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A Chernoff-type distribution is a nonnormal distribution defined by the
slope at zero of the greatest convex minorant of a two-sided Brownian mo-
tion with a polynomial drift. While a Chernoff-type distribution is known
to appear as the distributional limit in many nonregular statistical estima-
tion problems, the accuracy of Chernoff-type approximations has remained
largely unknown. In the present paper, we tackle this problem and derive
Berry–Esseen bounds for Chernoff-type limit distributions in the canonical
nonregular statistical estimation problem of isotonic (or monotone) regres-
sion. The derived Berry–Esseen bounds match those of the oracle local av-
erage estimator with optimal bandwidth in each scenario of possibly differ-
ent Chernoff-type asymptotics, up to multiplicative logarithmic factors. Our
method of proof differs from standard techniques on Berry–Esseen bounds,
and relies on new localization techniques in isotonic regression and an anti-
concentration inequality for the supremum of a Brownian motion with a Lip-
schitz drift.

1. Introduction.

1.1. Overview. Nonregular statistical estimation problems constitute a class of estima-
tion problems for which natural estimators converge at a rate different from (often slower
than) the parametric rate with nonnormal limit distributions. Such nonregular estimation
problems appear in a variety of statistical problems (cf. [58]). An important example of non-
normal limit is a Chernoff-type distribution defined by the slope at zero of the greatest convex
minorant of a two-sided Brownian motion with a polynomial drift [20, 47]. Asymptotic theory
for Chernoff-type limiting distributions has been well developed so far; however, the accu-
racy of such Chernoff-type approximations has remained largely unknown, which poses a
fundamental question regarding the accuracy of statistical inference in nonregular estimation
problems. Indeed, the complicated nature of the Chernoff-type limit makes the problem of es-
tablishing rates of convergence for its distributional approximation substantially challenging
from a probabilistic point of view.

In the present paper, we tackle this problem and derive Berry–Esseen bounds for Chernoff-
type approximations in the canonical example of monotone or isotonic regression. Estimation
and inference using regression models under monotonicity constraints has a long history in
statistics, as they arise as a natural constraint in diverse application fields from economics,
genetics, and to medicine [65–67, 79]. Historical remarks and further references in statistical
inference under monotonicity constraints can be found in [47, 78].

Formally, consider the nonparametric regression model

Yi = f0(Xi) + ξi, i = 1, . . . , n,(1.1)
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where X1, . . . ,Xn ∈ [0,1] are either fixed or random covariates and ξ1, . . . , ξn are i.i.d. error
variables with mean zero and variance σ 2 > 0 (and are independent of X1, . . . ,Xn if random).
By isotonic regression, we assume that f0 is nondecreasing, that is, f0 ∈ F↑ ≡ {f : [0,1] →
R : f is nondecreasing}, and consider the isotonic least squares estimator (LSE):

f̂n ≡ arg min
f ∈F↑

n∑
i=1

(
Yi − f (Xi)

)2
.(1.2)

The isotonic LSE constitutes a representative and rich example of nonregular asymptotics.
Suppose that X1, . . . ,Xn are globally equally spaced on [0,1] (i.e., Xi = i/n for i = 1, . . . , n)
and f0 is smooth enough at x0 with a first nonvanishing derivative of order α (α can be
α = ∞, in which case f0 is flat). Then, α is an odd integer with f

(α)
0 (x0) > 0 if α is finite (cf.

[52]). Let cα ≡ (f
(α)
0 (x0)/(α + 1)!)1/(2α+1) if α < ∞ and c∞ ≡ 1 if α = ∞, we have(

n/σ 2)α/(2α+1)(
f̂n(x0) − f0(x0)

) d→ cαDα.(1.3)

Here Dα is the slope at zero of the greatest convex minorant of t �→ B(t) + tα+1 for α < ∞
where B is a standard two-sided Brownian motion, and D∞ is defined in Theorem 2.2 ahead.
The canonical case is the α = 1 case, where the isotonic LSE has the cube-root n−1/3 rate and
the limit theorem (1.3) was first proved by [12]. The distribution of D1 is called the Chernoff
distribution, and can be also described as twice the argmax of t �→ B(t) − t2. We shall call
the distribution of general Dα a Chernoff-type distribution. These Chernoff-type distributions
are non-Gaussian and fairly complicated. For α = 1, the detailed analytical properties of the
Chernoff distribution D1 are investigated in the seminal work of [43]; see also [3, 48].

Limit theorems akin to (1.3) with Chernoff-type limiting distributions appear in a wide
range of nonparametric statistical models; see for example, [1, 2, 4, 13, 42, 44, 49, 53, 54,
70, 71, 77, 86, 87], for an incomplete list. Further developments on limit theorems for global
loss functions and the law of iterated logarithm can be found in [31–33, 46, 55, 61].

The limit theorem in (1.3) showcases the intrinsic complexity of the nonstandard asymp-
totics with Chernoff-type distributions in the isotonic regression model (1.1), at least from
two different angles: (i) The rate of convergence of the LSE f̂n, that is, (n/σ 2)−α/(2α+1) can
adapt to the local smoothness level α of the regression function f0 at x0; (ii) The limiting
distributions {Dα} are different across α’s but with certain commonality in terms of being a
nonlinear and nonsmooth functional of a Brownian motion with a drift (except for the case
α = ∞).

The main result of the present paper derives Berry–Esseen bounds for the limit theorem
(1.3) in a unified setting. Specifically, we prove that if the error distribution is subexponential
and f0 is smooth enough at x0 with a first nonvanishing derivative of order α, and a second
nonvanishing derivative of order α∗, then

sup
t∈R

∣∣P((n/σ 2)α/(2α+1)(
f̂n(x0) − f0(x0)

) ≤ t
)− P(cαDα ≤ t)

∣∣
�

⎧⎨⎩
(
n− α∗−α

2α+1 ∨ n− α
2α+1

) · polylog(n) if α < ∞,

n−1/2 · polylog(n) if α = ∞
(1.4)

up to constants independent of n. In the canonical case of α = 1, the bound in (1.4) is of order
n−1/3 up to logarithmic factors. Another interesting case is the α = ∞ case, where the bound
achieves nearly the parametric rate n−1/2.

The rates given in the Berry–Esseen bounds (1.4) are natural from an oracle perspective. It
is useful to recall that the LSE f̂n has a well-known representation via the max–min formula
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(cf. [76]): for x0 ∈ (0,1),

f̂n(x0) = max
u≤x0

min
v≥x0

∑
i:u≤Xi≤v Yi

|i : u ≤ Xi ≤ v| ≡ max
u≤x0

min
v≥x0

Ȳ |[u,v] = Ȳ |[u∗,v∗].(1.5)

Here ȲA is the average of {Yi : i ∈ A} as defined formally in (1.6) ahead. One can therefore
view f̂n(x0) as a local average estimator over the sample in a data-driven random interval
[u∗, v∗] around x0. Heuristically, the isotonic LSE automatically learns the bias induced by
the first nonvanishing derivative, in the sense that the data-driven bandwidth |v∗ − u∗| is of
the optimal order OP (n−1/(2α+1)) as that of an oracle local average estimator. Such oracle
behavior gives rise to the rate of convergence OP (n−α/(2α+1)) in the limit theorem (1.3). The
second nonvanishing derivative of order α∗ then quantifies the rate of convergence for the
remaining bias in the standardized statistic n−α/(2α+1)(f̂n(x0) − f0(x0)), yielding the first
term n(α∗−α)/(2α+1) in (1.4). On the other hand, the “effective sample” for the isotonic LSE
is of order ne ≡ n · n−1/(2α+1) = n2α/(2α+1), and therefore the speed for the noise ξ̄ |[u∗,v∗]
to converge in distribution is of order (ne)

−1/2 = n−α/(2α+1). This yields the second term in
(1.4). These heuristic interpretations on the Berry–Esseen bounds (1.4) also indicate that the
adaptation of the isotonic LSE occurs not only at the level of the rate of convergence of f̂n,
but also at the level of the speed of this distributional approximation.

The proof of the Berry–Esseen bounds (1.4) is highly nontrivial reflecting the complexity
of the limit theorem (1.3), and our proof strategies differ substantially from existing tech-
niques on Berry–Esseen bounds (see a literature review below). Importantly, in contrast to
regular M-estimation problems, the isotonic LSE does not admit an asymptotic linear expan-
sion, nor can be approximated by a simple statistic for which existing techniques on Berry–
Esseen bounds are applicable. Our method of proof to establish (1.4) builds on localization
techniques in isotonic regression and an anti-concentration inequality (Theorem 3.1) for the
supremum of a Brownian motion with a Lipschitz drift on a compact interval including the
origin. Informally, localization shows that (i) |nα/(2α+1)(f̂n(x0) − f0(x0))| ≤ O(

√
logn) and

(ii) n1/(2α+1) max{|x0 − u∗|, |v∗ − x0|} ≤ O(
√

logn) with high enough probability. The for-
mer (i) enables us to restrict the range of t in (1.4) to |t | ≤ O(

√
logn), while the latter (ii)

enables us to restrict the range of (u, v) in the max–min formula (1.5) to O(n−1/(2α+1))

neighborhoods of x0 up to logarithmic factors. Such localization makes possible the applica-
tion of the anti-concentration inequality that quantifies the rates of convergence of the bias
and the noise to the limit, which are shown to be of the same order as the desired rate in the
Berry–Essen bound (1.4), up to multiplicative logarithmic factors. The prescribed proof tech-
niques can be extended to further Chernoff-type limiting distributions in isotonic regression,
allowing both interior and boundary points x0 (cf. [62]); and both fixed and random design
covariates.

As discussed before, a key technical ingredient of our proof for the Berry–Esseen bounds
is an explicit anti-concentration inequality for the supremum of a standard Brownian motion
with a Lipschitz drift, T = supt∈[0,1](B(t)+P(t)), which is of independent interest. The anti-
concentration inequality quantifies the modulus of continuity of the distribution function of
a random variable, and we need an explicit quantitative anti-concentration inequality of the
form supu∈R P(|T −u| ≤ ε) � ε up to logarithmic factors to derive the desired Berry–Esseen
bounds. The difficulty lies in the fact that the variance of the drifted Brownian motion can be
arbitrarily close to zero, so that existing results such as [24], Lemma 2.2, are not applicable,
at least directly (in addition, it is highly nontrivial to obtain a density formula for T in this
generality). To circumvent this problem, we use a carefully designed blocking argument; see
the proof of Theorem 3.1.

The literature on Berry–Essen bounds is broad. Berry–Esseen bounds for the classical
central limit theorem (CLT) and its various generalizations to multivariate, high-dimensional,
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and dependent settings can be found in for example, [5–9, 14, 16, 19, 21, 25, 27, 28, 34–36,
40, 41, 57, 63, 68, 72–75], just to name a few. The techniques developed in those references
can not be applied to our problem since the isotonic LSE does not admit an asymptotic linear
expansion (and thus has a nonnormal limit). Stein’s method [18, 82] is known to be a powerful
method to derive rates of convergence of distribution approximations. Recent contributions
(e.g., [17, 80]) showcase the possibility of using Stein’s method for deriving Berry–Esseen
bounds with nonnormal limits that admit explicit and easy-to-handle densities; however, it
seems unclear if the complicated Chernoff distribution is within the reach of such methods.
To the best of our knowledge, this is the first paper that derives Berry–Esseen bounds for an
important class of Chernoff-type limit distributions.

The rest of the paper is organized as follows. In Section 2, we first consider the problem
of accuracy of distributional approximation in isotonic regression from an oracle perspective,
and then derive the main Berry–Esseen bounds for the isotonic LSE in a unified setup. In
Section 3, we prove the key technical result of anti-concentration inequality, and in Section 4,
we develop the localization techniques in isotonic regression. Building on the techniques
developed in Sections 3 and 4, we prove the main Berry–Esseen bounds in Section 5. In
Section 6, we conclude the paper and outline a few open questions. The Appendix contains
proofs of some auxiliary results and technical tools used in the proofs.

1.2. Notation. For ε > 0 and a subset F of a normed space with norm ‖·‖, let
N (ε,F,‖·‖) denote the ε-covering number of F ; see page 83 of [85] for more details. For
the regression model (1.1), for any A ⊂ [0,1], define

Ȳ |A ≡ 1

nA

∑
i:Xi∈A

Yi, f̄0|A ≡ 1

nA

∑
i:Xi∈A

f0(Xi), ξ̄ |A ≡ 1

nA

∑
i:Xi∈A

ξi,(1.6)

where nA ≡ |{i : Xi ∈ A}| and 0/0 = 0 by convention. For two real numbers a, b, a ∨ b ≡
max{a, b} and a∧b ≡ min{a, b}. The notation Cx will denote a generic constant that depends
only on x, whose numeric value may change from line to line unless otherwise specified. The
notation a �x b and a �x b mean a ≤ Cxb and a ≥ Cxb respectively, and a �x b means

a �x b and a �x b [a � b means a ≤ Cb for some absolute constant C]. The notation
d→ is

reserved for convergence in distribution.

2. Main results.

2.1. Assumptions. We first consider local smoothness assumptions on the regression
function f0 at x0. We consider both interior (x0 ∈ (0,1)) and boundary (x0 = 0) points.

ASSUMPTION A. Let x0 ∈ [0,1) be a fixed point of interest. Let α,α∗ ∈ Z≥1 ∪ {∞},
α + 1 ≤ α∗ ≤ ∞ be such that f

(α)
0 (x0) �= 0 and f

(α∗)
0 (x0) �= 0 if α,α∗ �= ∞, and the Taylor

expansion

f0(x) = f0(x0) + f
(α)
0 (x0)

α! (x − x0)
α1α<∞

+ f
(α∗)
0 (x0)

α∗! (x − x0)
α∗

1α∗<∞ + R
(
(x − x0)

α∗
1α∗<∞

)
holds for all x ∈ [0,1] for some function R : R → R such that R(0) = 0 and R(ε) = o(ε) as
ε → 0.
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If x0 = 0, then the derivatives are understood as one-side limits. Assumption A essentially
says that f0 has a first nonvanishing derivative at x0 of order α, and a second one of order
α∗. If x0 ∈ (0,1), by [52], Lemma 1, α must be an odd integer, and f

(α)
0 (x0) > 0 under

Assumption A. If x0 = 0, α need not be an odd integer, but f
(α)
0 (x0) > 0. We do not consider

x0 = 1 as the situation is similar to x0 = 0.
The following are some examples satisfying Assumption A.

(i) f0(x) = x. Then α = 1 and α∗ = ∞ at x0 = 1/2.
(ii) f0(x) = ex . Then α = 1 and α∗ = 2 at x0 = 1/2.

(iii) f0(x) = (x − 1/2)3. Then α = 3 and α∗ = ∞ at x0 = 1/2.
(iv) f0(x) = (x − 1/2)3 + (x − 1/2)5. Then α = 3 and α∗ = 5 at x0 = 1/2.
(v) f0(x) = x2 + x4. Then α = 2 and α∗ = 4 at x0 = 0.

When x0 = 0, we consider limit distribution theory at xn = n−ρ where ρ ∈ (0,1). Namely,
we estimate f0(0) by f̂n(xn). For notational convenience, let

x∗ = x01x0∈(0,1) + xn1x0=0 = x01x0∈(0,1) + n−ρ1x0=0.(2.1)

Next we state assumptions on the design points.

ASSUMPTION B. Suppose that the design points {Xi}ni=1 satisfy either of the following
conditions.

• (Fixed design) X1, . . . ,Xn ∈ [0,1] are deterministic, and there exists some �0 > 0 such
that for some δ0 > 0, the design points restricted to I0 ≡ [0 ∨ (x0 − δ0),1 ∧ (x0 + δ0)],
{Xi : Xi ∈ I0, i = 1, . . . , n}, are equally spaced with distance 1/(�0n).1

In the case α = ∞, or x0 = 0 and ρ ∈ [1/(2α + 1),1), we assume that the design points
are globally equally spaced on [0,1] (i.e., Xi = i/n, i = 1, . . . , n, so �0 = 1).

• (Random design) X1, . . . ,Xn are i.i.d. with law P on [0,1], and P admits a Lebesgue
density π that is continuous around x0 and is bounded and bounded away from 0 on [0,1].
Further assume that for some 1 ≤ β ≤ ∞,

π(x) − π(x0) = π(β)(x0)

β! (x − x0)
β1β<∞ + Rπ

(
(x − x0)

β1β<∞
)

holds for all x ∈ [0,1] for some function Rπ : R → R such that Rπ(0) = 0 and Rπ(ε) =
o(ε) as ε → 0. Let �0 = π(x0).

In the case α = ∞ or x0 = 0, ρ ∈ [1/(2α + 1),1), we assume that P is the uniform
distribution on [0,1].

The canonical case is the globally equally spaced fixed design with Xi = i/n, i = 1, . . . , n

(so �0 = 1). Furthermore, we have made more specific assumptions on the designs of the
covariates when α = ∞, or x0 = 0 and ρ ∈ [1/(2α + 1),1) due to the nonlocal nature of
the limit distribution theory in such scenarios. This helps us to develop unified Berry–Esseen
bounds for the isotonic LSE.

2.2. Oracle considerations. To gain some insights into what should be expected for a
Berry–Esseen bound for the nonstandard limit theorem (1.3), we shall first look at the prob-

1In other words, X1 ≤ X2 ≤ · · · ≤ Xn−1 ≤ Xn and Xi+1 − Xi = Xi − Xi−1 = 1/(�0n) whenever
Xi−1,Xi,Xi+1 ∈ I0.
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lem from an oracle perspective. Suppose that Assumption A holds, and the regularity of f0

at x0 is known. Consider the local average estimator

f̄n

(
x∗) ≡ f̄n

(
x∗; rn, h) = Ȳ |[x∗−h1rn,x∗+h2rn](2.2)

with a tuning parameter rn > 0 and constants h1, h2 > 0. The isotonic least squares estimator
f̂n, defined via the max–min formula (1.5), can be viewed as a local average estimator (2.2)
with automatic data-driven choices of the tuning parameters h1, h2, rn.

An oracle local average estimator f̄n knows the regularity of f0 at x0 and chooses the
bandwidth rn of the following optimal order:

rn ≡

⎧⎪⎪⎨⎪⎪⎩
n−1/(2α+1) if x0 ∈ (0,1),

n−(1−2ρ(α−1))/3 if x0 = 0 and ρ ∈ (
0,1/(2α + 1)

)
,

n−ρ if x0 = 0 and ρ ∈ [1/(2α + 1),1),

(2.3)

and hence the local rate of convergence of the oracle estimator is given by

ω−1
n ≡ (nrn)

1/2 =

⎧⎪⎪⎨⎪⎪⎩
nα/(2α+1) if x0 ∈ (0,1),

n(1+ρ(α−1))/3 if x0 = 0 and ρ ∈ (
0,1/(2α + 1)

)
,

n(1−ρ)/2 if x0 = 0 and ρ ∈ [1/(2α + 1),1).

(2.4)

For instance, in the canonical case where α = 1 and x0 ∈ (0,1), then rn = ωn = n−1/3. To
describe the limiting distribution of the oracle estimator, further define

Q(h) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(α)
0 (x0)

(α + 1)! · hα+11α<∞ if x0 ∈ (0,1),

f
(α)
0 (0)

2(α − 1)! · h2 if x0 = 0 and ρ ∈ (
0,1/(2α + 1)

)
,

α∑
�=1

f
(α)
0 (0)

(α − �)!(� + 1)! · h�+1 if x0 = 0 and ρ = 1/(2α + 1),

0 if x0 = 0 and ρ ∈ (
1/(2α + 1),1

)
,

(2.5)

and

Bσ,�0,Q(h1, h2) ≡ (
σ/�

1/2
0

) · B(h2) −B(−h1)

h1 + h2
+ Q(h2) − Q(−h1)

h1 + h2
,(2.6)

where B is a standard two-sided Brownian motion starting from 0.

PROPOSITION 2.1 (Berry–Esseen bounds: Oracle considerations). Let ξi ’s be i.i.d. er-
rors with finite third moment and Eξ2

1 = σ 2. Suppose Assumptions A and B hold. Then with
ω−1

n defined in (2.4) and Bσ,�0,Q defined in (2.6), the local average estimator f̄n defined in
(2.2) with oracle bandwidth rn defined in (2.3) satisfies

sup
t∈R

|P(ω−1
n

(
f̄n

(
x∗; rn, h)− f0

(
x∗)) ≤ t

)− P
(
Bσ,�0,Q(h1, h2) ≤ t

)|≤ K ·Bn.
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The constant K > 0 does not depend on n, and with 1r denoting the indicator for the random
design case,

Bn ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
n− α

2α+1 (logn)1α<∞·1r

,

n− α∗−α
2α+1 1α∗<∞,

n− β
2α+1 1α∨β<∞1r} if x0 ∈ (0,1),

max
{
n−(1−(2α+1)ρ)/3,

n−ρ(α∗−α)1α∗<∞
}

if x0 = 0 and ρ ∈ (
0,1/(2α + 1)

)
,

max
{
n− α

2α+1 (logn)1α<∞·1r

,

n− α∗−α
2α+1 1α∗<∞,

n− β
2α+1 1α∨β<∞1r} if x0 = 0 and ρ = 1/(2α + 1),

max
{
n−(1−ρ)/2(logn)1α<∞·1r

,

n−((2α+1)ρ−1)/2} if x0 = 0 and ρ ∈ (
1/(2α + 1),1

)
.

(2.7)

Furthermore, the above Berry–Esseen bound cannot be improved in general, except for the
logarithmic factors in the random design case.

In general, the rate Bn above is determined by the order of the leading term in the remain-
ders of (2.2) after centering and normalization at the rate ω−1

n . In particular, different terms
in the rate Bn come from different sources in different scenarios:

• For x0 ∈ (0,1), n− α
2α+1 is the rate for the noise to approximate its Gaussian limit, while

n− α∗−α
2α+1 is the rate induced by the second nonvanishing derivative of f0 of order α∗ at x0.

• For x0 = 0 and ρ ∈ (0,1/(2α+1)), n−(1−(2α+1)ρ)/3 is the rate induced by the second order
bias (since in this case the first order bias contributes to the limiting distribution), while
n−ρ(α∗−α) is the rate induced by the second nonvanishing derivative of f0 of order α∗ at 0.
The rate for the noise to approximate its Gaussian limit is dominated by the maximum of
the two rates.

• For x0 = 0 and ρ = 1/(2α+1), n− α
2α+1 is the rate for the noise to approximate its Gaussian

limit, while n− α∗−α
2α+1 is the rate induced by the second nonvanishing derivative of f0 of order

α∗ at x0.
• For x0 = 0 and ρ ∈ (1/(2α + 1),1), n−(1−ρ)/2 is the rate for the noise to approximate its

Gaussian limit, while n−((2α+1)ρ−1)/2 is the rate induced by the first nonvanishing deriva-
tive of f0 of order α∗ at x0 (since in this case Q ≡ 0).

• The rates involving β come from the regularity of the design density in the random design
setting. They appear when x0 ∈ (0,1) or x0 = 0, ρ = 1/(2α + 1).

In the next subsection we will show that the isotonic least squares estimator f̂n converges to
the limiting Chernoff distribution at a rate no slower than the oracle rate Bn, up to logarithmic
factors.

PROOF OF PROPOSITION 2.1. First consider the fixed design case with the additional
assumption that x∗ ∈ {Xi}. Applying Lemma 4.1 below in Section 4 with any fixed positive
real number τn ≥ h1 ∨ h2, for x0 ∈ (0,1),

f̄0|[x0−h1rn,x0+h2rn] − f0(x0)

= f
(α)
0 (x0)

(α + 1)! · hα+1
2 − hα+1

1

h1 + h2
· rα

n 1α<∞ + O
(
rα∗
n 1α∗<∞ ∨ rα

n (nrn)
−11α<∞

)
.
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For x0 = 0,

f̄0|[xn−h1rn,xn+h2rn] − f0(0)

= f
(α)
0 (0)

α∑
�=1

1

(α − �)!(� + 1)! · h�+1
2 − (−h1)

�+1

h1 + h2
· xα−�

n r�
n1α<∞

+ O
(

max
1≤�≤α∗ xα∗−�

n r�
n1α∗<∞ ∨ max

1≤�≤α
xα−�
n r�

n(nrn)
−11α<∞

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(α)
0 (0)

2(α − 1)! · h2
2 − h2

1

h1 + h2
· xα−1

n rn1α<∞
+ O

(
xα−2
n r2

n1α<∞ ∨ xα∗−1
n rn1α∗<∞

∨xα−1
n rn(nrn)

−11α<∞
)

if xn � rn,

f
(α)
0 (0)

(
α∑

�=1

1

(α − �)!(� + 1)! · h�+1
2 − (−h1)

�+1

h1 + h2

)
· rα

n 1α<∞

+ O
(
rα∗
n 1α∗<∞ ∨ rα

n (nrn)
−11α<∞

)
if xn = rn.

Let Wn ≡ √
nrn · (ξ̄ |[x∗−h1rn,x∗+h2rn]),

Zh ≡ (
σ/�

1/2
0

) · B(h2) −B(−h1)

h1 + h2
, and μ ≡ Q(h2) − Q(−h1)

h1 + h2
.

Note that Bσ,�0,Q(h1, h2)
d= Zh + μ ∼ N (μ,σ 2/(�0(h1 + h2))). Further, let

Rf
n ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[√
nr2α∗+1

n 1α∗<∞ ∨ rα
n (nrn)

−1/21α<∞
]

if x0 ∈ (0,1),[
xα−2
n

√
nr5

n1α<∞ ∨ xα∗−1
n

√
nr3

n1α∗<∞
∨xα−1

n rn(nrn)
−1/21α<∞

]
if x0 = 0 and ρ ∈ (

0,1/(2α + 1)
)
,[√

nr2α∗+1
n 1α∗<∞ ∨ rα

n (nrn)
−1/21α<∞

∨
√

nr2α+1
n 1ρ>1/(2α+1),α<∞

]
if x0 = 0 and ρ ∈ [1/(2α + 1),1).

(2.8)

Then, uniformly in t ∈ R,

P
(√

nrn
(
f̄n

(
x∗; rn, h)− f0

(
x∗)) ≤ t

)
= P

(√
nrn(ξ̄ |[x∗−h1rn,x∗+h2rn]) + √

nrn
(
f̄0|[x∗−h1rn,x∗+h2rn] − f0(x0)

) ≤ t
)

= P
(
Wn + μ + O

(
Rf

n

) ≤ t
) = P

(
Zh + μ + O

(
Rf

n

) ≤ t
)+O

(
(nrn)

−1/2)
= P(Zh + μ ≤ t)+O

(
Rf

n ∨ (nrn)
−1/2).

The second-to-last line follows from the classical Berry–Esseen bound, and the last line
follows from the anti-concentration of a standard normal random variable: it holds that
supt∈R P(|Z − t | ≤ ε) ≤ ε

√
2/π where Z ∼ N (0,1). The remainder term cannot be im-

proved in general by the sharpness of the Berry–Esseen bound for the central limit theo-
rem; cf. [51]. Calculations show that Rf

n ∨ (nrn)
−1/2 = Bn in the fixed design case with

x∗ ∈ {Xi}. For x∗ in general position, using Remark 4.2, the error bound is of order at most
(Rf

n ∨ (ω−1
n · n−1)) ∨ (nrn)

−1/2 = Rf
n ∨ (nrn)

−1/2 = Bn.
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For the random design case, let

Rr
n ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[√
nr2α∗+1

n 1α∗<∞ ∨
√

nr
2(α+β)+1
n 1α∨β<∞

∨
√

r2α
n logn ∨ log2 n

nrn
· 1α<∞

]
if x0 ∈ (0,1),[

xα−2
n

√
nr5

n1α<∞ ∨ xα∗−1
n

√
nr3

n1α∗<∞

∨xα−1
n

√
nr

2β+3
n 1α∨β<∞

∨xα−1
n

√
r2
n logn ∨ log2 n

nrn
· 1α<∞

]
if x0 = 0 and ρ ∈ (

0,1/(2α + 1)
)
,[√

nr2α∗+1
n 1α∗<∞ ∨

√
nr

2(α+β)+1
n 1α∨β<∞

∨
√

r2α
n logn ∨ log2 n

nrn
· 1α<∞

∨
√

nr2α+1
n 1ρ>1/(2α+1),α<∞

]
if x0 = 0 and ρ ∈ [1/(2α + 1),1).

(2.9)

Tedious and patient calculations show that Rr
n ∨ (nrn)

−1/2 = Bn in the random design case.
For terms involving logn, the bounds cannot be improved by considering α = ∞. �

2.3. Berry–Esseen bounds. Some further definitions for H1, H2 are in Table 1.
Now we present the main results of this paper, that is, Berry–Esseen bounds for (1.3) and

its generalizations in isotonic regression.

THEOREM 2.2 (Berry–Esseen bounds for isotonic LSE). Let ξi ’s be i.i.d. mean-zero
subexponential errors, that is, Eξ1 = 0 and Eeθξ1 < ∞ for all θ in a neighborhood of the
origin. Let σ 2 ≡ Eξ2

1 . Suppose Assumptions A and B hold, and ρ ∈ (0,1/(2α+1)]∪[2/3,1).
Then with ω−1

n defined in (2.4), Bσ,�0,Q defined in (2.6) and H1, H2 defined in Table 1, the
isotonic least squares estimator f̂n defined in (1.5) satisfies

sup
t∈R

|P(ω−1
n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
− P

(
sup

h1∈H1

inf
h2∈H2

Bσ,�0,Q(h1, h2) ≤ t
)
|≤ K ·Bn(logn)ζα,α∗,β .

TABLE 1
Definitions of H1, H2

H1 H2

α < ∞

⎧⎪⎪⎨⎪⎪⎩
(0,∞) x0 ∈ (0,1),

(0,∞) x0 = 0, ρ ∈ (0,1/(2α + 1)),

(0,1] x0 = 0, ρ ∈ [1/(2α + 1),1)

[0,∞)

α = ∞
{
(0, x0] x0 ∈ (0,1),

(0,1] x0 = 0

{[0,1 − x0] x0 ∈ (0,1),

[0,∞) x0 = 0
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The constant K > 0 does not depend on n, Bn is defined in (2.7) in the statement of Proposi-
tion 2.1, and ζα,α∗,β > 0 is a constant depending only on α, α∗, β .

PROOF. See Section 5. �

It is possible to track the numerical value of ζα,α∗,β in the proofs, but its value may not be
optimal. For brevity, we omit the numerical value of ζα,α∗,β in the statement of the theorem.

REMARK 2.3 (Limit distributions). The limiting distribution in Theorem 2.2 is written
in a compact and unified form which may not be familiar in the literature. We will recover
the more familiar forms using the following switching relation: Let H be an (open or closed)
interval contained in R, and LCMH (resp. GCMH ) be the least concave majorant (resp. great-
est convex minorant) operator on H and LCMH(·)′ (resp. GCMH(·)′) be its left derivative.
Then for any F : H →R, and t, a ∈R, we have (cf. [47], Lemma 3.2)

LCMH(F )′(t) ≥ a ⇔ GCMH(−F)′(t) ≤ −a

⇔ arg min
u∈H

{−F(u) + au
} ≥ t

⇔ arg max
u∈H

{
F(u) − au

} ≥ t.

If there are multiple maxima (resp. minima) in the map u �→ F(u)−au (resp. u �→ −F(u)+
au), then the argmax (resp. argmin) is defined to be the location of the first maximum (resp.
minimum).

• Let x0 ∈ (0,1), α < ∞. Then Q(h) = f
(α)
0 (x0)

(α+1)! hα+1, H1 = (0,∞), H2 = [0,∞), and we
have

sup
h1∈(0,∞)

inf
h2∈[0,∞)

[
B(h2) −B(−h1)

h1 + h2
+ Q(h2) − Q(−h1)

h1 + h2

]
≤ t

⇔ ∀h1 ∈ (−∞,0),∃h2 ∈ [0,∞),

−B(h2) − Q(h2) + th2 ≥ −B(h1) − Q(h1) + th1

⇔ arg max
u∈R

(−B(u) − Q(u) − (−t)u
) ≥ 0

⇔ LCMR

(−B(u) − Q(u)
)′
(0) ≥ −t

⇔ GCMR

(
B(u) + Q(u)

)′
(0) ≤ t

d⇔
(

f
(α)
0 (x0)

(α + 1)!
)1/(2α+1)

·Dα ≤ t,

where Dα is the slope at zero of the greatest convex minorant of t �→ B(t) + tα+1, and
the last equivalence in distribution follows from a standard Brownian scaling argument. In
particular, for α = 1, we have

D1
d= 2 · arg max

h∈R
{
B(h) − h2},

where the argmax on the right hand side is a.s. uniquely defined by [58], Lemma 2.6. See
[47], Problem 3.12. The case for x0 = 0, ρ ∈ (0,1/(2α + 1)) is similar as H1 = (0,∞),
H2 = [0,∞) as above.
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• Let x0 = 0, ρ ∈ (1/(2α + 1),1). Then Q(h) = 0, H1 = (0,1], H2 = [0,∞), and we have

sup
h1∈(0,1]

inf
h2∈[0,∞)

[
B(h2) −B(−h1)

h1 + h2

]
≤ t

⇔ ∀h1 ∈ [−1,0),∃h2 ∈ [0,∞), −B(h2) + th2 ≥ −B(h1) + th1

⇔ arg max
u∈[−1,∞)

(−B(u) − (−t)u
) ≥ 0

⇔ LCM[−1,∞)

(−B(u)
)′
(0) ≥ −t

⇔ GCM[−1,∞)

(
B(u)

)′
(0) ≤ t,

which takes a similar form as the limiting distribution found in [62], Theorem 3.1-(i) (up
to a shift and a recentering of the Brownian motion).

• Let x0 = 0, ρ = 1/(2α + 1). Then Q(h) = f
(α)
0 (0)

∑α
�=1

h�+1

(α−�)!(�+1)! = f
(α)
0 (0)

(α+1)! ((1 +
h)α+1 − 1 − (α + 1)h), H1 = (0,1], H2 = [0,∞), and we have

sup
h1∈(0,1]

inf
h2∈[0,∞)

[
B(h2) −B(−h1)

h1 + h2
+ Q(h2) − Q(−h1)

h1 + h2

]
≤ t

⇔ ∀h1 ∈ [−1,0),∃h2 ∈ [0,∞),

−B(h2) − Q(h2) + th2 ≥ −B(h1) − Q(h1) + th1

⇔ arg max
u∈[−1,∞)

(
−B(u) − f

(α)
0 (0)

(α + 1)!(1 + u)α+1 −
(
−f

(α)
0 (0)

α! − t

)
u

)
≥ 0

⇔ LCM[−1,∞)

(
−B(u) − f

(α)
0 (0)

(α + 1)!(1 + u)α+1
)′

(0) ≥ −f
(α)
0 (0)

α! − t

⇔ GCM[−1,∞)

(
B(u) + f

(α)
0 (0)

(α + 1)!(1 + u)α+1
)′

(0) ≤ f
(α)
0 (0)

α! + t,

which resembles the limiting distribution found in [62], Theorem 3.1-(ii) (again up to a
shift and a recentering of the Brownian motion).

The Berry–Esseen bound in Theorem 2.2 matches the oracle rate in Proposition 2.1 up
to multiplicative logarithmic factors, and the normal distribution therein is replaced by the
generalized Chernoff distribution. In this sense, the isotonic least squares estimator f̂n mimics
the behavior of the oracle local average estimator in Proposition 2.1 in terms of the speed of
distributional approximation to the limiting random variable.

Theorem 2.2 immediately yields the following Berry–Esseen bound in a canonical setting
for isotonic regression.

COROLLARY 2.4 (Berry–Esseen bound for canonical case). Let x0 ∈ (0,1) and ξi ’s be
as in Theorem 2.2. Suppose Assumption A holds with α = 1, α∗ ≥ 2, that is, f0 is locally C2

at x0 with f ′
0(x0) > 0, and that {Xi : i = 1, . . . , n} are globally equally spaced design points

on [0,1] or i.i.d. Unif[0,1] random variables independent of ξi ’s. Then

sup
t∈R

∣∣P((n/σ 2)1/3(
f̂n(x0) − f0(x0)

) ≤ t
)

− P
((

f ′
0(x0)/2

)1/3 ·D1 ≤ t
)∣∣ ≤ K · n−1/3(logn)ζ1,α∗,∞ .

The constant K > 0 does not depend on n.
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FIG. 1. En ≡ maxt∈{�/5:1≤�≤10}|P∗(n1/3(f̂n(1/2) − fi(1/2)) ≤ t) − P(D1 ≤ t)| and en ≡ logEn, where P
∗

denotes the empirical average based on 5 × 105 simulations. The number in the legend of the figure indicates the
slope for linear regression fit of (logn, en).

PROOF. Apply Theorem 2.2 with �0 = 1 and α = 1 with arbitrary α∗. Here β = ∞ in
the random design case. �

REMARK 2.5 (Simulation experiment). We present a simulation result (cf. Figure 1) in
support of the n−1/3 rate (modulo logarithmic factors) in the Berry–Esseen bound in Corol-
lary 2.4. In this simulation we consider f1(x) = 2x2 and f2(x) = 4x4, and the fixed design
as in Corollary 2.4. We use i.i.d. Rademacher errors, that is, P(ξi = ±1) = 1/2. The choice
of error distribution is motivated by the fact that the worst-case Berry–Esseen bound for the
central limit theorem of sample mean is attained by the Rademacher mean. Under this setup,
we have

n1/3(f̂n(1/2) − fi(1/2)
) d→D1, i = 1,2.

By (limiting) symmetric considerations, we only compute the values of P(n1/3(f̂n(1/2) −
fi(1/2)) ≤ t) for t ∈ {�/5 : 1 ≤ � ≤ 10} based on 5 × 105 simulations. The values of {P(D1 ≤
t) : t ∈ {�/5 : 1 ≤ � ≤ 10}} are taken from [50] (note that our D1 = 2Z in their notation). The
simulations provide overwhelming evidence that the Berry–Esseen bound in Corollary 2.4 is
sharp modulo logarithmic factors.

Another interesting consequence of Theorem 2.2 is the following: If f0 is flat (i.e., equals
a constant), then a parametric rate (up to logarithmic factors) in the Berry–Esseen bound is
possible. We formalize this result as follows.

COROLLARY 2.6 (Berry–Esseen bound for constant function). Let x0 ∈ (0,1) and ξi ’s
be as in Theorem 2.2. Suppose f0 ≡ c for some constant c ∈ R, and that {Xi : i = 1, . . . , n}
are globally equally spaced design points on [0,1] or i.i.d. Unif[0,1] random variables in-
dependent of ξi ’s. Then

sup
t∈R

∣∣∣P((n/σ 2)1/2(
f̂n(x0) − f0(x0)

) ≤ t
)

− P

(
sup

h1∈(0,x0]
inf

h2∈[0,1−x0]
Bσ,1,0(h1, h2) ≤ t

)∣∣∣ ≤ K · n−1/2(logn)ζ∞,∞,∞ .

The constant K > 0 does not depend on n.
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PROOF. Apply Theorem 2.2 with �0 = 1 and α = ∞ (so α∗ = ∞). Here β = ∞ in the
random design. �

REMARK 2.7 (Boundary case). When x0 = 0, the range of ρ in Theorem 2.2 is restricted
to (0,1/(2α +1)]∪ [2/3,1). The main reason for this restriction is an abrupt phase transition
in the limit distribution theory. For instance, consider f0 ≡ 0 (i.e. α = ∞) with noise level
σ = 1. If x0 ∈ (0,1),

√
nf̂n(x0) converges in distribution to

Y0 ≡ sup
h1∈(0,x0]

inf
h2∈[0,1−x0]

B1,1,0(h1, h2),

with a Berry–Esseen bound on the order of O(n−1/2) up to logarithmic factors. However,
as soon as xn → 0,

√
nxnf̂n(xn) converges in distribution to a completely different limiting

random variable

Y1 ≡ sup
h1∈(0,1]

inf
h2∈[0,∞)

B1,1,0(h1, h2),

in the sense that Y1 ≤ 0 a.s. It is therefore natural to expect that for xn converging slowly
enough, a near O((nxn)

−1/2) rate cannot be attained in the Berry–Esseen bound due to the in-
herent difference between Y0 and Y1. Our Theorem 2.2 here guarantees a near O((nxn)

−1/2)

rate for the Berry–Esseen bound when xn = n−ρ converges fast enough with ρ ∈ [2/3,1).

2.4. Proof sketch. In this subsection, we give a sketch of proof for Theorem 2.2 in the
canonical case (1.4), where Xi = i/n, i = 1, . . . , n are globally equally spaced fixed design
points on [0,1], f0 is locally C2 at x0 ∈ (0,1) with f ′

0(x0) > 0, and the errors ξi’s are i.i.d.
mean zero with Eeθξ1 < ∞ for θ in a neighborhood of the origin. For simplicity of discussion,
we assume that Eξ2

1 = 1. We reparametrize the max–min formula (1.5) by

f̂n(x0) = max
h1>0

min
h2≥0

Ȳ |[x0−h1n
−1/3,x0+h2n

−1/3]

≡ Ȳ |[x0−h∗
1n−1/3,x0+h∗

2n−1/3].
(2.10)

The first step in the proof of (1.4) is to localize the isotonic LSE f̂n in the sense that for some
slowly growing sequences {tn}, {τn}:
• |n1/3(f̂n(x0) − f0(x0))| ≤ tn and
• |h∗

1| ∨ |h∗
2| ≤ τn

hold with overwhelming probability. In fact, we may take tn, τn on the order of
√

logn for
this purpose; see Lemmas 4.4 and 4.6 ahead.

Next, note that by the Kolmós–Major–Tusnády strong embedding theorem (see Lemma 5.1
ahead), with overwhelming probability,

ξ̄ |[x0−h1n
−1/3,x0+h2n

−1/3] ≈
∑

Xi∈[x0−h1n
−1/3,x0+h2n

−1/3] ξi

(h1 + h2)n2/3

≈ B(h2n
2/3) +B(−h1n

2/3)

(h1 + h2)n2/3
d= n−1/3 · B(h2) +B(−h1)

h1 + h2
,

and by a calculation of the bias via Taylor expansion (see Lemma 4.1 ahead),

f̄0|[x0−h1n
−1/3,x0+h2n

−1/3] − f0(x0) ≈ n−1/3
[
f ′

0(x0)

2
· h2

2 − h2
1

h1 + h2
+ Rn

]
,



1472 Q. HAN AND K. KATO

where Rn is roughly of order n−1/3. Now using the alternative max–min formula (2.10), with
γ0 ≡ f ′

0(x0)/2, uniformly in |t | ≤ tn,

P
(
n1/3(f̂n(x0) − f0(x0)

) ≤ t
)

≈ P

(
max

0<h1≤τn

min
0≤h2≤τn

(
B(h2) +B(−h1) + γ0

(
h2

2 − h2
1
)− t (h1 + h2)

) ≤ Õ(Rn)
)
,

where Õ(Rn) stands for a term of order Rn up to poly-logarithmic factors. Let Tn,1 ≡
max0<h1≤τn(B(−h1) − γ0h

2
1 − th1), Tn,2 ≡ min0≤h2≤τn(B(h2) + γ0h

2
2 − th2), and Li (ε) ≡

supu∈R P(|Tn,i − u| ≤ ε). Note that Tn,1 and Tn,2 are independent. Then the above display
equals

P
(
Tn,1 + Tn,2 ≤ Õ(Rn)

)
≤ P(Tn,1 + Tn,2 ≤ 0) + min

i=1,2
Li

(
Õ(Rn)

)
= P

(
max

0<h1≤τn

min
0≤h2≤τn

(
B(h2) +B(−h1)

h1 + h2
+ γ0 · h2

2 − h2
1

h1 + h2

)
≤ t

)
+ min

i=1,2
Li

(
Õ(Rn)

)
≈ P

(
max
h1>0

min
h2≥0

(
B(h2) +B(−h1)

h1 + h2
+ γ0 · h2

2 − h2
1

h1 + h2

)
≤ t

)
+ min

i=1,2
Li

(
Õ(Rn)

)
.

The last approximation follows from a similar localization property as in the first step for the
isotonic LSE. The first term in the above display is exactly the desired quantity

P
((

f ′
0(x0)/2

)1/3 ·D1 ≤ t
)
,

so it remains to derive a sharp control of

min
i=1,2

Li

(
Õ(Rn)

)
.

This is the anti-concentration problem that will be studied in the next Section 3. In partic-
ular, Theorem 3.1 below shows that mini=1,2 Li (Õ(Rn)) = Õ(Rn) = Õ(n−1/3), by noting
that tn � √

logn and τn � √
logn in the localization step (see also Remark 3.4 below). This

completes the proof of (1.4) in the regime |t | ≤ tn. The regime |t | > tn is already handled by
the localization property of the isotonic LSE f̂n in the first step.

3. Anti-concentration.

3.1. The anti-concentration problem. As discussed in Section 2.4, the proof of our main
Berry–Esseen bounds in the canonical case builds on the anti-concentration of the ran-
dom variable Tn ≡ sup0≤h≤τn

(B(h) + bh2 + th) for certain τn ↑ ∞, that is, an estimate of
LTn(ε) ≡ supu∈R P(|Tn − u| ≤ ε), with certain uniformity in t . We note that [45] and [56]
derive analytical expressions of the density function of suph≥0(B(h) − γ h2) for γ > 0, but
their results are not applicable to our problem since we need anti-concentration bounds on
the supremum of a Brownian motion with a linear-quadratic drift on a compact interval. In
addition, the proof for the general case in Theorem 2.2 requires, as one of the key techni-
cal results, uniform anti-concentration bounds on the supremum of a Brownian motion with
a general polynomial drift. Theorem 3.1 below derives such anti-concentration bounds in a
more general context for Brownian motion with a Lipschitz drift.

THEOREM 3.1 (Anti-concentration of sup of BM plus a Lipschitz drift). Let B be a
standard Brownian motion starting from 0. Let P : [0,1] → R be b-Lipschitz in that |P(h1)−
P(h2)| ≤ b|h1 − h2| for all h1, h2 ∈ [0,1], and

T ≡ sup
0≤h≤1

(
B(h) + P(h)

)
.(3.1)
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Then the following anti-concentration holds: there exists some absolute constant K > 0 such
that for any ε > 0,

sup
u∈R

P
(|T − u| ≤ ε

) ≤ KεLb̄(ε),(3.2)

where Lb̄(ε) ≡ b̄ log+(b̄/ε)(1 ∨ b̄ε log−1+ (1/ε))(b̄ ∨ log+(b̄/ε)). Here log+(·) ≡ 1 ∨ log(·)
and b̄ ≡ 1 ∨ b.

PROOF. See the next subsection. �

REMARK 3.2. From log-concavity of Gaussian measures, the distribution of T is abso-
lutely continuous on (r0,∞), where r0 is the left end point of the support of T ; see, for exam-
ple, [29], Theorem 11.1. This also shows that the density of T is bounded on (r,∞) for any
r > r0. This theorem, however, does not guarantee global boundedness of the density of T ,
and thus does not lead to a quantitative anti-concentration inequality of the form (3.2) (since
the variance of the process h �→ B(h) + P(h) attains zero at h = 0, [29], Proposition 11.4, is
also not applicable). Indeed, as we will discuss in Remark 3.4 ahead, in our application, we
need to know how the drift term P(·) quantitatively affects the anti-concentration inequality,
and such quantitative information does not follow from [29], Theorem 11.1, or its proof.

REMARK 3.3 (Case with uniformly bounded coefficients). If b̄ � 1, then (3.2) in Theo-
rem 3.1 reduces to

sup
u∈R

P
(|T − u| ≤ ε

) ≤ Kε log2+(1/ε).

The above bound holds for any Lipschitz function P . If P = 0, then by the reflection principle

for a Brownian motion, T = sup0≤h≤1 B(h)
d= |Z| for Z ∼ N (0,1), so that the logarithmic

factor in the above display can be removed.

REMARK 3.4 (Suprema over slowly expanding intervals). In the proof of Theorem 2.2,
we will need anti-concentration for random variables of the form Tn = sup0≤h≤τn

(B(h) +∑α
�=1 b′

�h
�+1 − th), where τn ↑ ∞ is some slowly growing sequence, and b̄′ ≡ 1 ∨

max1≤�≤α b′
� (typically) does not grow with n. Note that

Tn
d= τ 1/2

n sup
0≤h′≤1

(
B
(
h′)+

α∑
�=1

b′
�τ

�+1/2
n

(
h′)�+1 − tτ 1/2

n h′
)

≡ τ 1/2
n · T ′

n.

Hence uniformly in |t | ≤ tn, where tn is potentially a slowly growing sequence, we have by
Theorem 3.1

sup
u∈R

P
(|Tn − u| ≤ ε

) = sup
u∈R

P
(∣∣T ′

n − u
∣∣ ≤ ε/τ 1/2

n

)
≤ Kb̄′ · ε(τα

n ∨ tn
)

log+
(

τn(τ
α
n ∨ tn)

ε

)
×
(

1 ∨ (τα
n ∨ tn)ε

log+(τ
1/2
n /ε)

)(
τ 1/2
n

(
τα
n ∨ tn

)∨ log+
(

τn(τ
α
n ∨ tn)

ε

))
.

For the canonical case α = 1, we will take τn � tn � √
logn as described in Section 2.4, and

ε = εn such that log+(1/εn) � logn. Then the above bound reduces to

sup
u∈R

P
(|Tn − u| ≤ εn

) ≤ Kb̄′ · εn · log5/2 n.

For a general α, we will typically take τα
n � tn � √

logn, so the above bound still holds.
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REMARK 3.5 (Comparison with small ball problem). The anti-concentration problem
considered in Theorem 3.1 is qualitatively different from the small ball problem, cf. [64]. For
instance, [64], Theorem 3.1, shows that as ε ↓ 0,

P

(
sup

0≤h≤1

∣∣B(h) + P(h)
∣∣ ≤ ε

)
∼ e

−‖P ′‖2
L2

/2
P

(
sup

0≤h≤1

∣∣B(h)
∣∣ ≤ ε

)
.

Using the well-known fact that logP(sup0≤h≤1|B(h)| ≤ ε) ∼ −(π2/8)ε−2 (cf. [64], Theo-
rem 6.3), we have

ε2 logP
(

sup
0≤h≤1

∣∣B(h) + P(h)
∣∣ ≤ ε

)
∼ −π2/8,

as ε ↓ 0, an estimate exhibiting a completely different behavior compared with the anti-
concentration bound in Theorem 3.1.

REMARK 3.6 (Anti-concentration inequalities). The anti-concentration inequalities that
are in similar in nature to Theorem 3.1 play a pivotal role in establishing Berry–Esseen
bounds for central limit theorems on the class of convex sets in the multivariate setting [5]
and on hyperrectangles in the high-dimensional setting [22, 23, 25]. In the latter problem,
one main ingredient is the anti-concentration for the maximum of jointly Gaussian random
variables with uniformly positive variance; cf. Nazarov’s inequality [26, 69].

3.2. Proof of Theorem 3.1. The proof of Theorem 3.1 relies on several technical results.
One is the anti-concentration lemma ([24], Lemma 2.2) for the supremum of a noncentered
Gaussian process with uniformly positive variance.

LEMMA 3.7. Let {X(t) : t ∈ T } be a possibly noncentered tight Gaussian random vari-
able in �∞(T ). Let σ 2 ≡ inft∈T Var(X(t)). Let d : T × T → R≥0 be a pseudometric defined
by d2(s, t) ≡ E(X(s) − X(t))2 for s, t ∈ T . Then for any ε > 0,

sup
u∈R

P

(∣∣∣sup
t∈T

X(t) − u
∣∣∣ ≤ ε

)
≤ inf

δ,r>0

[
2

σ

(
ε + �X(δ) + rδ

)(√
2 logN (δ, T , d) + 2

)+ e−r2/2
]
,

where �X(δ) ≡ E sups,t∈T ,d(s,t)≤δ|X(s) − X(t)|.
Unfortunately, we can not directly apply the above anti-concentration bound to our prob-

lem since the supremum in (3.1) necessarily involves the Brownian motion at small times,
whose variance can be arbitrarily close to zero. In the proof below we will use a carefully
designed blocking argument to compensate the large estimate due to small variance incurred
by Lemma 3.7, with small estimate for the anti-concentration of the supremum of a Brownian
motion with a linear drift. To this end, we will use the following lemma, the proof of which
can be found in the Appendix.

LEMMA 3.8 (Density of sup of BM with linear drift). Let B be a standard Brownian
motion starting from 0, and μ ∈ R. Let Mμ ≡ sup0≤h≤1(B(h)+μh) ≡ sup0≤h≤1 Bμ(h). Then
the Lebesgue density of Mμ, denoted by pMμ , is given by

pMμ(y) = [
2ϕ(y − μ) − 2μe2μy(1 − �(y + μ)

)]
1y≥0,(3.3)

where ϕ(·) = (2π)−1/2e−(·)2/2 and �(·) are the probability density function and cumula-
tive distribution function of the standard normal distribution, respectively. Consequently,
‖pMμ‖∞ � (μ ∨ 1).
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PROOF OF THEOREM 3.1. Let N ≡ max{�K1b̄
2ε−2 log+(b̄/ε)� + 1,4} for some con-

stant K1 > 0 to be chosen later. Let h� ≡ �/N for 1 ≤ � ≤ N . Assume without loss of
generality log2(N/2 + 1) ∈ N. Let L(h) ≡ B(h) + P(h). For 1 ≤ j ≤ log2(N/2 + 1), let
�j ≡ {arg max1≤�≤N(B(h�) + P(h�)) ∈ {2j−1, . . . ,2j − 1}}. Then

P(u − ε ≤ T ≤ u + ε)

≤ P

(
max

1≤�≤N/2
L(h�) ∈ [u − 2ε,u + 2ε]

)
+ P

(
sup

h1,h2∈[0,1],
|h1−h2|≤1/N

∣∣L(h1) − L(h2)
∣∣ > ε

)

+ P

(
sup

h∈[1/2,1]
L(h) ∈ [u − ε,u + ε]

)
≡ (I ) + (II) + (III).

We first handle relatively easy terms (II) and (III).
For (II), note that for some absolute constant K2 > 1, we may choose K1 > 800 large

enough such that

E sup
|h1−h2|≤1/N

∣∣L(h1) − L(h2)
∣∣ ≤ E sup

|h1−h2|≤1/N

∣∣B(h1) −B(h2)
∣∣+ ∣∣P(h1) − P(h2)

∣∣
≤ K2[

√
logN/N + b̄/N ] ≤ ε/10.

The first inequality in the above display uses entropy integral (cf. Lemma B.1) to evaluate the
expected supremum. Since

sup
|h1−h2|≤1/N

Var
(
L(h1) − L(h2)

) ≤ 1/N ≤ ε2

b̄2K1 log+(b̄/ε)
≤ ε2

K1 log+(1/ε)
,

it follows by the Gaussian concentration (cf. Lemma B.2) that

(II) ≤ P

(
sup

|h1−h2|≤1/N

∣∣B(h1) −B(h2)
∣∣

−E sup
|h1−h2|≤1/N

∣∣B(h1) −B(h2)
∣∣ > ε − b̄/N − ε/10

)
≤ P

(
sup

|h1−h2|≤1/N

∣∣B(h1) −B(h2)
∣∣−E sup

|h1−h2|≤1/N

∣∣B(h1) −B(h2)
∣∣ > ε/2

)

≤ exp
(
− ε2/4

2ε2/K1 log+(1/ε)

)
= exp

(−(K1/8) log+(1/ε)
) ≤ ε100,

by choosing K1 > 800.
For (III), as the minimum standard deviation of L(h) for h ∈ [1/2,1] is strictly bounded

from below by 1/
√

2, we may use the anti-concentration inequality for noncentered Gaussian
process as in Lemma 3.7:

(III) � inf
r,δ>0

[(
ε +E sup

1/2≤hi≤1:i=1,2
d(h1,h2)≤δ

∣∣L(h1) − L(h2)
∣∣+ rδ

)

× (
1 ∨

√
logN

(
δ, [1/2,1], d))+ e−r2/2

]
,

where

d2(h1, h2) = E
(
L(h1) − L(h2)

)2 = E
(
B(h1) −B(h2)

)2 + (
P(h1) − P(h2)

)2

≤ |h1 − h2| + b̄2(h1 − h2)
2 ≤ K3b̄

2 · |h1 − h2|.
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Hence by Lemma B.1,

E sup
1/2≤hi≤1:i=1,2

d(h1,h2)≤δ

∣∣L(h1) − L(h2)
∣∣ � [

δ
√

log(1/δ) + b̄δ2],
logN

(
δ, [1/2,1], d)≤ logN

(
δ2

K3b̄2
, [1/2,1], |·|

)
� log+

(
b̄

δ

)
.

Collecting the estimates, by choosing r ≡ 2 log1/2
+ (1/ε) and δ ≡ ε/

√
log+(1/ε), we arrive at

(III) � inf
r,δ>0

[(
ε + δ

√
log(1/δ) + b̄δ2 + rδ

) · log1/2
+ (b̄/δ) + e−r2/2]

� ε
(
1 ∨ b̄ε log−1+ (1/ε)

)
log1/2

+ (b̄/ε).

Finally we handle the most difficult term (I ). For each 1 ≤ j ≤ log2(N/2 + 1), let h�∗
j
∈

{h� : 2j−1 ≤ � < 2j } be defined by L(h�∗
j
) = max2j−1≤�<2j L(h�). By blocking through the

events {�j : 1 ≤ j ≤ log2(N/2 + 1)}, we have

(I ) ≤
log2(N/2+1)∑

j=1

P
(
L(h�∗

j
) ∈ [u − 2ε,u + 2ε],L(hk) ≤ u + 2ε,2j < ∀k ≤ N

)

≤
log2(N/2+1)∑

j=1

P
(
L(h�∗

j
) ∈ [u − 2ε,u + 2ε],L(hk) − L(h�∗

j
) ≤ 4ε,2j < ∀k ≤ N

)

≤
log2(N/2+1)∑

j=1

P

(
max

2j−1≤�<2j
L(h�) ∈ [u − 2ε,u + 2ε],

L(hk) − L(h2j ) ≤ 4ε + max
2j−1≤�<2j

∣∣L(h2j ) − L(h�)
∣∣,2j < ∀k ≤ N

)
.

It is not hard to show that, using similar arguments above by calculating the first moment via
the entropy integral (cf. Lemma B.1) and Gaussian concentration (cf. Lemma B.2), for some
large constant K4 = K4(m) > 0,

P

(
max

2j−1≤�<2j

∣∣L(h2j ) − L(h�)
∣∣ > K4

[√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

])
≤ ε100.

Hence, we may continue bounding (I ) as follows:

(I ) ≤
log2(N/2+1)∑

j=1

P

(
max

2j−1≤�<2j
L(h�) ∈ [u − 2ε,u + 2ε],

L(hk) − L(h2j ) ≤ 4ε + K4

[√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

]
,2j < ∀k ≤ N

)
+ log2(N/2 + 1) · ε100

≤
log2(N/2+1)∑

j=1

[
P

(
max

2j−1≤�<2j
L(h�) ∈ [u − 2ε,u + 2ε]

)

× P

(
B(hk − h2j ) ≤ 4ε + b̄(hk − h2j )
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+ K4

[√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

]
,2j < ∀k ≤ N

)]
+ log2(N/2 + 1) · ε100

≤
log2(N/2+1)∑

j=1

[
P

(
max

2j−1≤�<2j
L(h�) ∈ [u − 2ε,u + 2ε]

)

× P

(
sup

0≤h≤1−2j /N

(
B(h) − b̄h

) ≤ K5

[
ε +

√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

])]
+ 2 log2(N/2 + 1) · ε100

≡
log2(N/2+1)∑

j=1

pj,1 · pj,2 + 2 log2(N/2 + 1) · ε100.

In the last inequality we have expanded the supremum from the discrete set {1/N,2/N, . . . ,

1 − 2j /N} to 0 ≤ h ≤ 1 − 2j /N at the cost of a larger constant K5 and a larger residual
probability estimate.

Now following similar calculations as in the derivation of (III) using Lemma 3.7, we have

pj,1 � ε(1 ∨ b̄ε log−1+ (1/ε)) log1/2
+ (b̄/ε)√

2j /N
.

On the other hand, as the supremum in pj,2 can be restricted to [0,1/4] (by noting that
min1≤j≤log2(N/2+1)(1 − 2j /N) ≥ 1 − (N/2 + 1)/N = 1/2 − 1/N ≥ 1/4 for N ≥ 4) and is
always nonnegative, we have

pj,2 ≤ P

(
sup

0≤h≤1/4

(
B(h) − b̄h

) ∈
[
0,K5

{
ε +

√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

}])

= P

(
sup

0≤h≤1

(
B(h) − (b̄/2)h

) ∈
[
0,2K5

{
ε +

√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

}])
.

By Lemma 3.8, the density of sup0≤h≤1(B(h) − (b̄/2)h) is bounded by b̄ up to a constant
depending only on m, that is, ‖psup0≤h≤1(B(h)−(b̄/2)h)‖∞ � b̄, and hence

pj,2 � b̄

{
ε +

√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

}
.

Collecting the estimates, it follows that with

Lb(ε) ≡ ε
(
1 ∨ b̄ε log−1+ (1/ε)

)
log1/2

+ (b̄/ε),

we have

(I ) �
log2(N/2+1)∑

j=1

Lb(ε)√
2j /N

· b̄
{
ε +

√
2j

N
log+

(
N

ε2j

)
+ b̄2j

N

}
+ 2 log2(N/2 + 1) · ε100

� b̄εLb(ε)

log2(N/2+1)∑
j=1

1√
2j /N

+ b̄Lb(ε)

log2(N/2+1)∑
j=1

log1/2
+

(
N/ε2j )

+ b̄2Lb(ε)

log2(N/2+1)∑
j=1

(
2j /N

)1/2 + log2(N/2 + 1) · ε100
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� b̄
√

NεLb(ε) + b̄Lb(ε) log3/2
+ (N/ε) + b̄2Lb(ε) + log2(N/2) · ε100

� b̄Lb(ε) log1/2
+ (b̄/ε)

(
b̄ ∨ log+(b̄/ε)

)+ log+(b̄/ε) · ε100

� b̄ε log+(b̄/ε)
(
1 ∨ b̄ε log−1+ (1/ε)

)(
b̄ ∨ log+(b̄/ε)

)
.

The calculation above uses that N � b̄2ε−2 log+(b̄/ε), as chosen in the beginning of the
proof. �

4. Localization.

4.1. Preliminary estimates. We make a few definitions:

• Let rn be defined in (2.3) and ωn = (nrn)
−1/2 be as in (2.4).

• Let h∗
1, h

∗
2 > 0 be random variables defined by f̂n(x0) ≡ Ȳ |[x0−h∗

1rn,x0+h∗
2rn].

• Let �n ≡ {h∗
1 ∨ h∗

2 ≤ τn} for some τn > 0 to be specified below.
• Let h̃1, h̃2 > 0 be random variables defined by

sup
h1∈H1

inf
h2∈H2

Bσ,�0,Q(h1, h2) ≡ Bσ,�0,Q(h̃1, h̃2),(4.1)

where H1, H2 are defined in Table 1. Note that h̃1, h̃2 are a.s. well defined (cf. Lemma 4.5).
• Let �̃n ≡ {h̃1 ∨ h̃2 ≤ τn} for some τn > 0 to be specified below.
• For some tn > 0 to be specified below, let En ≡ {|ω−1

n (f̂n(x0) − f0(x0))| ≤ tn} and Ẽn ≡
{|suph1∈H1

infh2∈H2 Bσ,�0,Q(h1, h2)| ≤ tn}.
For simplicity of notation, we assume σ = 1 throughout the proof.
The following lemma explicitly calculates the order of the bias.

LEMMA 4.1 (Bias calculation). Suppose Assumptions A and B hold. In the fixed design
setting, further assume that x∗ ∈ {Xi}ni=1. Let rn ↓ 0 for α < ∞. Then for τn ≥ 1 such that
rnτ

b
n ↓ 0 for any b > 0, in both fixed and random designs, the following holds with probability

at least 1 − O(n−11), uniformly in h1, h2 ≤ τn:

1. If x0 ∈ (0,1),

(nrn)
−1

∑
x0−h1rn≤Xi≤x0+h2rn

(
f0(Xi) − f0(x0)

)

= f
(α)
0 (x0)

(α + 1)! · (hα+1
2 − hα+1

1

) · �0r
α
n 1α<∞

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O
(
τα∗+1
n rα∗

n 1α∗<∞ ∨ τα
n rα

n (nrn)
−11α<∞

)
fixed design,

O

(
τα∗+1
n rα∗

n 1α∗<∞ ∨ τα+β+1
n rα+β

n 1α∨β<∞

∨
√

τ 2α+1
n r2α

n

logn

nrn
∨
(

logn

nrn

)2
· 1α<∞

)
random design.

2. If x0 = 0, xn ↓ 0,

(nrn)
−1

∑
xn−h1rn≤Xi≤xn+h2rn

(
f0(Xi) − f0(xn)

)

=
α∑

�=1

f
(α)
0 (0)

(α − �)!(� + 1)! · (h�+1
2 − (−h1)

�+1) · �0x
α−�
n r�

n1α<∞
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+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

max
1≤�≤α∗ τ �+1

n xα∗−�
n r�

n1α∗<∞

∨ max
1≤�≤α

τ �
nxα−�

n r�
n(nrn)

−11α<∞
)

fixed design,

O

(
max

1≤�≤α∗ τ �+1
n xα∗−�

n r�
n1α∗<∞

∨ max
1≤�≤α

{
τ �+β+1
n xα−�

n r�+β
n 1α∨β<∞

∨xα−�
n

√
τ 2�+1
n r2�

n

logn

nrn
∨
(

logn

nrn

)2
· 1α<∞

)}
random design.

REMARK 4.2. In the fixed design setting, the assumption x∗ ∈ {Xi} can be removed with
an additional term of order at most O(τn/n). See the comments on this point in the proof of
Lemma 4.1 in the Appendix.

The following lemma gives exponential bounds for the supremum of a weighted partial
sum process.

LEMMA 4.3. Suppose ξi ’s are i.i.d. mean-zero subexponential random variables. Then
for both fixed and random design cases, there exists some constant K > 0 such that for t ≥ 1,

P

(
sup
h≥0

|ξ̄ |[x∗−hrn,x∗+rn]| > tωn

)
∨ P

(
sup
h≥0

|ξ̄ |[x∗−rn,x∗+hrn]| > tωn

)
≤ K

(
e−{t2∧(nrn)1/2t}/K + n−11).

Proofs for the above lemmas can be found in the Appendix.

4.2. Localization. Recall the events En and Ẽn defined in Section 4.1. The following
lemma shows that each of these events has probability 1 − O(n−11) for tn � √

logn.

LEMMA 4.4. Suppose the conditions in Theorem 2.2 hold. For tn = K
√

logn with some
large K > 0, we have P(Ec

n) ∨ P(Ẽc
n) ≤ O(n−11).

PROOF. First consider x0 ∈ (0,1). Note that by the max–min formula and monotonicity
of f0,

f̂n(x0) − f0(x0) ≤ (
f̄0|[x0−h∗

1rn,x0+rn] − f0(x0)
)+ ξ̄ |[x0−h∗

1rn,x0+rn]

≤ (
f̄0|[x0,x0+rn] − f0(x0)

)+ sup
h≥0

|ξ̄ |[x0−hrn,x0+rn]|.(4.2)

By Lemma 4.1, in both fixed and random design cases, for n large enough, with probability
at least 1 − O(n−11),

f̄0|[x0,x0+rn] − f0(x0) = O
(
rα
n 1α<∞

)
.

On the other hand, by Lemma 4.3 we have for some constant K > 0, in both fixed and random
design cases,

P

(
sup
h>0

|ξ̄ |[x0−hrn,x0+rn]| > Kωn

√
logn

)
≤ O

(
n−11)

holds for n large enough. Hence with probability at least 1 − O(n−11), (ω−1
n (f̂n(x0) −

f0(x0)))+ ≤ K1
√

logn. The other direction can be argued similarly. This proves P(Ec
n) ≤
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O(n−11). The analogous claim also holds for its limit version by using [52], Lemma 5. We
omit the details.

Next suppose x0 = 0 and ρ ∈ (0,1). Using (4.2) and Lemma 4.1, we have with the same
probability estimate, it holds that

f̂n(xn) − f0(xn) ≤ O
(

max
1≤�≤α

xα−�
n r�

n1α<∞ ∨ ωn

√
logn

)
.

The reverse direction is similar. �

Next we will show that each of the events �n and �̃n defined in Section 4.1 has probability
1 − O(n−11) for some slowly growing sequence τn.

LEMMA 4.5. The random variables h̃1 and h̃2 in (4.1) are a.s. well defined.

The proof of the above technical lemma can be found in the Appendix.

LEMMA 4.6. Suppose the conditions in Theorem 2.2 hold. For α < ∞ and

τn ≡ K ·

⎧⎪⎪⎨⎪⎪⎩
(logn)1/2α if x0 ∈ (0,1),

log1/2 n if x0 = 0 and ρ ∈ (
0,1/(2α + 1)

)
,

(logn)1/2α if x0 = 0 and ρ = 1/(2α + 1)

with a sufficiently large K > 0, we have P(�c
n) ∨ P(�̃c

n) ≤ O(n−11).

PROOF. First consider x0 ∈ (0,1). Let K1 > 0 be the constant in Lemma 4.4. Consider
the event {h∗

2 ≥ τn}. On this event, by max–min formula, we have

f̂n(x0) − f0(x0) ≥ f̄0|[x0−rn,x0+h∗
2rn] − f0(x0) + ξ̄ |[x0−rn,x0+h∗

2rn]

≥ (
f̄0|[x0−rn,x0+τnrn] − f0(x0)

)− sup
h≥0

|ξ̄ |[x0−rn,x0+hrn]|.

The bias term is easy to compute: by Lemma 4.1, in both fixed and random design cases, with
probability at least 1 − O(n−11),

f̄0|[x0−rn,x0+τnrn] − f0(x0) = O

(
(τα+1

n − 1)

τn + 1
rα
n

)
≥ c0τ

α
n rα

n

holds for some constant c0 = c0(α,f0, x0) > 0 and n large enough. On the other hand,
by using again Lemma 4.3, we conclude that with probability at least 1 − O(n−11),
suph≥0|ξ̄ |[x0−rn,x0+hrn]| ≤ K2ωn

√
logn. We choose τn ≡ ((K1 + K2)

√
logn/c0)

1/α . Com-
bining the above estimates, on the intersection of {h∗

2 ≥ τn} and an event with probability at
least 1 − O(n−11), we have

ω−1
n

(
f̂n(x0) − f0(x0)

) ≥ c0τ
α
n − K2

√
logn ≥ K1

√
logn,

which occurs with probability at most O(n−11) by Lemma 4.4. Hence P(h∗
2 ≥ τn) ≤ O(n−11)

for n large enough. Similar considerations apply to h∗
1, and the limit versions. Details are

omitted.
Next consider x0 = 0 with ρ ∈ (0,1/(2α + 1)]. Using Lemma 4.1, we have

f̄0|[x∗−rn,x∗+τnrn] − f0
(
x∗) = O

(
α∑

�=1

τ �+1
n − (−1)�+1

τn + 1
· xα−�

n r�
n

)

≥ c1 max
1≤�≤α

xα−�
n τ �

nr�
n = c1

{
xα−1
n τnrn ρ ∈ (

0,1/(2α + 1)
)
,

τα
n rα

n ρ = 1/(2α + 1)
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for some c1 = c1(α,f0), which holds in both fixed and random design settings with probabil-
ity at least 1 − O(n−11). The claim now follows from similar arguments above. �

5. Proof of Theorem 2.2.

5.1. Proof for the fixed design. In addition to the anti-concentration inequality and local-
ization, the Kolmós–Major–Tusnády (KMT) strong embedding theorem [59, 60] will play an
important role. The formulation below is taken from [15].

LEMMA 5.1 (KMT strong embedding). Let ξ1, . . . , ξn be i.i.d. mean-zero, unit variance,
and subexponential random variables, that is, Eξ1 = 0, Eξ2

1 = 1, and Eeθξ1 < ∞ for all θ

in a neighborhood of the origin. Then for each n, a version of (Sk ≡ ∑k
i=1 ξi)1≤k≤n and a

standard Brownian motion (Bn(t))0≤t≤n can be constructed on the same probability space
such that for all x ≥ 0,

P

(
max

1≤k≤n

∣∣Sk −Bn(k)
∣∣ ≥ C logn + x

)
≤ K exp(−x/K).

Here the constants C,K > 0 depend on the distribution of ξ1 only.

PROOF OF THEOREM 2.2: x0 ∈ (0,1) OR x0 = 0, 0 < ρ ≤ 1/(2α + 1), α < ∞. As in
the proof of Proposition 2.1, we first work with the extra condition that x∗ ∈ {Xi}. Then for
any |t | ≤ tn, by max–min formula we have

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
= P

(
max
h1>0

min
h2≥0

ω−1
n

(
ξ̄ |[x∗−h1rn,x∗+h2rn] + f̄0|[x∗−h1rn,x∗+h2rn] − f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1≤τn
h1∈H1

min
0≤h2≤τn
h2∈H2

[
ωn

∑
x∗−h1rn≤Xi≤x∗+h2rn

ξi

+ (�h1rn · n� + �h2rn · n� + 1
)
ωn

(
f̄0|[x∗−h1rn,x∗+h2rn] − f0

(
x∗))

− (�h1rn · n� + �h2rn · n� + 1
)
ω2

nt

]
≤ 0

)
+ P

(
�c

n

)
≤ P

(
max

0<h1≤τn
h1∈H1

min
0≤h2≤τn
h2∈H2

[
ωn

∑
x∗−h1rn≤Xi≤x∗+h2rn

ξi + Q(h2) − Q(−h1)

− t (h1 + h2)

]
≤ O

(
ω2

ntn ∨Rf
n · τ (α∗+1)1α∗<∞+α1α<∞

n

))+ P
(
�c

n

)
.

Here Rf
n is defined in (2.8). The inequality in the last line of the above display follows since

by Lemma 4.1,(�h1rn · n� + �h2rn · n� + 1
)
ωn

(
f̄0|[x∗−h1rn,x∗+h2rn] − f0

(
x∗))

= (nrn)
1/2 · (nrn)

−1
∑

x∗−h1rn≤Xi≤x∗+h2rn

(
f0(Xi) − f0

(
x∗))

= Q(h2) − Q(−h1) + O
(
Rf

n · τ (α∗+1)1α∗<∞+α1α<∞
n

)
,

and (�h1rn · n� + �h2rn · n� + 1)ω2
nt = t (h1 + h2) + O(ω2

ntn). By the KMT strong embed-
ding (cf. Lemma 5.1), there exist independent Brownian motions Bn, B′

n such that for some
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constant C0 > 0 that does not depend on n, with probability 1 − O(n−11), uniformly in
h1, h2 ≥ 0, ∣∣∣∣ ∑

x∗≤Xi≤x∗+h2rn

ξi −Bn

(�h2rn · n� + 1
)∣∣∣∣

∨
∣∣∣∣ ∑
x∗−h1rn≤Xi<x∗

ξi −B
′
n

(�h1rn · n�)∣∣∣∣ ≤ C0 logn.

This means that, with

Rf
n ≡ max

{
Rf

n · τ (α∗+1)1α∗<∞∨α1α<∞
n ,ω2

n(tn ∨
√

logn),ωn logn
}
,(5.1)

we have

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1≤τn
h1∈H1

min
0≤h2≤τn
h2∈H2

[
ωnB

(�h2rn · n� + 1
)− ωnB

(−�h1rn · n�)
+ Q(h2) − Q(−h1) − t (h1 + h2)

] ≤ K0R
f
n

)
+ P

(
�c

n

)+ O
(
n−11)

≤ P

(
max

0<h1≤τn
h1∈H1

min
0≤h2≤τn
h2∈H2

[(
B(h2) −B(−h1)

)
+ Q(h2) − Q(−h1) − t (h1 + h2)

] ≤ K1R
f
n

)
+ P

(
�c

n

)+ O
(
n−11).

(5.2)

The last inequality follows since by Lemma B.1,

E sup
0≤hi≤τn,i=1,2

|h1−h2|≤ω2
n

∣∣B(h1) −B(h2)
∣∣ � ωn

√
logn, sup

0≤hi≤τn,i=1,2
|h1−h2|≤ω2

n

Var
(
B(h1) −B(h2)

) ≤ ω2
n

and hence by the Gaussian concentration (cf. Lemma B.2), we have for a large enough con-
stant C1 > 0,

P

(
sup

0≤hi≤τn,i=1,2
|h1−h2|≤ω2

n

∣∣B(h1) −B(h2)
∣∣ > C1ωn

√
logn

)
≤ e−C2

1ω2
n logn/8ω2

n ≤ O
(
n−11).

Let

Tn,1 ≡ max
0≤h≤τn,h∈H1

[−B(−h) − Q(−h) − th
]
,

Tn,2 ≡ min
0≤h≤τn,h∈H2

[
B(h) + Q(h) − th

] = − max
0≤h≤τn,h∈H2

[−B(h) − Q(h) + th
]
.

By (5.2), we have

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

) ≤ P
(
Tn,1 + Tn,2 ≤ K1R

f
n

)+ P
(
�c

n

)+ O
(
n−11).

Now apply the anti-concentration Theorem 3.1 with the following choices of (tn, τn, b̄, ε):

• x0 ∈ (0,1): tn � √
logn, τn � (logn)1/2α , b̄ � τ

α+1/2
n � log(α+1/2)/2α n, ε � R

f
n /

√
τn,

• x0 = 0, ρ ∈ (0,1/(2α + 1)): tn, τn � √
logn, b̄ � τ

3/2
n , ε � R

f
n /

√
τn,

• x0 = 0, ρ = 1/(2α + 1): tn � √
logn, τn � (logn)1/2α , b̄ � τ

α+1/2
n � log(α+1/2)/2α n, ε �

R
f
n /

√
τn.
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Then, in view of Remark 3.4, we see that for any |t | ≤ tn,

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
= P(Tn,1 + Tn,2 ≤ 0) + K2R

f
n log5/2 n + P

(
�c

n

)+ O
(
n−11)

≤ P

(
max

0<h1≤τn
h1∈H1

min
0≤h2≤τn
h2∈H2

[
B(h2) −B(−h1) + Q(h2) − Q(−h1) − t (h1 + h2)

] ≤ 0
)

+ K2R
f
n log5/2 n + P

(
�c

n

)+ O
(
n−11)

≤ P

(
max

0<h1≤τn
h1∈H1

min
0≤h2≤τn
h2∈H2

B(h2) −B(−h1) + Q(h2) − Q(−h1)

h1 + h2
≤ t

)

+ K2R
f
n log5/2 n + P

(
�c

n

)+ O
(
n−11)

≤ P

(
sup

h1∈H1

inf
h2∈H2

Bσ,�0,Q(h1, h2) ≤ t
)

+ K2R
f
n log5/2 n + P

(
�c

n

)+ P
(
�̃c

n

)+ O
(
n−11).

Recalling the definitions of En and Ẽn and arguing the reverse direction similarly, we have

sup
t∈R

∣∣∣P(ω−1
n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)− P

(
sup

h1∈H1

inf
h2∈H2

Bσ,�0,Q(h1, h2) ≤ t
)∣∣∣

≤ K2R
f
n log5/2 n + P

(
�c

n

)+ P
(
�̃c

n

)+ P
(
Ec

n

)+ P
(
Ẽc

n

)+ O
(
n−11).

The claim of the theorem under x∗ ∈ {Xi} now follows from Lemmas 4.4 and 4.6. For x∗
in general position, by Remark 4.2, in the definition (5.1) of R

f
n , the quantity Rf

n need
be replaced by Rf

n ∨ (ω−1
n · (τn/n)). The contribution of the additional maximum can be

assimilated into the ωn logn term in (5.1), so the above display remains valid. �

PROOF OF THEOREM 2.2: x0 = 0, 1/(2α + 1) < ρ < 1, α < ∞.. We only consider the
case x∗ ∈ {Xi}. In this regime, Lemma 4.6 does not apply so we do not have exponential lo-
calization in h∗

i , h̃i , i = 1,2. However, Lemma 4.4 still applies, and we do have sub-Gaussian
localization of the statistics ω−1

n (f̂n(xn) − f0(xn)) and the limiting distribution

sup
h1∈(0,1]

inf
h2∈[0,∞)

B1,1,0(h1, h2) = sup
h1∈(0,1]

inf
h2∈[0,∞)

B(h2) −B(−h1)

h1 + h2
.

Hence, for any |t | ≤ tn, repeating the arguments in the previous proof, with T̄n,1 ≡
maxh∈[0,1](−B(−h) − th) and T̄n,2 ≡ minh∈[0,(1−xn)/xn)(B(h2) − th2),

P
(
ω−1

n

(
f̂n(xn) − f0(xn)

) ≤ t
)

≤ P

(
max

h1∈(0,1] min
h2∈[0,(1−xn)/xn)

[
B(h2) −B(−h1) − t (h1 + h2)

] ≤ K1R
f
n

)
+ O

(
n−11)

= P
(
T̄n,1 ≤ −T̄n,2 + K1R

f
n

)+ O
(
n−11)

≤ P(T̄n,1 + T̄n,2 ≤ 0) + K2R
f
n log5/2 n + O

(
n−11)

= P

(
sup

h1∈(0,1]
inf

h2∈[0,(1−xn)/xn)
B1,1,0(h1, h2) ≤ t

)
+ K2R

f
n log5/2 n + O

(
n−11),

(5.3)

where in the first inequality we used independence between T̄n,1 and T̄n,2, and anti-
concentration Theorem 3.1 for T̄n,1 with b̄ � √

logn. Let En,2 ≡ {h∗
2 ≥ (1 − xn)/xn}. Then
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on En,2,

sup
h1∈(0,1]

inf
h2∈[0,∞)

B1,1,0(h1, h2) ≥ inf
h2≥(1−xn)/xn

B(h2) −B(−1)

h2 + 1

≥ − sup
h2≥nρ/2

∣∣∣∣B(h2)

h2

∣∣∣∣− |B(−1)|
nρ/2 + 1

d= − Y1

(nρ/2)1/2 − Y2

nρ/2 + 1
,

where Y1 ≡ suph≥1|B(h)/h| and Y2 ≡ |B(−1)| are nonnegative and have sub-Gaussian tails.
Hence on the intersection of En,2 and an event with probability at least 1 −O(n−11), we have

sup
h1∈(0,1]

inf
h2∈[0,∞)

B1,1,0(h1, h2) ≥ −O
(
n−ρ/2

√
logn

)
.

By Lemma A.1, P(En,2) ≤ O(n−ρ/4 log1/2 n). Combined with (5.3), this means that

P
(
ω−1

n

(
f̂n(xn) − f0(xn)

) ≤ t
)

≤ P

(
sup

h1∈(0,1]
inf

h2∈[0,∞)
B1,1,0(h1, h2) ≤ t

)
+ K2R

f
n log5/2 n + O

(
n−ρ/4 log1/2 n

)
.

The inequality above can be reversed (note here that from (5.3) one may directly enlarge the
range of inf to h2 ∈ [0,∞); but this argument does not work for the reversed direction). The
claim now follows as the last term can be assimilated when ρ ∈ [2/3,1). �

PROOF OF THEOREM 2.2: α = ∞.. We only consider the case x∗ ∈ {Xi}. First consider
x0 ∈ (0,1). This case follows quite straightforwardly: with Tn,1 ≡ maxh∈[0,x0](−B(−h)− th)

and Tn,2 ≡ minh∈[0,1−x0](B(h2) − th2), for any |t | ≤ tn, tn � √
logn, we have

P
(
ω−1

n

(
f̂n(x0) − f0(x0)

) ≤ t
)

≤ P

(
max

h1∈(0,x0]
min

h2∈[0,1−x0]
[
B(h2) −B(−h1) − t (h1 + h2)

] ≤ K1R
f
n

)
+ O

(
n−11)

= P
(
Tn,1 + Tn,2 ≤ K1R

f
n

)+ O
(
n−11)

≤ P(Tn,1 + Tn,2 ≤ 0) + K2R
f
n log5/2 n + O

(
n−11)

= P

(
sup

h1∈H1

inf
h2∈H2

B1,1,0(h1, h2) ≤ t
)

+ K2R
f
n log5/2 n + O

(
n−11).

Next consider x0 = 0. By similar arguments as in the previous proof for the case α < ∞,
x0 = 0, 1/(2α + 1) < ρ < 1, we have

P
(
ω−1

n

(
f̂n(xn) − f0(xn)

) ≤ t
)

= P

(
sup

h1∈(0,1]
inf

h2∈[0,(1−xn)/xn)
B1,1,0(h1, h2) ≤ t

)
+ K2R

f
n log5/2 n + O

(
n−11)

≤ P

(
sup

h1∈(0,1]
inf

h2∈[0,∞)
B1,1,0(h1, h2) ≤ t

)
+ K2R

f
n log5/2 n + O

(
n−ρ/4 log1/2 n

)
,

the last term of which can be assimilated for ρ ∈ [2/3,1). �

5.2. Proof for the random design.

PROOF OF THEOREM 2.2: RANDOM DESIGN. The proof strategy is broadly similar to
the fixed design case, but differs quite substantially in technical details due to the randomness
of {Xi}.
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First consider the case x0 ∈ (0,1) or x0 = 0, 0 < ρ ≤ 1/(2α + 1), α < ∞. Note that

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1≤τn

min
0≤h2≤τn

[
ωn

∑
x∗−h1rn≤Xi≤x∗+h2rn

ξi

+ (nPn1[x∗−h1rn,x∗+h2rn])ωn

(
f̄0|[x∗−h1rn,x∗+h2rn] − f0

(
x∗))

− (
ω2

nnPn1[x∗−h1rn,x∗+h2rn]
)
t

]
≤ 0

)
+ P

(
�c

n

)
.

(5.4)

By Lemma 4.1, with probability at least 1 − O(n−11),

(nPn1[x∗−h1rn,x∗+h2rn])ωn

(
f̄0|[x∗−h1rn,x∗+h2rn] − f0

(
x∗))

= Q(h2) − Q(−h1) + O
(
Rr

n · τ ζ r

n

)
.

(5.5)

Here Rr
n is defined in (2.9) and

ζ r ≡ ζ r
α,α∗,β ≡ (

α∗ + 1
)
1α∗<∞ ∨ (α + β + 1)1α∨β<∞ ∨ (α + 1/2).(5.6)

Combining (5.4)–(5.5), we have

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1≤τn

min
0≤h2≤τn

[
ωn

∑
x∗−h1rn≤Xi≤x∗+h2rn

ξi + Q(h2) − Q(−h1)(5.7)

− (
ω2

nnPn1[x∗−h1rn,x∗+h2rn]
)
t

]
≤ O

(
Rr

n · τ ζ r

n

))+ P
(
�c

n

)+ O
(
n−11).

By the KMT strong embedding, conditionally on {Xi}’s, there exist independent Brownian
motions Bn, B′

n (which may depend on {Xi}) such that for some constant C0 > 0 that does
not depend on n or {Xi},

P

(
sup
h2>0

∣∣∣∣ ∑
x∗≤Xi≤x∗+h2rn

ξi −Bn(nPn1[x∗,x∗+h2rn])
∣∣∣∣

∨ sup
h1>0

∣∣∣∣ ∑
x∗−h1rn≤Xi<x∗

ξi −B
′
n(nPn1[x∗−h1rn,x∗))

∣∣∣∣ ≤ C0 logn|{Xi}
)

≥ 1 − O
(
n−11).

We do not compare directly Bn(nPn1[x∗,x∗+h2rn]) with B(h2nrn) as in the fixed design
case, as the standard deviation of nPn1[x∗,x∗+h2rn] is of order

√
nrn = ω−1

n and there-
fore the comparison of Brownian motions leads to suboptimal error bounds. We use
a different reparametrization idea as follows. Let h1,n ≡ ω2

nnPn1[x∗−h1rn,x∗) and h2,n ≡
ω2

nnPn1[x∗,x∗+h2rn]. Let

En,1 ≡
{

sup
0≤hi≤τn,

i=1,2

∣∣(h1,n + h2,n) − (h1 + h2)
∣∣ ≤ C1ω

2
n

√
nτnrn logn = C1ωn

√
τn logn

}
.

Then for C1 > 0 large enough, P(Ec
n,1) ≤ O(n−11). Let τ1,n ≡ ω2

nnPn1[x∗−τnrn,x∗) and τ2,n ≡
ω2

nnPn1[x∗,x∗+τnrn]. On the event En,1, we have τ1,n ≥ τn −C1ωn

√
τn logn ≥ τn/2 and τ2,n ≤
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τn + C1ωn

√
τn logn ≤ 2τn for n large enough. Therefore, by (5.7), we have

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1,n≤τn,1,

h1,n∈ω2
nZ

min
0≤h2,n≤τn,2,

h2,n∈ω2
nZ

[
B(h2,n) −B(−h1,n) + Q(h2,n) − Q(−h1,n)

− t (h1,n + h2,n)
] ≤ O

(
Rr

n · τ ζ r

n ∨ ωn(τn logn)1/2τα
n ∨ ωn logn

)
,En,1

)
+ P

(
�c

n

)+ O
(
n−11)

≤ P

(
max

0<h1,n≤τn/2,

h1,n∈ω2
nZ

min
0≤h2,n≤2τn,

h2,n∈ω2
nZ

[
B(h2,n) −B(−h1,n) + Q(h2,n) − Q(−h1,n)

− t (h1,n + h2,n)
] ≤ O

(
Rr

n · τ ζ r

n ∨ ωn(τn logn)1/2τα
n

))+ P
(
�c

n

)+ O
(
n−11).

The discretization effect in the above max–min formula can be handled in the O term up to a
further probability estimate on the order of O(n−11) (for Brownian motion), so we obtain

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1,n≤τn/2
min

0≤h2,n≤2τn

[
B(h2,n) −B(−h1,n) + Q(h2,n) − Q(−h1,n)

− t (h1,n + h2,n)
] ≤ O

(
Rr

n · τ ζ r

n ∨ ωn(τn logn)1/2τα
n

))+ P
(
�c

n

)+ O
(
n−11).

Now we proceed to argue as in the fixed design case, except for R
f
n defined in (5.1) is now

replaced by

Rr
n ≡ Rr

n · τ ζ r

n ∨ ωn(τn logn)1/2τα
n ,

where ζ r is defined in (5.6). This completes the proof of the case x0 ∈ (0,1) or x0 = 0,
0 < ρ ≤ 1/(2α + 1), α < ∞.

For the remaining cases, we only consider x0 = 0, 1/(2α + 1) < ρ < 1, α < ∞ as
other cases are simpler. As Q = 0, we no longer need to work on the event En,1. Let
τ ∗

1,n ≡ ω2
nnPn1[0,x∗) and τ ∗

2,n ≡ ω2
nnPn1[x∗,1]. Then using Bernstein’s inequality, it is easy

to see that with probability at least 1 −O(n−11), τ ∗
1,n ≥ 1 −O(ωn

√
logn) and τ ∗

2,n ≤ 2nρ for
n large enough. Hence, for |t | ≤ tn,

P
(
ω−1

n

(
f̂n

(
x∗)− f0

(
x∗)) ≤ t

)
≤ P

(
max

0<h1≤1
min

0≤h2≤(1−xn)/xn

[
ωn

∑
x∗−h1rn≤Xi≤x∗+h2rn

ξi

− (
ω2

nnPn1[x∗−h1rn,x∗+h2rn]
)
t

]
≤ O

(
Rr

n · τ ζ r

n

))
≤ P

(
max

0<h1,n≤τ∗
n,1,

h1∈ω2
nZ

min
0≤h2,n≤τ∗

n,2,

h2,n∈ω2
nZ

[
B(h2,n) −B(−h1,n) − t (h1,n + h2,n)

]

≤ O
(
Rr

n · τ ζ r

n ∨ ωn logn
))

≤ P

(
max

0<h1,n≤1−O(ωn

√
logn)

min
0≤h2,n≤2nρ

[
B(h2,n) −B(−h1,n) − t (h1,n + h2,n)

]
≤ O

(
Rr

n · τ ζ r

n ∨ ωn logn
))+ O

(
n−11)
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≤ P

(
max

0<h1,n≤1
min

0≤h2,n≤2nρ

[
B(h2,n) −B(−h1,n) − t (h1,n + h2,n)

]
≤ O

(
Rr

n · τ ζ r

n ∨ ωn(logn ∨ tn

√
logn)

))+ O
(
n−11).

Here the last line follows by noting that for |t | ≤ tn, with probability at least 1 − O(n−11),

max
0<h1,n≤1−O(ωn

√
logn)

(
B(−h1,n) − th1,n

)
d= (

1 − O(ωn

√
logn)

)1/2 max
0<h1,n≤1

(
B(−h1,n) − (

1 − O(ωn

√
logn)

)1/2
th1,n

)
= (

1 − O(ωn

√
logn)

)1/2 max
0<h1,n≤1

(
B(−h1,n) − th1,n

)+ O(ωn

√
logn · tn)

= max
0<h1,n≤1

(
B(−h1,n) − th1,n

)+ O(ωn

√
logn) · O(

√
logn) + O(ωn

√
logn · tn).

Now we may proceed as in the fixed design case to conclude. �

6. Concluding remarks and open questions. In this paper we developed a new ap-
proach of proving Berry–Esseen bounds for Chernoff-type nonstandard limit theorems in
the isotonic regression model, by combining problem-specific localization techniques and an
anti-concentration inequality for the supremum of a Brownian motion with a Lipschitz drift.
The scope of the techniques applies to various known (or near-known) Chernoff-type non-
standard asymptotics in isotonic regression allowing (i) general local smoothness conditions
on the regression function, (ii) limit theorems both for interior points and points approaching
the boundary, and (iii) both fixed and random design covariates.

Below we sketch two further open questions.

QUESTION 1. Prove a matching lower bound for the cube-root rate (in the canonical
case α = 1) in the Berry–Esseen bound (1.4).

As demonstrated in the simulation (Figure 1), the oracle perspective (cf. Proposition 2.1)
is quite informative in that the cube-root rate in (1.4) cannot be improved when the errors
are i.i.d. Rademacher random variables. [51] used Stein’s method to prove a lower bound of
order n−1/2, for the Berry–Esseen bound for the central limit theorem for the sample mean in
the worst-case scenario. Unfortunately, the least squares estimator (1.2) is a highly nonlinear
and nonsmooth functional of the samples in the isotonic regression model (1.1), and therefore
the connection between the Stein’s method and the Berry–Esseen bound for the nonstandard
limit theorem (1.4) remains largely unknown. New techniques seem necessary for proving a
lower bound for (1.4).

QUESTION 2. Prove a Berry–Esseen bound for the nonstandard limit theorem for the
block estimator of a multi-dimensional isotonic regression function (cf. [52]).

Recently [52] established a nonstandard limit theorem for the so-called block estimator f̂n

(cf. [37]) for a d-dimensional isotonic regression function f0 on [0,1]d (i.e., f0(x) ≤ f0(y)

if xk ≤ yk , 1 ≤ k ≤ d). In particular, suppose x0 ∈ (0,1)d and ∂kf0(x0) > 0 for 1 ≤ k ≤ d ,
the errors ξi ’s are i.i.d. mean-zero with variance σ 2, and the design points {Xi} are of a
fixed balanced design (see [52] for a precise definition) or a random design with uniform
distribution on [0,1]d . Then [52] showed that

(
n/σ 2)1/(d+2)(

f̂n(x0) − f0(x0)
) d→

(
d∏

k=1

(
∂kf0(x0)/2

))1/(d+2)

·D(1,...,1),
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where D(1,...,1) is a fairly complicated random variable generalizing the Chernoff distribution
D1; a detailed description can be found in [52]. We believe the techniques developed in
this paper will be useful in establishing a Berry–Essen bound for the above limit theorem.
However, the anti-concentration problem associated with D(1,...,1) in the multi-dimensional
regression setting seems substantially more challenging than the univariate problem studied
in this paper.

APPENDIX A: PROOF OF AUXILIARY LEMMAS

A.1. Proof of Lemma 3.8.

PROOF OF LEMMA 3.8. By [10], formula (1.1.4), page 197, noting that Ercf(z) = 2(1 −
�(

√
2z)), we have for any y ≥ 0,

P(Mμ ≥ y) = 1

2
Ercf

(
y − μ√

2

)
+ 1

2
e2μy · Ercf

(
y + μ√

2

)
= 1 − �(y − μ) + e2μy(1 − �(y + μ)

)
.

Differentiating the above display with respect to y yields (3.3), upon using e2μyϕ(y + μ) =
ϕ(y − μ). Alternatively, (3.3) can be derived using [81], formula (1.9),

P
(
Mμ ∈ dy,Bμ(1) ∈ dx

) = (2π)−1/22(2y − x)e− (2y−x)2

2 eμx−μ2

2 1y≥0,y≥x dx dy,

which follows from the change of variables (or Cameron–Martin) formula for Gaussian mea-
sures (cf. [39], Theorem 2.6.13). Hence for y ≥ 0, pMμ(y) can be evaluated by integrating
out x:

pMμ(y) = 2√
2π

∫ y

−∞
(2y − x)e− (2y−x)2

2 eμx−μ2

2 dx

= 2√
2π

∫ ∞
y

te− t2
2 eμ(2y−t)−μ2

2 dt

= 2e2μy

√
2π

∫ ∞
y

te− (t+μ)2

2 dt = 2e2μy

√
2π

[∫ ∞
y+μ

ve− v2
2 dv − μ

∫ ∞
y+μ

e− v2
2 dv

]

= 2e2μy

√
2π

[
e− (y+μ)2

2 − √
2πμ

(
1 − �(y + μ)

)]
,

which agrees with (3.3). Since pMμ is discontinuous at 0, pMμ(0) is understood as the right
limit: pMμ(0) ≡ limy→0+ pMμ(y). Finally, note that for y + μ ≤ 1, e2μy(1 − �(y + μ)) ≤
e2μ(1−μ)(1 − �(1))1μ≥0 + 1μ<0 ≤ e1/2, while for y + μ > 1, e2μy(1 − �(y + μ)) ≤
(1/

√
2π)e2μy−(y+μ)2/2 = (1/

√
2π)e−(y−μ)2/2 ≤ 1/

√
2π . This implies that ‖pMμ‖∞ � (μ∨

1). �

A.2. Proof of Lemma 4.1.

PROOF OF LEMMA 4.1. α = ∞ is the trivial case, so we only consider α < ∞. First
consider fixed design with x0 ∈ (0,1). Then for x0 ∈ {Xi},∑

x0−h1rn≤Xi≤x0+h2rn

(
f0(Xi) − f0(x0)

)

= ∑
x0−h1rn≤Xi≤x0+h2rn

[
f

(α)
0 (x0)

α! (Xi − x0)
α + (

1 + o(1)
)f (α∗)

0 (x0)

α∗! (Xi − x0)
α∗

1α∗<∞
]
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= ∑
−h1rn·�0n≤m≤h2rn·�0n

[
f

(α)
0 (x0)

α!
(

m

�0n

)α

+ (
1 + o(1)

)f (α∗)
0 (x0)

α∗!
(

m

�0n

)α∗
1α∗<∞

]

= f
(α)
0 (x0)

(α + 1)! �
−α
0 n−α[�h2rn · �0n�α+1 + (−1)α�h1rn · �0n�α+1

+ O
((

(h1 ∨ h2)rn�0n
)α)]+ n−α∗

O
((

(h1 ∨ h2)rn�0n
)α∗+11α∗<∞

)
= nrn

[
f

(α)
0 (x0)

(α + 1)! · (hα+1
2 − (−h1)

α+1) · �0r
α
n + O

(
τα
n rα

n (nrn)
−1 ∨ τα∗+1

n rα∗
n 1α∗<∞

)]
.

For general x0 (not necessarily a design point), Xi − x0 = m/(�0n)+O(n−1) for integers m

in the range −h1rn · �0n ≤ m ≤ h2rn · �0n, so an extra term of order at most O(nrn · τn/n)

would be contributed in the above summation.
For fixed design with x0 = 0, we work with xn ∈ {Xi} (the other case can be handled in

similar way as above). Then∑
xn−h1rn≤Xi≤xn+h2rn

(
f0(Xi) − f0(xn)

)

= ∑
−h1rn·�0n≤m≤h2rn·�0n

[
α∗−1∑
�=1

f
(�)
0 (xn)

�!
(

m

�0n

)�

+ (
1 + o(1)

)f (α∗)
0 (xn)

α∗!
(

m

�0n

)α∗
1α∗<∞

]

=
α∑

�=1

f
(α)
0 (0)

(α − �)!�! · (xα−�
n + O

(
xα∗−�
n 1α∗<∞

))
�−�

0 n−�
∑

−h1rn·�0n≤m≤h2rn·�0n

m�

+ f
(α∗)
0 (0)1α∗<∞

α∗∑
�=α+1

1 + o(1)

(α∗ − �)!�! · xα∗−�
n �−�

0 n−�
∑

−h1rn·�0n≤m≤h2rn·�0n

m�

=
α∑

�=1

f
(α)
0 (0)

(α − �)!(� + 1)! · (xα−�
n + O

(
xα∗−�
n 1α∗<∞

))
�−�

0 n−�

× {�h2rn · �0n��+1 − (−�h1rn · �0n�)�+1 + O
((

(h1 ∨ h2)rnn
)�)}

+ O
(

max
α+1≤�≤α∗ xα∗−�

n n−�(h1 ∨ h2)
�+1(rnn)�+11α∗<∞

)

= nrn

[
α∑

�=1

f
(α)
0 (0)

(α − �)!(� + 1)! · (h�+1
2 − (−h1)

�+1) · �0x
α−�
n r�

n

+ O
(

max
1≤�≤α∗ τ �+1

n xα∗−�
n r�

n1α∗<∞ ∨ max
1≤�≤α

τ �
nxα−�

n r�
n(nrn)

−1
)]

.

Next consider random design with x0 ∈ (0,1). It is easy to see by Lemma B.4 that for any
� ≥ 1,

E sup
0≤hi≤τn,i=1,2

∣∣n(Pn − P)
(
(X − x0)

�1[x0−h1rn,x0+h2rn]
)∣∣ � √

n · (τnrn)2�+1 logn,

sup
0≤hi≤τn,i=1,2

Var
(
(X − x0)

�1[x0−h1rn,x0+h2rn]
)
� (τnrn)

2�+1.
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By Talagrand’s concentration inequality (cf. Lemma B.3), there exists some constant K > 0
such that for any x ≥ 0,

P

(
K−1 sup

0≤hi≤τn,i=1,2

∣∣n(Pn − P)
(
(X − x0)

�1[x0−h1rn,x0+h2rn]
)∣∣

≥
√

n(τnrn)2�+1(logn + x) + x
)

≤ e−x.

Hence with probability at least 1 − O(n−11), it holds that uniformly in h1, h2 ≤ τn∑
x0−h1rn≤Xi≤x0+h2rn

(
f0(Xi) − f0(x0)

)

= f
(α)
0 (x0)

α! nPn(X − x0)
α1[x0−h1rn,x0+h2rn]

+ (
1 + o(1)

)
1α∗<∞

f
(α∗)
0 (x0)

α∗! nPn(X − x0)
α∗

1[x0−h1rn,x0+h2rn]

= f
(α)
0 (x0)

α!
[
nP (X − x0)

α1[x0−h1rn,x0+h2rn] + O
(√

n(τnrn)2α+1 logn ∨ logn
)]

+ 1α∗<∞ · O[
nP (X − x0)

α∗
1[x0−h1rn,x0+h2rn] + O

(√
n(τnrn)2α∗+1 logn ∨ logn

)]
= nrn

[
f

(α)
0 (x0)

(α + 1)!
(
hα+1

2 − (−h1)
α+1) · �0r

α
n

+ O

(
τα∗+1
n rα∗

n 1α∗<∞ ∨ τα+β+1
n rα+β

n 1β<∞ ∨
√

τ 2α+1
n r2α

n

logn

nrn
∨ logn

nrn

)]
.

Here we used that for all � ≥ 1,

P(X − x0)
�1[x0−h1rn,x0+h2rn]

=
∫ x0+h2rn

x0

(x − x0)
�π(x)dx +

∫ x0

x0−h1rn

(x − x0)
�π(x)dx

= �0

� + 1

(
h�+1

2 − (−h1)
�+1)r�+1

n + O
((

(h1 ∨ h2)rn
)�+β+11β<∞

)
.

For random design with x0 = 0, with probability at least 1 − O(n−11), we have uniformly in
h1, h2 ≤ τn, ∑

xn−h1rn≤Xi≤xn+h2rn

(
f0(Xi) − f0(xn)

)

=
α∗−1∑
�=1

f
(�)
0 (xn)

�! · nPn(X − xn)
�1[xn−h1rn,xn+h2rn]

+ (
1 + o(1)

)
1α∗<∞

f
(α∗)
0 (xn)

α∗! · nPn(X − xn)
α∗

1[xn−h1rn,xn+h2rn]

=
α∑

�=1

f
(α)
0 (0)

(α − �)!�!
(
xα−�
n + O

(
xα∗−�
n 1α∗<∞

))
× [

nP (X − x0)
�1[x0−h1rn,x0+h2rn] + O

(√
n(τnrn)2�+1 logn ∨ logn

)]
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+ f
(α∗)
0 (0)1α∗<∞

α∗∑
�=α+1

1 + o(1)

(α∗ − �)!�!x
α∗−�
n

× [
nP (X − x0)

�1[x0−h1rn,x0+h2rn] + O
(√

n(τnrn)2�+1 logn ∨ logn
)]

=
α∑

�=1

f
(α)
0 (0)

(α − �)!(� + 1)!�0
(
h�+1

2 − (−h1)
�+1)xα−�

n nr�+1
n

+ O
(

max
1≤�≤α

xα−�
n

{
n(τnrn)

�+β+11β<∞ ∨
√

n(τnrn)2�+1 logn ∨ logn
})

+ O
(

max
1≤�≤α∗ xα∗−�

n 1α∗<∞
{
n(τnrn)

�+1 ∨
√

n(τnrn)2�+1 logn ∨ logn
})

= nrn

[
α∑

�=1

f
(α)
0 (0)

(α − �)!(� + 1)!
(
h�+1

2 − (−h1)
�+1) · �0x

α−�
n r�

n

+ O

(
max

1≤�≤α
xα−�
n

{
τ �+β+1
n r�+β

n 1β<∞ ∨
√

τ 2�+1
n r2�

n

logn

nrn
∨ logn

nrn

})

+ O

(
max

1≤�≤α∗ xα∗−�
n 1α∗<∞

{
τ �+1
n r�

n ∨
√

τ 2�+1
n r2�

n

logn

nrn
∨ logn

nrn

})]

= nrn

[
α∑

�=1

f
(α)
0 (0)

(α − �)!(� + 1)!
(
h�+1

2 − (−h1)
�+1) · �0x

α−�
n r�

n

+ O

(
max

1≤�≤α∗ τ �+1
n xα∗−�

n r�
n1α∗<∞ ∨ max

1≤�≤α
τ �+β+1
n xα−�

n r�+β
n 1β<∞

∨ max
1≤�≤α∗

(
xα−�
n 11≤�≤α + xα∗−�

n 1α∗<∞
){√

τ 2�+1
n r2�

n

logn

nrn
∨ logn

nrn

})]
,

as desired. �

A.3. Proof of Lemma 4.3.

PROOF OF LEMMA 4.3. Let x̃n ≡ x∗ + rn. First consider a fixed design. Let �n be the
smallest integer such that x̃n − 2�nrn < 0. Then

P

(
sup
h≥0

|ξ̄ |[x∗−hrn,x∗+rn]| > tωn

)
= P

(
sup
h≥1

|ξ̄ |[x̃n−hrn,x̃n]| > tωn

)

≤
�n∑

�=0

P

(
sup

2�≤h<2�+1
|ξ̄ |[x̃n−hrn,x̃n]| > tωn

)

≤
�n∑

�=0

P

(
sup

2�≤h<2�+1

∣∣∣∣∣
n∑

i=1

ξi1Xi∈[x̃n−hrn,x̃n]
∣∣∣∣∣ > tωn

⌊
2�rn · �0n

⌋)
.
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By Lévy’s maximal inequality (cf. [30], Theorem 1.1.5), each probability in the above sum-
mation can be bounded, up to an absolute constant, by

P

(∣∣∣∣∣
n∑

i=1

ξi1Xi∈[x̃n−2�+1rn,x̃n]

∣∣∣∣∣ > K1 ·
√⌊

2�+1rn · �0n
⌋ · (2�rnn

)1/2
tωn

)

≤ K2
[
exp

(−2�t2/K2
)+ exp

(−(nrn)
1/22�t/K2

)]
.

Here we used the following facts: (i) for centered subexponential random variables
ξ1, . . . , ξm, P(|∑m

i=1 ξi | >
√

mu) ≤ Ke−(u2∧√
mu)/K holds for u ≥ 0 (cf. [39], Proposi-

tion 3.1.8), and (ii) (nrn)
1/2 = ω−1

n . The claim for the fixed design case now follows by
summing up the probabilities.

For the random design case, without loss of generality we work with P being the uniform
distribution on [0,1]. First note that by applying (essentially) [52], Lemma 10, with Ln ≡
nrn/ logn, with probability at least 1 − O(n−11), we have uniformly in �,

Pn1[x̃n−2�rn,x̃n]
P 1[x̃n−2�rn,x̃n]

= 1 + O
(
L−1/2

n

) = 1 + O(ωn

√
logn).

Equivalently, the event

En ≡ {
Pn1[x̃n−2�rn,x̃n] = 2�rn

(
1 + O(ωn

√
logn)

) : � ≥ 1
}

satisfies P(Ec
n) = O(n−11). Hence, up to an additive term of order O(n−11), we only need to

control
�n∑

�=0

P

({
sup

2�≤h<2�+1

∣∣∣∣∣
n∑

i=1

ξi1Xi∈[x̃n−hrn,x̃n]
∣∣∣∣∣ > tωnnPn1[x̃n−2�rn,x̃n]

}
∩ En

)

�
�n∑

�=0

E

[
P

(∣∣∣∣∣
n∑

i=1

ξi1Xi∈[x̃n−2�+1rn,x̃n]

∣∣∣∣∣ � tωn · Pn1[x̃n−2�rn,x̃n]|{Xi}
)

1En

]

=
�n∑

�=0

E

[
P

(∣∣∣∣∣
n∑

i=1

ξi1Xi∈[x̃n−2�+1rn,x̃n]

∣∣∣∣∣
�

√
nPn1[x̃n−2�+1rn,x̃n] · tωn · nPn1[x̃n−2�rn,x̃n]√

nPn1[x̃n−2�+1rn,x̃n]
|{Xi}

)
1En

]

≤ K3

�n∑
�=0

E exp
(
−K−1

3 min
{
t2nω2

n

(Pn1[x̃n−2�rn,x̃n])2

Pn1[x̃n−2�+1rn,x̃n]
, tnωnPn1[x̃n−2�rn,x̃n]

}
1En

)

�
�n∑

�=0

exp
(−K−1

4 min
{
t2nω2

n2�rn
(
1 + O(ωn

√
logn)

)
, tnωn2�rn

(
1 + O(ωn

√
logn)

)})

=
�n∑

�=0

exp
(−K−1

5 min
{
2�t2, (nrn)

1/22�t
})

.

The claim now follows by summing up the probabilities. �

A.4. Proof of Lemma 4.5. The proof of Lemma 4.5 relies on the following technical
lemma, which will be also used in the proof of Theorem 2.2 in Section 5 for the case with
x0 = 0, 1/(2α + 1) < ρ < 1, α < ∞.
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LEMMA A.1. There exists some constant K > 0 such that for any ε > 0,

P

(
sup

h1∈(0,1]
inf

h2∈[0,∞)

B(h2) −B(−h1)

h1 + h2
≥ −ε

)
≤ Kε1/2 log1/4

+ (1/ε).

PROOF. Let Mε = max{1, ε−1 log1/2
+ (1/ε)}. Note that the probability in question can be

bounded by

P
(∃h1 ∈ (0,1],∀h2 ∈ [0,Mε],B(h2) + εh2 ≥ B(−h1) − εh1

)
≤ P(∃h1 ∈ (

0,1],∀h2 ∈ [0,Mε],B(h2) ≥ B(−h1) − (Mε + 1)ε
)

= P

(
inf

h2∈[0,Mε]
B(h2) ≥ inf

h1∈(0,1]B(−h1) − (Mε + 1)ε
)
.

By the reflection principle of a Brownian motion, we have(
inf

h2∈[0,Mε]
B(h2), inf

h1∈(0,1]B(−h1)
)

d= (−√
Mε · |Z1|,−|Z2|),

where Z1, Z2 are independent standard normal random variables. Hence the above display
further equals

P
(−√

Mε|Z1| ≥ −|Z2| − (Mε + 1)ε
)

≤ P
(|Z1| ≤ (

200 log+(1/ε)/Mε

)1/2 + 2
√

Mε · ε)+ P
(|Z2| ≥ (

200 log+(1/ε)
)1/2)

≤ Kε1/2 log1/4
+ (1/ε) + O

(
ε100),

as desired. �

PROOF OF LEMMA 4.5. We only consider the case for h̃2 with H2 = [0,∞), and for
notational simplicity we set σ = 1 and �0 = 1. Geometrically, h̃2 is the first touch point of
B1,1,Q and its global LCM on H2, so it is well defined on the event

⋃∞
n=1

⋂∞
M=n EM , where

EM ≡ {suph1∈H1
infh2∈H2 B1,1,Q(h1, h2) = suph1∈H1

infh2∈[0,M]B1,1,Q(h1, h2)}.
First consider the cases x0 ∈ (0,1) or x0 = 0 with ρ ∈ (0,1/(2α + 1)]. In this case Q is a

nonvanishing polynomial of degree at least 2. Then on the event Ec
M ,

sup
h1∈H1

inf
h2∈H2

B1,1,Q(h1, h2)

= sup
h1∈H1

inf
h2>M

B1,1,Q(h1, h2)

≥ inf
h2>M

B1,1,Q(1, h2) = inf
h2>M

B(h2) −B(−1) + Q(h2) − Q(−1)

1 + h2

≥ O(M) − sup
h>M

|B(h)|
1 + h

− |B(−1)|
1 + M

d= O(M) − Y1

M1/2 − Y2

M + 1
,

where Y1 ≡ suph>1|B(h)/h| and Y2 ≡ |B(−1)| have sub-Gaussian tails. Hence for M large,

on the intersection of Ec
M and an event with probability at least 1 − Ke−M2/K ,

sup
h1∈H1

inf
h2∈H2

B1,1,Q(h1, h2) ≥ O(M) − √
M − M

M + 1
≥ O(M).

Since the random variable suph1∈H1
infh2∈H2 B1,1,Q(h1, h2) has sub-Gaussian tails (using a

similar proof to that of Lemma 4.4 above), we see that P(Ec
M) ≤ Ke−M2/K . Using Borel–

Cantelli yields that P(
⋃∞

n=1
⋂∞

M=n EM) = 1.
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Next consider the case x0 = 0 with ρ ∈ (1/(2α + 1),1). In this case Q ≡ 0. Then on the
event Ec

M ,

sup
h1∈(0,1]

inf
h2∈[0,∞)

B1,1,0(h1, h2) ≥ inf
h2>M

B(h2) −B(−1)

h2 + 1
d= − Y1

M1/2 − Y2

M + 1
,

where Y1, Y2 are defined as above. This means that on the intersection of Ec
M and an event

with probability at least 1 − M−100,

sup
h1∈(0,1]

inf
h2∈[0,∞)

B1,1,0(h1, h2) ≥ −K(logM/M)1/2,

which occurs with probability at most O(M−1/4 log1/2 M) according to Lemma A.1. Hence
P(Ec

M) ≤ O(M−1/4 log1/2 M). Summing M through a geometric sequence and using Borel–
Cantelli yields the claim. �

APPENDIX B: TECHNICAL TOOLS

This appendix collects some technical tools used in the proofs. The following Dudley’s
entropy integral bound can be found in [39], Theorem 2.3.7.

LEMMA B.1 (Entropy integral bound). Let (T , d) be a pseudometric space, and (Xt)t∈T

be a separable sub-Gaussian process such that Xt0 = 0 for some t0 ∈ T . Then

E sup
t∈T

|Xt | ≤ C

∫ diam(T )

0

√
logN (ε, T , d)dε,

where C > 0 is a universal constant.

The following Gaussian concentration inequality can be found in [39], Theorem 2.5.8.

LEMMA B.2 (Gaussian concentration inequality). Let (T , d) be a pseudometric space,
and (Xt)t∈T be a separable mean-zero Gaussian process with supt∈T |Xt | < ∞ a.s. Then,
with σ 2 ≡ supt∈T Var(Xt), for any u > 0,

P

(∣∣∣sup
t∈T

|Xt | −E sup
t∈T

|Xt |
∣∣∣ > u

)
≤ 2e−u2/(2σ 2).

Talagrand’s concentration inequality [83] for the empirical process in the form given by
Bousquet [11], is recorded as follows, cf. [39], Theorem 3.3.9.

LEMMA B.3 (Talagrand’s concentration inequality). Let F be a countable class of real-
valued measurable functions such that supf ∈F‖f ‖∞ ≤ b and X1, . . . ,Xn be i.i.d. random
variables with law P . Then there exists some absolute constant K > 1 such that

P

(
K−1 sup

f ∈F
∣∣n(Pn − P)f

∣∣ ≥ E sup
f ∈F

∣∣n(Pn − P)f
∣∣+√

nσ 2x + bx
)

≤ e−x,

where σ 2 ≡ supf ∈F VarP f and Pn denotes the empirical distribution of X1, . . . ,Xn.

Talagrand’s inequality is coupled with the following local maximal inequality for the em-
pirical process due to [38, 84]. Denote the uniform entropy integral by

J (δ,F,L2) ≡
∫ δ

0
sup
Q

√
1 + logN

(
ε‖F‖Q,2,F,L2(Q)

)
dε,

where the supremum is taken over all finitely discrete probability measures.
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LEMMA B.4 (Local maximal inequality). Let F be a countable class of real-valued mea-
surable functions such that supf ∈F‖f ‖∞ ≤ 1, and X1, . . . ,Xn be i.i.d. random variables

with law P . Then with F(δ) ≡ {f ∈ F : Pf 2 < δ2},

E sup
f ∈F(δ)

∣∣(Pn − P)(f )
∣∣ � n−1/2J (δ,F,L2)

(
1 + J (δ,F,L2)√

nδ2‖F‖P,2

)
‖F‖P,2.
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