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Abstract

A triangle T” is e-similar to another triangle T if their angles pairwise differ by at
most . Given a triangle T, € > 0 and n € N, Bardny and Fiiredi asked to determine
the maximum number of triangles h(n, T, ¢) being e-similar to T in a planar point set
of size n. We show that for almost all triangles T there exists ¢ = ¢(T") > 0 such that
h(n,T,e) = (1+o0(1))n3/24. Exploring connections to hypergraph Turdn problems, we
use flag algebras and stability techniques for the proof.
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1 Introduction

Let T,T" be triangles with angles < 8 < v and o/ < 8/ < 7/ respectively. The
triangle 1" is e-similar to T if o — /| < ¢,|8 — B'| < e, and |y — 7| < e. Bérdny
and Fiiredi [5], motivated by Conway, Croft, Erdés and Guy [7], studied the maximum
number h(n,T,¢e) of triangles in a planar set of n points that are e-similar to a triangle
T. For every T and € = ¢(T') > 0 sufficiently small, Bardny and Fiiredi [5] found the
following lower bound construction: Place the n points in three groups with as equal
sizes as possible, and each group very close to a (different) vertex of the triangle 7.
Now, iterate this by splitting each of the three groups into three further subgroups of
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Figure 1: Sketch of the construction on 27 vertices.

points, see Figure 1 for an illustration of this construction. Define a sequence h(n) by
h(0) = h(1) = h(2) = 0 and for n > 3

h(n) := max{abc + h(a) + h(b) + h(c) :a+b+c=mn, a,b,c € N}.

By the above described construction, this sequence h(n) is a lower bound on
h(n,T,e). When T is an equilateral triangle then equality holds.

Theorem 1.1 (Barany, Firedi [5]). Let T be an equilateral triangle. Then there exists
g0 > 1° such that for all e € (0,e9) and all n we have h(n,T,e) = h(n). In particular,

when n is a power of 3, h(n, T, &) = 5:(n® — n).

Barany and Fiiredi [5] also found various examples of triangles T' (e.g. the isosceles
right angled triangle) where h(n,T,¢) is larger than h(n).

The space of triangle shapes S C R? can be represented with triples (o, 3,7) € R?
of angles «, 8,y > 0 with a4 S+~ = m. When we make statements about almost every
triangle, we mean it in a measure theoretic sense, i.e. that there exists a set S’ C S
with the 2-dimensional Lebesgue measure being 0 such that the statements holds for
all triangles T € S\ S’. In [5] it also was proved that h(n,T,e) can only be slightly
larger than h(n) for almost every triangle 7T'.

Theorem 1.2 (Bardny, Fiiredi [5]). For almost every triangle T there is an e > 0 such
that

h(n,T, ) < 0.25072 <’;> (1+ o(1)).

The previously described construction of Barany and Fiiredi gives a lower bound of
0.25(3) (1 +0(1)). Bardny and Fiiredi [5] reduced the problem of determining h(n, T, )
to a hypergraph Turdan problem and used the method of flag algebras, to get an upper
bound on the corresponding Turan problem. Flag algebras is a powerful tool invented
by Razborov [14], which has been used to solve problems in various different areas,
including graph theory [10, 13|, permutations [3,15] and discrete geometry [4,11]. An
obstacle Barany and Fiiredi [5] encountered is that the conjectured extremal example
is an iterative construction and flag algebras tend to struggle with those. We will
overcome this issue by using flag algebras only to prove a weak stability result and
then use cleaning techniques to identify the recursive structure. Similar ideas have
been used in [1] and [2]. This allows us to prove the asymptotic result and for large
enough n an exact recursion.



Theorem 1.3. For almost every triangle T there is an € = ¢(T") > 0 such that

1/n

h(n,T,e) = 4<3>(1+0(1)). (1)

Theorem 1.4. There exists ng such that for all n > ng and for almost every triangle
T there is an e = e(T) > 0 such that

h(na T, 5) =a-b-c+ h(aa T, 5) + h(b> T, 6) + h(C, T, 5)7 (2)
where n = a+ b+ c and a, b, c are as equal as possible.
We will observe that Theorem 1.4 implies the exact result when n is a power of 3.

Corollary 1.5. Let n be a power of 3. Then, for almost every triangle T there is an
e =¢(T) > 0 such that

hn, T,e) = i(ﬁ ).

The paper is organized as follows. In Section 2 we introduce terminology and
notation that we use, we establish a connection from maximizing the number of similar
triangles to Turan problems; and we apply flag algebras in our setting to derive a weak
stability result. In Section 3 we apply cleaning techniques to refine the stability result
and derive our main result, Theorem 1.3. In Section 4 we prove our exact results,
Theorem 1.4 and Corollary 1.5. Finally, in Section 5 we discuss further questions.

2 Preparation

2.1 Terminology and Notation

Definition 2.1. Let G be a 3-uniform hypergraph (shortly a 3-graph), H be a family
of 3-graphs, v € V(G) and A, B C V(G). Then,

e G is H-free, if it does not contain a copy of any H € H,

o a 3-graph G on n vertices is extremal with respect to H, if G is H-free and e(G’) <

e(Q) for every H-free 3-graph G’ on n vertices. If H is clear from context, we only
say G is extremal,

o for a,b € V(G), denote N(a,b) the neighborhood of a and b, i.e. the set of vertices
c € V(G) such that abc € E(G),

o we write L(v) for the linkgraph of v, that is the graph G’ with V(G') = V(G) \ {v}
and E(G’) being the set of all pairs a, b with abv € E(G),

o we write L4 (v) for the linkgraph of v on A, that is the graph G’ with V/(G') = A\{v}
and E(G’) being the set of all pairs a,b C A\ {v} with abv € E(G),

o we write Ly g(v) for the (bipartite) linkgraph of v on AU B, that is the graph G’
with V(G') = AUB\ {v} and E(G") being the set of all pairs a,b with a € A,b € B
and abv € E(G),



o we denote by |L(v)|,|La(v)| and |L4 g(v)| the number of edges of the linkgraphs
L(v), La(v) and L4 g(v) respectively.

Define a 3-graph S(n) on n vertices recursively. For n = 1,2, let S(n) be the 3-
graph on n vertices with no edges. For n > 3, choose integers a > b > ¢ as equal as
possible such that n = a + b + ¢. Then, define S(n) to be the 3-graph constructed
by taking vertex disjoint copies of S(a),S(b) and S(c) and adding edges with each
of the 3 vertices coming from a different copy. Barany and Fiiredi [5] observed that
|S(n)| > 53yn — O(nlogn).

Given a set B C C and ¢ > 0, we call the set Us(B) := {z : |z — b| < I for some b €
B} the d-neighborhood of B. If B = {b} for some b € C, abusing notation, we write
Us(b) for it.

2.2 Forbidden subgraphs

Given a finite point set P C R? in the plane, a triangle T € S and an € > 0, we denote
by G(P,T,e) the 3-graph with vertex set V(G(P,T,¢)) = P and triples abc being an
edge in G(P,T,¢) iff abc forms a triangle e-similar to 7. A 3-graph H is forbidden if
|[V(H)| < 12 and for almost every triangle shape T' € S there exists an e = &(T) > 0
such that for every point set P C R?, G(P,T,¢) is H-free. Denote F the family of
all forbidden 3-graphs and 7r C S the set of all triangles T such that there exists
e = &(T) > 0 such that for every point set P C R?, G(P,T,¢) is F-free. Given T € T,
we let (T) > 0 be a real number such that for every point set P C R? G(P,T,e(T))
is F-free.

In our definition of forbidden 3-graphs we restrict the size to be at most 12. The
reason we choose the number 12 is that the largest forbidden subgraph we need for our
proof has size 12 and we try to keep the family F as small as possible.

We will prove Theorem 1.3, Theorem 1.4 and Corollary 1.5 for all triangles T' € Tr.
Note that by the definition of F, almost all triangles are in 7r. Barany and Fiiredi [5]
determined the following hypergraphs to be members of F.

Lemma 2.2 (Barany and Fiiredi [5], see Lemma 11.2). The following hypergraphs are
members of F.
o Kj ={123,124,134} o L, = {123,124,156, 256, 345}

« C; ={123,124,135,245} e Ls={123,124,135,146, 356}

« Ci ={126,236,346,456,516} o Lg = {123,124,145,346,356}

o Ly ={123,124,125,136,456}  « P; = {123,145,167,246, 257, 347}.
o Ls={123,124,135,256, 346}

For the non-computer assisted part our proof, we will need to extend this list. For the
computer assisted part, we excluded additional graphs on 7 and 8 vertices.

Lemma 2.3. The following hypergraphs are members of F.
o L7 =1{123,124,125,136, 137,458,678}



o Lg=1{123,124,125,136,137,468,579,289}
o Lg=1{123,124,125,136,237,469,578,189}
o Lyp=1{123,124,125,126, 137,138,239, 58a,47b, 69c¢, abc}.

Note that this is not the complete list. To verify that those hypergraphs are for-
bidden, we will we use the same method as Barany and Fiiredi [5] used to show that
the hypergraphs from Lemma 2.2 are forbidden. For sake of completeness, we repeat
their argument here.

Proof. We call a 3-graph H on r vertices dense if there exists a vertex ordering
V1,2, ...,0, such that for every 3 < ¢ < r — 1 there exists exactly one edge e; €
E(H[{v1,...,v;}]) containing v;, and there exists exactly two edges e,,e]. containing
v,-. Note that L7, Lg, Lo and Ly are dense.

For convenience, we will work with a different representation of triangles shapes.
A triangle shape T' € S is characterized by a complex number z € C \ R such that the
triangle with vertices 0, 1, z is similar to T". Note that there are at most twelve complex
numbers w such that the triangle {0, 1, w} is similar to 7.

Let H be a dense hypergraph on r vertices with vertex ordering v1,...,v, and
let P = {p1,...,p} C R? be a point set such that G(P,T,¢) contains H (with p;
corresponding to v;), where € is small enough such that the following argument holds.
Let § > 0 be sufficiently small. Without loss of generality, we can assume that p; =
(0,0) and pa = (1,0). Now, since H is dense, vivavs € E(H) and therefore p;paps3 forms
a triangle e-similar to T'. Therefore, there exists at most 12 points (which are functions
in z) such that ps is in a J-neighborhood of one of them. Since, vy is contained in some
edge with vertices from {vq,ve,vs,v4}, there are at most 12 - 12 = 144 points (which
are functions in z) such that g4 is in a d-neighborhood of one of them. Continuing this
argument, we find functions f; j(2) in z where 3 <i <r —1and j < 1273 such that

(P3, P4, pr) € Us(f3,5(2)) X Us(fa,5(2)) x ... x Us(fr1,5(2))

for some j < 12"73. Since H is dense, v, is contained in exactly two edges e, and
el.. For each j < 12773, because v, € e,, there exists at most 12 points fr’j,g(z) where
¢ < 12 such that

pr € Us (frje(2))-

Similarly, because v;, € €., there exists at most 12 points g, j¢(z) where ¢/ < 12 such
that

e € Us (9r.j0(2)) .
Thus,

pe€ J Us(frje(2) NUs (grjur(2)) - (3)
00<12

Note that if there exists a z such that for each 1 < j < 12773 none of the equations

frje(z) = grje(z),  1<60<12 (4)



holds, then we can choose € > 0 such that

1
6 < gmax|frie(2) = grio (), (5)

and therefore the set in (3) is empty, contradicting that G(P, T, ) contains a copy of
H. Note that, because of (5), ¢ depends on z and therefore on T. If we could find
one z € C not satisfying any of the equations in (4), then each of the equations is
non-trivial (the solution space is not C). Thus, for each equation the solution set has
Lebesgue measure 0. Since there are only at most 1272 equations, the union of the
solution sets still has measure 0. Thus, we can conclude that for almost all triangles T
there exists e such that G(P,T,¢) is H-free for every point set P.

It remains to show that for H € {L7, Lg, Lo, L1} there exists z € C not satisfying
any of the equations in (4). We will show this for a z corresponding to the equilateral
triangle (z = % +1- %) For T being the equilateral triangle, there are at most 272
equations to check. Because of the large amount of cases, we will use a computer to
verify it.

Our computer program is a simple brute force recursive approach. It starts by
embedding p; = (0,0) and ps = (1,0). For each subsequent 3 < i < r it tries both
options for embedding p; dictated by e;. Finally, it checks if the points forming e, form
an equilateral triangle. If in none of the 2”2 generated point configurations the points
of e} form an equilateral triangle, then H is a member of F. An implementation of
this algorithm in python is available at http://1idicky.name/pub/triangle. This
completes the proof of Lemma 2.3. [

Instead of Theorem 1.3, we will actually prove the following stronger result.
Theorem 2.4. We have
n

ex(n,F) =0.25 <3> (14 0o(1)).

First, we observe that Theorem 2.4 implies Theorem 1.3. Let P C R? be a point set
of size n and let T' € Tr. Then, G(P,T,e(T)) is F-free. Now, the number of e-similar
triangles T' equals the number of edges in G(P,T,&(T)). Since G(P,T,e(T)) is F-free,
we have

h(n,T,e) < ex(n,F).

Therefore, Theorem 2.4 implies Theorem 1.3.

2.3 A structural result via Flag Algebras

It is a standard application of flag algebras to determine an upper bound for ex(n,G)
given a family G of 3-uniform hypergraphs. Running the method of flag algebras on 7
vertices, Bardny and Fiiredi [5] obtained

n

ex(n, F) < ex(n, {Kj,C5,Cq, Ly, L3, Ly, Ls, Lg, P }) < 0.25072 <3> (14 0(1)). (6)



We note that when running flag algebras on 8 vertices and forbidding more 3-graphs
in F, then we can obtain the following improved bound.

ex(n, F) < 0.2502 (g) (1+o(1)). (7)

It is conjectured in [9] that ex(n, {K, ,C5}) = 0.25(3)(1 + o(1)). Note that this con-
jecture is a significant strengthening of (6) and (7).

We use flag algebras to prove a stability result. For an excellent explanation of flag
algebras in the setting of 3-graphs see [9]. Here, we will focus on the formulation of
the problem rather than providing a formal explanation of the general method. As a
consequence, we obtain the following lemma, which gives the first rough structure of
extremal constructions. This approach was developed in [1] and [2].

Lemma 2.5. Letn € N be sufficiently large and let G be an F-free 3-graph on n vertices
and |E(G)| > 1/24n3(1 + o(1)) edges. Then there exists an edge x1x273 € E(G) such
that for n large enough

(i) the neighborhoods N (x1,x2), N(x2,x3), and N(x1,x3) are pairwise disjoint.
(ii) min{|N(x1,z2)|, |N(x2,z3)|, |N(x1,z3)|} > 0.26n.
(iii) n — |N(z1,22)| — |N(x2,23)| — [N(z1,23)| < 0.012n.

Proof. Property (i) is in fact true for any edge e = z1zox3 € E(G). Indeed, without
loss of generality, assume N(x1,22) N N(x1,23) # 0. Let v € N(x1,22) N N(z1,23).
Then v,z1,x2,x3 spans at least 3 edges and therefore G contains a copy of K, , a
contradiction.

Denote Tj ;. the family of 3-graphs that are obtained from a complete 3-partite
3-graph with part sizes i, j and k by adding F-free 3-graphs in each of the three parts.
Let X be a subgraph of G isomorphic to T2 1 on vertices z1, ], x2, xh, x3 with edges
T1X2x3, T1THT3, T wows, ¥ xhxs. Further, define

By := N(wa,73) N N(xh,x3), Bs:= N(x1,29) N N(z|,22) N N(x1,25) N N(zy,2h),
By = N(l‘l,l‘g)mN(l‘ll,$3), J = V(G)\(BlUBQUBg).

Let b; := |B;|/n for 1 < i < 3. Note that V(G) = By U By U Bs U J is a partition
because of property (i).
We choose X such that

1
babs + bibs + babs — (87 + 53 + 3) (8)

is maximized. Flag algebras can be used to give a lower bound on the expected value
of (8) for X chosen uniformly at random and therefore also a lower bound on (8) when
X is chosen to maximize (8).

Let Z be a fixed labeled subgraph of G belonging to Ty j/ ;. Denote by T; ; 1(Z)
the family of subgraphs of G that contain Z, belong to T; j x, where ¢ < i, j' < j, and



k" <k, and the natural three parts of Z are mapped to the same 3 parts in T} ; 1(Z).
The normalized number of T; ; (Z) is

tijn(Z) = (v

The subgraphs of G isomorphic to T;,x are denoted by T;,x(0). The normalized

number is
Tk (0)]
Z7J7k T ( n ) :
i+j+k

t

Notice that b; = t37271(X) +0(1), 2b1by = t37371(X) —I—O(l), and b% = t47371(X) —i—O(l).
We start with (8) and obtain the following.

1
<b1b2 + bibs + babs — (b3 + 63 + bg)) n2
1 -5
_ <2b1b2 + 2b1bs + 2babs — (b3 + 83 + bg)) (n ) > + o(n?)
1 n—>5
= <t3,3,1(X) +t322(X) +ta32(X) — 3 (ta21(X) +t241(X) + t2,2,3(X))> ( 5 )
+ 0(n2)
1

> t"( > (tsza(Y) +ts22(Y) +taza(Y)

2’2’1(5) YeTr2,1(0)

1

—5 (tap,1(Y) +t241(Y) +t223(Y)) ) (n g 5) + o(n?)

1 1 n
— v (9 t331 + 12t3090 — = (61421 + 3?52,2,3)) + o(n?)
t2,21(5) 2 7

Y

1 n—>
= (3 t37371 + 3.5 t3’272 — t4’271> + 0(n2).
Tt221 2

Claim 2.6. Using flag algebras, we get that if t1 11 > 0.25 then

1.2814228
(3 t331 + 3.5 t3.29 — t4,271) > ——— > (.48813.

Tt221 — 7-0.37502377

y <y

The calculations for Claim 2.6 are computer assisted; we use CSDP [6] to calculate
numerical solutions of semidefinite programs. The data files and programs for the
calculations are available at http://lidicky.name/pub/triangle. Claim 2.6 gives a
lower bound on (8) as follows

1 1.2814228
b1bg + bibs + babs — — (b7 + b5 + b3 ) > ————————— > 0.24406. 9
1027 D1bs o D2 4(1+2+3)—14-0.37502377> )
Notice that if by = by = b3 = %, then (8), which is the left hand side of (9), is 0.25.
The conclusions (ii) and (iii) of Lemma 2.5 can be obtained from (9). Indeed, assume
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b1 < 0.26. Then,

1
bibs + bibs + baby — (07 + 53 + 3)

1-b\? 1/(, 1—b\?2
< — I
_b1(1 bl)-i-( 2 ) 4<b1+2< 5 >

9 3 1 9 3 1
= ——b7+ by + = < —20.26" + ~0.26 + — = 0.24325
AT TS TR T ’
contradicting (9). Thus, we have b; > 0.26, concluding (ii). Next, assume by +ba +b3 <

0.988. Then,

1
bib + bibs + babs — (b3 + 63 +13)

0. — b \2 1 ) — b\ 2
< 010088 — br) + () - <b§+2(098821> )

9 61009
= —2b2 4+ 0.741b; 4+ 0.122018 < 0.244037
gt L = 250000 © ’
where in the last step we used that the maximum is obtained at by = 247/750. This
contradicts (9). Thus, we have by + by + bs > 0.988, concluding (iii). [

In the proof of Lemma 2.5, we chose a suitable copy of T2 to find the initial
3-partition. Omne could do the same approach by starting with base 771 instead.
However, the resulting bounds would be weaker and not sufficient for the rest of the
proof. This is caused by obtaining a lower bound on (8) by taking a random base.

3 Proof of Theorem 2.4

In the first subsection of this section, we apply cleaning techniques to prove refinements,
namely Lemmas 3.1 and 3.2, of our flag algebra result Lemma 2.5. Having those
structural results at hand, we prove Theorem 2.4 in Subsection 3.2. Recall that the
hypergraph Turan result, Theorem 2.4, implied our main result, Theorem 1.3.

3.1 Refinements of the stability result

Lemma 3.1. Let G be an F-free 3-graph on n vertices and |E(G)| > 1/24n3(1+0(1)),
satisfying |L(w)| > in*(1 + o(1)) for every w € V(G). Then there exists an edge
x1xexs € E(G) such that for

A= N($2,$3), Ay = N($1,$3), Ag = N(xl,mg), J = V(G) \ (A1 U As U Ag),

D= A\ {1}, AL = Ao\ {x2}, and A5 := A3\ {x3}

we have for n sufficiently large

(a) 0.26n < |A;| < 0.48n for i € [3].

(b) |J] < 0.012n.
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Figure 2: Situation for (c). Figure 3: Situation for (d).

>

(¢) No triple abc with a,b € A; and c € A, for some i, j € [3],i # j forms an edge.
(d) Forv e V(G)\{z1, 22,73}, w1, w2 € A, u1,us € A} withi,j € [3] and i # j we
have vwywse ¢ E(G) or vujus ¢ E(G).

(e) For every v € V(G) \ {z1, 2,73}, there exists i € [3] such that |La; a,(v)| >
0.001n%, where j,k € [3),5 # k,j # i,k #1i.

Proof. Apply Lemma 2.5 and get an edge x1x2x3 with the properties from Lemma 2.5.
The sets A1, As, As are pairwise disjoint.

Note that (a) and (b) hold by Lemma 2.5. To prove (c), assume that there exists
abc € E(G) with a,b € A} and ¢ € A} for some i,5 € [3],4 # j. Let k € [3],k # i,k # j,
see Figure 2 for an illustration. Now,

xT X, abe, xjxRa, viaRb, cxixy € E(G).

Therefore G contains a copy of Ly on {x1,x9,x3,a,b,c}. Since Ly € F, by Lem-
ma 2.2 this contradicts that G is F-free.
To prove (d) by way of contradiction, assume that there exist v € V(G)\{x1, 2, 3}, w1, ws €
Aj, ur,ug € Aj for i, j € [3] with 7 # j such that vwiwy € E(G) and vujug € E(G). Let
k€ [3],k # i,k # j, see Figure 3 for an illustration. Now, {x1,x9, x3,v, u1, u2, w1, wa}
spans a copy of Ly because

TiT T, VW1 W2, VU U, TjTEWT, TjTEW2, TiTpUl, TiTruz € E(G).

However, L7 € F by Lemma 2.3, contradicting that G is F-free.
We finally prove (e). Let v € V(G) \ {x1, x2,23}. Towards contradiction, assume

|La, 4, (v)] < 0.001n% and |La, ,(v)| < 0.001n? and |La, a4(v)] < 0.001n%

By property (d), there exists i € [3] such that [Ly (v)] = [Ly (v)| = 0 for j,k €
J

[3]\ {i} with j # k. Note, that |La,(v)| < |A4;|?/4, since L, (v) is triangle-free, because

otherwise there would be a copy of K; in G. We have

’L(’U)‘ < ‘J’ “n+ |LA17A2(U)| + |LA27A3(U)| + ‘LA1,A3(U)|
+ L, (V)] + [La, (0)] + [Lag(v)]

A2
< |J|-n+0.003n2 + |4| + 2n < 0.012n% + 0.003n2 + 0.06n% + 2n

< 0.08n%(1 4 o(1)),
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Figure 4: Case 1. Figure 5: Case 2.
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Figure 6: Case 4.

contradicting the assumption |L(v)| > £n?(1 + o(1)). Note that we used |4, < 0.48n
and |J| < 0.012n from properties (a) and (b). This completes the proof of Lemma 3.1.
n

The following lemma is a refinement of Lemma 3.1. It gives a clean structure on the
whole vertex set instead of only 98.8% of the vertices by assigning each of the vertices
of J to one of the three parts.

Lemma 3.2. Let n € N be sufficiently large and let G be an F-free 3-graph on n
vertices and |E(G)| > 1/24n(1 4 o(1)), satisfying |L(w)| > %nz(l + o(1)) for every
w € V(Q). Then there ezists a vertex partition V(G) = X1UXoU X3 with | X;| > 0.26n
for i € [3] such that no triple abc with a,b € X; and c € X; for some i,j € [3] with
i # j forms an edge.

Proof. Let zyxox3 € E(G) be an edge with the properties from Lemma 3.1. By
property (e) we can partition J = J; U Jy U J3 such that for every v € J; we have
|L 4, a,(v)] >0.001n2, where j, k € [3],j # k,j # i,k # i. Set X; := A; U J;. Note that
by properties (c) and (e) for every v € X; \ {z;} we have |L; 4, (v)| > 0.001n?, where
j,k € [3],7 # k,j # i,k # i. Further, by property (a) and definition of X; we have
| X;| > 0.26n for n large enough.

Towards contradiction, assume that there exists a,b € X7 and ¢ € X9 with abc €
E(G). For each a, b, ¢ we find their neighbors in A; U Ay U A that put them to J; and
Jo. These neighbors are in A1 UA2U A3 because they were adjacent to some of x1, z9, 3.
This will eventually form one of the forbidden subgraphs. We will distinguish cases
depending on how a, b, ¢ coincide with z1, z2, x3.

Case 1: a,b # z; and ¢ # x».
Since

|Lay a5(a)| > 0.001n%,  |La, a,(b)| > 0.001n% and |La, a,(c)| > 0.001n?,
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there exists distinct vertices ag, b3, c3 € As,az,bs € A\ {c} and ¢; € A; \ {a,b} such
that aagas, bbabs, ccics € E(G), see Figure 4 for an illustration. We have

r12223, abc, aazas, bbabs, ccic3, c1x2x3, a2 173, baw123, C3T1 22, b3 122, azw1 72 € E(G),

and therefore the vertices {z1,z2,23,a,b,c,c1,a2,b2,as3,bs, c3} span a copy of Lig, a
contradiction.

Case 2: a = x1 and ¢ # x9.

By property (d), there exists distinct vertices bs,c3 € Az, by € Ay \ {c} and ¢; €
Aq \ {a, b} such that bbabs, ccics € E(G), see Figure 5 for an illustration. We have

r12973, 1be, bbabs, ceic3, c12213, bax1 w3, C33122, b3T122 € E(G),

and therefore the vertices {z1, 2, x3,b, ¢, c1,ba, b3, c3} span a copy of Lg, a contradic-
tion.

Case 3: b=z and ¢ # xs.

This case is similar to Case 2, we omit the proof.

Case 4: a,b # 1 and ¢ = xs.

By property (d), there exists distinct vertices as, by € As,az,ba € Aa \ {c} such that
aazaz, bbobs € E(G), see Figure 6 for an illustration. We have

12223, abra, aagas, bbabs, asx1x3, bax123, bax122, azxri122 € E(G),

and therefore the vertices {x1, z2, 3, a, b, as, by, as,bs} span a copy of Lg, a contradic-
tion.
Case 5: a = z1 and ¢ = x9.
This means that b € N(z1,x2) = As, contradicting b € X.
Case 6: b = 1 and ¢ = 9.
This case is similar to Case 5, we omit the proof.

We conclude that for a,b € Xi,¢ € X3, we have abc ¢ E(G). Similarly, for a,b €
Xi,c € X; with ¢ # j, we have abc ¢ E(G).

|

3.2 The asymptotic result

In this subsection we will prove Theorem 2.4. We first observe that an extremal F-free
3-graph satisfies a minimum degree condition.

Lemma 3.3. Let G be an F-free 3-graph and u,v € V(G). Denote Gy, the 3-graph
constructed from G by adding a copy w of v and deleting u, i.e.

V(Guw) = V(G) U{w}\ {u}, E(Gup) = E(GIV(G)\ {u}]) U{wab | abv € E(G)}.
Then, Gy, is also F-free.

Proof. Towards contradiction assume that G, ,, contains a copy of some F' € F. Since
G is F-free, this copy F’ of F contains the vertices v and w. F’ — w is a subgraph
of G and thus F-free, in particular F/ — w ¢ F. Thus, there exists a set of triangle
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shape T of positive measure such that for T € T and € > 0 there exists a point set
P = P(T,¢) C R? with F’ — w being isomorphic to G(P, T, ). Construct a new point
set P’ from P(T,e) by adding a new point p,, very close to the point corresponding
to v, so that v and p, have the same linkgraph in G(P’,T,¢) and that there is no
edge in G(P',T,¢) containing both p,, and v. Now, G(P’,T,¢) contains a copy of F,
contradicting that F' € F.

|

Lemma 3.4. Let G be an extremal F-free 3-graph on n wvertices. Then for every
u € V(G), we have |L(u)| > tn?(1+ o(1)).

Proof. Assume that there exists u € V(G) with |L(u)| < in?® — n3/2 for n sufficiently
large. Let v € V(G) be a vertex maximizing |L(v)|. The 3-graph G, , is F-free by
Lemma 3.3 and has more edges than G:

B(Gus)| ~ |B(G)] = ~|L(w)| + ()] ~ d(u,v) > —n? 4 1 2EEN

2 SES®M)

1 1 1
2—§n2+n —nz—§n2+n3/2+§n3—0(nlogn)>0,

for n sufficiently large. This contradicts the extremality of G. Thus for every u € V(G),
we have |L(u)| > in® — n3/? = In?(1 4 o(1)). |

Proof of Theorem 2.4. For the lower bound, we have

! n3(1 + o(1)).

ex(n, F) > e(S(n)) = 21

For the upper bound, let ng be large enough such that the following reasoning holds. For
n > ng, ex(n, F) < 0.251(3) by (6). We will prove by induction on n that ex(n, F) <
1

=n® +n-ng. This trivially holds for n < ng, because

1
ex(n, F) < (g) < ﬁnS +n-nd.

For ng < n < 4ng, we have

3

n 1 5 n 1 4 9
< 0. < — . — < — . .
ex(n,]:)_0251<3>_24n +00016 _24n +n-nj

Now, let G be an extremal F-free 3-graph on n > 4ng vertices. By Lemma 3.4 we
have |L(w)| > £n%(1 4 o(1)) for every w € V(G). Therefore, the assumptions for
Lemma 3.2 hold. Take a vertex partition V(G) = X; U Xo U X5 with the properties
from Lemma 3.2. Now, for all i € [3], | X;| > 0.26n > no and since G[X;] is F-free, we
have

1
e(GXi]) < Q\Xilg +1Xi] -

13



by the induction assumption. We conclude

3 3

1

e(G) < |X1]|Xa||Xs] + Y e(G1X]) < [ X || Xol| X5 +n-ng + QZIXilg
=1 =1

1
gﬂn3+n~ng,

where in the last step we used that the function g(x1, x2, 23) 1= z12923+1/24(23 + 235+
73) with domain {(x1,z2,73) € [0.26,0.48] : 21 + x2 + 73 = 1} achieves its maximum
at x1 = x9 = w3 = 1/3. This can be verified quickly using basic calculus or simply by

using a computer, we omit the details. [

Analyzing the previous proof actually gives a stability result.

Lemma 3.5. Let G be an F-free 3-graph on n vertices and |E(G)| = 1/24n3(1+0(1)),
satisfying |L(w)| > £n?(1+ o(1)) for every w € V(G). Then G has a vertex partition
V(G) = X1 U X2 U X3 such that

o there is no edge e = xyz with x,y € X; and z ¢ X; for i € [3],

o |Xi| =351+ 0(1)) for every i € [3].
Proof. Take a vertex partition V(G) = X; U X9 U X3 from Lemma 3.2. In particular,

the first property holds. Since G[X;] is F-free, we have by Theorem 2.4 that e(G[X;]) <
| Xi>(1 + 0(1)). Now, again
3

5371+ (1) = (@) < X[ Xa| X5 + > e(G1Xi)

1 3
< [ X[ Xe|Xs] + o D IXiP(1+o(1).
i=1

Again, since the polynomial g with domain {(z1, x9, z3) € [0.26,0.48]3 : z1 + 29 + 23 =
1} achieves its unique maximum at 1 = xo = w3 = 1/3, we get | X;| = (1/340(1))n. m

4 Exact results

In the first subsection of this section we prove Lemma 4.3, a refinement of Lemma 3.5.
In Subsection 4.2 we deduce Theorem 1.4 from Lemma 4.3 and finally, in Subsection 4.3,
we deduce Corollary 1.5 from Theorem 1.4.

4.1 Further refinement

Lemma 4.1. Let T € Tr and P C R? be a point set. Denote G = G(P,T,e(T)). For
every u,v € V(QG) there exists a point set P' such that G, , = G(P',T,e(T)).

Proof. Let u,v € V(G). Construct P’ from P by removing the point corresponding
to u and adding a point close enough to the point corresponding to v. This point set
satisfies Gy, = G(P',T,e(T)). n
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Lemma 4.2. Let T € TF be a triangle shape and let P C R? be an n-element point set
mazximizing the number of triangles being e(T)-similar to T'. Denote G = G(P,T,e(T)).
Then for every w € V(G), we have |L(w)| > n*(1 + o(1)).

Proof. We have that G is F-free. Assume that there exists u € V(G) with

1
|L(u)| < gnz —n?/2,

Let v € V(G) be a vertex maximizing |L(v)|. By Lemma 4.1 there exists a point set P’
such that G, , = G(P',T,e(T)). We have |E(G, )| > |E(G)| by the same calculation
as in the proof of Lemma 3.4. This contradicts the maximality of P. [

Now, we will strengthen the previous stability result, Lemma 3.5.

Lemma 4.3. Let T € Tr. There exists ng such that for every n > ng the following
holds. Let P be an n-element point set mazximizing the number of triangles being e(T)-
similar to T. Then, the 3-graph G = G(P,T,e(T)) has a vertex partition V(G) =
X1 U Xs U X5 such that

(i) there is no edge e = xyz with x,y € X; and z ¢ X; fori € [3],
(ii) zyz € E(G) for allxz € X1,y € Xo,2 € X3,
(iit) | X;| —|X;] <1 foralli,j € [3].

Proof. By Lemma 4.2, for every w € V(G), |L(w)| > tn*(1 + o(1)). Further, we have

1(n

e(G) 2 e(S(n)) = § <3> (14 o(1)).

Therefore, the assumptions from Lemma 3.5 hold. Let V(G) = X; U X2 U X3 be a
partition having the properties from Lemma 3.5. In particular, property (i) holds.
Towards contradiction, assume that there exists x € X1,y € X9,z € X3 with zyz ¢
E(G). For i € [3], let P, be the point set corresponding to the set X;. We have,

e(G[Xi]) = e(G(R;, T, &(T)).

Construct a new point set P’ by taking a large enough triangle of shape T and placing
each of the point sets P; close to one of the three vertices of 7. Using condition (i),
this new point set P’ satisfies

3
e(G(P',T,e(T))) = [X1]| Xa||Xs| + Y e(G(P;, T,(T))
=1
3
= | XXl Xs] + Y _e(G[Xi]) > e(G),
=1

contradicting the maximality of P. Therefore, for all x € X,y € Xo, 2 € X3 we have
zyz € E(G).
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By Theorem 2.4, we have

e(GXq]) 1 e(G[Xa]) 1
) =1 +o(1) and () =4t o(1).
3 3
Next, towards contradiction, assume that without loss of generality |X;| > |X2| + 2.
Let v; € X; be minimizing |Lx, (v1)| and let v € X2 be maximizing |Lx,(v2)|. By the
choice of v1 and vo,

3e(G[X1])
| X1

3e(G[Xo])

L <
Ly, ()] < X

and |Lx,(v2)| >

The hypergraph G, 4, is still F-free by Lemma 3.3 and has more edges than G:

(G )|~ |B(G)] = K115 + Lo, (02)] — L, (00)] — X1 5] — ||

> 2 3 - 1l - )

_ 31e(GlXa)1Xa] — 3e(GLXIDIXa
| X1 [[ X

| 370 1| - 3(%) X
= (o) S+ (X = ) 1

+ | X3](| X1 | — [ X2| — 1)

1 | X2 X1 ] — X0 X
> = 1 Xs|(| X1 — | X2| —1

_ (; + 0<1>) (1% = | X1%) + | X3(1 X2 | — | Xa| — 1)

(6] = 1)) (%] = (0] + %) (5 + o)) ) - Xa

=] = 16al) (5§ + o)) = 1l 2 m (5 +01)) = (5 +0(1) ) n >0

We obtain |E(Gy, v,)| > |E(G)|. By Lemma 4.1 there exists a point set P’ such that
Gy, v, = G(P',T,e(T)). This contradicts the maximality of P. Therefore property
(iii) holds, completing the proof of this lemma. [ ]

4.2 Proof of Theorem 1.4

Let T € Tr and P be an n-element point set maximizing the number of triangles being
e(T')-similar to T. Denote G = G(P,T,e(T)). By Lemma 4.3, the 3-graph G has a
vertex partition V(G) = X; U Xo U X3 such that | X;| — |X;| <1 for all 4,j € [3] and
there is no edge e = xyz with zy € X; and z ¢ X, for i € [3]. Since the sets X1, Xo, X3
correspond to point sets of the same sizes, we have e(G[X;]) < h(|X;|,T,e(T)) for
i€ [3]. Let a = |X1],b = |X2| and ¢ = | X3|. Now,

h(n,T,e(T)) =e(G) <a-b-c+e(G[X1]) + e(G]X2]) + e(G[X3])
<a-b-c+h(a,T,e(T))+ h(b,T,e(T)) + h(c, T,e(T)).
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It remains to show
h(na T7 €(T)) >a- b-c+ h(aa T, €(T)) + h(bv Ta €(T)) + h(C, Ta €(T))
There exists point sets Py, Py, P. C R? of sizes a, b, ¢ respectively, such that

e(G(P,,T,e(T))) = h(a,T,e(T)), e(G(Py, T,e(T))) = h(b,T,e(T))
and e(G(P.,T,e(T))) = h(c,T,e(T)).

Note that we can assume that diam(P,) = 1, diam(P,) = 1 and diam(F,) = 1, where
diam(Q) of a point set @ is the largest distance between two points in the point set.
By arranging the three point sets P, Py, P, in shape of a large enough triangle T, we
get a point set P such that

h(n,T,e(T)) > e(G(P,T,e(T))) =a-b-c+ h(a,T,e(T)) + h(b,T,e(T)) + h(c, T, e(T)),

completing the proof of Theorem 1.4.

4.3 Proof of Corollary 1.5

Let T be a triangle shape for which there is an £(7) such that (2) holds. By Theo-
rem 1.4, (2) holds for almost all triangles. Take a point set P on 3¢ > ng points max-
imizing the number of triangles being e(T")-similar to 7. Denote H = G(P,T,(T)).
Note that because of scaling invariance we can assume that diam(P) is arbitrary small.
By applying (2) iteratively, we have

. , 1 o
B3, T,e(T)) = 8- e(H) + 3% (3% - 37) (10)
for all ¢ > 0.

Now, towards contradiction, assume that there exists a point set P’ C R2 of 3F
points such that the number of triangles similar to £(7") is more than e(S(3%)). Let
G =G(P',T,e(T)). Then,

1
k\Y — + (a3k _ qk
e(G) > e(S(3 ))_24(3 3) .
Construct a point set P C R? of 3T points by taking all points p¢+pH, pc € P pg €
P where addition is coordinate-wise. Let G := G(P,T,e(T)). Since we can assume
that diam(P’) is arbitrary small, G is the 3-graph constructed from G by replacing
every vertex by a copy of H. Now,

1
e(G)=e(@) 3% +e(H) 3% > 3% . e(H) + 334ﬂ (3% B 3k> ’

contradicting (10). This completes the proof of Corollary 1.5.
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5 Concluding remarks

When carefully reading the proof, one can observe that also the following Turan type
results hold. Recall that F is the set of forbidden 3-graphs defined in Section 2.2.

Theorem 5.1. The following statements hold.

(a) There exists ng such that for all n > ny
ex(n,F) =a-b-c+ex(a,F)+ex(b,F)+ex(c, F),

where n = a4+ b+ c and a, b, c are as equal as possible.

(b) Letn be a power of 3. Then,

L3
ex(n, F) = ﬂ(n —n).
It would be interesting to prove the Turan type results, Theorem 1.3 and Theo-
rem 5.1, for a smaller family of hypergraphs than F. Potentially the following conjec-
ture by Falgas-Ravry and Vaughan could be tackled in a similar way.

Conjecture 5.2 (Falgas-Ravry and Vaughan [9]).

_ 1(n
ex(n, {K7,Cs}) = <3) (14 o(1)).
Considering that for our proof it was particularly important that K, and Lo =
{123,124, 125,136,456} are forbidden, we conjecture that S(n) has asymptotically the
most edges among {K , Ly }-free 3-graphs.

Conjecture 5.3.

ex(n, {K7, Lo}) = % (’;) (1+ o(1)).

Note that a standard application of flag algebras on 7 vertices shows

ex(n, {Ky, La}) < 0.25074 (g)

for n sufficiently large. It is conjectured (see [12]) that ex(n,C5 ) = 0.25(3).

Theorem 1.3 determines h(n,T,c) asymptotically for almost all triangles T and
e > 0 sufficiently small. It remains an open problem to determine h(n, T, ¢) for some
triangles 7' € S. Barany and Fiiredi [5] provided asymptotically better bounds stem-
ming from recursive constructions for some of those triangles. Potentially a similar
proof technique to ours could be used to determine h(n, T, e) for some of those triangle
shapes.

Another interesting research direction is to change the space, and study point sets
in R3 or even R? instead of the plane. Given a triangle T € S, e >0,d > 2 and n € N,
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Figure 7: A cutout of a tetrahedron using an acute triangle on the left. A cutout not giving
a tetrahedron coming from an obtuse triangle on the right. Bend along the dashed lines.

denote g4(n, T, ) the maximum number of triangles in a set of n points from R? that
are e-similar to a triangle T'. Being allowed to use one more dimension might help us
to find constructions with more triangles being e-similar to T

For an acute triangle 7" and d = 3, we can group the n points into four roughly
equal sized groups and place each group very close to a vertex of a tetrahedron with
each face being similar to T'. For a crafty reader, we are including a cutout that leads
to a tetrahedron with all sides being the same triangle in Figure 7 on the left. Each
group can again be split up in the same way. If we keep doing this iteratively, we
obtain

gs(n. 7€) > (1 + o(1))

for some € > 0. Note that for almost all acute triangles T',

1
g2(n,T,e) = h(n,T,e) = ﬁn}”(l +0(1)) < g3(n, T, e).

For T being an equilateral triangle and d > 4 we can find a better construction.
There is a d-simplex with all faces forming equilateral triangles. Grouping the n points
into d + 1 roughly equal sized groups and placing each group very close to the vertex
of the d-simplex and then iterating this, gives us

gu(n, T, ) > ; ((d+1)) (dg 1) (d+ 1)1 (14 0(1) = é%n3(1 +o(1).

The following variation of the problem could also be interesting. We say that two
triangles are e-isomorphic if their side lengths are a < b < c and @' <V < ¢ and
la —d|,|b—"V],|c — | < e. Maximizing the number of e-isomorphic triangles has the
following upper bound. Denote the side lengths of a triangle T by a, b, and c¢. Now
color edges of K,, with colors a, b, and ¢ such that the number of rainbow triangles
is maximized. Note that rainbow triangles would correspond to triangles isomorphic
to T, if there exists an embedding of K, in some R? such that the distances corre-
spond to the colors. The problem of maximizing the number of rainbow triangles in
a 3-edge-colored K, is a problem of Erdds and So6s (see [8]) that was solved by flag
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algebras [2]. The asymptotic construction is an iterated blow-up of a properly 3-edge-
colored K. Properly 3-edge-colored K4 can be embedded as a tetrahedron in R3. This
gives %n?’(l +0(1)) e-isomorphic triangles in R3. This heuristics suggests that increas-
ing the dimension beyond 3 may allow us to embed slightly more e-isomorphic triangles
by making it possible to embed more of the iterated blow-up of K, construction. The
number of rainbow triangles the iterated blow-up of a properly 3-edge-colored Ky is
%n3(1 + o(1)) which is an upper bound on the number of e-isomorphic triangles for
any d.

In our construction maximizing the number of e-similar triangles for d = 3, the
majority of triangles are actually e-isomorphic. Already for d = 3, we can embed
£n3(1 + o(1)) e-similar triangles, which is the upper bound on the number of e-
isomorphic triangles for any d. This suggests that increasing the dimension beyond
d = 3 may result in only very small increases on the number e-isomorphic triangles or
a very different construction is needed.

The above heuristic does not apply to isosceles triangles. Maximizing the number
of e-isomorphic triangles would correspond to a 2-edge-coloring of K, and maximizing
the number of induced path on 3 vertices in one of the two colors. The extremal con-
struction is a balanced complete bipartite graph in one color. Increasing the dimension
helps with embedding a bigger 2-edge-coloring of K, and in turn obtaining a larger
number of e-isomorphic triangles with $n3(1 + o(1)) being the upper bound.

In general, the number of obtuse triangles do not seem to benefit as much from
higher dimensions. Embedding three e-similar obtuse triangles on 4 points is not
possible for any d for almost all obtuse triangles. This contrasts with acute triangles,
where 4 points can give four e-isomorphic triangles for dimension at least 3. The reader
may try it for e-isomorphic triangles with cutouts in Figure 7. We have not explored
the above problems for obtuse triangles further.
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