin
Hypercube sampling.
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Appendix
Magnitude Tables

Table 7 contains a reduced set of data for the models of our
grid: bolometric luminosity, g-Band, and K-Band magnitudes.
Each of these data are shown at days 1, 4, and 8, in axial and
edge viewing angles.
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Table 7
Axial /Edge Viewing Bin for Absolute AB Magnitudes in g, K Bands and Bolometric Luminosity (Lyo [1040 erg sfl]) for Models with 0.001 M., Dynamica Ejecta and P Morphology, High-latitude Composition
(1) Wind
Day 1 Day 4 Day 8

Model 8 K Lol 8 K Lyor 8 K Lol

T_m0.001v0.05_P1_mo0.001v0.05 ~10.8/—11.1 —122/-115 2.0/1.6 ~0.7/-1.0 —12.1/-112 0.4/0.2 40/43 ~10.4/-9.8 0.1/0.1
T_m0.001v0.05_P1_m0.001v0.15 -7.5/-9.8 -12.2/-11.3 1.1/1.1 0.1/1.0 —11.8/-10.8 0.3/0.2 1.5/4.3 -10.3/-9.6 0.1/0.1
T_m0.001v0.05_P1_m0.001v0.3 —5.9/-55 —12.4/-11.8 1.1/0.9 —2.5/2.4 -11.5/-10.6 0.2/0.1 —0.8/4.6 —10.0/-9.5 0.1/0.0
T_m0.001v0.05_P1_m0.003v0.05 ~12.9/-13.3 —12.2/-11.6 5.1/5.5 ~1.8/-24 —~122/-116 0.5/0.3 32/2.7 ~10.6/—10.1 0.1/0.1
T_m0.001v0.05_P1_m0.003v0.15 —10.6/-11.1 -12.2/-11.7 2.1/3.1 —0.9/0.2 -11.9/-11.0 0.4/0.2 0.6/3.5 -10.3/-9.7 0.1/0.1
T_m0.001v0.05_P1_mo0.003v0.3 —74/-70 —12.5/-11.7 1.5/1.3 —3.8/13 —11.6/-10.6 0.3/0.1 ~22/3.6 ~10.0/-9.5 0.1/0.1
T_m0.001v0.05_P1_m0.01v0.05 —13.9/-14.2 —124/-122 10.7/12.4 -5.0/-55 —12.5/-11.5 0.8/0.6 2.0/2.2 —11.2/-11.0 0.2/0.1
T_m0.001v0.05_P1_m0.01v0.15 —12.8/-13.1 —12.3/-12.4 6.4/9.8 -2.0/-0.8 -12.1/-12.0 0.5/0.5 —0.4/2.5 —10.4/-10.0 0.1/0.1
T_mo0.001v0.05_P1_m0.01v0.3 ~10.8/-10.7 —12.5/-11.7 3.6/6.4 ~5.0/03 ~11.6/-10.7 0.4/0.3 ~37/23 ~10.0/-9.5 0.1/0.1
T_m0.001v0.05_P1_m0.03v0.05 —142/-145 —12.6/-12.6 15.0/17.6 —8.8/-9.3 —13.3/-12.6 2.9/29 0.8/0.3 —12.0/-12.2 0.4/0.4
T_m0.001v0.05_P1_m0.03v0.15 —14.7/-15.0 —12.0/-125 19.0/29.5 -3.3/-27 -12.9/-133 1.1/14 -1.3/14 —11.2/-11.0 0.3/0.3
T_m0.001v0.05_P1_m0.03v0.3 —14.2/-13.3 —12.7/-13.1 18.8/22.1 —6.0/-0.5 —12.1/-11.4 0.9/0.7 —4.9/1.1 —10.1/-9.6 0.2/0.2
T_m0.001v0.05_P1_m0.1v0.05 —14.3/-14.6 -12.9/-12.9 17.1/20.3 —12.0/-12.2 —14.0/-14.0 10.4/12.8 -3.2/-38 —13.1/-13.2 1.3/1.5
T_m0.001v0.05_P1_m0.1v0.15 —15.9/-16.3 —12.6/-13.6 55.7/80.7 -7.1/-7.9 —13.7/-12.8 3.3/4.8 -2.3/0.4 —12.7/-12.9 0.8/0.9
T_mO0.001v0.05_P1_m0.1v0.3 —15.7/-15.0 —13.6/—13.9 65.3/59.5 -7.1/-2.1 —13.4/-13.9 2.8/3.5 —6.0/0.3 —10.9/-10.6 0.6/0.5
T_m0.001v0.15_P1_mo0.001v0.05 —11.0/-6.7 —132/-123 3.4/0.8 22/0.3 —11.3/-10.7 0.2/0.1 49/0.0 —9.8/-94 0.0/0.0
T_m0.001v0.15_P1_m0.001v0.15 —84/-8.7 —13.2/-123 24/1.4 0.2/2.7 —11.2/-10.6 0.2/0.1 1.5/5.3 -9.8/-9.4 0.0/0.0
T_m0.001v0.15_P1_mo0.001v0.3 —-59/-65 —133/-125 18/12 —25/29 —11.0/-104 0.1/0.1 —0.8/4.7 —9.4/-92 0.0/0.0
T_m0.001v0.15_P1_m0.003v0.05 —13.4/-8.1 -13.3/-123 9.0/0.9 0.2/1.2 —11.7/-11.3 0.3/0.2 4.3/0.6 -10.1/-9.8 0.1/0.1
T_m0.001v0.15_P1_m0.003v0.15 —10.9/-10.8 —13.4/-125 42/32 -0.7/1.6 —11.4/-10.8 0.2/0.2 0.6/3.6 -9.9/-9.5 0.1/0.1
T_m0.001v0.15_P1_mo0.003v0.3 —74/-74 —13.4/-12.5 23/1.7 ~38/19 ~11.0/—10.4 0.2/0.1 —23/38 —95/-92 0.0/0.0
T_m0.001v0.15_P1_m0.01v0.05 —14.5/-8.8 —13.4/-124 20.1/1.0 —4.3/0.9 —12.5/-11.9 0.7/0.3 1.8/0.6 —10.9/-10.8 0.1/0.1
T_m0.001v0.15_P1_m0.01v0.15 —13.0/-13.0 —13.6/—12.9 9.9/9.1 -1.9/0.3 —12.1/-11.9 0.5/0.4 -0.3/2.8 —10.2/-10.0 0.1/0.1
T_m0.001v0.15_P1_m0.01v0.3 ~10.8/-10.7 —13.6/-12.7 48/6.9 ~5.0/0.7 ~11.2/-10.7 0.3/0.3 ~3.7/2.5 ~9.6/-9.3 0.1/0.1
T_m0.001v0.15_P1_m0.03v0.05 —14.8/-9.2 —13.6/-12.5 26.5/1.2 -9.0/-4.0 —13.4/-12.7 2.9/0.6 0.9/0.7 —11.9/-12.1 0.3/0.3
T_m0.001v0.15_P1_m0.03v0.15 —14.9/-14.9 ~13.7/-13.1 26.4/26.7 —33/-23 ~133/-134 14/14 ~12/2.1 —112/-11.1 0.3/02
T_m0.001v0.15_P1_mo0.03v0.3 —14.2/-133 ~13.8/-13.6 20.2/22.4 ~6.0/-02 ~12.0/-11.6 0.8/0.7 ~49/1.6 ~10.0/-9.7 0.2/0.2
T_m0.001v0.15_P1_m0.1v0.05 —14.8/-9.4 —13.7/-12.6 27.9/1.3 —12.6/-8.7 —14.5/-14.0 15.5/3.1 -3.7/0.6 —13.3/-13.5 1.5/1.2
T_mo0.001v0.15_P1_m0.1v0.15 —16.1/-16.1 ~13.9/-138 69.6/68.4 ~8.0/-8.1 —142/-133 54/49 —22/1.1 ~12.9/-13.0 0.9/0.9
T_m0.001v0.15_P1_m0.1v0.3 —15.7/-14.9 —14.3/-143 66.9/57.6 -7.1/-19 —13.5/-14.0 2.7/3.6 —6.0/0.5 —11.1/-10.8 0.6/0.5
T_m0.001v0.3_P1_mo0.001v0.05 —9.8/—1.1 —134/-126 2.2/0.7 1.7/0.3 ~10.7/-10.1 0.1/0.1 3.8/0.0 —84/-78 0.0/0.0
T_m0.001v0.3_P1_mo0.001v0.15 —6.9/-5.1 ~13.3/-12.6 1.5/0.7 0.4/4.3 ~10.5/-9.8 0.1/0.1 1.6/5.6 -83/-16 0.0/0.0
T_m0.001v0.3_P1_mo0.001v0.3 ~-59/-26 —132/-126 12/0.8 —25/35 ~10.5/-9.7 0.1/0.1 —0.8/5.3 —8.1/-75 0.0/0.0
T_mo0.001v0.3_P1_m0.003v0.05 —12.8/-1.7 —13.6/—12.6 72/0.7 0.9/0.1 ~11.2/-10.9 0.1/0.1 5.0/0.0 ~89/-8.6 0.0/0.0
T_m0.001v0.3_P1_m0.003v0.15 —10.6/-8.1 —13.5/-12.7 3.9/1.1 —0.6/2.3 —10.7/-10.1 0.1/0.1 0.8/5.1 —8.5/-17.8 0.0/0.0
T_m0.001v0.3_P1_mo0.003v0.3 ~75/-62 —134/-126 2.1/12 —3.8/2.5 ~10.5/-9.8 0.1/0.1 —22/42 ~82/-16 0.0/0.0
T_m0.001v0.3_P1_m0.01v0.05 —14.4/-29 —13.8/—-12.7 18.8/0.8 —2.6/0.4 —12.2/-12.2 0.4/0.4 2.1/0.0 —10.2/-10.2 0.1/0.1
T_m0.001v0.3_P1_m0.01v0.15 —13.0/-10.8 —14.0/-13.1 12.1/3.0 —1.8/2.2 —11.6/-11.4 0.3/0.3 0.0/4.5 -9.0/-8.7 0.1/0.1
T_m0.001v0.3_P1_mo0.01v0.3 ~10.9/-10.4 ~137/-12.8 5.9/5.7 ~5.0/1.5 ~10.9/-10.3 0.2/0.2 ~3.7/3.1 ~85/-78 0.0/0.0
T_m0.001v0.3_P1_m0.03v0.05 —14.7/-3.1 —13.9/-12.8 25.6/0.9 —6.7/0.9 —13.5/-13.0 2.1/1.0 —0.4/0.0 —11.5/-11.8 0.2/0.2
T_m0.001v0.3_P1_mo0.03v0.15 —14.9/-133 —14.4/-133 34.7/9.0 ~2.9/0.9 —13.2/-133 1.1/1.1 —0.9/2.4 ~10.4/-10.4 0.2/02
T_m0.001v0.3_P1_m0.03v0.3 —14.2/-13.0 —14.2/-13.8 23.9/19.6 —6.0/0.5 —12.1/-11.5 0.8/0.6 —4.9/2.1 -9.1/-8.5 0.2/0.1
T_m0.001v0.3_P1_m0.1v0.05 —14.1/-2.1 —14.0/-12.9 19.1/1.0 -11.1/-3.6 —14.4/-143 10.7/3.6 —2.7/0.0 —12.9/-133 0.9/1.2
T_mo0.001v0.3_P1_m0.1v0.15 —16.3/—147 —14.6/—139 93.4/233 —6.8/—4.8 —14.6/—14.1 6.0/3.7 —20/13 —125/-125 0.7/0.7
T_m0.001v0.3_P1_m0.1v0.3 —15.7/-14.7 —14.8/-14.6 76.3/51.3 =7.1/-1.7 —13.9/-14.1 3.3/3.8 —6.0/0.9 —10.8/-10.4 0.6/0.5

(This table is available in its entirety in machine-readable form.)
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