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Interpolating detailed simulations of kilonovae: Adaptive learning
and parameter inference applications
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Detailed radiative transfer simulations of kilonovae are difficult to apply directly to observations; they only
sparsely cover simulation parameters, such as the mass, velocity, morphology, and composition of the ejecta.
On the other hand, semianalytic models for kilonovae can be evaluated continuously over model parameters,
but neglect important physical details which are not incorporated in the simulations, thus introducing systematic
bias. Starting with a grid of two-dimensional anisotropic simulations of kilonova light curves covering a wide
range of ejecta properties, we apply adaptive learning techniques to iteratively choose new simulations and
produce high-fidelity surrogate models for those simulations. These surrogate models allow for continuous
evaluation across model parameters while retaining the microphysical details about the ejecta. Using a code
for multimessenger inference developed by our group, we demonstrate how to use our interpolated models
to infer kilonova parameters. Comparing to inferences using simplified analytic models, we recover different
ejecta properties. We discuss the implications of this analysis which is qualitatively consistent with similar
previous work using detailed ejecta opacity calculations and which illustrates systematic challenges for kilonova
modeling. An associated data and code release provides our interpolated light-curve models, interpolation
implementation which can be applied to reproduce our work or extend to new models, and our multimessenger
parameter inference engine.
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I. INTRODUCTION

As exemplified by GW170817, neutron star mergers are
empirically known to produce a rich array of multimessenger
emission [1,2]. The presence of matter is most unambiguously
indicated by electromagnetic emission from nuclear matter
ejected during the merger itself, which produces distinctive
“kilonova” emission [3–6] via radioactive heating of this ex-
panding material. Kilonova observations can provide insight
into uncertain nuclear physics [7–11] and help constrain the
expansion rate of the universe [12–15], particularly in con-
junction with gravitational wave observations [1,2,16–21].

In principle, kilonova observations encode the amount and
properties of the ejected material in their complex multi-
wavelength light curves (and spectra) [5,22,23]. For example,
several studies of GW170817 attempted to infer the amount of
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material ejected [22–31]. In practice, these observations have
historically been interpreted with semianalytic models, as they
can be evaluated quickly and continuously over the parame-
ters which characterize potential merger ejecta. However, it
is well known that these semianalytic models contain over-
simplified physics of already simplified anisotropic radiative
transfer calculations [32–34] that neglect detailed anisotropy,
radiative transfer, opacity, sophisticated nuclear reaction net-
works, and composition differences.

To circumvent these biases, some groups have attempted
to construct surrogate kilonova light-curve models, calibrated
to detailed radiative transfer simulations [22,25,35]. For ex-
ample, Coughlin et al. [22] used Gaussian process (GP)
regression of principal components to construct a multiwave-
length surrogate calibrated to a fixed three-dimensional grid of
simulations [36], describing flux Fk from a single component
of ejected material. This study generated a “two-component”
ejecta model by adding the fluxes of two independent cal-
culations (F = F1 + F2), ignoring any photon reprocessing
effects. More recently, Heinzel et al. [25] applied this method
to construct an anisotropic surrogate depending on two com-
ponents M1,M2 and viewing angle, calibrating to their own
anisotropic radiative transfer calculations. They also included
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reprocessing effects, showing that their previous simplified
approach which treats the radiation from each of the two
components of the outflow independently introduces biases
in inference for the components’ parameters. These strong
reprocessing or morphology-dependent effects are expected
in kilonova light curves [37–40]. Finally, a recent study by
Breschi et al. [24] favored an anisotropic multicomponent
model.

In this work, extending [35], we apply an adaptive learning
technique to generate surrogate light curves from simulations
of anisotropic kilonovae. Starting with a subset of 36 simula-
tions reported in [34], we use these adaptive learning methods
to identify new simulations to perform, refining our model
with 448 simulations so far. We apply our surrogate light
curves to reassess the parameters of GW170817. We distribute
the updated simulation archive, our current best surrogate
models, and our training algorithms in Ref. [41].

This paper is organized as follows. In Sec. II we de-
scribe the kilonova simulation family we explore in this study
and the active learning methods we employ to target new
simulations to perform. We also briefly comment on our
model’s physical completeness. In Sec. III we describe the
specific procedures we employed to interpolate between our
simulations to construct surrogate light curves. In Sec. IV
we describe how we compare observations to our surrogate
light curves to deduce the (distribution of) best-fitting two-
component kilonova model parameters for a given event. We
specifically compare our model to GW170817. In Sec. V we
describe how our surrogate models and active learning fit into
the broader challenges of interpreting kilonova observations.
We conclude in Sec. VI.

II. KILONOVA SIMULATION PLACEMENT

A. Kilonova simulations

The kilonova simulations described in this work adopt a
similar setup as and expand on the work of [34]. The simula-
tions discussed throughout were generated using the SUPERNU

[41] time-dependent radiative transfer code, using tabulated
binned opacities generated with the Los Alamos suite of
atomic physics codes [42,43]. We use results from the WINNET

code [44] to determine radioactive heating and composition
effects. We employ the thermalization model of [45], but use
a gray Monte Carlo transport scheme for gamma ray energy
deposition [32].

The ejecta model is based on a symmetrically shaped ideal
fluid expanding in vacuum described by the Euler equations
of ideal hydrodynamics. The assumption of a radiation-
dominated polytropic equation of state allows for an analytic
representation of the ejected mass M and average velocity v̄

as a function of initial central density ρ0, initial time t0, and
the velocity of the expansion front vmax [Eqs. (11) and (12)
in [32]]. When combined with Monte Carlo based radiative
transfer and a specified elemental composition for the ejecta,
the code produces time- and orientation-dependent spectra.
Convolving these spectra with standard observational filters
produces light curves such as the ones in Figs. 1 and 4.

Real neutron star mergers have (at least) two mechanisms
for ejecting material, denoted as dynamical and wind ejecta

FIG. 1. Bolometric luminosities of initial and adaptively placed
simulations: The top panel shows the log10 bolometric luminosity in
CGS units versus time in days for the simulations we initially used to
train our grid. These simulations all extend out to roughly 8 days. The
bottom panel shows the bolometric light curves for our adaptively
placed simulations overlaid on top of the initial grid light curves.
Most of these simulations extend past 32 days. Both panels exhibit
significant diversity in behavior and timescale.

[46]. Due to the difference in formation mechanisms of dy-
namical and wind ejecta [5], a multicomponent approach
is necessary for accurate modeling. Each of the two types
of ejecta, dynamical and wind, is modeled by a separate
component with a specified morphology, elemental compo-
sition, ejecta mass, and ejecta velocity. The components are
modeled together as one radiative outflow [32]. The thermal
decay energy is treated by mass weighting between the com-
ponents where they overlap. The end product represents a
time-dependent spectral energy distribution contained in 54
angular bins, equally spaced in cos θ from 1 to −1. For the
purposes of this study, the spectra are convolved with broad-
band filters to produce a series of broadband light curves.
Specifically, we use the Vera C. Rubin Observatory grizy
filters for optical and near-infrared bands, 2MASS JHK filters
for longer wavelength near infrared, and the mid-infrared S
filter for the Spitzer 4.5-μm band. For each band and emission
direction, we estimate the AB magnitude for that filter, defined
for a source at 10 pc in terms of energy flux in gcm2/s2 Fν

per unit frequency via mX,AB = −2.5 log10 〈Fν〉 − 48.6. All
observations used in this work are provided or are translated
into this AB-magnitude system [47–49]. Because our simu-
lations tend toward reflection-symmetric behavior across the
z = 0 plane, we only consider the independent information
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TABLE I. Kilonova simulation parameters: Within the frame-
work of models explored in [34], parameters of the initial kilonova
simulations used to initialize our adaptive learning process in this
work. All simulations used in this work adopt a two-component
model where the morphology and composition of each component
are fixed.

Mej v̄

Ejecta Morphology Ye M� c

Dynamical Torus 0.04 0.001, 0.01, 0.1 0.05, 0.3
Wind Peanut 0.27 0.001, 0.01, 0.1 0.05, 0.3

contained in the upper half (z > 0) of these angular bins. To
reduce the acquisition cost of each simulation, we evolved
each kilonova simulation in our initial grid out to 7.66 days.
To minimize data handling and training cost, unless other-
wise noted, we manipulate a subset of our simulation output
based on a log-uniform grid. For the initial simulations, this
log-uniform grid consists of 191 time points ranging from
1/8 to 7.66 days. For the remaining simulations, this grid
is extended in log-time to cover their available duration, up
to a maximum of 64 days. Because of several systematics
associated with modeling emission at early times (e.g., in
the ionization states of the medium and in the contribution
from and interaction with any strong jet), we do not report on
behavior prior to 3 hours postmerger. In this work, we use the
orientation-averaged luminosity for simulation placement, but
reconstruct the luminosity continuously in angle and time.

The original simulation hypercubes discussed in [32,34]
consider multiple wind ejecta morphologies and composi-
tions. To simplify the dimensionality of the problem, this work
only considers simulations from the initial grid with a peanut-
shaped morphology [37] and lower Ye = 0.27 composition
describing the wind ejecta. Table I summarizes the parame-
ters for the 36 simulations in our four-dimensional hypercube
and highlights variation in only ejected mass M and average
velocity v̄ for each of the two components: the mass and
velocity of the dynamical and wind ejecta, denoted henceforth
as Md , vd ,Mw, vw. Every simulation in our hypercube adopts
the same morphologies for the dynamical and wind ejecta,
respectively. This initial simulation hypercube thus consists
of only two of the three velocities and three of the five masses
explored in the companion study [34].

As expected and discussed elsewhere [34], these simu-
lations exhibit significant viewing-angle dependence on the
relative speed of the components. The obscuration of the wind
by the dynamical ejecta becomes less significant closer to the
symmetry axis and the peanut morphology itself also produces
orientation dependence. The two-component model shows
“blanketing” of slow blue components by fast red components
[50]. Also expected and observed are qualitative trends versus
the component masses and velocities: more wind ejecta mass
increases the g-band luminosity along the symmetry axis.

B. Illustrating systematics of kilonova simulations

Before extensively discussing our ability to reproduce this
specific family of simulations, we first comment on their
systematic limitations. Our simulation archive explores only a

FIG. 2. Impact of removing zirconium: Solid and dashed lines
show simulations with otherwise identical assumptions about com-
position, morphology, and velocity structure, differing only by the
presence (solid) and elimination (dashed) of Zr. The selected sim-
ulation parameters Md = 0.01M�, vd = 0.3c, Mw = 0.01M�, and
vw = 0.15c are our closest-matching representations of the simula-
tion parameters considered during the Zr-omitting study in [56].

limited range of initial conditions for the ejecta, with specific
assumptions about the composition, morphology, and veloc-
ity profiles; with specific assumptions about nucleosynthetic
heating; and with specific assumptions about (the absence of)
additional power and components, such as a jet or a central
source to provide additional power or light [51–54].

Several previous studies have indicated that these and other
aspects of kilonova simulations can noticably impact the out-
come [8,32,33,37,38,55,56]. Where possible, we very briefly
comment on how current and previous SUPERNU simulations’
results change when making similar changes in assumptions.

Prior work with SUPERNU has explored the impact of
composition [33]. However, recently, Kawaguchi et al. [56]
(henceforth K20) demonstrated that Zr makes a substantial
contribution to the final light curve. Figure 2 shows how
our simulations depend on a similar change in composition,
noting substantial change in the late-time optical light curves
when we remove Zr.

As demonstrated by many previous studies using SUPERNU,
the morphology and velocity structure also have a notable im-
pact on the post-day light-curve behavior [32,37,38]. Several
other groups have demonstrated similar strong morphology
and orientation dependence in their work [24,25,56,57]. For
example, in their Fig. 8, K20 demonstrate how the light curve
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changes when a specific polar component of the ejecta is
removed.

Uncertain nuclear physics inputs also propagate into no-
table uncertainties about the expected light curve; see, e.g.,
[7,8]. Even for the same morphology and amount of ejecta,
nuclear physics uncertainties can modify the effective heating
rate, particularly for material with low Ye which has the great-
est prospect for producing r-process elements.

Given limited exploration of possible kilonova initial con-
ditions and physics, we can only at present quantify the
uncertainties of the type listed above. In future work, we will
employ our parametrized models to assess the impact of these
uncertainties on inferences about kilonova parameters. Future
work could require kilonova models which include equation
of state (EOS) parameters to enable joint inference which also
simultaneously constrains the equation of state.

As discussed elsewhere [34], at late times some light
curves show a modest deficit of blue light (g-band) relative to
observations of GW170817 (unless the dynamical ejecta mass
is large). Notably, our g-band light curves fall off significantly
more rapidly after their peak in all viewing directions and for
most parameters considered here. Previous work with other
morphologies also recovers similar falloff in these bands (see,
e.g., [28]), though additional components could conceivably
contribute. Similar g-band behavior has been seen in other
detailed kilonova simulations; see, e.g., Fig. 12 in [58]. As
noted above, this behavior depends on the assumed composi-
tion, notably Zr.

C. Interpolation methodology

In this work, we principally interpolate using Gaussian
process (GP) regression. In GP regression, given training data
pairs (xa, ya), the estimated function ŷ(x) and its variance
s(x)2 are approximated by

ŷ(x) =
∑
a,a′

k(x, xa)K−1
aa′ ya′ , (1a)

s(x)2 = k(x, x) − k(x, xa)K−1
aa′ k(xa′ , x), (1b)

where the matrix Kaa′ = k(xa, xa′ ) and where the function
k(x, x′) is called the kernel of the Gaussian process. In this
work, unless otherwise noted, we used a squared-exponential
kernel and a white-noise (diagonal) kernel

k(x, x′) = σ 2
o e

−(x−x′ )Q(x−x′ )/2 + σ 2
n δx,x′ , (2)

where Q is a diagonal matrix of possible length scales and
σ0, σn are hyperparameters that characterize the amount of
noise allowed in the problem. The other interpolation method
considered in this work was random forest (RF) regression
[59]. Unlike the GP, the RF output had no error quantification
and was used primarily as a consistency check on the Gaussian
process prediction. Unless otherwise noted, we performed all
GP and RF regression with SCIKIT-LEARN [60].

Because of the substantial dynamic range of our many
outputs, we interpolate the log10 luminosity (for placement) or
AB magnitudes (for all other results). Unless otherwise noted,
we quantify the performance of our interpolation with the
root-mean-square (RMS) difference between our prediction

and the true value

�2 = 1

n

n∑
j=1

[y j − log10(Lbol) j]
2. (3)

(This expression overweights the importance of large errors
when the source is not detectable at late times; see the
Appendix.)

We employ GP interpolation in two standard use cases. In
the first case, used for our exported production results, we in-
terpolate the AB magnitude mα (t∗|	) at some fixed reference
time t∗ and band α versus our four simulation hyperparameters
(and, in the end, also across the extrinsic parameters of angle
and wavelength) contained in 	. In this case, the prediction
y(xa) has a single scalar value at each point; the xa refer
to model hyperparameters; and the interpolation provides us
with a scalar function of four or more variables. GP regression
[Eq. (1)] provides an error estimate for mα at this specific time
t∗, which in general will depend on time.

In the second case, used for simulation placement, we
interpolate the logarithm bolometric luminosity light curve
log10 Lbol (t |	) versus all time. (In terms of each simulation’s
spectrum, the bolometric luminosity is Lbol = 4πR2

∫ ∞
0 Fνdν

where R = 10 pc.) In this case, the prediction �y(xa) is vector
valued at each point; the xa refer to model hyperparameters;
and the interpolation provides us with a vector-valued func-
tion of four or more variables. For simplicity and given our
use case, we reduce our error estimate to a single overall value
for the entire light curve, reflecting the overall uncertainty in
�y(xa).

D. Active learning scheme

Gaussian processes have long been used for active learning
because they provide an error estimate: followup simulations
can be targeted in regions with the largest expected error
(and thus improvement) [61]. We follow this approach in our
active learning scheme; see [62–69] for a broader discussion
of active learning methods and their tradeoffs. To reduce the
data volume needed for targeting followup simulations, we
used vector-valued interpolation as described above, applied
to orientation-averaged outputs of our simulations. This ap-
proach has the substantial advantage of providing a single
error estimate per light curve (both in training and off sample),
which we can immediately use as an objective function in a
minimization algorithm.

We pursued an active learning simulation placement ap-
proach in order to maximally explore the parameter space and
reduce the amount of redundant information obtained from
each new simulation. The subset of 36 light curves discussed
in Sec. II A was used as the initial training set. Thousands of
parameter combinations were subsequently drawn from uni-
form distributions with maxima and minima matching those
of the varied parameters in Table I. Each of these parameter
combinations was evaluated by an interpolator to produce an
initial light-curve prediction as well as an error on the entire
light-curve output. The prediction with the largest error across
all the tested parameter combinations was selected as the next
placed simulation.
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FIG. 3. Impact of adaptive placement on interpolation: Example
of interpolation output at a point with large predicted fitting error,
both before and after placing the simulation. In both panels, the solid
black curve shows the true simulated bolometric light curve versus
time. The red band shows the GP-predicted one-sigma error bar
about the expected value. Top panel: predictions from our RF and GP
interpolations versus time. The large error and low practical utility of
the GP fit are apparent. Bottom panel: after including this simulation
in the training set, the revised RF and GP predictions much more
closely conform with this specific simulation as expected.

E. Prediction improvement and interpolation results

We verified our active learning strategy for simulation
placement by randomly sampling combinations of parameters
and creating two light-curve predictions based on those pa-
rameters. The first prediction was trained solely on our initial
grid of simulations from Sec. II A, while the second prediction
was trained on the same initial grid, but with an added sim-
ulation output characterized by the aforementioned random
combination of parameters. Figure 3 shows these before- and
after-inclusion predictions which show that, as expected, the
GP interpolation capability is improved. This pair of figures
anecdotally illustrates the degree to which new training data
improve our surrogate light-curve models.

With over 400 placed simulations since the start of the
active learning process, the training library is built up enough
to allow for physically meaningful interpolation of off-sample
events. The performance of our adaptive learning is best il-
lustrated with our production-quality interpolation scheme,
illustrated in Fig. 4 and described in the next section.

FIG. 4. Off-sample interpolation with original and refined grid:
Example of an interpolated stitched fixed-time prediction compared
to a simulation output created from the same corresponding input
parameters. The top panel shows our estimate based on the initial 36
simulations; the bottom panel shows the result after adaptive learn-
ing. Different colors denote different filter bands, described in the
legend. The dashed lines show full simulation output for each band.
The colored points show our interpolated bolometric magnitude pre-
dictions at the 191 evaluation times. The solid lines show our final
interpolated light curves, interpolating between the points shown.
The largest error in this example occurs for the g band at late times.
The simulated parameters and viewing angle for this configuration
are Md = 0.097 050M�, Mw = 0.083 748M�, vd = 0.197 642c, and
vw = 0.297 978c, viewed on axis (θ = 0). The exaggerated mod-
ulations in the top panel’s solid lines and dotted curves illustrate
interpolation failures, arising from adopting an initially insufficient
training set.

Despite producing many followup simulations, we achieve
success with a very sparse coverage of our parameter space.
To illustrate the sparsity of our parameter-space coverage, and
how slowly our added simulations increase coverage, we eval-
uated the median “intersimulation” distance, using a simple
Euclidean (L2) norm over log10 Lbol (tk ) for several reference
times tk . As expected given the high apparent dimension of our
output, this median distance changes very slowly with n, ow-
ing to the large effective dimension of the output light curves.
The median distance is also larger than the residual error in
our fit, as reported below. The success of our interpolation
relies not on an overwhelmingly large training sample, but on
the smoothness and predictability of our physics-based light
curves.
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III. LIGHT-CURVE INTERPOLATION

A. Stitched fixed-time interpolation

To efficiently interpolate across the whole model space, we
follow a strategy illustrated in Fig. 1 of [70]: we pick several
fiducial reference times tq (and angles); use GP interpolation
to produce an estimate mα (tq|	) versus 	; interpolate in time
to construct a continuous light curve at the model hyperparam-
eters 	 at each reference angle; and then interpolate in angle
to construct a light curve for an arbitrary orientation. For an
error estimate, we stitch together the error estimates in each
band to produce a continuous function of time. Figure 4 shows
the output of our interpolation (smooth lines), compared to a
validation simulation at the same parameters (dashed lines).
Our predictions generally agree, though less so for the shortest
wavelengths at the latest times. Subsequent figures also illus-
trate the typical GP error estimate, which is usually O(0.1) in
log10 L for most bands and times considered.

B. Trends identified with interpolated light curves

In Fig. 5 we show the results of our fit evaluated at
a fixed viewing angle (θ = 0), varying one parameter at a
time continuously, relative to a fiducial configuration with
Md = Mw = 0.01M�, vw/c = vd/c = 0.05. The fixed value
for the ejected mass of M = 0.01M� was chosen as the middle
ground of the initial grid’s sampled mass space, which does
not introduce any biases toward lighter or heavier masses.
Since no similar central value was initially available for the
velocity parameters, the lower value was selected in the case
of both components. The slower velocity resulted in the ejecta
not dissipating as quickly and allowed for more variation in
the light curves as the nonstatic parameter was varied. For
this viewing angle, changes in the amount and velocity of the
dynamical ejecta have relatively modest effect, in large part
because that ejecta is concentrated in the equatorial plane. By
contrast, changes in the mostly polar wind ejecta have a much
more substantial impact on the polar light curve (θ = 0).
Specifically, increasing the amount of wind ejecta brightens
and broadens the light curve, as expected from classic analytic
arguments pertaining to how much material the light must dif-
fuse through [5,71–73]. Similarly, increasing the velocity of
wind ejecta causes the peak to occur at earlier times (diffusion
is easier) and be brighter.

C. Interpolation in viewing angle

All of the interpolated light curves discussed thus far have
been trained at some fixed viewing angle. In Fig. 6, we explore
the interpolation of several families of models, each of which
was trained using simulation data at a different viewing angle.
The symmetry of the ejecta across the orbital plane allows for
the assumption that any angular variation between 0 and π/2
can simply be mirrored across the symmetry axis.

Figure 6 indicates that the first day postmerger does not
introduce much angular variation and, as such, is quite well
predicted even when interpolating across only 11 angles. After
1 day, the luminosity across different angles begins to change
considerably as the peanut-shaped wind ejecta becomes more
dominant. Particularly at late times, there is a strong angu-
lar variability which manifests near the orbital plane, most

FIG. 5. Interpolated and simulated g-band light curves: In this
figure, we generate log Lg(t |	) for a one-parameter family of simu-
lations 	 where either one of the M parameters vary from 0.001M�
to 0.1M� or one of the v parameters vary from 0.05c to 0.3c, and the
viewing angle is θ = 0. The remaining model parameters are fixed to
(M/M�, v/c) = (0.01, 0.05). Contours in M are uniform in logM,
while those for v are linearly uniform. For comparison, the heavy
dashed lines show the initial training simulation results for the two
parameter end points. The g-band light curve has the largest dynamic
range and is the most sensitive to interpolation errors; notably, the
interpolation does not always conform tightly to the underlying sim-
ulation data at late times.
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FIG. 6. Interpolation of g-, y-, and K-band luminosity at different
viewing angles: This figure compares the g-, y-, and K-band lumi-
nosity at select times as a function of viewing angle. The solid points
represent fixed angles at which the different families of models were
trained. The solid lines connecting the points indicate the interpo-
lated prediction of the angular variation at some given time in the
light curve. The dashed lines represent the simulation data and show
the true angular variation. The shaded regions denote the 1σ error
estimate derived from our Gaussian process fit versus time, extended
in angle.

strongly apparent in the blue (g) and near-infrared (K) bands.
In the blue bands, the angular variation reflects lanthanide
curtaining; in the red bands, the angular variation reflects
red emission from the late-peaking red dynamical ejecta. (At

FIG. 7. Light curve versus time for selected angles and bands:
comparison to Fig. 7 of [58] indicating angular dependence of light-
curve predictions across the g, z, and K bands.

the latest times and faintest luminosities along the equatorial
plane, numerical uncertainty in our Monte Carlo simulations
is apparent in the light-curve results.) In all panels, the solid
band denotes an estimated error bar from our GP fit in time,
extended in angle. For comparison, Fig. 7 shows the light
curve behavior for increasing viewing angle for short-, mid-,
and long-wavelength filters.

D. Predictive accuracy versus time, angle grid sizes

To better understand the systematic limitations and com-
putational inefficiencies introduced by our stitched-time
interpolation grid, we investigated the accuracy of our fits
when only using a subset of the time or angular grid.

First, we consider a simple analysis of loss of predictive
accuracy as the number of GP interpolators used to make a
surrogate light curve is decreased. We denote t ∈ T as the
subset of times represented by the GP interpolators used to
make a prediction, T as the total available number of time
points, and thus interpolators, which can be used to make a
light curve, and t̄ as all the other times in T which are not
represented by t such that t ∩ t̄ = 0 and t ∪ t̄ = T .

Thus, when using any number of interpolators at times t ∈
T which is less than the total number of possible time points
T , we first generate predictions y(t ) with the chosen subset of
interpolators. These predictions y(t ), along with the times t at
which the predictions were made, are then used as inputs for
SCIPY’s UnivariateSpline method from which the remainder of
the light curve z(t ) = f (t, y(t )) is constructed, where in this
last case the function can be evaluated ∀ t ∈ T .

Figure 8 shows how the average residual between on-
sample light-curve predictions and the respective simulation
data changes as a function of the number of time points used
as the base for constructing the time-interpolated light curve.
For the current scheme, we can remove up to roughly 75% of
the initial set of time points without substantially diminishing
our overall accuracy. Future work will explore smarter selec-
tion of representative time points in an effort to further reduce
the number of interpolators which can be removed without
significant loss of accuracy.
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FIG. 8. Average residual as a function of number of considered
time points: A plot of the average residuals between on-sample
time-interpolated light curves and the respective simulation data as
a function of how many time points are used to generate the light
curves. In each case, we drew the respective number of samples from
a log-uniform distribution between the start and end time of our light
curves.

IV. PARAMETER INFERENCE OF RADIOACTIVELY
POWERED KILONOVAE

In this section, we describe and demonstrate the algorithm
we use to infer kilonova parameters given observations, using
the interpolated light-curve model above. Unless otherwise
noted, for simplicity all calculations in this section assume
the kilonova event time and distance are known parameters.
We likewise assume observational errors are understood and
well characterized by independent Gaussian magnitude errors
in each observation, and that our model families include the
underlying properties of the source (i.e., we neglect systematic
modeling errors due to the parameters held constant in our
simulation grid: morphology, initial composition, etc.).

A. Framework and validation

As in many previous applications of Bayesian inference
to infer parameters of kilonovae [22,23,25–27], we seek to
compare the observed magnitudes xi at evaluation points i
(denoting a combination of band and time) to a continuous
model that makes predictions m(i|θ) [henceforth denoted by
mi(θ) for brevity] which depend on some model parameters
θ . Bayes theorem expresses the posterior probability p(θ) in
terms of a prior probability pprior (θ) for the model parameters
θ and a likelihood L(θ ) of all observations, given the model
parameters, as

p(θ) = L(θ)pprior (θ)∫
dθL(θ)pprior (θ).

(4)

Unless otherwise noted, for simplicity we assume the source
sky location, distance, and merger time are known. We adopt
a uniform prior on the ejecta velocity v/c ∈ [0.05, 0.3] and a
log-uniform prior on the ejecta masses m/M� ∈ [10−3, 0.1].
We assume the observations have Gaussian-distributed mag-
nitude errors with presumed known observational (statistical)
uncertainties σi, convolved with some additional unknown

systematic uncertainty σ , so that

lnL(θ) = −0.5
n∑

i=1

[
[xi − mi(θ)]2

σ 2
i + σ 2

+ ln
[
2π

(
σ 2
i + σ 2)]],

(5)
where the sum is taken over every data point in every band
used in the analysis. In tests, we treat σ as an uncertain
model parameter, de facto allowing for additional systematic
observational uncertainty (or for some systematic theoretical
uncertainty). For our GP surrogate models, we set σ to the
estimated GP model error.

Unlike prior work, we eschew Markov-chain Monte Carlo,
instead constructing the posterior distribution by direct Monte
Carlo integration as in [74,75]. To efficiently capture correla-
tions, we employ a custom adaptive Monte Carlo integrator;
see Wofford et al. [76] for implementation details. In the
Appendix, we describe several tests we performed to validate
this inference technique using synthetic kilonova data drawn
from a previously published semianalytic kilonova model.
Our tests include recovering the parameters of 100 synthetic
kilonova sources. In future work, we will demonstrate how our
parameter inference method can be incorporated efficiently
and simultaneously with gravitational wave (GW) parameter
inference with the rapid iterative fitting (RIFT) parameter
estimation pipeline [75].

B. Inference with surrogate kilonova model

Figure 9 demonstrates parameter inference using our sur-
rogate light curves, for a synthetic source generated using our
own model. As expected, we can recover a known source, in-
cluding constraining the viewing angle θ . Figure 10 performs
a similar test, but now using a specific simulation, without
interpolation. As expected given our adopted systematic error,
we recover the simulation parameters. Finally, Fig. 11 repeats
the test above, using the semianalytic model described in the
Appendix. This comparison emphatically demonstrates large
systematic differences between this semianalytic model and
our detailed simulations.

C. Example: GW170817

SUPERNU-based kilonova models have already been suc-
cessfully used to interpret GW170817, though as noted
previously these models have a rapid falloff in the late-time
optical magnitudes that is not present in the observations;
see [28]. Because of the close proximity of GW170817, only
distance modulus (but not redshift) corrections are needed to
translate our predictions to apparent magnitudes which can
be directly compared to electromagnetic observations. Ob-
servational results are taken from a Ref. [23] compilation of
photometry reported in [27,28,31,77–84]. Figure 12 shows
the results of directly comparing our extended simulation
archive directly to observations of GW170817, selecting for
simulations (parameters and angles) with the highest overall
likelihood. The solid black curves in these figures show the
50 highest-likelihood configurations, where the likelihood re-
quires simultaneously reproducing all observed bands. Except
for reddest three bands (JHK), many simulations compare ex-
tremely favorably to the observations. The parameters of these
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FIG. 9. Synthetic source recovery with surrogate model: Recov-
ery of a parameter of a known two-component surrogate kilonova
model, using inference based on our interpolated model. Solid black
curves show results adopting a strong angular prior motivated by
radio observations of GW170817. Top panel: synthetic light-curve
data in several bands. Bottom panel: inferred distribution of the
four model parameters, and viewing angle. The blue cross denotes
the injected values. Red contours show results without adopting a
prior on observing angle; black contours show results inferred when
adopting a prior on viewing angle consistent with observations of
GW170817.

simulations, however, do not represent the optimal parameters
of this model family: because our placement algorithm min-
imizes interpolation error, the selected points preferentially
occur at the edges of our domain. Finally, for the reddest band
(K), our fits exhibit notable systematic uncertainty relative to
the underlying simulation grid.

We have performed parametric inference on GW170817
using our surrogate light-curve model to the underlying SU-
PERNUresults. Motivated by the direct comparisons above, we
perform two analyses. In the first, we use all observing data
at all times. In the second, we omit the reddest (K) band.

FIG. 10. Simulation parameter recovery with surrogate model:
Recovery of a parameter of a known two-component kilonova
simulation, using inference based on our interpolated model. The
parameters corresponding to the relevant simulation are Md =
0.052 780M�, vd = 0.164 316c, Mw = 0.026 494M�, and vw =
0.174 017c. Top panel: synthetic light-curve data in several bands.
Bottom panel: inferred distribution of the four model parameters.

Figure 13 shows the results of these comparisons. Because of
the systematic fitting uncertainties at late times, we highlight
the analysis omitting K-band observations as our preferred
result. Although previously reported inferences about ejecta
masses cover a considerable dynamic range (see, e.g., Fig. 1
in [85]), our inferred masses are qualitatively consistent with
selected previous estimates including previous inferences with
similar SUPERNU models [28] and recent surrogate models
adapted to simplified multidimensional radiative transfer [21].
Notably, however, we infer a large amount of “dynamical”
(red, lanthanide-rich) ejecta mass [i.e., Mej  O(1/30)M�],
more dynamical ejecta than wind, and the velocities for the
dynamical and wind components are inverted relative to cus-
tomary expectations (i.e., vd < vw). Our dynamical and wind
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FIG. 11. Simulation parameter recovery with analytic model:
Recovery of a parameter of a known two-component kilonova sim-
ulation, using inference based on the simplified analytic model
described in the Appendix. The analytic model cannot fit our simu-
lation data. While only a one-component fit is shown, similar results
arise when employing multiple components. The parameters corre-
sponding to the relevant simulation are Md = 0.01M�, vd = 0.3c,
Mw = 0.01M�, and vw = 0.3c. Top panel: synthetic light-curve data
in several bands, including error bars on both the synthetic data and
posterior light-curve predictions. The analytic model cannot fit our
simulated data well. Bottom panel: inferred distribution of the four
model parameters. The blue cross denotes the injected values.

component masses differ from typical semianalytical treat-
ments (see, e.g., [86]).

We also weakly constrain the misalignment angle be-
tween the outflow and the line of sight to be consistent
with independent late-time radio observations, which (weakly
supplemented with gravitational wave constraints) constrain
the opening angle between the jet and the line of sight to
be roughly 20◦ [20,28,78,87–89]; see also [21] for previ-
ous, weaker constraints on binary alignment from kilonova
observations. Reanalyzing the light curves using this prior
information, imposed as a Gaussian prior on θ with mean 20◦

with σθ = 5◦, we find modestly improved overall constraints
on the ejecta; see also, e.g., Fig. 2 of [21] for previous, weaker
constraints derived using joint radio and kilonova observa-
tions.

V. DISCUSSION

We have demonstrated that our surrogate models can be
operationally compared to real kilonova observations, allow-
ing us to deduce what the range of parameters for the original
simulation family best fits the observations. In this section,
we emphasize several systematic limitations of our approach,
to more clearly distinguish the ways in which the answers so
obtained could differ from a description of physical reality.
When possible, we comment on ways in which these system-
atic limitations could be mitigated with future work.

First and foremost, our surrogate models introduce some
modest bias, being an imperfect representation of the simu-
lations they mimic. We have demonstrated that these errors
are relatively small (see Figs. 4 and 6). In this work, we
principally employed two standard interpolation methods (GP
and RF interpolations) to construct synthetic light curves.
Recent substantial advances in machine learning have led to
many new algorithms and architectures for adaptive learn-
ing and interpolation. Our prior work suggests that neural
networks can also usefully interpolate kilonova light curves
[35], which we will describe at greater length in future work.
Other groups have also successfully produced surrogate light
curves with modest error. Previously, surrogate light curves
have been produced by interpolating the coefficients cg(	)
of a basis-function expansion logLα (t |	) = ∑

g cg(	)φg(t )
[22,25], with the appropriate basis functions identified by
principal component analysis of the raw simulation output.
Because of the prohibitive cost of GP on large data sets, this
analysis had to decimate input data to enable interpolation.
Our reference-time method offers several notable advantages.
The most important advantage is that our method is em-
barrassingly parallel (interpolations at every reference time
can be performed independently, without need to select suit-
able basis functions in advance) and completely decoupled
between time samples. Our interpolation is also inherently
local in time, so artifacts inherited from late-time simulation
data of low-photon-count light curves cannot contaminate our
estimates of early-time behavior. Finally, our method can in
principle be applied to all available data, without decimation,
particularly when we employ other interpolation techniques.

Second, we adopt simulations with an imperfect model
of the relevant opacities and nuclear physics. For example,
we have adopted a conventional nuclear mass and decay
model to predict nuclear heating and element abundances
[32,90]. We also find that although our detailed multifre-
quency opacities yield a more realistic representation of the
physics in the system, the assumption of thermalization breaks
down much sooner than anticipated. Uncertainties in nuclear
physics can play a substantial role in kilonova light curves
[7,8]. Given sufficient simulations, surrogate light curves can
be constructed for a wide range of nuclear inputs. We defer
a systematic treatment of nuclear physics uncertainties and
non-local thermodynamic equilibrium opacities to later work.
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FIG. 12. Comparison to GW170817: Simulations only: this figure shows the results of direct comparison between all our simulations and
our observations. Each simulation and angle is assigned a likelihood; the top 50 highest likelihood simulations are shown (black), compared
with the observational data (red). The 50 black curves are drawn from a total number of potential candidate angles and simulations of 54 × 448.
For comparison, the blue curves show our continuously interpolated model, evaluated at the same parameters as the underlying simulations.
We emphasize the identified simulations are at the edges of our simulation domain, where interpolation error is most severe.

Third, we employ simulations with phenomenological ini-
tial conditions, that are not initialized with the appropriate
orientation-dependent distribution of mass, velocity, and com-
position versus time. More suitable initial conditions could be
provided by detailed disk simulations [91,92].

Fourth, we do not (and cannot) initialize our simulations
with initial data that are set by physics of the merger. Unlike
previous work [22,26], we have not adopted a relationship
between our two-component ejecta parameters and the pro-
genitor masses m1,m2, motivated by substantial uncertainty
in the nuclear equation of state and remnant lifetime [18,93–
95]. Even the best-available fits have considerable systematic
uncertainty [96]. Similarly, we have not adopted assumptions
about the lifetime of any hypermassive remnant and the dura-
tion of neutrino illumination [97], nor have we incorporated
radiation from any associated jet [51]. Instead, given sub-
stantial systematic uncertainty in merger simulations (relative
to the small amount of ejecta), we treat the ejecta purely
phenomenologically, implicitly allowing for many potential
nuisance parameters to characterize the outflow.

Fourth, our models were trained on a subset of simulations
with fixed ejecta morphologies and mass fractions for both
components. The predictive capability of our interpolations
is restricted to two-component models represented by the

parameters in Table I. Our parameter estimation inherits these
limitations and should thus also be considered for bias which
stems from the selected subset of models in our interpolation
training library.

Finally, we note that GW170817 was likely an exceptional
case which contributed sufficient quantities of observational
data for extremely informative parameter inference. Our
methodology is still applicable in cases with sparser light-
curve data; however, the level of detail in the inference results
will vary based on the aforementioned sparsity.

VI. CONCLUSIONS

We have adaptively constructed detailed anisotropic mod-
els for kilonovae that cover a four-dimensional space de-
scribing two components’ masses and velocities. From these
models, we have constructed surrogate multiband light curves
which can be evaluated continuously over this space. We have
demonstrated how our model can be used for kilonova source
parameter inference, including the kilonova associated with
GW170817.

Although we limited our study to a specific set of assump-
tions, this analysis is an important stepping stone towards
a better understanding of kilonova systematics. Recently,
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FIG. 13. Comparison to GW170817: The left panel shows the results of interpreting observations of GW170817 using our surrogate
light-curve model and adopting a strong angular prior θ  20◦. In the left panel, the solid black shows inferences using all observing data,
while the red curve omits K-band observations. The right panel shows inferred light curves corresponding to the full data set analysis (i.e., the
light curves correspond to the black contours in the left panel).

several studies have demonstrated that several physical as-
sumptions can notably impact the deduced light curve.
However, these impacts could have effects that are partially
degenerate with modest shifts in ejecta properties. To under-
stand the practical impact of these uncertainties, in future
work we will employ our parametrized models with these
sources of error.

In this work we emphasized inference on only phenomeno-
logical kilonova parameters. Several studies have demon-
strated the value in using multimessenger information to more
tightly constrain parameters like source inclination (see, e.g.,
[13,20,21,87]), even without adopting strong assumptions
about the relationship between ejecta and progenitor masses.
With such assumptions, even stronger constraints have been
widely explored. In future work we will show how the elec-
tromagnetic inference strategy applied here can be tightly and
efficiently integrated with the RIFT parameter inference en-
gine, enabling concordance inference about multimessenger
sources.

All of our input data products, fitted light curves, and the
code we used to produce them are available in Ref. [41]. The
underlying full simulations are available in Ref. [98].
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APPENDIX: VALIDATION OF PARAMETER INFERENCE
METHOD

1. Simple analytic kilonova model

To validate our parameter inference codes, we imple-
mented a standard semianalytic kilonova model previously
presented in [23]. This model consists of single-component,
two-component, and three-component models, combined by
flux addition and not allowing for anisotropy. In the following
equations, M is the r-process ejecta mass (in M�) and v is
the ejecta velocity. Note that for now we assume the ejecta
consists entirely of r-process material, so M is the full ejecta
mass. The radioactive heating rate at time t is given by [90]

Lin(t ) = 4 × 1018M ×
[

0.5 − π−1 arctan

(
t − t0

σ

)]1.3

× erg s−1, (A1)

where t0 = 1.3 s and σ = 0.11 s are constants.
Only a fraction of Lin powers the kilonova, given by the

thermalization efficiency εth. This is approximated analyti-
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FIG. 14. Analytic kilonova model injection. Top panel: posterior
distribution for the injection/recovery test (the blue lines show the
true parameter values). For this example, Tc was fixed for each com-
ponent and the distance was fixed to 40.0 Mpc. Bottom panel: fake
photometry data and light-curve models for the injection/recovery
test. The solid line shows the light-curve model evaluated at the
maximum-likelihood parameters. Both the data and light curves in-
clude a confidence interval.

cally in [45]

εth(t ) = 0.36

[
e−at + ln(1 + 2btd )

2btd

]
. (A2)

The parameters a, b, and d are constants that depend on the
ejecta mass and velocity; an interpolation of Table 1 in [45]
is used in the model. The bolometric luminosity is calculated
via [73]

Lbol(t ) = 2

td
exp

(−t2

t2
d

) ∫ t

0
Linεth exp

(
t2

t2
d

)
t

td
dt, (A3)

where td is the diffusion timescale, td = √
2κM/βvc, κ is the

opacity, and β = 13.7 is a dimensionless constant related to
the ejecta’s geometry.

FIG. 15. Probability-probability (P-P) tests: P-P plot for 100 syn-
thetic injections generated with one random component.

Light curves are calculated by assuming the kilonova be-
haves as a blackbody photosphere that expands at a velocity
v. The blackbody temperature is generally defined by its
bolometric luminosity; however, once it cools to a critical
temperature Tc, the photosphere recedes into the ejecta and
the temperature remains fixed. The photosphere temperature
is

Tphot(t ) = max

[(
Lbol(t )

4πσSBv2t2

)1/4

,Tc

]
, (A4)

where σSB is the Stefan-Boltzmann constant. When Tphot > Tc,
the photosphere radius is simply Rphot = vt . When Tphot = Tc
(i.e., the photosphere has receded into the ejecta), the photo-
sphere radius is

Rphot(t ) =
(

Lbol(t )

4πσSBT 4
c

)1/2

. (A5)

The flux density at frequency ν is given in [5]

Fν (t ) = 2πhν3

c2

1

exp [hν/kTphoto(t )] − 1

R2
photo(t )

D2
, (A6)

where D is the source distance. We use a fixed fiducial dis-
tance of D = 10 pc to calculate Fν (t ), then calculate AB
magnitude with a distance modulus if necessary.

To compute multicomponent light curves we assume each
component has a photosphere that evolves independently of
the others. The total flux density is the sum of the flux den-
sities of the individual components. The version of the model
implemented in the code uses three components with fixed
opacities (a blue component with κ = 0.5 cm2 g−1, a purple

013046-13



M. RISTIC et al. PHYSICAL REVIEW RESEARCH 4, 013046 (2022)

component with κ = 3 cm2 g−1, and a red component with
κ = 10 cm2 g−1).

2. Validation test: Recovery of synthetic kilonova

Figure 14 illustrates our implementation of this synthetic
model and our parameter inference code. The error bars on
the bottom panel show a densely sampled synthetic multiband
light curve with plausible kilonova parameters for all three
components. The top panel shows a standard corner plot repre-
senting the parameters of our synthetic kilonova with thin blue
lines; one-dimensional marginal posterior distributions on the
diagonal for each parameter; and two-dimensional marginal
posterior distributions in the bottom corner.

3. Validation test: Random synthetic kilonova
and probability-probability plot

We also demonstrated our inference technique using 100
randomly generated light curves, drawn uniformly from the
same priors we use for inference and incorporating noise
consistent with our Gaussian noise model. Using these
100 synthetic events and inferences, we can construct a
probability-probability (P-P) plot [99], which corroborates
that the one-dimensional marginal distributions are consistent.
Figure 15 shows the results of our analysis. More extensive
tests of the underlying integration algorithm, including P-P
plots using more complex and higher-dimensional models, are
reported elsewhere [76].

[1] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya
et al., Multi-messenger observations of a binary neutron star
merger, Astrophys. J. Lett. 848, L12 (2017).

[2] The LIGO Scientific Collaboration, the Virgo Collaboration,
B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso et al., GW170817: Observa-
tion of Gravitational Waves from a Binary Neutron Star Inspiral,
Phys. Rev. Lett. 119, 161101 (2017).

[3] J. M. Lattimer and D. N. Schramm, Black-hole-neutron-star
collisions, Astrophys. J. Lett. 192, L145 (1974).
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