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Abstract 

Recent advances in computational hardware and free energy algorithms enable a broader 

application of molecular simulation of binding interactions between receptors and small molecule 

ligands. The underlying molecular mechanics force fields (FFs) for small molecules have also 

achieved advancements in accuracy, user friendliness and speed during the past several years 

(2018-2020). Besides expansion of chemical space coverage of ligand-like molecules among 

major popular classical additive FFs and polarizable FFs, new charge models have been proposed 

for better accuracy and transferability, new chemical perception of avoiding predefined atom types 

have been applied, and new automated parameterization toolkits including machine learning 

approaches have been developed for users’ convenience. 

 

Introduction 

Molecular simulations have played essential roles in biochemical and biophysical sciences [1-

4]. They capture the structural characteristics and dynamic behaviors of biomolecules (proteins, 

nucleic acids, carbohydrates, etc.) interacting with ligands, solvents, co-solvents, and other 

molecules at an atomistic level and fine temporal resolution. Especially in the field of modern drug 

discovery, in silico simulations are commonly used to virtually screen potential compounds active 

to specific drug targets from vast compound pools, typically by calculating the protein-ligand 

binding free energies for drug lead identifications and optimizations. Such a vital application of 

molecular simulations is highly desired but still holds many challenges currently. A key to the 

success of molecular simulation studies and structure-based rational drug design is the quality of 

the utilized molecular mechanics force field (MMFF). A MMFF consists of a set of simple 
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functions for bonded terms (bonds, angles, dihedrals, improper dihedrals) and nonbonded 

Coulombic and van der Waals (VDW) interactions and associated parameters, which enable the 

calculation of potential energies and forces.  

Among the numerous MMFFs, the following four families are the most popular ones for 

atomistic molecular dynamics (MD) simulations of biological systems: Assisted Model Building 

with Energy Refinement (AMBER) [5,6], Chemistry at HARvard Macromolecular Mechanics 

(CHARMM) [7,8], Optimized Potentials for Liquid Simulations (OPLS) [9,10], and GROningen 

MOlecular Simulation (GROMOS) [11]. These force field (FF) families usually include specific 

FFs for proteins, nucleic acids, lipids, and carbohydrates. They also include general FFs for various 

small molecules, such as the General AMBER Force Field (GAFF) [12,13], the CHARMM 

General Force Field (CGenFF) [14-16], and expanded parameters in recent OPLS [17] and 

GROMOS series [18]. It is a tradition to group a MMFF to a family mainly based on its nonbonded 

terms, especially VDW parameters. Thus, even a general FF carries different name from the FF 

from which it is originated, it still belongs to the same family according to this tradition. The recent 

review by Nerenberg and Head-Gordon [19] summarizes the developments before 2018 in all-

atom biomolecular FFs for proteins, nucleic acids, and small molecules. In this review, we focus 

on the progresses of general FFs for small molecules from 2018 to 2020. We summarize classical 

additive FFs first, and then polarizable FFs (Figure 1). 

 

Major upgrade of popular small-molecule force fields. 

The most notable update among the widely used small-molecule FFs during the past two years 

is the release of OPLS3e [17]. Building upon the previous OPLS series, OPLS3e further expanded 

with extensive parameters for bonds, angles and torsional terms related to drug-like compounds. 
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[17]. It also integrated a ligand-specific approach to assign atomic charges on the fly [17]. The 

charge model included off-atom centered virtual sites for charge distributions of lone pairs and 

sigma holes as CGenFF had done [16]. The improved parameter transferability lead to an improved 

performance on small molecule conformational energy profiles, solvation free energies, and 

receptor−ligand binding free energies [17]. This FF is implemented in the commercial Schrodinger 

software suite. 

Since 2015, the second generation of GAFF (GAFF2) has steadily expanded its parameters, 

which can be obtained for free through AmberTools. Originally, GAFF and GAFF2 were 

developed utilizing the RESP (restrained electrostatic potential) [12] method to assign charges for 

atoms, which fits the electrostatic potential from ab initio HF/6-31G* calculation, the same 

protocol as for the AMBER protein FFs. But in practice, the users of GAFF/GAFF2 prefer the fast 

semi-empirical AM1-BCC model [20,21] to obtain the atomic partial charges because ab initio 

calculations are avoided. Very recently He et al.  adjusted the bond charge correction (BCC) terms 

in the original AM1-BCC model for GAFF2, and achieved mean unsigned error (MUE) of only 

0.37 kcal/mol for the hydration free energy of more than 400 organic solutes [13]. This new version 

of charge model (named ABCG2) combined with GAFF2 parameters also works well on the 

calculations of solvation free energy for nearly 900 pairs of various organic solutes in various 

organic solvents, whose dielectric constants range from 1.8 to 37.2 (Figure 2), and the 

corresponding MUE is only 0.51 kcal/mol [13]. This result demonstrated the capability of dealing 

different dielectric environments by the newly derived ABCG2 model, which is important for 

quantitatively predicting transferring free energies and binding free energies.  

Although CGenFF and GROMOS did not announce major updates on small molecule 

parameters, new toolkits (described below) emerged to facilitate the FF parameterization. 
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Automated toolkits to facilitate parameterizations. 

FF parameterization is a tedious and time-consuming process which often involves decisions 

from human experts. In order to reduce the burden of developing missing parameters for non-

expert users, automated toolkits have been developed to generate specific parameters (usually 

bonded terms or partial charges) from quantum mechanics (QM) data, such as Parmscan and 

Antechamber for GAFF/GAFF2, Paramfit for AMBER, ffTK for CGenFF, ATB for GROMOS, 

LigParGen for OPLS-AA, and Poltype for polarizable FF AMOEBA [22-25]. Recently Nash et al. 

presented a Java tool, ForceGen [26], to extract the force constants and equilibrium values of bonds 

and angles via performing a vibrational frequency analysis, and the output is formatted with the 

Gromacs topology. The MacKerell lab developed the FFParam package [22] to facilitate the 

parametrization process for CGenFF and CHARMM Drude polarizable FF. Horton et al. 

developed a toolkit, QUBEKit (QUantum mechanical BEspoke Kit), which derives FF parameters 

directly from quantum mechanics for specific small molecules [27]. 

 

Machine-learning methods in force field parameterization 

Recently, machine learning (ML) methods were adopted in FF parameterization for efficiency. 

Galvelis et al. combined a general FF and several neural network potentials (NNPs) to improve 

dihedral parameters [23]. They demonstrated that small molecules can be parameterized in much 

shorter time with torchani-ANI-1x NNP compared to equivalent procedure using density 
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functional theory (DFT) calculations. However, extensive evaluation is necessary on applying 

NNPs in MMFF parameterization.  

Martin et al. used ML algorithms to fast assign partial charges for screening molecules which 

are encoded as a cyclic undirected graph with atoms corresponding to vertices, and bonds to edges 

[28]. A web tool, ContraDRG [28], was developed to assign partial charges using random forest 

models. Similarly, Wang et al.  recently developed a deep learning algorithm to predict QM-based 

atomic charges via a graph convolutional network [29].  

Wilkins et al. [30] calculated the static dipole polarizability tensors of over 7,000 small organic 

molecules (containing up to seven heavy atoms) using highly accurate QM LR-CCSD theory, and 

used a ML approach named SA-GPR to accurately predict the LR-CCSD molecular polarizabilities 

with a negligible computational cost. The molecular dipole polarizability is an important parameter 

in some polarizable FFs discussed below. 

 

New chemical perception without relying on atom types 

Usually, the process of assigning appropriate FF parameters for a molecule is done based on a 

set of pre-defined atom types. The Open Force Field Consortium worked on an approach to 

automatically recognize the moieties and assign each type of parameters via standard chemical 

substructure queries [31,32]. This approach was previously used by Poltype [25] to facilitate 

automated parameter assignment for AMOEBA FF. The identification of specific atoms inside a 

chemical pattern was carried out via an industry-standard SMARTS language and its SMIRKS 

extensions [31]. Starting from GAFF atom types and parameters, a new FF format was 
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implemented and named as the SMIRKS Native Open Force Field (SMIRNOFF)[31]. The 

obtained definition file of parameters contains only approximately 300 lines but can cover five 

million drug-like molecules. The obtained FF (named SMIRNOFF99Frosst) showed similar 

accuracy on free energies of hydration for small molecules and tested properties of organic bulk 

liquids compared with GAFF [31].  

Another recently developed method of determining FF torsional parameters without relying on 

the atom type concept is H-TEQ (Hyperconjugation for Torsional Energy Quantification) 

[24,33,34]. It is based on the following chemical principle and hypothesis: (1) the torsional 

interaction is controlled by a combination of hyperconjugation, electrostatic and steric effect; (2) 

a hyperconjugation term can replace the conventional torsion form to improve torsional profiles; 

(3) the hyperconjugation term can be derived from a simple chemical property – electronegativity 

of the atoms along the torsion. The authors of H-TEQ found that the parameters of their proposed 

hyperconjugation term can be conveniently obtained from the electronegativity values of central 

and neighboring atoms with a few correlation rules, and do not need any atom types. With this 

method, atomic charge, electronegativity, and hence hyperconjugation terms can be derived on the 

fly for molecules of interest [33]. The authors showed that H-TEQ performed comparably well to 

GAFF in reproducing QM torsional profiles for diverse organic molecules [24,33], and better 

torsional profiles for conjugated drug-like molecules [34]. 

 

 

Polarizable force fields.  
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The classical additive FF models remain problematic when the same set of fixed partial charges 

is applied to different environments, in which the charge distribution is expected to change, such 

as gas to aqueous solution, solvent to protein cavity, cell membrane permeation, and heterogeneous 

interfaces. Growing effort has been made in improving the electrostatic model and to address the 

lack of polarization in additive models. Inakollu et al. recently reviewed the polarizable FFs and 

discussed in depth the key interactions and special cases that are difficult to model well with a 

purely additive FF [35]. A more in-depth review of polarizable FF algorithms and recent successes 

for a variety of biological systems is discussed elsewhere [36]. Currently, empirical polarizable 

models that have been applied to common organic molecules can be divided into four classes: 

fluctuating charge, Drude oscillator, gaussian electrostatic, and induced dipole. However, the 

fluctuating charge model has not been actively developed during the past years. Hence, it is not 

discussed in this review.  

The Drude oscillator method introduces explicit polarization by attaching a charged virtual 

particle (the Drude oscillator) to every polarizable atom via a harmonic spring. The atomic dipoles 

can change according to the surrounding electric field by optimizing the positions of Drude 

particles with respect to the fixed atomic cores. The CHARMM Drude oscillator model for small 

molecules, including alkanes, ethers, alcohols, amides, aromatics, sulfur containing compounds, 

ketones, aldehydes and halogenated ethanes and benzenes, is reviewed in more depth elsewhere 

[37]. Ions in particular are susceptible to polarization effects and monovalent ions have been 

previously parameterized to with CHARMM, as well as molecular ions such as ammonium and 

derivatives, imidazolium, guanidinium, acetate, methanethiolate, ethanethiolate, phenolate [38]. 

Parameters for the polarizable Drude ions were optimized to be consistent with experimental 

hydration free energies of the neutral salts while generating accurate energies and geometries for 

monovalent ions [38]. This was an improvement over previous non-polarizable ion model for 

CHARMM.  
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The Gaussian Electrostatic Model (GEM) and Gaussian Multipole Model (GMM) utilizes a 

continuous representation of charge density with gaussian functions to model polarization and 

charge penetration effects. The AMBER Force Field Consortium developed polarizable Gaussian 

Multipole (pGM) model in which a Gaussian function or its derivatives are adopted to represent 

the atomic multipoles for more efficient electrostatics [39]. Another unique ML based many-body 

potential is the MB-pol model, which has shown excellent results for water and its interactions 

with ions and CH4 etc. [40-42]. 

The AMOEBA polarizable FF employs induced dipoles on atomic sites to model polarization. 

[43,44]. Additionally, an automated procedure known as Poltype, has been described to generate 

small molecule parameters for AMOEBA [25]. A later version Poltype 2, is currently in 

development and includes additional features such as fragmentation for torsion fitting, ring 

puckering (for torsion parameterization), as well as automated VDW parameterization and 2D 

torsion-torsion correction maps. A molecular fragmenter for torsion parameterization is also 

implemented to significantly reduce the computation time of necessary ab initio calculations. 

AMOEBA has been successfully applied to protein-ligand binding free energy computations, 

typically with ligands containing many rings such as host-guest systems [45]. Poltype has been 

used to derive parameters for organochlorine compounds [46], IN17 derivatives to inhibit MELK 

(many ring containing compounds) [47], ALDOLASE inhibitors containing phosphate groups and 

fluorinated groups [48], ATP and ADP [49]. A range of small organic molecules have also been 

validated in implicit solvents, producing high quality experimental hydration free energy [46]. 

Recent improvements have been made to AMOEBA functional forms. This new generation FF, 

AMOEBA+, includes the new charge penetration, charge transfer and geometry-dependent charge 

flux terms. Charge flux parameters have been derived for alkane, alkyne, amine, alcohol, Di-oxyl, 

sulfide, halide, ketone, carboxylate ester, amide, anhydride, oxalic acid oxalate, malonic acid, 

imide, azide, nitro, amino acid, sulfoxide, thiocyanate, phosphate, benzene derivatives [50].  

 

Potential problems in general MMFF development  
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Accuracy, efficiency, transferability, integrity of deriving force field parameters in a consistent 

fashion, and compatibility between FFs when multiple FFs are employed to describe a system are 

the major factors measuring the success of a MMFF for small molecules. Unlike the first two 

metrics, transferability, integrity, compatibility to the accompanying FFs (biomolecular FFs, lipid 

FFs, water and ion models etc.) are sometimes neglected. Critical evaluation on a MMFF and its 

variants require a great deal of effort. A FF variant which is likely to increase accuracy or 

efficiency by re-parameterizing a subset of parameters might adversely affect the integrity, 

transferability and compatibility of the FF as a whole. This “unwanted” outcome may occur when 

nonbonded terms are changed and the training set data are limited. Thus, systematic evaluation a 

FF variant is critical to maintain or improve a general MMFF performance measured by the five 

metrics.   

 

Conclusions and outlook  

In the last two years, we have witnessed a significant advance in general force field (FF) 

development for organic molecules, which in turn enhances the accuracy of thermodynamic 

prediction. Machine learning algorithms have been increasingly applied in FF development, 

especially on high-quality partial charge assignments. The artificial neural network-based 

potentials represented by ANI-1x, may be applied to detect bad FF parameters efficiently, even 

though currently they may not be able to take the role of high-level ab initio models to generate 

reference data for MMFF parameterization.  

Advanced FFs such as polarizable FFs for small molecules have also shown encouraging 

success in various applications. Parameterization of advanced FF benefits from direct use of 

quantum mechanics molecular properties in gas-phase due to explicit treatment of polarization. 

Nonetheless, additional physical terms and parameters require more data and more sophisticated 

parameterization approaches based on big data. Robust and automated tools for parameterization 

is essential for increasing application of advanced FFs to small molecules.   
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Figure Captions 

Figure 1. The themes of small molecule force fields reviewed in this article. 

Figure 2. The calculated solvation free energies of 895 pairs of various neutral organic solutes in 

diverse neutral organic solvents versus their experimental data. The dielectric constants (epsilon) 

of the solvents range from 1.8 to 37.2: A, epsilon < 2.0; B, epsilon between 2.0 and 3.0; C, epsilon 

between 3.0 and 10.0; D, epsilon between 10.0 and 40.0. The calculations were done with the 

thermodynamic integration (TI) method, and the solvent and solute molecules were described with 

the GAFF2 parameters with the ABCG2 charge model. The data were taken from Ref. 13 and were 

re-analyzed. RMSE: root mean square error; MUE: mean unsigned error; MSE: mean signed error; 

PI: predictive index; R: Pearson’s correlation coefficient; n: the number of data.  

 


