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Abstract 

 While the COVID-19 pandemic keeps deteriorating, the effective medicines target the life 

cycle of the SARS-CoV-2 are still under development. With more highly infective and dangerous 

variants of the coronavirus emerged, the protective power of vaccines decreased or vanished. Thus, 

the development of drugs which are free of drug resistance is in dire need. The aim of this study 

is to identify allosteric binding modulators from a large compound library to inhibit the binding 

between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme 

2 (hACE2). The Spike protein binding to hACE2 is the first step of the coronavirus to infect the 

host cells. We first built a compound library containing 77,448 antiviral compounds. Molecular 

docking was then conducted to preliminarily screen compounds which can potently bind to the 

Spike protein at two allosteric binding sites. Next, molecular dynamic simulations were performed 

to accurately calculate the binding affinity between the Spike protein and an identified compound 

from docking screening, and investigate whether the compound can interfere with the binding 

between Spike and hACE2. We successfully identified two possible drug binding sites on the Spike 

protein and discovered a series of antiviral compounds which can weaken the interaction between 

the Spike protein and hACE2 receptor through the conformational changes of the key Spike 

residues at the Spike-hACE2 binding interface induced by the ligand binding at the allosteric 

binding site. We also applied our screening protocol to another compound library which consists 

of 3,407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured. 

Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike-ACE2 

binding. Thus, we developed a promising computational protocol to discover allosteric binding 

inhibitors for the binding of Spike protein of SARS-CoV-2 to hACE2 receptor, and several 

promising allosteric modulators were discovered. 
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1. Introduction 

 The outbreak of coronavirus disease 2019 (COVID-19) caused by the epidemic SARS-

CoV-2 virus continues being uncontrolled around the US and many other countries all over the 

world. More seriously, new variants of the coronavirus emerged due to detrimental mutations on 

viral functional proteins and structural proteins especially the Spike protein.[1-3] The only 

countermeasure recommended by governments is vaccination.[4] However, the reinfection of the 

recovered patients is still a rising concern,[5-7] and the scientific research data is still not sufficient 

enough to confirm whether those vaccinated populations can acquire immunity for different 

variants of SARS-CoV-2 coronavirus or not. Moreover, the treatment of COVID-19 patients is 

still facing a great challenge, with many proposed drugs continuously being reported of their severe 

side effects. For example, Remdesivir may give rise to unwanted effects of hepatic disorder and 

cardiac adverse events,[8-10] and Hydroxychloroquine may raise the risk of cardiotoxicity.[11-13] 

SARS-CoV-2 virus, a positive-sense single-stranded RNA virus,[14] shares a similar genomic 

organization to other beta-coronavirus.[15] It consists of four structural proteins and many 

nonstructural proteins (NSP). The structural proteins include Spike protein (S), envelope protein 

(E), membrane (M), and nucleocapsid (N). S, E, and M constitute the viral coat, and  N packages 

the viral genome.[16] Specifically, the Spike protein mediates the virus entry into human 

angiotensin-converting enzyme 2 (hACE2) through the fusion of viral and cellular membranes.[17] 

Therefore, the interference of the interaction between the Spike protein and hACE2 should be a 

feasible way to inhibit the virus attachment to the host and thus decrease the infection.  

 Nowadays, many studies have been conducted to discover and develop therapeutics to 

inhibit the Spike-hACE2 protein-protein binding.[18-21] The development of drugs which can 



weaken the Spike/hACE2 interaction through allostery could be a valid avenue to overcome the 

detrimental mutation effect.  In this work, we attempted to discover potential inhibitors which bind 

to Spike protein at allosteric sites. With the development of computer-aided drug design (CADD) 

technology, in silico prediction accuracy and efficacy is continuously increasing. Combining 

different types of scoring functions greatly contributes to the successful identification of promising 

compounds through large-scale virtual screening. Since antiviral compounds are to date the most 

promising candidate category to treat COVID-19,[22, 23] this study conducted in silico screening 

among a library consisting of 77,448 antiviral compounds. Molecular docking screening, 

molecular dynamic (MD) simulations, and MM-PBSA-WSAS binding free energy calculation 

were conducted as a multiple-step screening pipeline to identify compounds which can inhibit the 

binding of the Spike protein to hACE2. Key residues for the protein-ligand interaction were also 

analyzed during MD simulation process. To strengthen our screening reliability, the same 

screening protocol was also performed using another compound library with in vitro experimental 

data to inhibit the Spike-ACE2 protein-protein interaction. Overall, our findings can provide 

insights to COVID-19 drug development.  

  



2. Methods And Experimental Design 

 Allosteric binding site identification and validation. The crystal structure of the Spike-

ACE2 complex was downloaded from Protein Data Bank (PDB ID: 6M17)[24]. The latest 

published crystal structure of the Spike protein is still lacking the information of the binding site 

for drug attachment. We first used the SiteID module of the Sybyl software to detect possible 

binding pockets of the Spike protein which was extracted from the Spike-ACE2 complex.[25] 

Each binding pocket is represented by key surrounding residues. The potential of an allosteric 

binding site was validated by the docking performance of a great number of structurally diverse 

compounds as described below.  

 Screening library construction. We compiled three compound libraries as detailed below. 

Library 1 consists of 123,192 druglike compounds collected by ZINC database.[26] Library 1 was 

applied to evaluate the potential of an allosteric binding site to serve as a drug binding pocket. To 

compile Library 2, we downloaded a ligand library from NIH OpenData Portal,[27] which 

possesses a series of compounds with SARS-CoV-2 in vitro screening data. The experimental data 

describes the inhibition extent of Spike-hACE2 interaction under the influence of each compound. 

The third library, Library 3 is a collection of antiviral compounds from various sources. [28-30] 

 Validation of screening protocol. In this part of our research, we aimed to design a 

protocol to gradually screen out a series of compounds through a large compound library with 

experimental data describing their activity of inhibiting the interaction between the Spike protein 

and hACE2 protein. After being applied to these reported compounds, our protocol can be 

validated by comparing the experimental data with our prediction results. Our general protocol is 

divided into three steps: 1) dock the compound library to the Spike protein to preliminary screen 



out ligands which bind to the Spike protein with high affinities. 2) conduct MD simulations for 

top-ranking ligands in Step 1 with the Spike protein for more accurate binding affinity prediction. 

3) perform MD simulations for promising ligands from Step 2 with the Spike-hACE2 complex 

and calculate binding free energy between the Spike protein and hACE2 protein under the 

interference of an allosteric ligand. We also conducted binding free energy calculation and energy 

decomposition analyzation based on MD simulation results, and the final screening results were 

compared to the experimentally reported data.  

 Glide Docking Screening. By using the Receptor Grid Generation module from Maestro 

software platform (Schrödinger Release 2017-3: Schrödinger, LLC, New York, NY, 2017.), 

binding pockets were located by the key residues identified by SiteID. Glide docking was 

performed with the major settings described as follows: (1) the scaling factor of van der Waals 

radii is 0.8 and the partial charge cut off is 0.15; (2) flexible ligand docking was performed under 

standard precision; (3) intramolecular hydrogen bonds were rewarded; (4) other settings were kept 

default. One pose per ligand was written out. Generally, a binding site should have a higher 

possibility of serving as a drug binding site when more drug-like compounds tend to have better 

binding affinities at the site, which is reflected by the lower docking scores.  

 MD simulation. During the MD simulation for Step 2, each ligand-Spike protein system 

includes a ligand, a Spike protein, approximately 20,500 TIP3P water molecules,[24] 60 Cl¯ to 

keep the salt concentration at 0.15 M and necessary Na+ to neutralize the system. For Step 3 MD 

simulation, each system includes a ligand, a Spike-hACE2 complex, approximately 43,800 TIP3P 

water molecules, 120 Cl¯ ions, and necessary Na+ ions to neutralize the system. The RESP partial 

charges were obtained by fitting the HF/6-31G* electrostatic potentials generated using the 

Gaussian 16 package.[31, 32] The force field parameters for ligands were from the General Amber 



Force Field (GAFF),[33] and the parameters of proteins came from  AMBER FF14SB [34]. The 

topologies were all prepared utilizing the Antechamber module from AMBER software 

package.[35, 36]  For each MD simulation for a ligand-protein complex, a five 10,000-step energy 

minimization was first performed to remove possible steric crashes in the system. The restrained 

harmonic force constant was reduced from 20 to 10, 5, 1, and 0 kcal/mol/Å2, step by step. The 

followed MD simulations consist of three phases: relaxation, equilibrium, and sampling. During 

the relaxation phase, the system was heated up from 50 K to 298 K. For the equilibrium phase and 

the sampling phase, a 10-ns and a 100-ns MD simulation were carried out at 298 K, respectively. 

For each system, the equilibrium and sampling phases were repeated multiple times as individual 

runs. Additional parameter setting during the MD simulations includes: the temperature was 

controlled utilizing Langevin dynamics with a collision frequency of 5 ps−1;[37] pressure was 

regulated using the isotropic scaling algorithm with the relaxation time of 1.0 ps; The time step 

was 1 fs for the relaxation phase and 2 fs for the other two phases. The SHAKE algorithm was 

utilized to constrain the bonds involving Hydrogen atoms. [38] All minimization, relaxation and 

the equilibration were performed using the  Central Processing Unit (CPU) version of the PMEMD 

module in the AMBER 18 package,[33] and the sampling phase was conducted using the Graphic 

Processing Unit (GPU) version of PMEMD.[39] 

 MM-PB/GBSA-WSAS Binding Free Energy Calculation and Energy Decomposition. 

The solvation free energy for each MD system was calculated using the molecular 

mechanics/Poisson Boltzmann surface area (MM/PBSA) method or molecular mechanics/ 

Generalized Born surface area (MM/GBSA) method, and the conformational entropy was 

estimated with the WSAS method.[40-43] For a molecule in the solvent, calculation equation of 

the free energy is as follows: 



Δ𝑮𝑴𝑴-𝑷𝑩/GBSA = ΔH – 𝑻Δ𝑺 = Δ𝑬𝒗𝒅𝒘 + Δ𝑬𝒆𝒍𝒆+ Δ𝑬inter + Δ𝐺𝑝
𝑠𝑜𝑙 + Δ𝐺𝑛𝑝

𝑠𝑜𝑙– 𝑻Δ𝑺 

 Δ𝑬𝒗𝒅𝒘 is the van der Waals energy, Δ𝑬𝒆𝒍𝒆 is the gas phase electrostatic energy, Δ𝑬inter is 

the internal energy, Δ𝐺𝑝
𝑠𝑜𝑙 and Δ𝐺𝑛𝑝

𝑠𝑜𝑙 are the polar and nonpolar solvation energy, T is the absolute 

temperature, and Δ𝑺 is the change of conformational entropy. 362 snapshots were evenly collected 

for MD simulation systems containing a ligand and a Spike protein (Step 2), and 456 snapshots 

were evenly collected for MD simulation systems containing the Spike-hACE2 complex with 

ligands (Step 3), in order to perform MM-PBSA-WSAS calculation. For energy decomposition, 

the solvent effect was taken into account using a Generalized Born model.[44] The external and 

internal dielectric constant is 80 and 1, respectively. The calculation was conducted utilizing the 

Sander program in AMBER 18.[33] Residues are considered as hot spot residues when the MM-

GBSA ligand-residue interaction is stronger than -1.0 kcal/mol. We conducted free energy 

decomposition analyses for both Spike-ligand (Step 2) and Spike-hACE2-ligand (Step 3) systems, 

utilizing 1000 and 5000 snapshots, respectively. 

3.  Results 

3.1 Identification and Validation of Allosteric Binding Sites 

 Seven binding sites were detected by SiteID module of the Sybyl software package,[25] 

with the surrounding residues listed in Table 1 and shown in Figure 2.  Docking screenings were 

performed at each binding site using Library 1. According to the docking results of this druglike 

compound library to each defined binding site (Table S1), Cluster1 and Cluster4 have 33 and 21 

compounds with docking scores better than -7.0 kcal/mol, respectively, and thus were identified 

as highly possible drug binding sites on the Spike protein. Other clusters all have none or no more 



than three ligands with docking scores lower than -7.0 kcal/mol, indicating their poor binding 

affinities between the compounds and Spike protein at these binding sites.  

3.2 Validation of Screening Protocol Using Library 2 

 Docking screening. Library 2 contains 3,407 compounds with in vitro data to cripple the 

Spike-ACE2 interaction. The docking results of this compound library to Cluster1 and Cluster4 

have been summarized in Table S2 and S3. 30 top ligands for Cluster1 and 20 top ligands in 

Cluster4 have been chosen for compound-Spike protein MD simulation.  

 MD simulations for a ligand/Spike protein complex. All the top compounds from 

docking screening are further filtered by this first-round MD simulation. For all simulation systems, 

the starting conformations of the ligands came from the docking results. For Cluster1, 12 

compounds were eliminated by this MD simulations filter because those ligands drifted away from 

the binding pocket during the simulation process. 18 compounds can bind to the Spike protein 

throughout the simulation process and were performed two more rounds of MD simulations using 

time-dependent random seed for the Langevin dynamics. 8 of these compounds possess promising 

predicted binding free energy according to the calculation and were performed another two rounds 

of MD simulation for each compound. The predicted binding free energy for 8 compounds during 

multiple rounds of simulation are listed in Table 2 and detailed information for 18 compounds has 

been summarized in Table S4. Lower binding free energy means better binding affinity of the 

ligand targeting to the Spike protein. On the other hand, although Cluster4 has 14 compounds 

which can steadily bind to the Spike protein throughout the first-round simulation, none was 

identified with low binding free energy after 3 rounds of MD simulations. Thus, Cluster4 does not 

have a candidate compound survived for the next-step research. The detailed information of 

predicted binding free energy for 14 compounds is shown in Table S5.  



 Confirmation of an allosteric ligand to compromise Spike/hACE2 binding.  According 

to the predicted binding affinity for the 8 compounds for Cluster1 in the previous step, 5 

representative conformations were generated during multiple simulations for each compound. 

Considering the calculated binding free energy for each simulation, 7 Spike-hACE2-ligand 

systems, involving 4 different compounds which have promising binding affinity to the Spike 

protein, were constructed for further study. The selection has been labeled in Table 2 (N1 to N7). 

To prepare the initial structure of a Spike-hACE2-ligand complex, the Spike protein in a 

representative MD conformation of Spike-ligand complex was aligned to the Spike protein in the 

Spike-hACE2 crystal structure resulting in a translation-rotation matrix. Then ligand structure in 

the Spike-ligand complex was transformed using the matrix and then combined with the Spike-

hACE2 complex.    

 From another research publication by our lab, the predicted binding free energy between 

the wild-type Spike protein and hACE2 is -16.04 kcal/mol using the same MD simulation setting 

as described in the Method section.[45] During this research, the higher predicted binding free 

energy between the Spike protein and the hACE2 protein under the influence of a compound 

represents the stronger inhibitory effect the allosteric ligand has. Every Spike-hACE2-ligand 

system underwent 6 separate simulations and the calculated Spike-hACE2 binding free energies 

were listed in Table 3 and the decomposition of different energy terms was summarized in Table 

S6. The docking score and in vitro experimental value for each compound were also summarized 

in Table 3 for comparison. Encouragingly, the prediction results are consistent with the 

experimental values. N1 system (Spike-hACE2 complex with compound NCGC00389662-01) has 

the highest predicted binding free energy between the Spike protein and the hACE2 protein under 

the influence of the compound based on the 6 simulations, indicating the interaction between the 



Spike protein and the hACE2 has been compromised. And the in vitro experiment result for N1 

also shows the efficacy of -24.30 to inhibit the interaction between the Spike protein and hACE2 

(Table 3). For other systems (N2 to N7), the ligands either enhanced or slightly decreased the 

binding affinities between Spike and hACE2, thus the inhibitory effect was not obvious. This result 

is consistent with the experimental findings that those ligands (NCGC00521952-01, 

NCGC00167505-03, NCGC00379053-02) cannot decrease the binding between Spike and hACE2 

proteins, with their efficacy of 0 in in vitro experiment.    

 Furthermore, to facilitate the development of more potent allosteric inhibitors, we 

conducted free energy decomposition analysis to identify hotspot residues which make significant 

contributions to the protein-ligand binding utilizing all six MD trajectories for the N1 system. A 

heatmap exhibiting the identified hotspot residues was shown in Figure 3. As shown in Figure 

4C, most hotspot residues are around the protein-protein binding interface, and the allosteric effect 

upon ligand binding can be effectively transferred to those residues. The identified hotspot residues 

here, Ile32, Cyx40, Glu744 and Cyx748, were also recognized as key residues in our previous 

study to interact with the hACE2 receptor at the protein-protein binding interface.[45] The 

inhibitory effect is the result of conformational changes on those hotspots located at the Spike-

hACE2 binding interface.       

3.3 Identification of Promising Ligands from Library 3.  

 Glide docking screening. 77,448 compounds in Library 3 were screened and ranked 

according to their docking scores, which were summarized in Table S7 for Cluster1 pocket and 

Table S8 for the Cluster 4 pocket.  For those antiviral compounds, the best docking score is -9.76 

kcal/mol for Cluster1 and -9.19 kcal/mol for Cluster4. All compounds with docking scores lower 

than -8.0 kcal/mol were selected for the next step MD simulation. In total, 46 compounds for 



Cluster1 and 43 compounds for Cluster4 were selected. In addition, 15 top-ranked approved drugs 

were also selected to undergo the MD simulation screening for both binding pockets.     

 MD simulations for a ligand/Spike protein complex. Again, the docking structure of a 

compound served as the starting conformation for the subsequent MD simulations. For Cluster1, 

only 25 ligands, including approved drugs and antiviral compounds, completed the whole 

procedure of MD simulations and the calculated binding free energies after two rounds of MD 

simulations were summarized in Table S9. Three more MD runs were performed for five antiviral 

compounds which had the best MM-PBSA-WSAS binding free energies calculated using the 

snapshots collected in two MD runs. As shown in Table 4, two compounds, 1426855-10-8 and 

14350-38-0, outperformed others in terms of potency and reliability of prediction. As to Cluster4, 

only 16 ligands completed the whole procedure of MD simulations and the MM-PBSA-WSAS 

binding free energies were listed in Table S10. For six antiviral compounds, three more MD runs 

were performed and the binding free energies were summarized in Table 5. Three promising 

compounds, 1053055-44-9, 149297-82-5 and 2001001-59-6 were recognized as promising 

inhibitors. 

 However, strong binding may not necessarily be a potent allosteric inhibitor as the 

perturbation upon ligand binding must be propagated to the protein-protein binding interface and 

triggered conformational changes on the hotspot residues. We conducted energy decomposition to 

those systems which exhibit good binding affinities to the Spike protein. The heatmap for Cluster1 

and Cluster4 were depicted in Figure 5A and 5B, respectively. Spike protein residues with strong 

ligand-residue interactions are marked in darker colors. As Cluster 1 is around the Spike-hACE2 

binding interface, naturally most hotspot residues are located at the protein-protein binding 

interface. Those hotspot residues located around the protein-protein binding interface are colored 



in yellow (Figure 6). Ile732, Tyr733, Cys740, Glu744, and Tyr749, which are identified as key 

residues in this study, were also recognized as hotspot residues at the protein-protein interface to 

facilitate the binding of the Spike protein to hACE2 in our previous research.[45] The following 

compounds were selected for further study: 1426855-06-2, 1426855-06-8, and 20777-72-4. Those 

compounds are most potent binding to the Spike protein (Table 4) and have protein-protein 

binding interface hotspot residues (Figure 5A).    

 As to Cluster4, the binding pocket is far away from the protein-protein binding interface 

(Figure 2), thus the hotspot residues marked in darker green are mostly around the binding site 

but not near the interface (Figure 7).  To investigate whether the ligand-residue interaction can 

trigger the conformational changes on the residues located at the Spike-hACE2 protein-protein 

binding interface, we performed residue correlation analysis and the results were shown in Figure 

7. The binding site surrounding residues which tend to interact with the selected compounds and 

at the same time have a high correlation with interface residues were marked in orange, and the 

correlated interface residues were colored in yellow. The calculated residue-residue correlations 

were normalized and listed in Table 6. Ser609, Tyr611, Ala612, and Arg726, the hotspot residues 

with the ligand-residue interaction energies lower than -1.0 kcal/mol, have strong correlation with 

8 interface residues applying 0.3 as the threshold of the correlation value. Among these 8 interface 

residues, Tyr713 and Tyr755 were also key interface residues according to our previous research 

result.[45] This means the interaction between the ligand and the binding site hotspot residues may 

contribute to a cascade of the conformational change around the Spike-hACE2 binding interface 

which weakens the Spike-hACE2 binding. Finally, 1002334-80-6 and 2001001-59-6 in total 

having three promising binding modes (Table 5 and Figure 5B) entered the next stage.  



 Investigation on the ability of an allosteric ligand compromising Spike/hACE2 

binding. We applied a similar protocol to prepare the starting conformations of the Spike/hACE2-

ligand complex as detailed above. 8 independent MD simulations were performed for most 

systems. The predicted binding free energies of the protein-protein interaction were summarized 

in Table 7. Comparing with the wild type binding free energy of -16.04, B1_C1 (compound 

1426855-06-2 for Cluster1) shows very promising outcomes in reducing the binding affinity 

between the protein complex with their influence (Part A of Table 7). Only 6 MD runs were 

performed for B2_C1 as the compounds had little inhibitory effect on the Spike-hACE2 binding. 

As all the 8 rounds of simulation for the rest complexes contributed to large standard deviation 

(SD), we eliminated three calculated binding affinity values which were considered as outliers for 

each system.  The results were updated and exhibited in Part B of Table 7. It is shown that B2_C4 

and B3_C4 from Cluster4 have the best performance in disrupting the protein-protein interaction, 

and the rest systems, two from Cluster1 and one from Cluster4 can also decrease the binding 

affinity of the Spike protein to the hACE2 receptor. All the SD structural information of the 4 

compounds is shown in Figure 8. This result is very promising as most selected systems exhibited 

potentiality to inhibit Spike-hACE2 protein-protein interaction, suggesting the screening protocol 

is effective.   

  



4. Discussion 

 The importance of this research. Computational prediction possesses the advantage of 

lower cost and higher efficiency compared to in vitro and in vivo research during drug discovery 

and development. By utilizing different in silico screening methods, algorithms with high 

efficiency and with high accuracy cooperated as a multiple-step screening and prediction method. 

Under the current pandemic situation, the rapid spread and variants of coronavirus as well as the 

lack of clinical treatment of this disease is urgently calling for the discovery of promising antiviral 

compounds for further research and clinical validation. Unlike most research in the field, we 

focused the development of allosteric inhibitors targeting to compromise Spike-hACE2 binding. 

An effective and potent allosteric inhibitor has better chance to escape from drug resistance, hence 

it can be used to combat different variants of the coronavirus. We have developed and evaluated a 

screening pipeline to screen allosteric inhibitors utilizing multiscale molecular modeling 

techniques, including binding pocket prediction, docking simulations, molecular dynamics 

simulations, binding free energy calculations, free energy decomposition, and correlation analysis. 

Moreover, we have also come out with guidelines on how to select compounds to enter the next 

stages of screening. The research protocol can be applied to develop allosteric inhibitors of the 

Spike protein of Sars-CoV2 through large-scale screenings.  

 The hierarchical screening pipeline. According to the research, compounds collected 

from different libraries were subjected to a series of hierarchical virtual screenings. The selection 

of compounds was under cautious consideration, especially for Library 3, which includes antiviral 

compounds from different sources and approved drugs. Considering the docking scores are 

affected by the ligand size, we selected top-ranking ligands not purely based on docking scores, 

but also the sources. For example, we selected a number of drugs to enter the next stage of 



screening pipeline even though their docking scores are not very satisfactory.  When we selected 

potent inhibitors to evaluate their inhibitory effect on weaken Spike-hACE2 binding, not only the 

binding affinity of ligands to the Spike protein, but also the allosteric effect were considered. The 

allostery occurs when the hotspot residues themselves are binding surface residues or the hotspots 

residues have strong correlation with binding surface residues. For the two allosteric binding 

pockets, Cluster1 is located around the protein-protein binding interface, while Cluster4 is far away 

from the protein-protein binding interface. We are more interested in identifying allosteric 

inhibitors binding in the Cluster4 binding pocket, as the allosteric inhibitors have better ability to 

escape drug resistance effect. For the last stage of the screening, although 1053055-44-9 and 

149297-82-5 have promising binding affinity to the Spike protein at the Cluster4 binding pocket 

(Table 5), the residue-ligand interaction analysis did not show strong correlations between their 

hotspot residues and protein-protein binding interface residues. Thus, they were not selected to 

enter the last stage of the screening pipeline, i.e., to study the inhibitory ability of a compound 

weakening Spike-hACE2 binding.  

 In our screening pipeline of identifying allosteric inhibitors, two types of MD simulations 

were performed for Library 2 and Library 3. The MD simulations of a Spike-Ligand complex and 

a Spike-hACE-ligand serves different purpose. For the first type of MD simulations, we calculated 

binding free energy between a ligand and the Spike protein. The lower the binding free energy, the 

better chance it is a strong allosteric inhibitor. Many selected docking hits were dropped off at this 

stage, as they drifted away from the binding pocket during the 100 ns MD simulations. Thus, MD 

simulation is an efficient filter in screening allosteric inhibitors, especially for a not well-defined 

binding pocket. For the second type of MD simulations, we calculated the binding free energy of 



Spike and hACE2 binding to confirm the allosteric effect. The higher the binding free energy, the 

better the inhibitory effect.  

 The validation of our protocol using compounds with in vitro experimental data. To 

the best of our knowledge, there is no report on the allosteric inhibitors of the Spike protein of 

Sars-CoV2. We indirectly evaluated our screening protocol using a compound library consisting 

of compounds with known in vitro experimental data of inhibiting Spike protein and the hACE2 

protein binding. Encouragingly, our screening results are consistent with the measured data, 

suggesting the screening protocol is valid. However, we want to emphasize that the experiment 

did not provide information on how and where an inhibitor binds to the Spike or Spike-hACE2 

proteins.  

 The prediction stability of MD simulation result. According to the calculated binding 

affinity for the same compound in separate simulations, the binding free energy sometimes variates 

a lot during multiple simulations as illustrated in Table 7. One reason lies that the allosteric binding 

pockets are not well-defined thus the docking poses may not have high quality. Another reason for 

this phenomenon should be related to the compound size. Most compounds in this study are very 

bulky and flexible, leading to high fluctuations during the MD simulations. This high uncertainty 

problem can be mitigated by performing multiple independent MD simulations. For example, we 

conducted up to eight MD runs at the last stage of the screening pipeline and the prediction results 

became more reliable after removing outliers.   

5. Conclusion 

 In this research, we successfully developed a screening pipeline to develop allosteric 

inhibitors to weaken the interaction between the Spike protein and hACE2 protein. The 



compromised Spike binding can reduce the infectability of the coronavirus. Two allosteric binding 

sites were identified and evaluated through virtual screenings of three compound libraries. Active 

ligands in Cluster1 tend to directly interfere with the binding of the Spike protein to the hACE2 

receptor, while active ligands in Cluster4 can serve as allosteric binding modulators to inhibit the 

interaction between the Spike protein and the hACE2 receptor. The screening protocol is at least 

partially validated by a set of compounds in Library 2 for which their inhibitory activities of Spike-

hACE2 binding were measured. Applying the multiple-step screening pipeline, four out of 77,448 

compounds were identified as allosteric inhibitors which can decrease the binding affinity of the 

Spike-hACE2 complex as indicated by more positive MM-PBSA-WSAS binding free energies.  

Compared to in vitro and in vivo experiments, our computational method is not only highly 

efficient and cost-effective, but also elucidates the molecular mechanism of the allosteric effect to 

guide rational drug development.           

Key Points 

• We proposed to develop allosteric inhibitors for Spike-hACE2 of Sars-CoV2 which have 

potential to escape from drug resistance.       

• We provided a hierarchical in silico screening protocol to identify allosteric inhibitors 

targeting the Spike-hACE2 protein-protein binding. This proposed method possesses 

higher screening efficiency and less cost compared to in vitro and in vivo experiments.  

• This multistep screening protocol has been validated with a compound library with in vitro 

inhibitory activities of the Spike-hACE2 binding.   

• Four allosteric compounds were identified from an antiviral compound library. One of 

them can lower the binding affinities of Spike-hACE2 binding more than 2.0 kcal/mol.  



Supplementary Data 

Table S1 summarizes the docking scores of top 200 drug-like compounds (library 1) in seven 

different clusters predicted by Sybyl. Table S2 and Table S3 list the top 200 docking score of 

compounds with in vitro data (library 2) in cluster1 and cluster4, respectively. Table S4 describes 

detailed MM-PBSA binding free energies of the 18 compounds from library 2 during multiple 

simulations in cluster1 and Table S5 describes MM-PBSA binding free energies of the 14 

compounds from library 2 in cluster4 during multiple simulations. Table S6 shows detailed MM-

PBSA binding free energies for N1 to N7 during multiple simulations. Table S7 - S8 lists the top 

200 docking scores of the antiviral compounds (library3) in cluster1 and cluster4, respectively. 

Table S9 – S10 includes the detailed MM-PBSA binding free energies of the 25 ligands in cluster1 

and 16 ligands in cluster4, respectively, from library 3 during multiple simulations.  
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Tables 

Table 1. Identified key residues for 7 predicted binding sites. 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 

ARG714 ASN682 PHE660 ALA657 VAL655 VAL667 LEU773 

GLU731 TYR683 ILE670 SER659 PHE775 ILE670 PHE775 

ILE732 LYS684 ILE678 PHE607 ILE618 ALA671 TYR625 

TYR733 THR690 ASN682 VAL771 SER619 VAL693 LEU628 

TYR749 PHE724 TYR683 ASN614 TYR625 ALA695 PHE637 

PRO751 GLU725 VAL610 LYS616 CYS651 VAL770 LEU647 
 

VAL772 TRP613 VAL601 
 

VAL772 
 

 
SER774 

     

 
TRP613 

     

 
ARG615 

     

 

Table 2. Cluster1 for Library 2: calculated binding free energies (kcal/mol) between allosteric 

ligand and Spike protein using the MM-PBSA-WSAS method. N1-N7 were further evaluated their 

ability to compromise Spike/hACE2 binding. 
 

Round1 Round2 Round3 Round4 Round5 

NCGC00386028-03 -3.95±0.11 -0.59±0.88 -5.7±0.33 -4.24±1.05 4.76±0.85 

NCGC00485882-01 2.01±0.73 -6.58±0.42 0.51±0.35 -5.37±0.12 7.65±0.58 

NCGC00389662-01 -0.37±0.29 -3.67±0.33 -7.5±0.90 3.13±0.16 -13.34±0.68 (N1) 

NCGC00521952-01 -7.94±0.44 -0.83±0.44 -10.09±0.29 (N2) -10.29±1.09 (N3) -5.02±0.38 

NCGC00167505-03 -9.16±0.89 -15.42±1.5 (N4) 0.17±0.35 -11.51±0.35 (N5) -10.04±0.70 (N6) 

NCGC00179313-05 -6.52±0.29 4.49±0.27 -1.7±1.02 -0.25±1.51 -0.13±0.51 

NCGC00379053-02 -0.67±0.64 3.65±0.38 -13.33±0.18 (N7) -2.18±0.73 -1.92±0.11 

NCGC00482516-02 -0.82±0.32 -2.61±1.08 -5.68±1.21 -7.66±1.00 -3.22±0.54 

   

Table 3. Cluster1 for library 2: Calculated complex energies and binding free energies (kcal/mol) 

using the MM-PBSA-WSAS method of Spike-hACE2 complex systems under the influence of 

compounds with docking score and experiment data. 

System N1 N2 N3 N4 N5 N6 N7 

Round1 -14.86±0.53 -12.55±0.14 -25.07±0.14 -18.37±0.31 -17.46±0.43 -17.87±0.23 -7.54±0.08 

Round2 -6.39±0.16 -16.75±1.01 -19.95±0.77 -10.96±0.45 -16.43±0.12 -28.47±0.67 -19.75±0.09 

Round3 -15.33±0.46 -17.69±0.16 -18.06±0.41 -15.77±0.32 -11.15±0.22 -14.87±0.49 -19.76±0.44 

Round4 -9.05±0.38 -14.80±0.17 -14.16±0.28 -9.83±0.34 -12.46±0.30 -22.17±0.37 -10.87±0.57 

Round5 -14.37±0.33 -17.79±0.45 -19.42±0.15 -21.22±0.21 -16.28±0.38 -7.70±0.49 -8.53±0.45 

Round6 -10.30±0.10 -17.82±0.29 -14.96±0.51 -10.20±0.22 -13.48±0.30 -12.33±0.05 -16.93±0.60 

SD 3.35 1.95 3.60 4.37 2.31 6.73 5.10 

AVE -11.72 -16.23 -18.60 -14.39 -14.54 -17.24 -13.90 



Docking 

score  
-9.37 -6.93 -7.06 -8.10 

Inhibition 

efficacy* 
-24.30 0.00 0.00 0.00 

* Disrupting of the Spike protein-ACE2 interaction may cripple the ability of SARS-CoV-2 virions to 

infect host cells. The AlphaLISA assay determines the ability of a compound to disrupt the 

important protein-protein interaction. The measured inhibition efficiency data in AlphaLISA assay 

is normalized to a high-signal vehicle control (ACE2 + RBD + Beads + DMSO) and a low-signal 

control (ACE2 + Beads + DMSO). A high signal approaching zero indicates no deviation from the 

ACE2 and RBD protein-protein interaction; on the contrary, a low signal approaching -100 

indicates the interaction between ACE2 and RBD does not occur. More details on the experimental 

protocol can be found from https://opendata.ncats.nih.gov/covid19. 

Table 4. Cluster1 for Library 3: Calculated binding free energies (kcal/mol) between ligands and 

the Spike protein using the MM-PBSA-WSAS method of compound-Spike protein systems. 

 Round1 Round2 Round3  Round4  Round5 

1246392-09-5 -4.29±0.26 -7.85±1.21 1.17±0.58  -4.79±1.83  2.16±0.60 

1426855-06-2 6.52±0.84 -7.14±0.76 -10.22±0.49 (B1_C1) 2.07±0.79  -3.60±1.53 

1426855-10-8 -16.10±0.95 -10.18±0.85 -10.59±0.45  -16.31±0.68 (B3_C1) -7.27±1.02 

14350-38-0 -6.35±0.86 -7.61±1.06 -7.61±1.06  -23.08±0.29 (B2_C1) -5.59±0.84 

20777-72-4 0.12±0.83 -9.58±0.29 -2.82±0.14  -9.58±0.29  -9.04±0.13 

 

Table 5. Cluster4 for Library 3: Calculated binding free energies (kcal/mol) between ligands and 

the Spike protein using the MM-PBSA-WSAS method of compound-Spike protein systems. 

 Round1  Round2  Round3 Round4 Round5 

1002334-80-6 0.31±2.16  -10.93±0.97 (B1_C4) -4.28±1.10 4.91±0.83 -6.60±1.16 

1023756-44-6 -3.41±0.27  2.75±1.05  4.10±0.60 0.27±0.19 4.10±1.44 

1053055-44-9 -3.09±0.71  -10.70±0.19  -7.47±1.10 -12.31±0.80 -6.27±0.90 

149297-82-5 -5.09±0.58  -7.33±0.78  -11.46±0.65 -5.63±0.61 -12.39±1.46 

1807796-52-6 1.77±0.57  -5.05±0.59  -7.93±0.60 3.91±1.10 1.45±1.12 

2001001-59-6 -14.70±0.69 (B2_C4) -10.88±0.93 (B3_C4) -6.57±1.01 -7.92±0.41 -11.01±0.10 

 

Table 6. Residue correlation value of the Spike Protein.  

RES  1 RES  2 CORR 

SER609 TYR711 0.351 

SER609 TYR713 0.333 

TYR611 LEU712 0.331 

TYR611 TYR713 0.325 

TYR611 AGR714 0.332 

TYR611 LEU752 0.345 

ALA612 LEU712 0.349 

TYR711 TYR755 0.331 



TYR711 GLY756 0.328 

AGR726 AGR717 0.397 

 

 

Table 7. Calculated binding free energies (kcal/mol) using the MM-PBSA-WSAS method of the 

Spike-hACE2 complex with the influence of each compound 

A: predicted binding free energy and system energy for each simulation process 

 B1_C1 B2_C1 B3_C1 B1_C4 B2_C4 B3_C4 

Round1 -11.70 -22.26 -28.24 -13.19 -19.13 -15.57 

Round2 -17.72 -15.87 -14.09 -17.39 -17.37 -21.62 

Round3 -16.44 -20.20 -18.10 -19.06 -12.56 -13.61 

Round4 -18.42 -21.82 -3.40 -26.99 -15.31 -25.71 

Round5 -15.19 -20.16 -12.27 -12.52 -12.33 -9.44 

Round6 -14.20 -16.01 -12.27 -12.65 -20.32 -25.86 

Round7 -18.40  -25.43 -21.10 -16.88 -10.92 

Round8 -5.10  -15.04 -18.69 -10.87 -7.14 

AVE -14.65 -19.39 -16.10 -17.70 -15.60 -16.23 

SD 4.20 2.56 7.37 4.66 3.20 6.85 

 

B: eliminate several simulation results to keep the SD of predicted binding free energy within 3.0 

B1_C1 B3_C1 B1_C4 B2_C4 B3_C4 

Round1 -11.70 Round2 -14.09 Round1 -13.19 Round3 -12.56 Round1 -15.57 

Round2 -17.72 Round3 -18.10 Round2 -17.39 Round4 -15.31 Round3 -13.61 

Round3 -16.44 Round5 -12.27 Round5 -12.52 Round5 -12.33 Round5 -9.44 

Round5 -15.19 Round6 -12.27 Round6 -12.65 Round7 -16.88 Round7 -10.92 

Round6 -14.20 Round8 -15.04 Round8 -18.69 Round8 -10.87 Round8 -7.14 

AVE -15.05   -14.35   -14.89   -13.59   -11.34 

SD 2.05   2.16   2.61   2.18   2.98 

 

 

 

  



Figures  

 

Figure 1. The workflow of the research protocol.  



 

Figure 2. Seven binding sites predicted by Sybyl. The red dots show the center of each binding 

site.   



 

 

Figure 3. The heatmap of residues from the Spike protein. The residues were selected if their 

energy contribution exceeded -1 kcal/mol during compound NCGC00389662-01 binding.   

  



 

Figure 4. The residues from the Spike protein which interact frequently with compound 

NCGC00389662-01 are around the Spike-hACE2 binding interface. (A): The overview position 

of the residues shown in yellow cartoon. (B): A close-up view of the hot residues labeled with 

residue names. (C): Hotspot residues are shown in yellow lines and labeled with residue names. In 

all panels, the center of cluster1 is marked as a red dot.  

 

  



 

Figure 5. The heatmap of residues from the Spike protein. The residues were selected if their 

energy contribution exceeded -1 kcal/mol during the binding of selected compounds. Finally 

selected conformations for compounds are marked in red boxes for next step complex MD 

simulation with the compounds.  (A): residue energy decomposition results for compounds 

selected in cluster1. (B): residue energy decomposition results for compounds selected in cluster4. 

 

  



 

Figure 6. The residues from the Spike protein which interact frequently with selected compounds 

for Cluster1 and are around the Spike-hACE2 binding interface. (A): The overview position of the 

residues shown in yellow cartoon. (B): A close-up view of the hot residues labeled with residue 

names. (C): Hotspot residues are shown in yellow lines and labeled with residue names. In all 

panels, the center of cluster1 is marked as a red dot.  

 

 

 

 

Figure 7. The residues from the Spike protein which interact frequently with selected compounds 

for Cluster4 and are around the Spike-hACE2 binding interface. (A): The overview position of the 

residues shown in yellow cartoon. (B): A close-up view of the hot residues labeled with residue 

names. (C): Hotspot residues are shown in yellow lines and labeled with residue names. In all 

panels, the center of cluster4 is marked as a red dot.  

 



 

 

Figure 8.  The chemical structures of the 4 identified compounds. 

 

 

TOC (size 5.6 cm × 4 cm) 

Text:  An allosteric inhibitor shown as sticks on bottom-left corner could interfere with Spike 

and hACE2 binding. 

 


