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ABSTRACT
We consider inference for high-dimensional separately and jointly exchangeable arrays where the dimen-
sions may be much larger than the sample sizes. For both exchangeable arrays, we first derive high-
dimensional central limit theorems over the rectangles and subsequently develop novel multiplier boot-
straps with theoretical guarantees. These theoretical results rely on new technical tools such as Hoeffding-
type decomposition and maximal inequalities for the degenerate components in the Hoeffiding-type
decomposition for the exchangeable arrays. We exhibit applications of our methods to uniform confidence
bands for density estimation under joint exchangeability and penalty choice for �1-penalized regression
under separate exchangeability. Extensive simulations demonstrate precise uniform coverage rates. We
illustrate by constructing uniform confidence bands for international trade network densities.
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1. Introduction

Many recent statistical problems involve non-independent
observations indexed by multiple interlocking sets of entities.
Examples include dyadic/polyadic networks, bipartite networks,
and multiway clustering. When the sets of entities that form each
of these indices are different, as is the case with market-product
data and book-reader data, a natural stochastic framework
is separate exchangeability (MacKinnon, Nielsen, and Webb
2021). Separately exchangeable arrays include row-column
exchangeable models (McCullagh 2000), additive cross random
effect models (Owen 2007; Owen and Eckles 2012), and
multiway clustering (Cameron, Gelbach, and Miller 2011).
Meanwhile, when all indices belong to a common set of entities,
as is the case with friendship network data, the underlying
structure is well-captured by joint exchangeability (Bickel
and Chen 2009). Joint exchangeability covers nonparametric
random graph models of Bickel and Chen (2009) for dyadic
networks, which contain widely used models in the statistical
network analysis literature such as stochastic block models.

Analysis of these types of data requires accounting for the
underlying complex dependence structures induced by these
exchangeability notions. Thus, developing valid inference meth-
ods for exchangeable arrays is challenging. The literature has
witnessed some research on statistical inference that focuses on
exchangeable arrays with low or fixed dimensions. For modern
statistical learning methods, it is crucial to allow the dimension
of data to increase with sample size. However, the existing lit-
erature has been silent about statistical inference for such high-
dimensional exchangeable arrays.

This article is concerned with the problem of inference for
separately or jointly exchangeable high-dimensional arrays. We
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develop new high-dimensional central limit theorems (CLTs)
over the rectangles for the sample mean under both exchange-
ability notions. Building on the high-dimensional CLTs, we
propose new multiplier bootstrap methods tailored to separate
and jointly exchangeable arrays and derive their nonasymptotic
error bounds. Such nonasymptotic results can be translated into
asymptotic results that hold uniformly over a large set of distri-
butions, which is crucial in many high-dimensional statistical
applications.

To derive these theoretical results, we develop several new
technical tools, which are of independent interest and would
be useful for other analyses of exchangeable arrays. Specifically,
we develop novel Hoeffding-type decompositions for both sepa-
rately and jointly exchangeable arrays and establish novel max-
imal inequalities for Hoeffding-type projections in both cases.
Such maximal inequalities lead to sharp rates for degenerate
components in Hoeffding-type decompositions in both cases
and play a crucial role in establishing the high-dimensional
CLTs and the validity of the bootstrap methods. The proofs of
these technical results are highly nontrivial. For example, the
proof of the symmetrization inequality for exchangeable arrays
involves a careful induction argument (see Lemma B.2 in the
appendix) combined with a repeated conditioning argument.
Furthermore, the proof of the maximal inequality for jointly
exchangeable arrays involves a delicate conditioning argument
combined with the decoupling inequalities for U-statistics with
index-dependent kernels (see de la Peña and Giné 1999).

We illustrate applications of the bootstrap methods to a cou-
ple of concrete statistical problems. Specifically, (i) we develop a
method to construct simultaneous or uniform confidence bands
for density functions with jointly exchangeable dyadic arrays,
and (ii) we develop a method to choose a penalty level for �1-
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penalized regression (Lasso) and establish error bounds for the
Lasso with separately exchangeable arrays. These applications
are also new in the literature.

We conduct extensive simulation studies, which demonstrate
precise uniform coverage across various designs and under both
notions of exchangeability, thereby supporting our theoretical
results. Finally, we apply our bootstrap method to international
trade network data to draw uniform confidence bands for trade
flow volumes in 1990, 1995, 2000, and 2005. The results indicate
that there have been increasing numbers of bilateral trading
pairs with high flow volumes as time progresses.

1.1. Relation to the Literature

There is now a large literature on high-dimensional CLTs and
bootstraps with the “p � n” regime; see Chernozhukov,
Chetverikov, and Kato (2013, 2014b, 2015, 2016, 2017), Deng
and Zhang (2020), Chernozhukov, Chetverikov, and Kato
(2019), Kuchibhotla, Mukherjee, and Banerjee (2020), and Fang
and Koike (2020) for the independent case, Chen (2018), Chen
and Kato (2020, 2019) for U-statistics and processes, and Zhang
and Wu (2017), Zhang and Cheng (2018), Chernozhukov,
Chetverikov, and Kato (2019), Koike (2019) for time series
dependence. However, none of the above references covers
extensions to exchangeable arrays. The present article builds
on and contributes to this literature by developing high-
dimensional CLTs and bootstrap methods for exchangeable
arrays.

Early applications of exchangeable arrays in statistics include
Arnold (1979), Bowman and George (1995), and Andrews
(2005), to name a few. For reviews, see, for example, Goldenberg
et al. (2010), Orbanz and Roy (2014), and Kuchibhotla (2020).
Analysis of exchangeable random graphs has been an active
research area in the recent statistics literature; see, for example,
Diaconis and Janson (2008), Bickel, Chen, and Levina (2011),
Lloyd et al. (2012), Choi and Wolfe (2014), Caron and Fox
(2017), Choi (2017), Zhang, Levina, and Zhu (2017), and Crane
and Dempsey (2018). Limit theorems for jointly exchangeable
arrays (in the fixed dimensional case) date back to Silverman
(1976) and Eagleson and Weber (1978). Fafchamps and Gubert
(2007) and Cameron, Gelbach, and Miller (2011) derive stan-
dard error formulas for jointly exchangeable dyadic arrays and
separately exchangeable arrays, respectively; see also Cameron
and Miller (2014, 2015), Aronow, Samii, and Assenova (2015),
and Tabord-Meehan (2019) for further development. Menzel
(2021) studies inference for separately exchangeable arrays,
covering both degenerate and nondegenerate cases. Davezies,
D’Haultfœuille, and Guyonvarch (2021) developed functional
limit theorems for Donsker classes under separate and joint
exchangeability. To the best of our knowledge, however, no
existing work in this literature permits high-dimensional infer-
ence. We note that Davezies, D’Haultfœuille, and Guyonvarch
(2021) developed symmetrization inequalities different from
ours. Specifically, symmetrization inequalities developed in
Davezies, D’Haultfœuille, and Guyonvarch (2021) are applied
to the whole empirical process and do not lead to correct orders
for degenerate components in Hoeffding-type decompositions
(indeed, Davezies, D’Haultfœuille, and Guyonvarch (2021)
did not derive Hoeffding-type decompositions), thereby not

powerful enough to derive our results; see Remarks 2 and 3 in
the appendix for details.

Methodologically, this article is also related to the recent lit-
erature on high-dimensional U-statistics, such as Chen (2018),
Chen and Kato (2019, 2020), among others. Under suitable
assumptions, the data of our interest can be written as U-
statistic-like latent structure (in distribution) via the Aldous-
Hoover-Kallenberg representation (Aldous 1981; Hoover 1979;
Kallenberg 2006), that is, the data can be written as a kernel
function of some latent independent random variables. How-
ever, unlike in U-statistics, neither the kernel nor the latent
independent random variables is known to us. In addition, we
need to cope with the existence of extra higher-order shocks in
the latent structure. Both aspects present extra challenges.

Regarding our bootstraps, McCullagh (2000) showed that no
resampling scheme for the raw data is consistent for variance
of a sample mean under separate exchangeability. A Pigeonhole
bootstrap is subsequently proposed by Owen (2007) and its
different variants are further investigated in Owen and Eckles
(2012), Davezies, D’Haultfœuille, and Guyonvarch (2021), and
Menzel (2021). Whether the pigeonhole bootstrap works for
increasing or high-dimensional test statistics remains unknown
to us. We therefore develop a novel bootstrap method in this
article which we argue works for high-dimensional data.

1.2. Notations and Organization

Let N denote the set of positive integers. We use ‖·‖ , ‖·‖0 , ‖·‖1,
and ‖·‖∞ to denote the Euclidean, �0, �1, and �∞-norms for vec-
tors, respectively (precisely, ‖·‖0 is not a norm but a seminorm).
For two real vectors a = (a1, . . . , ap)T and b = (b1, . . . , bp)T ,
the notation a ≤ b means that aj ≤ bj for all 1 ≤ j ≤ p.
Let supp(a) denote the support of a = (a1, . . . , ap)T , that is,
supp(a) = {j : aj �= 0}. We denote by � the Hadamard
(element-wise) product, that is, for i = (i1, . . . , iK) and j =
(j1, . . . , jK), i� j = (i1j1, . . . , iK jK). For any a, b ∈ R, let a∨b =
max{a, b}. For 0 < β < ∞, let ψβ be the function on [0, ∞)

defined by ψβ(x) = exβ − 1. Let || · ||ψβ denote the associated
Orlicz norm, that is, ||ξ ||ψβ = inf{C > 0 : E[ψβ(|ξ |/C)] ≤
1} for a real-valued random variable ξ . “Constants” refer to
nonstochastic and finite positive numbers.

The rest of the article is organized as follows. In Section 2,
we develop a high-dimensionl CLT (over the rectangles) and a
bootstrap method for separately exchangeable arrays. In Sec-
tion 3, we develop analogous results to jointly exchangeable
arrays. We illustrate two applications in Section 4, present simu-
lation results in Section 5, and demonstrate an empirical appli-
cation in Section 6. We defer all the technical proofs to the
appendix.

2. Separately Exchangeable Arrays

In this section, we consider separately exchangeable arrays that
correspond to multiway clustered data. Pick any K ∈ N. With
i = (i1, . . . , iK) ∈ N

K , we consider a K-array (Xi)i∈NK consist-
ing of random vectors in R

p with p ≥ 2. We denote by Xj
i the

j-th coordinate of Xi: Xi = (X1
i , . . . , Xp

i )T . We say that the array
(Xi)i∈NK is separately exchangeable if the following condition is
satisfied (cf. Kallenberg 2006, Section 3.1).
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Definition 1 (Separate exchangeability). A K-array (Xi)i∈NK

is called separately exchangeable if for any K permutations
π1, . . . , πK of N, the arrays (Xi)i∈NK and (X(π1(i1),...,πK (iK )))i∈NK

are identically distributed in the sense that their finite dimen-
sional distributions agree.

See Appendix I in the supplementary material for more
details, discussions, and examples. From the Aldous-Hoover-
Kallenberg representation (see Kallenberg 2006, corol. 7.23),
any separately exchangeable array (Xi)i∈NK is generated by the
structure

Xi = f((Ui�e)e∈{0,1}K ),

i ∈ N
K , {Ui�e : i ∈ N

K , e ∈ {0, 1}K} iid∼ U[0, 1]
for some Borel measurable map f : [0, 1]2K → R

p.
The latent variable U0 appears commonly in all Xi’s. In the

present article, as in Andrews (2005) and Menzel (2021), we
consider inference conditional on U0 and treat it as fixed. In the
rest of Section 2, we will assume (without further mentioning)
that the array (Xi)i∈NK has mean zero (conditional on U0) and
is generated by the structure

Xi = g((Ui�e)e∈{0,1}K\{0}), i ∈ N
K , (1)

where g is now a map from [0, 1]2K−1 into R
p.

Suppose that we observe {Xi : i ∈ [N]} with N =
(N1, . . . , NK) and [N] = ∏K

k=1{1, . . . , Nk}. We are interested
in approximating the distribution of the sample mean

SN = 1∏K
k=1 Nk

∑
i∈[N]

Xi

in the high-dimensional setting where the dimension p is
allowed to entail p � min{N1, . . . , NK}.

Example 1 (Empirical process indexed by function class with
increasing cardinality). Our setting covers the following situa-
tion: let {Yi : i ∈ N

K} be random variables taking values in an
abstract measurable space (S,S), and suppose that they are gen-
erated as Yi = ǧ((Ui�e)e∈{0,1}K\{0}). Let fj : S → R for 1 ≤ j ≤ p
be measurable functions, and define Xj

i = fj(Yi) − E[fj(Yi)]. In
this case, the sample mean SN can be regarded as the empirical
process f 
→ (

∏K
k=1 Nk)

−1 ∑
i∈[N](f (Yi) − E[f (Yi)]) indexed

by the function class F = {f1, . . . , fp}. Allowing p → ∞ as
min1≤k≤K Nk → ∞ enables us to cover empirical processes
indexed by function classes with increasing cardinality.

For later convenience, we fix some additional notations. Let
n = min1≤k≤K Nk and N = max1≤k≤K Nk denote the minimum
and maximum cluster sizes, respectively. For 1 ≤ k ≤ K, denote
by Ek = {e = (e1, . . . , eK) ∈ {0, 1}K :

∑K
k=1 ek = k} the set of

vectors in {0, 1}K whose support has cardinality k. Let ek ∈ R
K

denote the vector such that the k-th coordinate of ek is 1 and the
other coordinates are 0. For a given e ∈ {0, 1}K , define

Ie([N]) = {i � e : i ∈ [N]} ⊂ N
K
0 with N0 = N ∪ {0}.

The following decomposition of the sample mean SN will play
a fundamental role in our analysis, which is reminiscent of the
Hoeffding decomposition for U-statistics (Lee 1990; de la Peña
and Giné 1999).

Lemma 1 (Hoeffding decomposition of separately exchangeable
array). For any i ∈ N

K , define recursively X̂i�ek = E[Xi|Ui�ek ]
for k = 1, . . . , K and X̂i�e = E[Xi|(Ui�e′)e′≤e] − ∑

e′≤e
e′ �=e

X̂i�e′

for e ∈ ⋃K
k=2 Ek. Then, we have Xi = ∑

e∈{0,1}K\{0} X̂i�e.
Consequently, we can decompose the sample mean SN =
(
∏K

k=1 Nk)
−1 ∑

i∈[N] Xi as

SN =
K∑

k=1

∑
e∈Ek

1∏
k′∈supp(e) Nk′

∑
i∈Ie([N])

X̂i. (2)

The proof of this lemma can be found in Appendix C.1.

Remark 1 (Hoeffding decomposition). The reason that we call
(2) the Hoeffding decomposition comes from the fact that if
the dimension p is fixed, for each fixed k = 1, . . . , K and
e ∈ Ek, the component (

∏
k′∈supp(e) Nk′)−1 ∑

i∈Ie([N]) X̂i scales
as (

∏
k′∈supp(e) Nk′)−1/2 = O(n−k/2) with n = min1≤k′≤K Nk′

under moment conditions. See Corollary B.1 in Appendix B.
This is completely analogous to the Hoeffiding decomposition of
U-statistics and from this analogy we shall call (2) the Hoeffding
decomposition.

The leading term in the decomposition (2) is∑
e∈E1

1∏
k′∈supp(e) Nk′

∑
i∈Ie([N])

X̂i

=
K∑

k=1
N−1

k

Nk∑
ik=1

E[Xi|U(0,...,0,ik,0,...,0)],

which we call the Hájek projection of SN . With this in mind,
define Wk,ik = E[Xi|U(0,...,0,ik,0,...,0)] for k = 1, . . . , K.

2.1. High-Dimensional CLT for Separately Exchangeable
Arrays

We first establish a high-dimensional CLT for SN over the class
of rectangles, R = {∏p

j=1[aj, bj] : −∞ ≤ aj ≤ bj ≤
∞, 1 ≤ j ≤ p}. This high-dimensional CLT will be a building
block for establishing the validity of the multiplier bootstrap (cf.
Section 2.2).

We start with discussing regularity conditions. Denote by
1 = (1, . . . , 1) the vector of ones. Let DN ≥ 1 be a given
constant that may depend on the cluster sizes N (and p; when
we consider asymptotics we have in mind that p is a function of
N or n so we omit the dependence of DN on p), and let σ > 0 be
another given constant independent of the cluster sizes N . We
will assume either of the following moment conditions:

max
1≤j≤p

||Xj
1||ψ1 ≤ DN , or (3)

E[||X1||q∞] ≤ Dq
N for some q ∈ (4, ∞). (4)

We will also assume the following condition.

max
1≤j≤p;1≤k≤K

E[|Wj
k,1|2+κ ] ≤ Dκ

N , κ = 1, 2, and

min
1≤j≤p;1≤k≤K

E[|Wj
k,1|2] ≥ σ 2. (5)
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Condition (3) requires that each coordinate of X1 is sub-
exponential. By Jensen’s inequality, Condition (3) implies
that max1≤j≤p;1≤k≤K ||Wj

k,1||ψ1 ≤ DN . Condition (4) is an
alternative moment condition on X1. Condition (4) is satisfied
for example under the following situation: Suppose that Xi
is given by Xi = εiZi where εi is a scalar “error” variable
while Z is a vector of “covariates.” If each coordinate of Zi is
bounded by a constant D and εi has finite qth moment, then
E[||Xi||q∞] ≤ Dq

E[|εi|q]. Also Condition (4) is satisfied if, in
the discretized empirical process application (cf. Example 1),
the function class possesses an envelope function with finite qth
moment. Again, by Jensen’s inequality, Condition (4) implies
that max1≤k≤K E[||Wk,1||q∞] ≤ Dq

N . The restriction q > 4 is
needed to guarantee that Condition (7) appearing in Theorem 2
to be nonvoid.

Condition (5) requires the maximum of third (respectively,
fourth) moment across coordinates to be increasing at speed
no faster than the first (respectively, second) power of DN . By
Jensen’s inequality, the first part of Condition (5) is satisfied
if max1≤j≤p E[|Xj

1|2+κ ] ≤ Dκ
N for κ = 1, 2. The second

part of Condition (5) guarantees that the Hájek projection is
nondegenerate.

Let γ = N(0, �) with � = ∑K
k=1(n/Nk)�Wk and �Wk =

E[Wk,1WT
k,1] for k = 1, . . . , K.

Theorem 1 (High-dimensional CLT for separately exchangeable
arrays). Suppose that either Condition (3) or (4) holds, and
further that Condition (5) holds. Then, there exists a constant
C such that

sup
R∈R

|P(
√

nSN ∈ R) − γ�(R)|

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
(

D2
N log7(pN)

n

)1/6
if (3) holds,

C

[(
D2

N log7(pN)

n

)1/6
+

(
D2

N log3(pN)

n1−2/q

)1/3
]

if (4) holds,

where the constant C depends only on σ and K if Condition
(3) holds, while C depends only on q, σ , and K if Condition (4)
holds.

Remark 2 (Refinement under subgaussianity). The recent article
of Chernozhukov, Chetverikov, and Kato (2019) provided some
improvements on convergence rate of Gaussian approximation
under the subgaussian tail assumption for the sample mean of
independent random vectors. With this new technique, if we
strengthen Condition (3) by replacing the ψ1-norm || · ||ψ1
with the ψ2-norm || · ||ψ2 (i.e., each coordinate X1 is sub-
Gaussian), the bound C

(
n−1D2

N log7(pN)
)1/6 in Theorem 1 can

be improved to C
(
n−1D2

N log5(pN)
)1/4.

2.2. Multiplier Bootstrap for Separately Exchangeable
Arrays

Let {ξ1,i1}N1
i1=1, . . . , {ξK,iK }NK

iK=1 be independent N(0, 1) ran-
dom variables independent of the data. Ideally, we want
to make use of the bootstrap statistic

∑K
k=1N−1

k
∑Nk

ik=1 ξk,ik
(Wk,ik − SN). However, this bootstrap is infeasible as Wk,ik =

E[Xi|U(0,...,ik,...,0)] are unknown to us. Estimation of Wk,ik is
nontrivial as U(0,...,ik,...,0) is a latent variable. We propose to
estimate each Wk,ik by

Xk,ik = 1∏
k′ �=k Nk′

∑
i1,...,ik−1,ik+1,...,iK

Xi,

ik = 1, . . . , Nk; k = 1, . . . , K,

that is, the sample mean taken over all indices but ik. Then, we
apply the multiplier bootstrap to Xk,ik in place of Wk,ik

SMB
N =

K∑
k=1

N−1
k

Nk∑
ik=1

ξk,ik(Xk,ik − SN).

To the best of our knowledge, this multiplier bootstrap for
separately exchangeable arrays is new in the literature. We will
formally study the validity of this multiplier bootstrap for high-
dimensional separately exchangeable arrays with p � n.

We are now in position to establish the validity of the pro-
posed multiplier bootstrap for separately exchangeable arrays.
Let P|X[N] denote the law conditional on the data X[N] =
(Xi)i∈[N] and σ = max1≤j≤p;1≤k≤K

√
E[|Wj

k,1|2].

Theorem 2 (Validity of multiplier bootstrap for separately
exchangeable arrays). Consider the following two cases:

(i). Assume that Conditions (3) and (5) hold, and further there
exist constants C1 and ζ ∈ (0, 1) such that

σ 2D2
N log7 p
n

∨ D2
N(log2 n) log5(pN)

n
≤ C1n−ζ . (6)

(ii). Assume that Conditions (4) and (5) hold, and further there
exist constants C1 and ζ ∈ (2/q, 1) such that

σ 2D2
N log5(pn)

n
∨(

D2
N log3 p
n1−4/q

)2

≤ C1n−ζ . (7)

Then, under Case (i), for any ν ∈ (1/ζ , ∞), there exists
a constant C depending only on ν, σ , K, and C1 such that
supR∈R

∣∣P|X[N](
√

nSMB
N ∈ R) − γ�(R)

∣∣ ≤ Cn−(ζ−1/ν)/4 with
probability at least 1 − Cn−1. Under Case (ii), the same conclu-
sion holds with n−(ζ−1/ν)/4 replaced by n−(ζ−2/q)/4, while the
constant C depends only on q, σ , K, and C1.

Remark 3 (Discussion on Conditions (6) and (7)). Conditions
(6) and (7) are placed to guarantee that the error bound for our
multiplier bootstrap decreases at a polynomial rate in n. If we
are to show a weaker result, namely,

sup
R∈R

|P|X[N](
√

nSMB
N ∈ R) − γ�(R)| = oP(1) (8)

as n → ∞ (with the understanding that p, σ , DN , and
N are functions of n), then Conditions (6) and (7) can
be weakened to (σ 2D2

N log7 p) ∨ D2
N log5(pN) = o(n)

and (n−1σ 2D2
N log5(pn)) ∨ (n−(1−2/q)D2

N log3 p) = o(1),
respectively. (The critical case q = 4 is allowed for Equation
(8); note that the high-dimensional CLT (Theorem 1) also holds
with q = 4.)
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Remark 4 (Normalized sample mean). In practice, we often nor-
malize the coordinates of the sample mean by estimates of the
standard deviations, so that each coordinate is approximately
distributed as N(0, 1). We can estimate the variance of the j-
th coordinate of

√
nSN by the conditional variance of the jth

coordinate of
√

nSMB
N . The validity of the multiplier bootstrap to

the normalized sample mean follows similarly to the preceding
theorem; see Appendix A.1 for details. A similar comment
applies to the joint exchangeable case; see Appendix A.2 for
details.

3. Jointly Exchangeable Arrays

In this section, we consider another class of exchangeable arrays,
namely, jointly exchangeable arrays. The notations in the cur-
rent section are independent from those in Section 2 unless
otherwise noted. Joint exchangeability induces a more complex
dependence structure on arrays than separate exchangeability,
but still we are able to develop analogous results to the preceding
section for jointly exchangeable arrays as well. It should be
noted, however, that we do require a different bootstrap and
technical tools (see Appendix D) to accommodate a specific
dependence structure induced from joint exchangeability.

Pick any K ∈ N. For a given positive integer n ≥ K, let In,K =
{(i1, . . . , iK) : 1 ≤ i1, . . . , iK ≤ n and i1, . . . , iK are distinct}.
Also let I∞,K = ⋃∞

n=K In,K . For any i = (i1, . . . , iK) ∈ N
K , let

{i}+ denote the set of distinct nonzero elements of (i1, . . . , iK).
In this section, we consider a K-array (Xi)i∈I∞,K consisting

of random vectors in R
p with p ≥ 2. We say that the array

(Xi)i∈I∞,K is jointly exchangeable if the following condition is
satisfied (cf. Kallenberg 2006, sec. 3.1).

Definition 2 (Joint exchangeability). A K-array (Xi)i∈I∞,K is
called jointly exchangeable if for any permutation π of N, the
arrays (Xi)i∈I∞,K and (X(π(i1),...,π(iK )))i∈I∞,K are identically dis-
tributed.

See Appendix I in the supplementary material for more
details, discussions, and examples. From the Aldous-Hoover-
Kallenberg representation (see Kallenberg 2006, theor. 7.22),
any jointly exchangeable array (Xi)i∈I∞,K is generated by the
structure

Xi = f((U{i�e}+)e∈{0,1}K ), i ∈ I∞,K ,

{U{i�e}+ : i ∈ I∞,K , e ∈ {0, 1}K} iid∼ U[0, 1]

for some Borel measurable map f : [0, 1]2K → R
p. Here the

coordinates of the vector (U{i�e}+)e∈{0,1}K are understood to be
properly ordered, so that, for example, when K = 2, X(i1,i2) =
f(U∅, Ui1 , Ui2 , U{i1,i2}) and X(i2,i1) = f(U∅, Ui2 , Ui1 , U{i1,i2})
differ (although they have the identical distribution).

As in the separately exchangeable case, we consider inference
conditional on U∅, and in what follows, we will assume that
the array (Xi)i∈I∞,K has mean zero (conditional on U∅) and is
generated by the structure

Xi = g((U{i�e}+)e∈{0,1}K\{0}), i ∈ I∞,K , (9)

where g is now a map from [0, 1]2K−1 into R
p.

Suppose that we observe {Xi : i ∈ In,K} with n ≥ K and
are interested in distributional approximation of the polyadic
sample mean

Sn := (n − K)!
n!

∑
i∈In,K

Xi.

in the high-dimensional setting where the dimension p is
allowed to entail p � n.

As in Section 2, define Ek = {e = (e1, . . . , eK) ∈ {0, 1}K :∑K
k=1 ek = k} for 1 ≤ k ≤ K. The analysis of the jointly

exchangeable array relies on the following decomposition:

Sn = 1
n
∑n

j=1 E
[

(n−K)!
(n−1)!

∑K
k=1

∑
i∈In,K :ik=j Xi

∣∣∣ Uj
]

+ (n−K)!
n!

∑
i∈In,K

(
E[Xi|Ui1 , . . . , UiK ] − ∑K

k=1 E[Xi|Uik]
)

+∑K
k=2

(n−K)!
n!

∑
i∈In,K

(
E[Xi|(U{i�e}+)e∈∪k

r=1Er
]

− E[Xi|(U{i�e}+)e∈∪k−1
r=1Er

]
)

.
(10)

It turns out that the first term on the right-hand side, which we
call the Hájek projection of Sn, is a dominant term. Defining
hk(u) = E[X(1,...,K)|Uk = u] for k = 1, . . . , K, we can
simplify the Hájek projection into n−1 ∑n

i=1 W j where W j =∑K
k=1 hk(Uj).

3.1. High-Dimensional CLT for Jointly Exchangeable
Arrays

We consider to approximate the distribution of
√

nSn by a
Gaussian distribution on the set of rectangles R as defined in
Section 2.

Let Dn ≥ 1 be a given constant that may depend on n, and
σ > 0 be another given constant independent of n. We will
assume either of the following moment conditions:

max
1≤�≤p

||X�
(1,...,K)||ψ1 ≤ Dn, or (11)

E[||X(1,...,K)||q∞] ≤ Dq
n for some q ∈ (4, ∞). (12)

We will also assume the following condition:

max
1≤�≤p

E[|W�
1 |2+k] ≤ Dk

n, κ = 1, 2, and

min
1≤�≤p

E[|W�
1 |2] ≥ σ 2 (13)

The conditions required here are similar to those in the case
of separate exchangeability in Section 2. The main difference is
that Condition (13) is now imposed on W1.

Let γ� = N(0, �) with � = E
[
W1WT

1
]
.

Theorem 3 (High-dimensional CLT for jointly exchangeable
arrays). Suppose that either Condition (11) or (12) holds, and
further Condition (13) holds. Then, there exists a constant C
such that

sup
R∈R

∣∣P(
√

nSn ∈ R) − γ�(R)
∣∣

≤

⎧⎪⎨
⎪⎩

C
(

D2
n log7(pn)

n

)1/6
if (11) holds,

C
[(

D2
n log7(pn)

n

)1/6 +
(

D2
n log3(pn)

n1−2/q

)1/3]
if (12) holds,
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where the constant C depends only on σ and K if Condition
(11) holds, while C depends only on q, σ , and K if Condition
(12) holds.

Remark 5 (Comparison with Silverman 1976). Theorem 3 is a
high-dimensional extension of (Silverman 1976, theor. A) that
established a CLT for jointly exchangeable arrays with fixed p.
The covariance matrix of the limiting Gaussian distribution in
Silverman (1976) had a different expression than our �, but we
will verify below that two expressions are indeed the same. The
covariance matrix given in Corollary to Silverman (1976, theor.
A) read as follows: Let X̌(i1,...,iK ) be the symmetrized version
of X(i1,...,iK ), that is, X̌(i1,...,iK ) = (K!)−1 ∑

(i′1,...,i′K ) X(i′1,...,i′K )

where the summation is taken over all permutations of
(i1, . . . , iK). The covariance matix given in Silverman (1976)
is �S = K2

E[X̌(1,...,K)X̌(1,K+1,...,2K)]. On the other hand,∑K
k=1 E[X(1,...,K)|Uk = u] = ∑K

k=1 E[X̌(1,...,K)|Uk = u] =
KE[X̌(1,...,K)|U1 = u], so that
� = K2

E

[
E[X̌(1,...,K)|U1]E[X̌(1,...,K)|U1]

]
= K2

E[X̌(1,...,K)

X̌(1,K+1,...,2K)] = �S.

3.2. Multiplier Bootstrap for Jointly Exchangeable Arrays

Let {ξj}n
j=1 be independent N(0, 1) random variables indepen-

dent of the data. Ideally, we want to make use of the multiplier
bootstrap statistic n−1 ∑n

j=1 ξj(W j − KSn). This is infeasible,
however, as the projections W j are unknown. As an alternative,
we replace each W j by its estimate

Ŵ j = (n − K)!
(n − 1)!

K∑
k=1

∑
i∈In,K :ik=j

Xi,

and apply the multiplier bootstrap to Ŵ j, that is,

SMB
n := 1

n

n∑
j=1

ξj(Ŵ j − KSn)

When K = 2 (dyadic), this mulitplier bootstrap coincides
with the multiplier bootstrap statistic considered in Davezies,
D’Haultfœuille, and Guyonvarch (2021). However, Davezies,
D’Haultfœuille, and Guyonvarch (2021, sec. 3.2) did not con-
sider the extension to general K arrays, and focus on the empiri-
cal process indexed by a Donsker class, which excludes the high-
dimensional sample mean. We will study the validity of this
multiplier bootstrap for jointly exchangeable arrays.

Let P|XIn,K
denote the law conditional on the data (Xi)i∈In,K

and σ = max1≤�≤p

√
E[|W�

1 |2].

Theorem 4 (Validity of multiplier bootstrap for jointly exchange-
able arrays). Consider the following two cases.

(i). Assume that Conditions (11) and (13) hold, and further
there exist constants C1 and ζ ∈ (0, 1) such that

σ 2D2
n log7 p
n

∨ D2
n(log2 n) log5(pn)

n
≤ C1n−ζ . (14)

(ii). Assume that Conditions (12) and (13) hold, and further
there exist constants C1 and ζ ∈ (2/q, 1) such that

σ 2D2
n log5(pn)

n
∨(

D2
n log3 p
n1−4/q

)2

≤ C1n−ζ . (15)

Then, under Case (i), for any ν ∈ (1/ζ , ∞), there exists
a constant C depending only on ν, σ , K, and C1 such that
supR∈R

∣∣∣P|XIn,K
(
√

nSMB
n ∈ R) − γ�(R)

∣∣∣ ≤ Cn−(ζ−1/ν)/4 with
probability at least 1 − Cn−1. Under Case (ii), the same conclu-
sion holds with n−(ζ−1/ν)/4 replaced by n−(ζ−2/q)/4, while the
constant C depends only on q, σ , K, and C1.

Remark 6 (Discussion on Conditions (14) and (15)). Similar to
Remark 3, if one is interested only in bootstrap consistency,
Conditions (14) and (15) can be weakened to (σ 2D2

n log7 p) ∨
(D2

n log5(pn)) = o(n) and (n−1σ 2D2
n log5(pn)) ∨ (n−(1−2/q)D2

n
log3 p) = o(1), respectively.

4. Applications

In this section, we illustrate a couple of applications of our
bootstrap methods. Section 4.1 is concerned with construction
of confidence bands for densities of flows in dyadic data. Sec-
tion 4.2 is concerned with penalty choice for the Lasso and the
performance of the corresponding estimate.

4.1. Confidence Bands for Densities of Flows in Dyadic
Data

Researchers are often interested in “the densities of migration
across states, trade across nations, liabilities across banks,
or minutes of telephone conversation among individuals”
(Graham, Niu, and Powell 2019). Densities of these flow
measures use dyadic data. We illustrate an application of our
method in Section 3 to constructing confidence bands for such
density functions. We refer the reader to Bickel and Rosenblatt
(1973), Claeskens and van Keilegom (2003), and Chernozhukov,
Chetverikov, and Kato (2014a) as references on confidence
bands for density estimation with iid data.

Following Graham, Niu, and Powell (2019), suppose that we
observe the dyadic data {Yij : 1 ≤ i �= j ≤ n} that admits the
structure

Yij = g(Ui, Uj, U{i,j}) (16)

where g is symmetric in the first two arguments and hence Yij =
Yji. We are interested in inference on the density of Yij. However,
in certain empirical applications, such as international trade (see
Head and Mayer 2014), a proportion of the variable of interest
is zero. Hence we assume that Yij has a probability mass at zero,
i.e. Yij is such that P(Yij �= 0) = a ∈ (0, 1], and Yij ∼ f when
Yij �= 0, where f is a density function on R. Let b(y) = af (y)
denote the scaled density. We may estimate f (·) = b(·)/a by
f̂ (·) = b̂(·)/â, where â = (n

2
)−1 ∑

1≤i<j≤n 1(Yij �= 0) and
b̂(y) = (n

2
)−1 ∑

1≤i<j≤n Kh(y−Yij)1(Yij �= 0). Here K : R → R

is a kernel function (a function that integrates to one), Kh(·) :=
h−1K(·/h), and h = hn → 0 is a bandwidth.
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We consider to construct simultaneous confidence intervals
(bands) for f over the set of design points y1, . . . , yp, where p =
pn → ∞ is allowed. Define

X̃�
ij =

{
Kh(y� − Yij)

â
− b̂(y�)

â2

}
1(Yij �= 0), 1 ≤ i < j ≤ n,

X̃�
ij = X̃�

ji, 1 ≤ j < i ≤ n,

for � = 1, . . . , p. Then, the multiplier bootstrap statistic is given
by

S̃MB
n = 1

n

n∑
i=1

ξi(W̃ i − 2S̃n), with

S̃n = 1
n(n − 1)

∑
1≤i �=j≤n

X̃ij and W̃ i = 1
n − 1

∑
j �=i

2X̃ij,

where
∑

j �=i = ∑
j∈{1,...,n}\{i}. For a given α ∈ (0, 1), consider

the (1 − α)-simultaneous confidence intervals defined by

I(1 − α) :=
p∏

�=1

[
f̂ (y�) ± c̃(1 − α)√

n

]
and

IN(1 − α) :=
p∏

�=1

[
f̂ (y�) ± σ̃�c̃N(1 − α)√

n

]
,

where σ̃ 2
� = n−1 ∑n

i=1(W̃�
i − 2S̃�

n)
2, �̃ = diag(σ̃ 2

1 , . . . , σ̃ 2
p ),

c̃(1 − α) is the conditional (1 − α)-quantile of ||√nS̃MB
n ||∞,

and c̃N(1 −α) is the conditional (1 −α)-quantile of ||√n�̂−1/2

S̃MB
n ||∞. The first method I(1 − α) is a constant-length confi-

dence band, while the second method IN(1 − α) is a variable-
length confidence band based on Studentization.

The following proposition establishes asymptotic validity of
the confidence bands. We will assume that there exists a con-
ditional density of Yij given Ui and Yij �= 0, denoted by
fY12|U1,Y12 �=0(y|u) (more formally, we assume that the condi-
tional distribution of Yij given Ui is P(Yij ∈ dy|Ui) = P(Yij =
0|Ui)δ0(dy) + P(Yij �= 0|Ui)fY12|U1,Y12 �=0(y|Ui)dy, where δ0
is the Dirac delta at 0). Let f h(y) = ∫

Kh(y − z)f (z)dz and
f h(y|u) = ∫

Kh(y − z)fY12|U1,Y12 �=0(z|u)dz denote the surrogate
density and conditional density, respectively. Recall that a kernel
K is an rth-order kernel for some r ≥ 2 if

∫
ytK(y)dy = 0 for

t = 1, . . . , r − 1 and
∫ |yrK(y)|dy < ∞. Let M, h0, σ0, and

a ∈ (0, 1] be given positive constants independent of n.

Proposition 1. Suppose that: (i) the data is generated following
Equation (16) with point mass at zero, P(Yij �= 0) = a
and Yij ∼ f with probability a; (ii) ||f ||∞ ≤ M and
supy∈R,u∈[0,1] |fY12|U1,Y12 �=0(y|u)| ≤ M; (iii) for the set of
non-zero design points {y1, . . . , yp} ⊂ R and h ≤ h0,
Var

(
f h(y�|U1) · P(Y12 �= 0|U1)

)
≥ σ 2

0 ; (iv) the kernel K is
a bounded rth-order kernel for some r ≥ 2; (v) the bandwidth
satisfies h → 0, nh2 → ∞ as n → ∞ and log7(pn) = o(nh2).
Then we have

P

((
f h(y�)

)p

�=1
∈ I(1 − α)

)
→ (1 − α) and

P

((
f h(y�)

)p

�=1
∈ IN(1 − α)

)
→ (1 − α).

In addition, if f is r-continuously differentiable, ||f (r)||∞ < ∞,
and nh2r log p = o(1), then

P

((
f (y�)

)p
�=1 ∈ I(1 − α)

)
→ (1 − α) and

P

((
f (y�)

)p
�=1 ∈ IN(1 − α)

)
→ (1 − α).

Some comments on the proposition are in order.

Remark 7. (i) The assumption that g in Equation (16) is sym-
metric in its first two arguments can in fact be relaxed. In such
case, the conclusions in Proposition 1 continue to hold under
a few minor modifications to the regularity conditions. Also,
when a = 1 and r = 2, the proposed dyadic kernel density
estimator reduces to the estimator of Graham, Niu, and Powell
(2020). The proposition complements Graham, Niu, and Powell
(2020) by providing valid simultaneous confidence intervals for
their dyadic kernel density estimator. (ii) In some applications,
such as in our empirical illustration in Section 6, the object of
interest is b(·). For such case, one can simply omit the estimation
of a by setting â = 1 while keeping b̂(·) unaltered. The conclu-
sions in Proposition 1 continue to hold with this modification.
(iii) The proof of Proposition 1 does not follow directly from the
results of Section 3, as we have to handle the estimation errors
of â and b̂(·), which involves additional substantial work.

4.2. Penalty Choice for Lasso Under Separate
Exchangeability

Consider a regression model
Yi = f (Zi) + εi, E[εi|Zi] = 0,

i = (i1, . . . , iK) ∈ [N] =
K∏

k=1
{1, . . . , Nk},

where Yi is a scalar outcome variable, Zi ∈ R
d is a d-

dimensional vector of covariates, f : Rd → R is an unknown
regression function of interest, and εi is an error term. We
approximate f by a linear combination of technical controls
Xi = P(Zi) for some transformation P : R

d → R
p, that is,

f (Zi) = XT
i β0 + ri, i ∈ [N], where ri is a bias term. The

dimension p can be much larger than the cluster sizes N, but
we assume that the vector β0 ∈ R

p is sparse in the sense that
||β0||0 = s � n with n = min1≤k≤K Nk. Suppose that the array(
(Yi, ZT

i )T)
i∈NK is separately exchangeable and generated as

(Yi, ZT
i )T = g((Ui�e)e∈{0,1}K\{0}), i ∈ N

K ,

{Ui�e : i ∈ N
K , e ∈ {0, 1}K \ {0}} i.i.d.∼ U[0, 1],

for some Borel measurable map g : [0, 1]2K−1 → R
1+d.

Arguably, one of the most popular estimation methods for
such a high-dimensional regression problem is the Lasso (Tib-
shirani 1996); we refer to Bühlmann and van de Geer (2011),
Giraud (2015); Wainwright (2019) as standard references on
high-dimensional statistics. Let N = ∏K

k=1 Nk denote the total
sample size. The Lasso estimate for β0 is defined by

β̂λ = arg minβ∈Rp

⎧⎨
⎩ 1

N
∑

i∈[N]
(Yi − XT

i β)2 + λ||β||1
⎫⎬
⎭ ,
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where λ > 0 is a penalty level. We estimate the vector f =
(fi)i∈[N] = (f (Zi))i∈[N] by f̂

λ = (XT
i β̂λ)i∈[N]. Let ||t||2N,2 =

N−1 ∑
i∈[N] t2

i for t = (ti)i∈[N].
In what follows, we discuss the statistical performance of the

Lasso estimate. Following Bickel, Ritov, and Tsybakov (2009),
we say that Condition RE(s, c0) holds (RE refers to “restricted
eigenvalue”) if, for a given positive constant c0 ≥ 1, the in-
equality

κ(s, c0) = min
J⊂{1,...,p}
1≤|J|≤s

inf
θ∈Rp , θ �=0

||θJc ||1≤c0||θJ ||1

√
sN−1 ∑

i∈[N](θTXi)2

||θJ ||1 > 0

holds with Jc = {1, . . . , p} \ J. Here for θ = (θ1, . . . , θp)T and
J ⊂ {1, . . . , p}, θJ = (θj)j∈J .

In addition, to guarantee fast rates for the Lasso, it is impor-
tant to choose the penalty level λ in such a way that λ ≥
2c||SN ||∞ with SN = N−1 ∑

i∈[N] εiXi for some c > 1 (Bickel,
Ritov, and Tsybakov 2009; Belloni and Chernozhukov 2013). To
this end, we shall estimate the (1 − η)-quantile of 2c||SN ||∞
for some small η > 0. We first estimate the error terms εi by
pre-estimating β0 by the preliminary Lasso estimate β̃ = β̂λ0

with penalty λ0 = τn(n−1 log p)1/2 for some slowing growing
sequence τn → ∞. In the following, we take τn = log n for
the sake of simplicity but other choices also work. We apply the
multiplier bootstrap to S̃N = N−1 ∑

i∈[N] ε̃iXi instead of SN .
The Hájek projection to SN is given by

∑K
k=1 N−1

k
∑Nk

k=1
Vk,ik , where Vk,ik is given by Vk,ik = E[ε(1,...,1,ik,1,...,1)

X(1,...,1,ik,1,...,1)|U(0,...,0,ik,0,...,0)]. We estimate Vk,ik by Ṽk,ik =(∏
k′ �=k Nk′

)−1 ∑
i1,...,ik−1,ik+1,...,iK ε̃iXi. Let

{ξ1,i1}N1
i1=1, . . . , {ξK,iK }NK

iK=1 be iid N(0, 1) variables independent
of the data, and consider

�
ξ
N =

∥∥∥∥∥∥
K∑

k=1

1
Nk

Nk∑
ik=1

ξk,ik(Ṽk,ik − S̃N)

∥∥∥∥∥∥∞
.

We propose to choose λ as λ = λ(η) = 2c�ξ
N(1 − η), where

�
ξ
N(1 − η) denotes the conditional (1 − η)-quantile of �

ξ
N . We

allow η to decrease with n, i.e, η = ηn → 0.
The following proposition establishes the asymptotic validity

of our choice of λ (as n → ∞) under separate exchangeability.
In what follows, we understand that s, p, N , η are functions of n
while other parameters such as c, q, κ are independent of n.

Proposition 2 (Penalty choice for the Lasso under separate
exchangeability). Suppose that: (i) there exist some constants
q ∈ [4, ∞) independent of n and DN that may depend on
N (and thus on n) such that E[|ε1|2q] ∨ E[||X1||2q

∞] ≤ Dq
N

and max1≤j≤p max1≤k≤K E[|Vj
k,1|2+�] ≤ D�

N for � = 1, 2; (ii)
E[|Vj

k,1|2] is bounded and bounded away from zero uniformly
in 1 ≤ j ≤ p and 1 ≤ k ≤ K; (iii) there exists a positive constant
κ independent of n such that κ(s, c0) ≥ κ with probability
1 − o(1); and (iv) as n → ∞, ||r||N,2 = O(

√
(s log p)/n)

and sN1/qD3
N log7(pN)

n
∨ D2

N log5(pn)

n1−2/q = o(1). Then, we have
λ ≥ 2c||SN ||∞ with probability 1 − η − o(1). Further, we have

||f̂ λ − f ||N,2 = OP

(√
s log p

n
∨√

s log(1/η)

n

)
.

The proof of Proposition 2 does not follow directly from the
results of Section 2, as we have to take care of the estimation
error of the preliminary Lasso estimate β̃ , which requires extra
work.

Condition (iii) in the preceding proposition is a high-level
condition on the sample gram matrix. The following proposi-
tion provides primitive sufficient conditions for Condition (iii)
to hold for the case of K = 2.

Proposition 3 (RE condition under K = 2). Consider K = 2 and
let BN = √

E[maxi∈[N] ||Xi||2∞]. Suppose that the eigenvalues
of E[X1XT

1 ] are bounded and bounded away from zero, and
sB2

N log4(pN) = o(n). Then, there exists a positive constant κ

independent of n such that κ(s, c0) ≥ κ with probability 1−o(1).

Under Condition (i) of Proposition 2, BN ≤ N1/qDN , so that
sB2

N log4(pN) = o(n) reduces to sN1/qDN log4(pN) = o(n),
which is implied by Condition (iv) of Proposition 2.

5. Simulation Studies

In this section, we present simulation studies to evaluate the
finite sample performance of the proposed multiplier bootstrap
methods.

We first describe the simulation design for separately
exchangeable arrays. With �Z denoting the p × p covariance
matrix consisting of elements of the form 4−|r−c| in its (r, c)th
position, separately exchangeable data with K = 2 indices are
generated according to Xi = 1

4
(
Z(i1,0) + Z(0,i2)

) + 1
2 Z(i1,i2),

where Zi�e ∼ BN(0, �Z) + (1 − B)N(0, 2�Z) and B ∼
Bernoulli(0.5) independently for i ∈ {(i1, i2) ∈ N

2 : 1 ≤
i1 ≤ N1, 1 ≤ i2 ≤ N2} and e ∈ {0, 1}2. For this data
generating design, we run 2,500 Monte Carlo iterations to
compute the uniform coverage frequencies of E[Xi] for the
nominal probabilities of 90% and 95% using our proposed
multiplier bootstrap for separately exchangeable arrays with
2500 bootstrap iterations.

We next describe the simulation design for jointly exchange-
able arrays. We shall focus on the most common case in practice,
the dyadic data, that is, K = 2. With �Z denoting the p × p
covariance matrix consisting of elements of the form 4−|r−c| in
its (r, c)th position, dyadic samples are generated symmetrically
in i and j according to Xi,j = 1

4
(
Z(i,0) + Z(j,0)

) + 1
2 Z(i,j), where

Zi�e ∼ BN(0, �Z)+ (1 − B)N(0, 2�Z) and B ∼ Bernoulli(0.5)

independently for i ∈ {(i, j) ∈ N
2 : 1 ≤ i < j ≤ n} and e ∈

{1}×{0, 1}. We run 2,500 Monte Carlo iterations to compute the
uniform coverage frequencies of Sn for the nominal probabilities
of 90% and 95% using our proposed multiplier bootstrap with
2500 bootstrap iterations.

Table 1 summarizes simulation results under the separate
exchangeability. The columns consist of the dimension p
of X and the two-way sample size (N1, N2). The displayed
numbers indicate the simulated uniform coverage frequencies
for the nominal probabilities of 90% and 95%. For each
dimension p ∈ {25, 50, 100}, sample sizes vary as (N1, N2) ∈
{(25, 25), (50, 50), (100, 100)}. Table 2 summarizes simulation
results under the joint exchangeability. The columns consist
of the dimension p of X, and the dyadic sample size N. The
displayed numbers indicate the simulated uniform coverage
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Table 1. Simulation results for separately exchangeable data with K = 2 indices.

Normalization No

Dimension of Xi : p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2 25 50 100 25 50 100 25 50 100
90% Coverage 0.927 0.908 0.905 0.942 0.931 0.919 0.943 0.910 0.917
95% Coverage 0.967 0.954 0.956 0.976 0.968 0.960 0.973 0.957 0.962

Normalization Yes

Dimension of Xi : p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2 25 50 100 25 50 100 25 50 100
90% Coverage 0.884 0.892 0.905 0.885 0.885 0.900 0.857 0.878 0.901
95% Coverage 0.936 0.938 0.949 0.930 0.938 0.942 0.921 0.936 0.952

NOTE: Displayed are the dimension p of X, the two-way sample size (N1, N2) with
N1 = N2, and the simulated uniform coverage frequencies for the nominal
probabilities of 90% and 95%.

Table 2. Simulation results for dyadic data.

Normalization No

Dimension of Xi,j : p 25 25 25 50 50 50 100 100 100

Sample Size: n 50 100 200 50 100 200 50 100 200
90% Coverage 0.902 0.896 0.891 0.912 0.914 0.908 0.904 0.915 0.893
95% Coverage 0.960 0.953 0.945 0.956 0.963 0.951 0.953 0.961 0.952

Normalization Yes

iDmension of Xi,j : p 25 25 25 50 50 50 100 100 100

Sample Size: n 50 100 200 50 100 200 50 100 200
90% Coverage 0.851 0.854 0.887 0.819 0.865 0.884 0.802 0.870 0.864
95% Coverage 0.921 0.924 0.938 0.890 0.936 0.943 0.882 0.927 0.925

NOTE: Displayed are the dimension p of X, the dyadic sample size n, and the
simulated uniform coverage frequencies for the nominal probabilities of 90% and
95%.

frequencies for the nominal probabilities of 90% and 95%.
For each dimension p ∈ {25, 50, 100}, sample sizes vary as
n ∈ {50, 100, 200}.

Observe that, for each simulation design and for each nomi-
nal probability, the uniform coverage frequencies approach the
nominal probability as the sample size increases. These results
support the theoretical property of our multiplier bootstrap
method. We ran many other sets of simulations with various
designs and sample sizes not presented here, but this observed
pattern to support our theory remains invariant across all the
different sets of simulations—see Appendix H.1. In Appendix
H.2, we further experiment with the separate exchangeability
with K = 3 indices.

6. Real Data Analysis

In this section, we present an empirical application of the
method proposed in Section 4.1 to constructing uniform
confidence bands for the density functions of bilateral trade
volumes in the international trade, with a similar motivation to
that stated in Graham, Niu, and Powell (2019, 2020). Recall that
our method extends those by Graham, Niu, and Powell (2019)
in that we can draw uniform confidence bands as opposed to
point-wise confidence intervals. From this analysis, we can learn
about the evolution of the distributions of international trade
volumes over time.

We employ the international trade data used in Head and
Mayer (2014), that come from the Direction of Trade Statistics
(DoTS). This dataset contains information about bilateral trade
flows among 208 economies for 59 years from 1948 to 2006. In

Figure 1. The kernel density estimates (solid curve) and the 95% uniform confidence bands (gray shade) of the bilateral trade volumes in 1990, 1995, 2000, and 2005.
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this analysis, we will focus on the relatively recent years, 1990,
1995, 2000, and 2005. Our measure of the bilateral trade volume
Yij is defined as the logarithm of the sum of the trade flow from
economy i to economy j and the trade flow from economy j to
economy i. We perform simulation studies on confidence bands
for densities in Appendix H.3, confirm that the method works
as desired, and thus use the same software code here to draw
confidence bands of the probability density function of Yij. Since
there is a probability mass at zero in the international trade
volumes, what we estimate is precisely the Lebesgue-Radon-
Nikodym derivative of the continuous part of the distribution,
rather than the probability density function. Specifically, we use
b̂(y) defined in Section 4.1 for estimation, and confidence bands
are constructed by setting â = 1. That said, we shall call it a
density for conciseness.

Figure 1 illustrates estimates and confidence bands of the
density functions of Yij in each of the years 1990, 1995, 2000, and
2005. Each panel of the figure displays the kernel density esti-
mates in a solid curve and the 95% uniform confidence bands
in a gray shade. In addition, we also display the proportion of
zero bilateral trade volumes to the left of the kernel density
plots so we can get an idea of the complementary proportion
that consists the density of the continuously distributed part
of the distribution. Although we treat Yij as the logarithm of
the bilateral trade volumes in estimation and inference, we use
the original scale on the horizontal axis for ease of reading the
graphs.

Observe that the proportion of the zero trade volume is
decreasing over time, and the density function is accordingly
moving upward over time. Despite this pattern of the changes
over time, the shapes of the density functions are rather similar
across time in the middle of the distribution. This observation
entails a high level of confidence given the reasonably tight
confidence bands. On the other hand, notice that the right tail
of the distribution becomes fatter as time progresses, implying
that there is an increasing number of bilateral trading pairs with
very large trade volumes.

7. Summary

In this article, we have developed methods and theories
for inference about high-dimensional parameters with sep-
arately/jointly exchangeable arrays. Building on the high-
dimensional CLTs over the rectangles, we have proposed
bootstrap methods and established their finite sample validity
for both notions of exchangeability. Simulation studies support
the theoretical properties of the methods. We have illustrated a
couple of applications of the bootstrap methods. First, extending
Graham, Niu, and Powell (2019), we have applied our method to
construction of uniform confidence bands for density functions
of dyadic data. Second, we have demonstrated an application of
our method to penalty choice for �1-penalized regression under
the separate exchangeability. As such, the results in the present
article pave the way for a variety of applications to analyses of
separately and jointly exchangeable arrays.
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