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Abstract

While the COVID-19 pandemic keeps deteriorating, the effective medicines target the life
cycle of the SARS-CoV-2 are still under development. With more highly infective and dangerous
variants of the coronavirus emerged, the protective power of vaccines decreased or vanished. Thus,
the development of drugs which are free of drug resistance is in dire need. The aim of this study
is to identify allosteric binding modulators from a large compound library to inhibit the binding
between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme
2 (hACE2). The Spike protein binding to hACE2 is the first step of the coronavirus to infect the
host cells. We first built a compound library containing 77,448 antiviral compounds. Molecular
docking was then conducted to preliminarily screen compounds which can potently bind to the
Spike protein at two allosteric binding sites. Next, molecular dynamic simulations were performed
to accurately calculate the binding affinity between the Spike protein and an identified compound
from docking screening, and investigate whether the compound can interfere with the binding
between Spike and hACE2. We successfully identified two possible drug binding sites on the Spike
protein and discovered a series of antiviral compounds which can weaken the interaction between
the Spike protein and hACE2 receptor through the conformational changes of the key Spike
residues at the Spike-hACE2 binding interface induced by the ligand binding at the allosteric
binding site. We also applied our screening protocol to another compound library which consists
of 3,407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured.
Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike-ACE2
binding. Thus, we developed a promising computational protocol to discover allosteric binding
inhibitors for the binding of Spike protein of SARS-CoV-2 to hACE2 receptor, and several

promising allosteric modulators were discovered.



Keywords: COVID-19; SARS-CoV-2; MD Simulation; Allosteric Binding Inhibitor; Virtual

Screening; Drug Resistance; Binding Affinity Prediction.



1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) caused by the epidemic SARS-
CoV-2 virus continues being uncontrolled around the US and many other countries all over the
world. More seriously, new variants of the coronavirus emerged due to detrimental mutations on
viral functional proteins and structural proteins especially the Spike protein.[1-3] The only
countermeasure recommended by governments is vaccination.[4] However, the reinfection of the
recovered patients is still a rising concern,[5-7] and the scientific research data is still not sufficient
enough to confirm whether those vaccinated populations can acquire immunity for different
variants of SARS-CoV-2 coronavirus or not. Moreover, the treatment of COVID-19 patients is
still facing a great challenge, with many proposed drugs continuously being reported of their severe
side effects. For example, Remdesivir may give rise to unwanted effects of hepatic disorder and

cardiac adverse events,[8-10] and Hydroxychloroquine may raise the risk of cardiotoxicity.[11-13]

SARS-CoV-2 virus, a positive-sense single-stranded RNA virus,[14] shares a similar genomic
organization to other beta-coronavirus.[15] It consists of four structural proteins and many
nonstructural proteins (NSP). The structural proteins include Spike protein (S), envelope protein
(E), membrane (M), and nucleocapsid (N). S, E, and M constitute the viral coat, and N packages
the viral genome.[16] Specifically, the Spike protein mediates the virus entry into human
angiotensin-converting enzyme 2 (hACE2) through the fusion of viral and cellular membranes.[17]
Therefore, the interference of the interaction between the Spike protein and hACE2 should be a

feasible way to inhibit the virus attachment to the host and thus decrease the infection.

Nowadays, many studies have been conducted to discover and develop therapeutics to

inhibit the Spike-hACE2 protein-protein binding.[18-21] The development of drugs which can



weaken the Spike/hACE2 interaction through allostery could be a valid avenue to overcome the
detrimental mutation effect. In this work, we attempted to discover potential inhibitors which bind
to Spike protein at allosteric sites. With the development of computer-aided drug design (CADD)
technology, in silico prediction accuracy and efficacy is continuously increasing. Combining
different types of scoring functions greatly contributes to the successful identification of promising
compounds through large-scale virtual screening. Since antiviral compounds are to date the most
promising candidate category to treat COVID-19,[22, 23] this study conducted in silico screening
among a library consisting of 77,448 antiviral compounds. Molecular docking screening,
molecular dynamic (MD) simulations, and MM-PBSA-WSAS binding free energy calculation
were conducted as a multiple-step screening pipeline to identify compounds which can inhibit the
binding of the Spike protein to hACE2. Key residues for the protein-ligand interaction were also
analyzed during MD simulation process. To strengthen our screening reliability, the same
screening protocol was also performed using another compound library with in vitro experimental
data to inhibit the Spike-ACE2 protein-protein interaction. Overall, our findings can provide

insights to COVID-19 drug development.



2. Methods And Experimental Design

Allosteric binding site identification and validation. The crystal structure of the Spike-
ACE2 complex was downloaded from Protein Data Bank (PDB ID: 6M17)[24]. The latest
published crystal structure of the Spike protein is still lacking the information of the binding site
for drug attachment. We first used the SiteID module of the Sybyl software to detect possible
binding pockets of the Spike protein which was extracted from the Spike-ACE2 complex.[25]
Each binding pocket is represented by key surrounding residues. The potential of an allosteric
binding site was validated by the docking performance of a great number of structurally diverse

compounds as described below.

Screening library construction. We compiled three compound libraries as detailed below.
Library 1 consists of 123,192 druglike compounds collected by ZINC database.[26] Library 1 was
applied to evaluate the potential of an allosteric binding site to serve as a drug binding pocket. To
compile Library 2, we downloaded a ligand library from NIH OpenData Portal,[27] which
possesses a series of compounds with SARS-CoV-2 in vitro screening data. The experimental data
describes the inhibition extent of Spike-hACE?2 interaction under the influence of each compound.

The third library, Library 3 is a collection of antiviral compounds from various sources. [28-30]

Validation of screening protocol. In this part of our research, we aimed to design a
protocol to gradually screen out a series of compounds through a large compound library with
experimental data describing their activity of inhibiting the interaction between the Spike protein
and hACE2 protein. After being applied to these reported compounds, our protocol can be
validated by comparing the experimental data with our prediction results. Our general protocol is

divided into three steps: 1) dock the compound library to the Spike protein to preliminary screen



out ligands which bind to the Spike protein with high affinities. 2) conduct MD simulations for
top-ranking ligands in Step 1 with the Spike protein for more accurate binding affinity prediction.
3) perform MD simulations for promising ligands from Step 2 with the Spike-hACE2 complex
and calculate binding free energy between the Spike protein and hACE2 protein under the
interference of an allosteric ligand. We also conducted binding free energy calculation and energy
decomposition analyzation based on MD simulation results, and the final screening results were

compared to the experimentally reported data.

Glide Docking Screening. By using the Receptor Grid Generation module from Maestro
software platform (Schrodinger Release 2017-3: Schrodinger, LLC, New York, NY, 2017.),
binding pockets were located by the key residues identified by SiteID. Glide docking was
performed with the major settings described as follows: (1) the scaling factor of van der Waals
radii is 0.8 and the partial charge cut off is 0.15; (2) flexible ligand docking was performed under
standard precision; (3) intramolecular hydrogen bonds were rewarded; (4) other settings were kept
default. One pose per ligand was written out. Generally, a binding site should have a higher
possibility of serving as a drug binding site when more drug-like compounds tend to have better

binding affinities at the site, which is reflected by the lower docking scores.

MD simulation. During the MD simulation for Step 2, each ligand-Spike protein system
includes a ligand, a Spike protein, approximately 20,500 TIP3P water molecules,[24] 60 CI to
keep the salt concentration at 0.15 M and necessary Na' to neutralize the system. For Step 3 MD
simulation, each system includes a ligand, a Spike-hACE2 complex, approximately 43,800 TIP3P
water molecules, 120 C1 ions, and necessary Na' ions to neutralize the system. The RESP partial
charges were obtained by fitting the HF/6-31G* electrostatic potentials generated using the

Gaussian 16 package.[31, 32] The force field parameters for ligands were from the General Amber



Force Field (GAFF),[33] and the parameters of proteins came from AMBER FF14SB [34]. The
topologies were all prepared utilizing the Antechamber module from AMBER software
package.[35, 36] For each MD simulation for a ligand-protein complex, a five 10,000-step energy
minimization was first performed to remove possible steric crashes in the system. The restrained
harmonic force constant was reduced from 20 to 10, 5, 1, and 0 kcal/mol/A2, step by step. The
followed MD simulations consist of three phases: relaxation, equilibrium, and sampling. During
the relaxation phase, the system was heated up from 50 K to 298 K. For the equilibrium phase and
the sampling phase, a 10-ns and a 100-ns MD simulation were carried out at 298 K, respectively.
For each system, the equilibrium and sampling phases were repeated multiple times as individual
runs. Additional parameter setting during the MD simulations includes: the temperature was
controlled utilizing Langevin dynamics with a collision frequency of 5 ps ';[37] pressure was
regulated using the isotropic scaling algorithm with the relaxation time of 1.0 ps; The time step
was 1 fs for the relaxation phase and 2 fs for the other two phases. The SHAKE algorithm was
utilized to constrain the bonds involving Hydrogen atoms. [38] All minimization, relaxation and
the equilibration were performed using the Central Processing Unit (CPU) version of the PMEMD
module in the AMBER 18 package,[33] and the sampling phase was conducted using the Graphic

Processing Unit (GPU) version of PMEMD.[39]

MM-PB/GBSA-WSAS Binding Free Energy Calculation and Energy Decomposition.
The solvation free energy for each MD system was calculated using the molecular
mechanics/Poisson Boltzmann surface area (MM/PBSA) method or molecular mechanics/
Generalized Born surface area (MM/GBSA) method, and the conformational entropy was
estimated with the WSAS method.[40-43] For a molecule in the solvent, calculation equation of

the free energy is as follows:



AGmm-pB/GBsA = AH — TAS = AEvaw + AEelet AEinter + AG;"I + AGTSlgl— TAS

AEvaw is the van der Waals energy, AEete is the gas phase electrostatic energy, AEinter 1S
the internal energy, AG;"I and AGﬁgl are the polar and nonpolar solvation energy, T is the absolute

temperature, and AS is the change of conformational entropy. 362 snapshots were evenly collected
for MD simulation systems containing a ligand and a Spike protein (Step 2), and 456 snapshots
were evenly collected for MD simulation systems containing the Spike-hACE2 complex with
ligands (Step 3), in order to perform MM-PBSA-WSAS calculation. For energy decomposition,
the solvent effect was taken into account using a Generalized Born model.[44] The external and
internal dielectric constant is 80 and 1, respectively. The calculation was conducted utilizing the
Sander program in AMBER 18.[33] Residues are considered as hot spot residues when the MM-
GBSA ligand-residue interaction is stronger than -1.0 kcal/mol. We conducted free energy
decomposition analyses for both Spike-ligand (Step 2) and Spike-hACE2-ligand (Step 3) systems,

utilizing 1000 and 5000 snapshots, respectively.
3. Results

3.1 Identification and Validation of Allosteric Binding Sites

Seven binding sites were detected by SiteID module of the Sybyl software package,[25]
with the surrounding residues listed in Table 1 and shown in Figure 2. Docking screenings were
performed at each binding site using Library 1. According to the docking results of this druglike
compound library to each defined binding site (Table S1), Cluster]1 and Cluster4 have 33 and 21
compounds with docking scores better than -7.0 kcal/mol, respectively, and thus were identified

as highly possible drug binding sites on the Spike protein. Other clusters all have none or no more



than three ligands with docking scores lower than -7.0 kcal/mol, indicating their poor binding

affinities between the compounds and Spike protein at these binding sites.

3.2 Validation of Screening Protocol Using Library 2

Docking screening. Library 2 contains 3,407 compounds with in vitro data to cripple the
Spike-ACE2 interaction. The docking results of this compound library to Clusterl and Cluster4
have been summarized in Table S2 and S3. 30 top ligands for Cluster]l and 20 top ligands in

Cluster4 have been chosen for compound-Spike protein MD simulation.

MD simulations for a ligand/Spike protein complex. All the top compounds from
docking screening are further filtered by this first-round MD simulation. For all simulation systems,
the starting conformations of the ligands came from the docking results. For Clusterl, 12
compounds were eliminated by this MD simulations filter because those ligands drifted away from
the binding pocket during the simulation process. 18 compounds can bind to the Spike protein
throughout the simulation process and were performed two more rounds of MD simulations using
time-dependent random seed for the Langevin dynamics. 8 of these compounds possess promising
predicted binding free energy according to the calculation and were performed another two rounds
of MD simulation for each compound. The predicted binding free energy for 8 compounds during
multiple rounds of simulation are listed in Table 2 and detailed information for 18 compounds has
been summarized in Table S4. Lower binding free energy means better binding affinity of the
ligand targeting to the Spike protein. On the other hand, although Cluster4 has 14 compounds
which can steadily bind to the Spike protein throughout the first-round simulation, none was
identified with low binding free energy after 3 rounds of MD simulations. Thus, Cluster4 does not
have a candidate compound survived for the next-step research. The detailed information of

predicted binding free energy for 14 compounds is shown in Table SS.



Confirmation of an allosteric ligand to compromise Spike/hACE2 binding. According
to the predicted binding affinity for the 8 compounds for Clusterl in the previous step, 5
representative conformations were generated during multiple simulations for each compound.
Considering the calculated binding free energy for each simulation, 7 Spike-hACE2-ligand
systems, involving 4 different compounds which have promising binding affinity to the Spike
protein, were constructed for further study. The selection has been labeled in Table 2 (N1 to N7).
To prepare the initial structure of a Spike-hACE2-ligand complex, the Spike protein in a
representative MD conformation of Spike-ligand complex was aligned to the Spike protein in the
Spike-hACE2 crystal structure resulting in a translation-rotation matrix. Then ligand structure in
the Spike-ligand complex was transformed using the matrix and then combined with the Spike-

hACE2 complex.

From another research publication by our lab, the predicted binding free energy between
the wild-type Spike protein and hACE?2 is -16.04 kcal/mol using the same MD simulation setting
as described in the Method section.[45] During this research, the higher predicted binding free
energy between the Spike protein and the hACE2 protein under the influence of a compound
represents the stronger inhibitory effect the allosteric ligand has. Every Spike-hACE2-ligand
system underwent 6 separate simulations and the calculated Spike-hACE2 binding free energies
were listed in Table 3 and the decomposition of different energy terms was summarized in Table
S6. The docking score and in vitro experimental value for each compound were also summarized
in Table 3 for comparison. Encouragingly, the prediction results are consistent with the
experimental values. N1 system (Spike-hACE2 complex with compound NCGC00389662-01) has
the highest predicted binding free energy between the Spike protein and the hACE2 protein under

the influence of the compound based on the 6 simulations, indicating the interaction between the



Spike protein and the hACE2 has been compromised. And the in vitro experiment result for N1
also shows the efficacy of -24.30 to inhibit the interaction between the Spike protein and hACE2
(Table 3). For other systems (N2 to N7), the ligands either enhanced or slightly decreased the
binding affinities between Spike and hACE2, thus the inhibitory effect was not obvious. This result
is consistent with the experimental findings that those ligands (NCGC00521952-01,
NCGC00167505-03, NCGC00379053-02) cannot decrease the binding between Spike and hACE2

proteins, with their efficacy of 0 in in vitro experiment.

Furthermore, to facilitate the development of more potent allosteric inhibitors, we
conducted free energy decomposition analysis to identify hotspot residues which make significant
contributions to the protein-ligand binding utilizing all six MD trajectories for the N1 system. A
heatmap exhibiting the identified hotspot residues was shown in Figure 3. As shown in Figure
4C, most hotspot residues are around the protein-protein binding interface, and the allosteric effect
upon ligand binding can be effectively transferred to those residues. The identified hotspot residues
here, 1le32, Cyx40, Glu744 and Cyx748, were also recognized as key residues in our previous
study to interact with the hACE2 receptor at the protein-protein binding interface.[45] The
inhibitory effect is the result of conformational changes on those hotspots located at the Spike-

hACE2 binding interface.

3.3 Identification of Promising Ligands from Library 3.

Glide docking screening. 77,448 compounds in Library 3 were screened and ranked
according to their docking scores, which were summarized in Table S7 for Cluster] pocket and
Table S8 for the Cluster 4 pocket. For those antiviral compounds, the best docking score is -9.76
kcal/mol for Cluster] and -9.19 kcal/mol for Cluster4. All compounds with docking scores lower

than -8.0 kcal/mol were selected for the next step MD simulation. In total, 46 compounds for



Cluster1 and 43 compounds for Cluster4 were selected. In addition, 15 top-ranked approved drugs

were also selected to undergo the MD simulation screening for both binding pockets.

MD simulations for a ligand/Spike protein complex. Again, the docking structure of a
compound served as the starting conformation for the subsequent MD simulations. For Clusterl,
only 25 ligands, including approved drugs and antiviral compounds, completed the whole
procedure of MD simulations and the calculated binding free energies after two rounds of MD
simulations were summarized in Table S9. Three more MD runs were performed for five antiviral
compounds which had the best MM-PBSA-WSAS binding free energies calculated using the
snapshots collected in two MD runs. As shown in Table 4, two compounds, 1426855-10-8 and
14350-38-0, outperformed others in terms of potency and reliability of prediction. As to Cluster4,
only 16 ligands completed the whole procedure of MD simulations and the MM-PBSA-WSAS
binding free energies were listed in Table S10. For six antiviral compounds, three more MD runs
were performed and the binding free energies were summarized in Table 5. Three promising
compounds, 1053055-44-9, 149297-82-5 and 2001001-59-6 were recognized as promising

inhibitors.

However, strong binding may not necessarily be a potent allosteric inhibitor as the
perturbation upon ligand binding must be propagated to the protein-protein binding interface and
triggered conformational changes on the hotspot residues. We conducted energy decomposition to
those systems which exhibit good binding affinities to the Spike protein. The heatmap for Clusterl
and Cluster4 were depicted in Figure SA and 5B, respectively. Spike protein residues with strong
ligand-residue interactions are marked in darker colors. As Cluster 1 is around the Spike-hACE2
binding interface, naturally most hotspot residues are located at the protein-protein binding

interface. Those hotspot residues located around the protein-protein binding interface are colored



in yellow (Figure 6). 1le732, Tyr733, Cys740, Glu744, and Tyr749, which are identified as key
residues in this study, were also recognized as hotspot residues at the protein-protein interface to
facilitate the binding of the Spike protein to hACE2 in our previous research.[45] The following
compounds were selected for further study: 1426855-06-2, 1426855-06-8, and 20777-72-4. Those
compounds are most potent binding to the Spike protein (Table 4) and have protein-protein

binding interface hotspot residues (Figure SA).

As to Cluster4, the binding pocket is far away from the protein-protein binding interface
(Figure 2), thus the hotspot residues marked in darker green are mostly around the binding site
but not near the interface (Figure 7). To investigate whether the ligand-residue interaction can
trigger the conformational changes on the residues located at the Spike-hACE2 protein-protein
binding interface, we performed residue correlation analysis and the results were shown in Figure
7. The binding site surrounding residues which tend to interact with the selected compounds and
at the same time have a high correlation with interface residues were marked in orange, and the
correlated interface residues were colored in yellow. The calculated residue-residue correlations
were normalized and listed in Table 6. Ser609, Tyr611, Ala612, and Arg726, the hotspot residues
with the ligand-residue interaction energies lower than -1.0 kcal/mol, have strong correlation with
8 interface residues applying 0.3 as the threshold of the correlation value. Among these 8 interface
residues, Tyr713 and Tyr755 were also key interface residues according to our previous research
result.[45] This means the interaction between the ligand and the binding site hotspot residues may
contribute to a cascade of the conformational change around the Spike-hACE2 binding interface
which weakens the Spike-hACE2 binding. Finally, 1002334-80-6 and 2001001-59-6 in total

having three promising binding modes (Table 5 and Figure 5B) entered the next stage.



Investigation on the ability of an allosteric ligand compromising Spike/hACE2
binding. We applied a similar protocol to prepare the starting conformations of the Spike/hACE2-
ligand complex as detailed above. 8 independent MD simulations were performed for most
systems. The predicted binding free energies of the protein-protein interaction were summarized
in Table 7. Comparing with the wild type binding free energy of -16.04, B1 C1 (compound
1426855-06-2 for Clusterl) shows very promising outcomes in reducing the binding affinity
between the protein complex with their influence (Part A of Table 7). Only 6 MD runs were
performed for B2 C1 as the compounds had little inhibitory effect on the Spike-hACE2 binding.
As all the 8 rounds of simulation for the rest complexes contributed to large standard deviation
(SD), we eliminated three calculated binding affinity values which were considered as outliers for
each system. The results were updated and exhibited in Part B of Table 7. It is shown that B2 C4
and B3 _C4 from Cluster4 have the best performance in disrupting the protein-protein interaction,
and the rest systems, two from Cluster]l and one from Cluster4 can also decrease the binding
affinity of the Spike protein to the hACE2 receptor. All the SD structural information of the 4
compounds is shown in Figure 8. This result is very promising as most selected systems exhibited
potentiality to inhibit Spike-hACE2 protein-protein interaction, suggesting the screening protocol

1s effective.



4. Discussion

The importance of this research. Computational prediction possesses the advantage of
lower cost and higher efficiency compared to in vitro and in vivo research during drug discovery
and development. By utilizing different in silico screening methods, algorithms with high
efficiency and with high accuracy cooperated as a multiple-step screening and prediction method.
Under the current pandemic situation, the rapid spread and variants of coronavirus as well as the
lack of clinical treatment of this disease is urgently calling for the discovery of promising antiviral
compounds for further research and clinical validation. Unlike most research in the field, we
focused the development of allosteric inhibitors targeting to compromise Spike-hACE2 binding.
An effective and potent allosteric inhibitor has better chance to escape from drug resistance, hence
it can be used to combat different variants of the coronavirus. We have developed and evaluated a
screening pipeline to screen allosteric inhibitors utilizing multiscale molecular modeling
techniques, including binding pocket prediction, docking simulations, molecular dynamics
simulations, binding free energy calculations, free energy decomposition, and correlation analysis.
Moreover, we have also come out with guidelines on how to select compounds to enter the next
stages of screening. The research protocol can be applied to develop allosteric inhibitors of the

Spike protein of Sars-CoV2 through large-scale screenings.

The hierarchical screening pipeline. According to the research, compounds collected
from different libraries were subjected to a series of hierarchical virtual screenings. The selection
of compounds was under cautious consideration, especially for Library 3, which includes antiviral
compounds from different sources and approved drugs. Considering the docking scores are
affected by the ligand size, we selected top-ranking ligands not purely based on docking scores,

but also the sources. For example, we selected a number of drugs to enter the next stage of



screening pipeline even though their docking scores are not very satisfactory. When we selected
potent inhibitors to evaluate their inhibitory effect on weaken Spike-hACE2 binding, not only the
binding affinity of ligands to the Spike protein, but also the allosteric effect were considered. The
allostery occurs when the hotspot residues themselves are binding surface residues or the hotspots
residues have strong correlation with binding surface residues. For the two allosteric binding
pockets, Clusterl is located around the protein-protein binding interface, while Cluster4 is far away
from the protein-protein binding interface. We are more interested in identifying allosteric
inhibitors binding in the Cluster4 binding pocket, as the allosteric inhibitors have better ability to
escape drug resistance effect. For the last stage of the screening, although 1053055-44-9 and
149297-82-5 have promising binding affinity to the Spike protein at the Cluster4 binding pocket
(Table 5), the residue-ligand interaction analysis did not show strong correlations between their
hotspot residues and protein-protein binding interface residues. Thus, they were not selected to
enter the last stage of the screening pipeline, i.e., to study the inhibitory ability of a compound

weakening Spike-hACE2 binding.

In our screening pipeline of identifying allosteric inhibitors, two types of MD simulations
were performed for Library 2 and Library 3. The MD simulations of a Spike-Ligand complex and
a Spike-hACE-ligand serves different purpose. For the first type of MD simulations, we calculated
binding free energy between a ligand and the Spike protein. The lower the binding free energy, the
better chance it is a strong allosteric inhibitor. Many selected docking hits were dropped off at this
stage, as they drifted away from the binding pocket during the 100 ns MD simulations. Thus, MD
simulation is an efficient filter in screening allosteric inhibitors, especially for a not well-defined

binding pocket. For the second type of MD simulations, we calculated the binding free energy of



Spike and hACE2 binding to confirm the allosteric effect. The higher the binding free energy, the

better the inhibitory effect.

The validation of our protocol using compounds with in vitro experimental data. To
the best of our knowledge, there is no report on the allosteric inhibitors of the Spike protein of
Sars-CoV2. We indirectly evaluated our screening protocol using a compound library consisting
of compounds with known in vitro experimental data of inhibiting Spike protein and the hACE2
protein binding. Encouragingly, our screening results are consistent with the measured data,
suggesting the screening protocol is valid. However, we want to emphasize that the experiment
did not provide information on how and where an inhibitor binds to the Spike or Spike-hACE2

proteins.

The prediction stability of MD simulation result. According to the calculated binding
affinity for the same compound in separate simulations, the binding free energy sometimes variates
a lot during multiple simulations as illustrated in Table 7. One reason lies that the allosteric binding
pockets are not well-defined thus the docking poses may not have high quality. Another reason for
this phenomenon should be related to the compound size. Most compounds in this study are very
bulky and flexible, leading to high fluctuations during the MD simulations. This high uncertainty
problem can be mitigated by performing multiple independent MD simulations. For example, we
conducted up to eight MD runs at the last stage of the screening pipeline and the prediction results

became more reliable after removing outliers.

5. Conclusion

In this research, we successfully developed a screening pipeline to develop allosteric

inhibitors to weaken the interaction between the Spike protein and hACE2 protein. The



compromised Spike binding can reduce the infectability of the coronavirus. Two allosteric binding
sites were identified and evaluated through virtual screenings of three compound libraries. Active
ligands in Clusterl tend to directly interfere with the binding of the Spike protein to the hACE2
receptor, while active ligands in Cluster4 can serve as allosteric binding modulators to inhibit the
interaction between the Spike protein and the hACE2 receptor. The screening protocol is at least
partially validated by a set of compounds in Library 2 for which their inhibitory activities of Spike-
hACE2 binding were measured. Applying the multiple-step screening pipeline, four out of 77,448
compounds were identified as allosteric inhibitors which can decrease the binding affinity of the
Spike-hACE2 complex as indicated by more positive MM-PBSA-WSAS binding free energies.
Compared to in vitro and in vivo experiments, our computational method is not only highly
efficient and cost-effective, but also elucidates the molecular mechanism of the allosteric effect to

guide rational drug development.
Key Points

e We proposed to develop allosteric inhibitors for Spike-hACE2 of Sars-CoV2 which have
potential to escape from drug resistance.

e We provided a hierarchical in silico screening protocol to identify allosteric inhibitors
targeting the Spike-hACE2 protein-protein binding. This proposed method possesses
higher screening efficiency and less cost compared to in vitro and in vivo experiments.

e This multistep screening protocol has been validated with a compound library with in vitro
inhibitory activities of the Spike-hACE2 binding.

e Four allosteric compounds were identified from an antiviral compound library. One of

them can lower the binding affinities of Spike-hACE2 binding more than 2.0 kcal/mol.



Supplementary Data

Table S1 summarizes the docking scores of top 200 drug-like compounds (library 1) in seven
different clusters predicted by Sybyl. Table S2 and Table S3 list the top 200 docking score of
compounds with in vitro data (library 2) in clusterl and cluster4, respectively. Table S4 describes
detailed MM-PBSA binding free energies of the 18 compounds from library 2 during multiple
simulations in cluster] and Table S5 describes MM-PBSA binding free energies of the 14
compounds from library 2 in cluster4 during multiple simulations. Table S6 shows detailed MM-
PBSA binding free energies for N1 to N7 during multiple simulations. Table S7 - S8 lists the top
200 docking scores of the antiviral compounds (library3) in cluster] and cluster4, respectively.
Table S9 — S10 includes the detailed MM-PBSA binding free energies of the 25 ligands in clusterl

and 16 ligands in cluster4, respectively, from library 3 during multiple simulations.
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Tables

Table 1. Identified key residues for 7 predicted binding sites.

Clusterl  Cluster2 Cluster3 Clusterd Cluster5 Cluster6 Cluster7
ARG714 ASN682 PHE660 ALA657 VAL655 VAL667 LEU773
GLU731 TYR683 ILE670 SER659 PHE775 ILE670 PHE775
ILE732 LYS684  ILE678 PHE607  ILE618 ALA671  TYRG625
TYR733 THR690 ASN682  VAL771  SER619 VAL693  LEU628
TYR749 PHE724 TYR683  ASN614  TYR625 ALA695  PHE637
PRO751 GLU725 VAL610 LYS616 CYS651  VAL770 LEU647

VAL772  TRP613 VAL601 VAL772

SER774

TRP613

ARG615

Table 2. Cluster]l for Library 2: calculated binding free energies (kcal/mol) between allosteric
ligand and Spike protein using the MM-PBSA-WSAS method. N1-N7 were further evaluated their
ability to compromise Spike/hACE2 binding.

Roundl Round2 Round3 Round4 Round5

NCGC00386028-03 | -3.95+0.11 | -0.59+0.88 -5.7+0.33 -4.24+1.05 4.76+0.85
NCGC00485882-01 | 2.01+0.73 | -6.58+0.42 0.51+0.35 -5.37+0.12 7.65+0.58
NCGC00389662-01 | -0.37+0.29 | -3.67+0.33 -7.5£0.90 3.13+£0.16 -13.34+0.68 (N1)
NCGC00521952-01 | -7.94+0.44 | -0.83+0.44 -10.09+£0.29 (N2) | -10.29£1.09 (N3) | -5.02+0.38
NCGC00167505-03 | -9.16+0.89 | -15.42+1.5 (N4) | 0.17+0.35 -11.51+0.35 (N5) | -10.04+0.70 (N6)
NCGC00179313-05 | -6.52+0.29 | 4.49+0.27 -1.7£1.02 -0.25+1.51 -0.13+0.51
NCGC00379053-02 | -0.67+0.64 | 3.65+0.38 -13.33+0.18 (N7) | -2.18+0.73 -1.92+0.11
NCGC00482516-02 | -0.82+0.32 | -2.61+1.08 -5.68+1.21 -7.66+1.00 -3.22+0.54

Table 3. Clusterl for library 2: Calculated complex energies and binding free energies (kcal/mol)
using the MM-PBSA-WSAS method of Spike-hACE2 complex systems under the influence of
compounds with docking score and experiment data.

System N1 N2 N3 N4 N5 N6 N7
Roundl -14.86+0.53 | -12.55+0.14 = -25.07+0.14 = -18.37+0.31 | -17.46+0.43 -17.87+0.23 -7.54+0.08
Round2 6.39+0.16  -16.75£1.01 = -19.95£0.77 -10.96£0.45 -16.43+0.12  -28.47+0.67  -19.75+0.09
Round3 -15.33+0.46 = -17.69£0.16 = -18.06+0.41 = -15.77+0.32 = -11.15%£0.22 -14.87£0.49  -19.76+0.44
Round4 905038 -14.80+£0.17 -14.16£0.28  -9.83+0.34  -12.46£0.30  -22.17+0.37 = -10.87+0.57
Round5 -1437£0.33  -17.79+0.45  -19.42+0.15 -21.224021  -16.28+0.38  -7.70+0.49 -8.53+0.45
Round6 -10.30£0.10  -17.82+0.29 = -14.96+0.51 -10.20+0.22  -13.48+0.30 -12.33+0.05  -16.93+0.60
SD 3.35 1.95 3.60 4.37 231 6.73 5.10
AVE -11.72 -16.23 -18.60 -14.39 -14.54 -17.24 -13.90




-9.37 -6.93 -7.06 -8.10

score
Inhibition
efficacy’

Docking ‘

-24.30 0.00 0.00 0.00

* Disrupting of the Spike protein-ACE2 interaction may cripple the ability of SARS-CoV-2 virions to
infect host cells. The AlphaLISA assay determines the ability of a compound to disrupt the
important protein-protein interaction. The measured inhibition efficiency data in AlphaLISA assay
is normalized to a high-signal vehicle control (ACE2 + RBD + Beads + DMSO) and a low-signal
control (ACE2 + Beads + DMSO). A high signal approaching zero indicates no deviation from the
ACE2 and RBD protein-protein interaction; on the contrary, a low signal approaching -100
indicates the interaction between ACE2 and RBD does not occur. More details on the experimental
protocol can be found from https://opendata.ncats.nih.gov/covid19.

Table 4. Clusterl for Library 3: Calculated binding free energies (kcal/mol) between ligands and
the Spike protein using the MM-PBSA-WSAS method of compound-Spike protein systems.

Roundl Round2 Round3 Round4 Round5
1246392-09-5 | -4.29+0.26 | -7.85+1.21 | 1.17+0.58 -4.79+1.83 2.16+0.60
1426855-06-2 | 6.52+0.84 -7.14+0.76 | -10.22+0.49 (B1_C1) | 2.07+0.79 -3.60+1.53
1426855-10-8 | -16.10+0.95 | -10.18+0.85 | -10.59+0.45 -16.31£0.68 (B3 _Cl1) | -7.27+1.02
14350-38-0 -6.35+£0.86 | -7.61£1.06 | -7.61£1.06 -23.08+0.29 (B2 _C1) | -5.59+0.84
20777-72-4 0.12+0.83 -9.58+0.29 | -2.82+0.14 -9.58+0.29 -9.04+0.13

Table 5. Cluster4 for Library 3: Calculated binding free energies (kcal/mol) between ligands and
the Spike protein using the MM-PBSA-WSAS method of compound-Spike protein systems.

Roundl Round?2 Round3 Round4 Round5
1002334-80-6 | 0.31£2.16 -10.93+0.97 (B1 C4) | -4.28+1.10 | 4.91+0.83 -6.60+1.16
1023756-44-6 | -3.41+0.27 2.75+1.05 4.10+0.60 0.27+0.19 4.10+1.44
1053055-44-9 | -3.09+0.71 -10.70+0.19 -7.47+£1.10 | -12.31+0.80 | -6.27+0.90
149297-82-5 | -5.09+0.58 -7.33+0.78 -11.46+0.65 | -5.63£0.61 | -12.39+1.46
1807796-52-6 | 1.77+£0.57 -5.05+0.59 -7.93+0.60 | 3.91£1.10 1.45+1.12
2001001-59-6 | -14.70+£0.69 (B2 _C4) | -10.88+0.93 (B3 _C4) | -6.57+1.01 | -7.92+0.41 | -11.01+0.10

Table 6. Residue correlation value of the Spike Protein.

RES 1 RES 2 CORR
SER609 TYR711 0.351
SER609 TYR713 0.333
TYR611 LEU712 0.331
TYR611 TYR713 0.325
TYR611 AGR714 0.332
TYR611 LEU752 0.345
ALA612 LEU712 0.349
TYR711 TYRT755 0.331




TYR711
AGR726

GLY756
AGR717

0.328
0.397

Table 7. Calculated binding free energies (kcal/mol) using the MM-PBSA-WSAS method of the

Spike-hACE2 complex with the influence of each compound

A: predicted binding free energy and system energy for each simulation process

Bl ClI B2 Cl B3 ClI Bl C4 B2 C4 B3 C4
Round1 -11.70 2226 2824 -13.19 -19.13 -15.57
Round?2 -17.72 -15.87 -14.09 -17.39 -17.37 21.62
Round3 -16.44 -20.20 -18.10 -19.06 -12.56 -13.61
Round4 -18.42 21.82 -3.40 -26.99 -15.31 25.71
Rounds -15.19 20.16 1227 -12.52 -12.33 -9.44
Round6 -14.20 -16.01 -12.27 -12.65 -20.32 -25.86
Round? -18.40 -25.43 21.10 -16.88 -10.92
Rounds -5.10 -15.04 -18.69 -10.87 -7.14
AVE -14.65 -19.39 -16.10 -17.70 -15.60 -16.23
SD 4.20 2.56 7.37 4.66 3.20 6.85

B: eliminate several simulation results to keep the SD of predicted binding free energy within 3.0

B1 Cl1 B3 Cl1 Bl C4 B2 C4 B3 C4
Roundl -11.70 Round2 -14.09 Round1 -13.19 Round3 -12.56 Round1 -15.57
Round?2 -17.72 Round3 -18.10 Round2 -17.39 Round4 -15.31 Round3 -13.61
Round3 -16.44 Round5 -12.27 Round5 -12.52 Round5 -12.33 Round5 -9.44
Round5 -15.19 Round6  -12.27 Round6  -12.65 Round7  -16.88 Round7  -10.92
Round6  -14.20 Round8 -15.04 Round8 -18.69 Round8  -10.87 Round8  -7.14
AVE -15.05 -14.35 -14.89 -13.59 -11.34
SD 2.05 2.16 2.61 2.18 2.98
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Figure 1. The workflow of the research protocol.



Figure 2. Seven binding sites predicted by Sybyl. The red dots show the center of each binding
site.
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Figure 3. The heatmap of residues from the Spike protein. The residues were selected if their
energy contribution exceeded -1 kcal/mol during compound NCGC00389662-01 binding.
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Figure 4. The residues from the Spike protein which interact frequently with compound
NCGC00389662-01 are around the Spike-hACE2 binding interface. (A): The overview position
of the residues shown in yellow cartoon. (B): A close-up view of the hot residues labeled with
residue names. (C): Hotspot residues are shown in yellow lines and labeled with residue names. In

all panels, the center of cluster] is marked as a red dot.
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Figure 5. The heatmap of residues from the Spike protein. The residues were selected if their
energy contribution exceeded -1 kcal/mol during the binding of selected compounds. Finally
selected conformations for compounds are marked in red boxes for next step complex MD
simulation with the compounds. (A): residue energy decomposition results for compounds
selected in clusterl. (B): residue energy decomposition results for compounds selected in cluster4.
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Figure 6. The residues from the Spike protein which interact frequently with selected compounds
for Cluster1 and are around the Spike-hACE2 binding interface. (A): The overview position of the
residues shown in yellow cartoon. (B): A close-up view of the hot residues labeled with residue
names. (C): Hotspot residues are shown in yellow lines and labeled with residue names. In all
panels, the center of cluster! is marked as a red dot.
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Figure 7. The residues from the Spike protein which interact frequently with selected compounds
for Cluster4 and are around the Spike-hACE2 binding interface. (A): The overview position of the
residues shown in yellow cartoon. (B): A close-up view of the hot residues labeled with residue
names. (C): Hotspot residues are shown in yellow lines and labeled with residue names. In all
panels, the center of cluster4 is marked as a red dot.
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Figure 8. The chemical structures of the 4 identified compounds.
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Text: An allosteric inhibitor shown as sticks on bottom-left corner could interfere with Spike
and hACE?2 binding.



