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ABSTRACT 

 An efficient yet accurate method for producing large amount of energy data for 

molecular mechanical force field (MMFF) parameterization is on demanding, especially 

for torsional angle parameters which are typically derived to reproduce ab initio rotational 

profiles or torsional PESs. Recently, an active learning potential (ANI-1x) for organic 

molecules which can produce smooth and physically meaningful potential energy surfaces 

(PESs) has been developed. The high efficiency and accuracy make ANI-1x especially 

attractive for geometry optimization at low cost. To apply ANI-1x potential in MMFF 

parameterization, one needs to perform constrained geometry optimization. In this work, 

we first developed a computational protocol to constrain rotatable torsional angles and 

other geometric parameters for a molecule whose geometry is described by Cartesian 

coordinates. The constraint is successfully achieved by force projection for the two 

conjugated gradient (CG) algorithms. We then conducted large-scale assessments on how 

ANI-1x along with four different optimization algorithms in reproducing DFT energies and 

geometries for two CG algorithms, CG backtracking line search (CG-BS) and CG Wolfe 

line search (CG-WS), and two quasi-Newton algorithms, Broyden–Fletcher–Goldfarb–

Shanno (BFGS) and low-memory BFGS (L-BFGS). Note that CG-BS is a new algorithm 

we developed in this work. All four algorithms take the ANI energies and forces to optimize 

a molecule geometry. Last, we conducted a large-scale assessment of applying ANI-1x in 

MMFF development in three aspects.  First, we performed full optimizations for 100 drug 

molecules each consisting of five distinct conformations. The average root-mean-square 

error (RMSE) between ANI-1x and DFT is about 1.3 kcal/mol and the root-mean-square 

displacement (RMSD) of heavy atoms is about 0.35 Å. Second, we generated torsional 
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PESs for 160 organic molecules, and constrained optimizations were performed for up to 

18 conformations for each PES. We found that RMSE of all the conformers is 1.23 

kcal/mol. Last, we carried out constrained optimizations for alanine dipeptide with both  

and  angles being frozen. The Ramachandran plots indicates that the two CG algorithms 

in conjunction with ANI-1x potential could well reproduce the DFT optimized geometries 

and torsional PESs. We concluded that CG-BS and CG-WS are good choices for generating 

PESs, while CG-WS or BFGS is ideal for performing full geometry optimization. With the 

continuously increased quality of ANI, it is expected that the computational algorithms and 

protocols presented in this work will have great applications in improving the quality of an 

existing small molecule MMFF.  
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1 INTRODUCTION  

 The physical and chemical properties of a molecule is closely related to its geometry.1-

3 It is of great importance to obtain accurate molecular geometries. The potential energy 

surface (PES) has been widely used to depict the relationship between different molecular 

geometries and their corresponding single-point energies. In computational chemistry, the 

most important geometric PES types include bond length PES, bond angle PES and 

dihedral angle PES, besides the usual electrostatics and dispersion terms. To generate a 

PES, first, we should generate a series of different geometries varying one or multiple 

geometric parameters for the molecule. However, the ideal low-energy geometries of a 

molecule with geometric parameters fixed at certain values are usually unknown, thus, 

constrained geometry optimization is needed to obtain reasonable molecular geometries 

during a PES generation.4  

Accurate calculation of potential energies is the foundation of geometry optimization. 

Quantum-mechanical (QM) methods are very popular for molecule energy calculations and 

geometry optimization.2, 5 Considering the large computational cost of ab-initio methods, 

many approximate methods have been designed to speed up the energy calculations and 

geometry optimization. Approximate methods replace some of the computationally 

expensive integrals with empirically determined parameters, to achieve a large speedup.2, 

6-8 However, the accuracy is also substantially degraded in comparison to the high-level ab 

initio methods due to the imposed approximations.9 Additionally, the computational cost 

of approximate methods is still quite high, potentially limiting the system size that can be 

treated. Empirical interatomic potentials can also be used to calculate the potential energy, 

which were developed through fitting to reproduce ab initial or experimental data.10-11  
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However, molecular mechanics force field (MMFF)-based potentials may perform poorly 

when studying new systems as it is hard to guarantee the satisfactory transferability of force 

field parameters.12-16  

Machine learning (ML) is revolutionizing many areas of science and technology,17 

which has also been used to construct various forms of atomistic potentials and has been 

successfully applied in energetics study of chemical and biological systems.18-22 

Encouragingly, ML potentials have achieved a speed-up of as much as 5 orders of 

magnitude compared to QM calculations without significantly loss of accuracy in 

predicting molecular energies. One such approach, Accurate NeurAl networK engINe for 

Molecular Energies (ANAKIN-ME or ANI) method successfully constructed a 

transferable neural network potential (ANI-1) that utilizes a modified version of the 

symmetry functions to construct single-atom atomic environment vectors.23-24 The ANI-1 

potential was trained on 22 million randomly selected molecular conformations from 57 

thousand distinct small molecules utilizing density functional theory (DFT) energies.23 

Furthermore, active learning-based ANI potential (ANI-1x) constructed for only 5 million 

conformations of molecules outperforms the original ANI-1 potential.25 The active 

learning and transfer learning-based ANI potentials (ANI-1ccx) exceeds the accuracy of 

DFT, which was retrained to a much smaller data set (about 500 thousand intelligently 

selected conformations from ANI-1x) at the CCSD(T)/CBS level of accuracy.22, 26 ANI-

1/1x/1ccx can do only for molecules with C, H, N, and O elements, while ANI-1/2x can 

also deal with S, F and Cl. 

 Considering the outstanding advantages of efficiency and accuracy of ANI-1x 

potential, it is very attractive to apply it in geometry minimization, which is an important 
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task in computer-aided drug design.4, 27-29 However, an efficient minimization engine, 

especially one can conduct constrained geometry minimization utilizing an ANI potential 

is currently not available. Although we can borrow the optimization engine implemented 

in the Gaussian software by taking ANI-1x as an external potential, we found that many 

jobs were not able to converge successfully and the usages of Central Processing Unit (CPU) 

are not efficient, especially for optimizations with frozen coordinates. The reason lies that 

the PESs generated by ML may be less smoothly in comparison with those of ab initio 

potentials. The following are the motivations of this work: (1) to develop/implement 

different optimization algorithms in combination with ANI-1x potential for performing full 

geometry optimization and generating torsional PESs with one or more torsional angles 

being frozen; (2) to evaluate the performance of the optimization algorithms using three 

molecular datasets; and (3) to work out a set of practical guidance to facilitate us to generate 

high-quality PESs for MMFF development. The developed optimization algorithm as well 

as the established guidance can also be applied with other ML-based atomistic potentials, 

such as ANI-1ccx. The python scripts which implement the two CG and two quasi-Newton 

optimization algorithms are available in GitHub 

(https://github.com/junmwang/pyani_mmff). Note that the ANI-1x energy and force are 

calculated using TorchANI26 implemented as a python module.  

 

2 METHODOLOGIES 

2.1 Conjugate gradient methods 

 Geometry optimization is still a common and complex problem to be solved 

efficiently.30 Popular atomistic energy optimization strategies include gradient descent 
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methods, CG methods and Newton's methods.31 The "full" Newton's method requires the 

second derivative matrix (Hessian matrix) of a system in order to find its extrema. The 

most commonly-used quasi-Newton algorithms include Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm and its low-memory extension L-BFGS,32-33 which are found to 

be superior to CG methods in some circumstances. However, for most systems of practical 

interest, it may be prohibitively expensive to compute the second derivative matrix, which 

is estimated from successive values of gradient. The CG method is a general method to 

find a local minimum using the derivatives of the potential energy with respect to the 

position of the atoms.  

For N atoms, the optimization objective function is to minimize the potential energy:  

V(𝒓) = 𝑉(𝑟1𝑥, 𝑟1𝑦, 𝑟1𝑧, 𝑟2𝑥, 𝑟2𝑦, 𝑟2𝑧, …)  (1) 

An obvious, but not very efficient strategy is to move an atom in the direction of the 

negative gradient. To improve optimization efficiency, CG uses a new “conjugate” 

direction of movement that depends on the previous direction of movement, and adopts an 

iterative procedure taking the form of: 

𝒓𝑖+1 = 𝒓𝑖 + 𝛼𝒉𝑖 (2) 

in which α > 0 is a step length scalar and hi is a search direction. The search direction at 

the very first iteration is the direction of the negative gradient: 𝒉0 = 𝒈0 = 𝒇0 ≡ −∇𝑉(𝒓0). 

Then the search directions are calculated iteratively according to Eq. 3: 

𝒇𝑖 ≡ −∇𝑉(𝒓𝑖), 𝒈𝑖+1 = 𝒇𝑖, 𝒉𝑖+1 = 𝒈𝑖+1 + 𝛾𝒉𝑖  (3) 

Where  is a scalar factor, computed according to the Polak-Ribiere algorithm as it is more 

efficient than Fletcher-Reeves method under some circumantances34: 

𝛾 = 𝒎𝒂𝒙[(𝒇𝑖 + 𝒈𝑖) ∙
𝒇𝑖

𝒈𝑖∙𝒈𝑖
, 0]  (4) 
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To ensure the convergence of Eq. 2, α is supposed to satisfy the Wolfe line search 

conditions35: 

𝑉(𝒓𝑖 + 𝛼𝒉𝑖) − 𝑉(𝒓𝑖) ≤ −𝜎1𝛼𝒇𝑖
𝑇𝒉𝑖 (5) 

∇𝑉(𝒓𝑖 + 𝛼𝒉𝑖)𝑇𝒉𝑖 ≥ −𝜎2𝒇𝑖
𝑇𝒉𝑖  (6) 

Where 0 <σ1≤σ2< 1. 

Wolfe condition (Eq. 5) can ensure the step size is not excessively large, while wolfe 

condition (Eq. 6) can ensure the step size is not too small.  In this work, we provide two 

methods to obtain the α value. First, we set 𝛼 = 𝛼𝑚𝑖𝑛, and then increase α from 𝛼𝑚𝑖𝑛 to 

𝛼𝑚𝑎𝑥 using the following formula: 

𝛼𝑖+1 = 1.01𝛼𝑖 (7) 

To ensure the step length 𝛼𝑖 decreases 𝑉(𝒓𝑖) 'sufficiently', the following Wolfe line search 

conditions is used to scale down α: 

𝑉(𝒓𝑖 + 𝛼𝛽𝒉𝑖) − 𝑉(𝒓𝑖) ≤ −𝜎1𝛼𝛽𝒇𝑖
𝑇𝒉𝑖  (8) 

and the iterative form is changed with: 

𝒓𝑖+1 = 𝒓𝑖 + 𝛼𝛽𝒉𝑖 (9) 

Of note, we reset  to 1.0 after every iteration, and then repeatedly scale it to half until it 

satisfies the aforementioned Wolfe line search conditions (Eq. 8). We called this 

backtracking line search algorithm CG-BS. The second method was using the traditional 

Wolfe line search method,36  thus it is named as CG-WS. In a short, CG-BS employs the 

first Wolfe condition (Eq. 8) to ensure the step size is not excessively large, while CG-WS 

employs both conditions (Eqs. 5 and 6). Of note, it is shown that the PRP (Polak-Ribière-

Polyak) method is globally convergent when the line search employs a constant step size 

𝛼 ≤ 1/4𝐿, where L is a Lipschitz constant for force.36 Thus, a small step size can also be 

employed for CG method. 
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2.2 BFGS and L-BFGS methods 

BFGS and L-BFGS are two quasi-Newton methods which utilizing Hessian matrix in 

the optimization procedure. The search direction of BFGS and L-BFGS was determined 

using following equations.  

𝒑𝒊 = 𝐁𝒊
−𝟏𝒇𝒊  (10) 

Where Bi, an approximation to the Hessian matrix was calculated using Eq. 11 for the 

BFGS method.  

𝐁𝒊+𝟏 = (𝐁𝟎 −
𝒔𝒊𝒚𝒊

𝑻

𝒔𝒊
𝑻𝒚𝒊

)𝐁𝒊
−𝟏(𝐁𝟎 −

𝒚𝒊𝒔𝒊
𝑻

𝒔𝒊
𝑻𝒚𝒊

) +
𝒔𝒊𝒔𝒊

𝑻

𝒔𝒊
𝑻𝒚𝒊

 (11) 

Where 𝒔𝒊 = 𝒓𝒊+𝟏 − 𝒓𝒊, 𝒚𝒊 = 𝒇𝒊 − 𝒇𝒊+𝟏. While Bi for L-BFGS was calculated by Eq. 12. 

𝐁𝒊+𝟏
−𝟏 = (∏ 𝐔𝒕

𝑻𝟎
𝒕=𝒊 )𝐁𝟎

−𝟏(∏ 𝐔𝒕
𝒊
𝒕=𝟎 ) + ∑ (∏ 𝐔𝒕

𝑻𝒋+𝟏
𝒕=𝒊 )𝒊

𝒋=𝟎 (𝜌𝑗𝒔𝒊∆𝒔𝒊
𝑻)(∏ 𝐔𝒕

𝒊
𝒕=𝒋+𝟏 ) (12) 

Where 𝜌𝑗 =
𝟏

∆𝒔𝒋
𝑻∆𝒚𝒋

, 𝐔𝒋 = 𝐁𝟎 − 𝜌𝑗𝒚𝒋∆𝒔𝒊
𝑻. However, according to actual needs, we can take 

the nearest m item as shown in Eq. 13.   

𝐁𝒊+𝟏
−𝟏 = (∏ 𝐔𝒕

𝑻𝒊−𝒎
𝒕=𝒊−𝟏 )𝐁𝟎

−𝟏(∏ 𝐔𝒕
𝒊−𝟏
𝒕=𝒊−𝒎 ) + ∑ (∏ 𝐔𝒕

𝑻𝒋+𝟏
𝒕=𝒊 )𝒊−𝒎

𝒋=𝟎 (𝜌𝑗𝒔𝒊∆𝒔𝒊
𝑻)(∏ 𝐔𝒕

𝒊
𝒕=𝒋+𝟏 ) (13) 

 Although the step size obtained from Wolfe line search could ensure the BFGS 

updating is stable, both BFGS and L-BFGS methods may fail for non-convex functions 

with line searches satisfying the Wolfe conditions.37 The step size α=1 is widely applied for 

both the BFGS and L-BSGS algorithms. Thus, in this study, we applied the constant step 

size α=1 for both methods in geometry optimizations. 

2.3 Dihedral angle constraint 

 To generate PESs, one needs to perform geometry optimization with one or more 

geometric parameters (such as torsional angles) being frozen. It is straightforward to add 
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constraints to internal coordinates, however, ANI-1x only takes Cartesian coordinates as 

an input. Some degrees of freedom can be eliminated through adding a dihedral angle bias 

potential (restrained optimization) or through revising the force during optimization 

process (constrained optimization). Adding a bias potential could not completely restrict 

the change of a dihedral angle. While revising force could eliminate any changes for the 

dihedral angle in question. For the purpose of generating PESs, we adopt the second 

approach, i.e., to fix one or multiple geometric parameters by revising the forces. Of note, 

this approach is in line with the partial optimization in many ab initio packages including 

Gaussian 16.38 For an angle or a torsional angle, the force is revised through a series of 

rotations along with coordinate axes. The process of revising forces for a fixed torsional 

angle was illustrated in Figure 1. Specifically, for a torsional angle A-B-C-D consisting of 

atoms A, B, C, and D, we first translate 𝒓𝐴𝐵𝐶𝐷 so that B is moved to the coordinate origin, 

and rotate 𝒓𝐴𝐵𝐶𝐷 = [𝑟𝐴, 𝑟𝐵 , 𝑟𝐶 , 𝑟𝐷] to make C locate on the x-axis along with force 𝒇𝐴𝐵𝐶𝐷 =

[𝑓, 𝑓𝐵, 𝑓𝐶 , 𝑓𝐷]. Note that we use  𝒓𝐴𝐵𝐶𝐷 and 𝒓′𝐴𝐵𝐶𝐷 to represent coordinates before and after 

a translational or rotational operation, respectively. This notation rule also applies to forces. 

In the following equations (Eqs. 14 to 19), TB and RCx, etc. are spatial transformation 

matrices.   

𝒓′𝐴𝐵𝐶𝐷 = 𝑇𝐵𝒓𝐴𝐵𝐶𝐷 (14a) 

𝒓′𝐴𝐵𝐶𝐷 = 𝑅𝐶𝑥𝒓𝐴𝐵𝐶𝐷  (14b) 

𝒇′𝐴𝐵𝐶𝐷 = 𝑅𝐶𝑥𝒇𝐴𝐵𝐶𝐷 (14c) 

We then rotate 𝒓′𝐴𝐵𝐶𝐷 to make A locate on xy-plane along with force fABCD: 

𝒓′𝐴𝐵𝐶𝐷 = 𝑅𝐴𝑥𝑦𝒓𝐴𝐵𝐶𝐷  (15a) 

𝒇′𝐴𝐵𝐶𝐷 = 𝑅𝐴𝑥𝑦𝒇𝐴𝐵𝐶𝐷  (15b) 
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 ABC is constrained in the xy-plane by setting the z-direction forces of A, B and C 

atoms to zero, and setting the y-direction forces of B and C atoms to zero, i.e., 𝑓𝐵𝑦 = 𝑓𝐵𝑧 =

0, 𝑓𝐶𝑦 = 𝑓𝐶𝑧 = 0, 𝑓𝐴𝑧 = 0. Then we rotate 𝒓′𝐴𝐵𝐶𝐷 so that A is back to its previous plane 

along with its force: 

𝒓′𝐴𝐵𝐶𝐷 = 𝑅𝐴𝑥𝑦
−1𝒓𝐴𝐵𝐶𝐷 (16a) 

𝒇′𝐴𝐵𝐶𝐷 = 𝑅𝐴𝑥𝑦
−1𝒇𝐴𝐵𝐶𝐷 (16b) 

 Similarly, we rotate 𝒓𝐴𝐵𝐶𝐷 so that D is in the xy-plane:  

𝒓′𝐴𝐵𝐶𝐷 = 𝑅𝐷𝑥𝑦𝒓𝐴𝐵𝐶𝐷  (17a) 

𝒇′𝐴𝐵𝐶𝐷 = 𝑅𝐷𝑥𝑦𝒇𝐴𝐵𝐶𝐷  (17b) 

 Then BCD is constrained in this plane by resetting the z-direction force of D to zero: 

𝑓𝐷𝑧 = 0. Next, we rotate 𝒓𝐴𝐵𝐶𝐷 so that the atoms back to their initial translated positions 

along with the updated forces. 

𝒓′𝐴𝐵𝐶𝐷 = 𝑅𝐶𝑥
−1𝑅𝐷𝑥𝑦

−1𝒓𝐴𝐵𝐶𝐷  (18a) 

𝒇′𝐴𝐵𝐶𝐷 = 𝑅𝐶𝑥
−1𝑅𝐷𝑥𝑦

−1𝒇𝐴𝐵𝐶𝐷  (18b) 

 Last, we translate 𝒓𝐴𝐵𝐶𝐷back to its previous position:  

𝒓′𝐴𝐵𝐶𝐷 = −𝑇𝐵𝒓𝐴𝐵𝐶𝐷  (19) 

After all the above translational-rotational operations,  𝒓′𝐴𝐵𝐶𝐷 in Eq. 19 equals to 𝒓𝐴𝐵𝐶𝐷 in 

Eq. 14. We also developed algorithms for constraining bond angles and bond lengths. We 

applied a similar procedure to constrain multiple geometric parameters (𝑵𝑡𝑜𝑟 + 𝑵𝑎𝑛𝑔𝑙𝑒 +

𝑵𝑏𝑜𝑛𝑑 ≥ 2 , where 𝑵𝑡𝑜𝑟 , 𝑵𝑎𝑛𝑔𝑙𝑒 , 𝑵𝑏𝑜𝑛𝑑 , are numbers of constrained torsional angles, 

angles and bonds, respectively). For example, to generate a Ramachandran plot, we need 

to constrain both the  and  angles of an amino acid residue. It is pointed out that one may 
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project forces to a plane or line using alternative approaches. Our approach is convenient 

and works well with the two CG algorithms described above when a molecule’s geometry 

is described by Cartesian coordinates.  

 

 

Figure 1. Schematic illustration of revising forces for a torsional angle which is frozen 

during the CG-WS optimization.  (a). Initial coordinates and forces of Atoms A, B, C 

and D; (b). Translating 𝒓𝑨𝑩𝑪𝑫 so that B is at the coordinate origin and aligning 𝒓𝑨𝑩𝑪𝑫 

so that Atom C is in x-axis through a rotational operation; (c). Rotating 𝒓𝑨𝑩𝑪𝑫 so that 

D is in the xy-plane, and resetting the z-direction force of D to zero; (d) Rotating 𝒓𝑨𝑩𝑪𝑫 

so that A is in the xy-plane, and resetting the z-direction force of A to zero; (e). Rotating 

𝒓𝑨𝑩𝑪𝑫 so that the atoms back to their initial positions along with the updated forces. 

 

2.3 PES calculation with DFT 

 We prepared three datasets for the evaluation of four optimization algorithms in 
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geometry optimizations using the ANI-1x energies and forces. Dataset 1 consists of 100 

drug molecules (Figure S1) with varied numbers of atoms NATOM from 13 to 50. Dataset 

2 has 8 large molecules identified as potential inhibitors of SARS CoV-2 3CL protease.39 

The eight molecules have NATOM ranged from 65 to 120, as shown in Figure S2. The 

first two molecule sets were applied to assess the four algorithms in full geometry 

optimization. Each molecule in both sets has five distinct conformations generated using 

Omega2 module of the OpenEye software package (www.eyesopen.com). Full DFT 

optimization at B97X/6-31G(d) level were performed for every conformer using the 

Gaussian 16 software.38 Note that in the rest of the manuscript, DFT refers to ωB97X/6-

31G(d) unless explicitly stated otherwise.  

 The last dataset, Dataset 3, consists 160 molecules which were used to develop GAFF 

torsional angle parameters.15 Each molecule in this dataset has 2 to 23 heavy atoms (C, N 

and O) and only one rotatable torsional angle was applied in torsional PES generation. The 

2D structures of those molecules and their rotatable bonds which are colored in red are 

shown in Figure S3. To generate a torsional PES for a molecule, the torsional angle was 

rotated from 0 to 360 degrees at a step of 20 degrees. In total 18 conformations were 

generated.  

 Next, the AMBER topology for a molecule was generated utilizing GAFF force field.15 

For each conformation, we performed minimization using the Pmemd module of 

AMBER1840 to generate a Z-matrix input with the torsional angle in question being frozen 

using the Antechamber module,41 and conducted constrained optimization at the B3LYP/6-
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31G* level using the Jaguar software.42 Solvent effect was taken into consideration using 

polarizable continuum model (PCM) with  the exterior dielectric constant being set to a 

value according to the calculated hydration free energy: out = 2 if Gsolv  -1.0; out = 4 if -

9.0 ≤ Gsolv < -1.0; out = 10 if -18.0 ≤ Gsolv < -9.0; and out = 80 if Gsolv < -18.0 kcal/mol. 

Interior  dielectric constant in was set to 1. Note a hydration free energy Gsolv was 

calculated with the inner dielectric constant in being set to 1 and exterior dielectric constant 

out being set to 78.3. In above, we provided details on how we generated molecular 

geometries for Dataset 3 molecules. However, for the following DFT and ANI-1x 

calculations, only the molecular geometry information was applied. 

 The optimized geometries by Jaguar were then applied to calculate single-point 

energies at ωB97X/6-31G(d) level,43 as well as constrained optimizations at the same level 

using the Gaussian 16 package.38 It is pointed out that no solvent effect was considered in 

DFT calculations. A single-point energy of the ANI-1x25 potential was calculated using the 

DFT optimized geometry, while a full or constrained optimization was performed using the 

same starting geometry as used in DFT optimization. Moreover, the same convergence 

criteria were utilized in geometry optimizations by both ωB97X/6-31G(d) and ANI-1x/CG, 

i.e., the maximum force and displacement are 0.00045 and 0.0018 in atomic units, 

respectively; and the RMS force and displacements are 0.0030 and 0.0012 in atomic units, 

respectively. An optimization job fails if it cannot converge within 10,000 steps, the 

predefined maximum number of iterations. This is the worst scenario in a geometry 

optimization in this study. However, a failed job can be restarted using the last geometry 
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of the last optimization.  

 To establish computational protocols of applying CG/ANI-1x in torsional force field 

parameterization, we also selected a subset of molecules which have at least 14 heavy 

atoms. The geometries of those molecules were optimized by GAFF force field prior to 

ANI-1x/CG-WS and DFT optimization.  

 To generate Ramachandran plots for alanine dipeptide, we rotated the  and  angles 

from 0 to 360 degrees at a step of 10 degrees. Constrained optimization was then performed 

for each conformation using the DFT and ANI-1x/CG-WS method. The PESs and 

Ramachandran plots were then produced for comparison using the Python Matplotlib 

module44 and Matlab (https://www.mathworks.com) software.  

 

3. RESULTS  

3.1 Efficiency and accuracy of four optimization methods in full geometry 

optimization 

 We evaluated the performance of full geometry optimization using two datasets. The 

performance, measured by the Central Processing Unit (CPU) time, number of 

optimization steps, AUE (average unsigned error), RMSE (root-mean-square error) and 

correlation coefficient R, is listed in Table 1 for 100 drug molecules and Table S1 for 8 

large molecules. Each molecule has five distinct conformations. The AUE, RMSE and R 

measure how well an ANI/CG model reproduces the relative conformational energies by 

DFT. Note that we used the mean value of all five conformations as the reference to 
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calculate the relative conformational energies. As shown in Table 1, CG-WS is most 

efficient method while L-BFGS is the least efficient. The computer time of CG-BS and 

BFGS are slightly longer than that of CG-WS. As the accuracy is concerned, the BFGS and 

L-BFGS methods have smaller AUE/RMSE than CG-WS and CG-BS. However, the 

accuracy of all the four methods is comparable and the differences of AUE and RMSE are 

less than 0.1 kcal/mol. As far as the absolute energy is concerned, most ANI-1x energies 

are more positive than the ab initio ones and the average 𝐸 = 𝐸𝐴𝑁𝐼 − 𝐸𝑄𝑀 are 2.58, 2.57, 

2.32 and 2.35 kcal/mol, for the CG-BS, CG-WS, L-BFGS and BFGS respectively. The 

number of conformations (the total is 100  5 = 500) that have the closest energies to 

B97X/6-31(d) are 5, 19, 368 and 108, for the four optimization methods correspondingly. 

As for large molecules shown in Figure S2, the rank orders of computer time and 

optimization steps are the same as Dataset 1. Interestingly, the two CG methods achieved 

smaller AUE and RMSE than the two quasi-Newton methods.  

We also compared the conformational energies calculated by another DFT method and 

GAFF. As shown in Table 1, the AUE and RMSE of B3LYP/6-31G*, 0.60 and 0.73 

kcal/mol, are much smaller than those of ANI-1x methods. The AUE and RMSE of GAFF 

are about 0.3 kcal/mol larger, partially due to the fact that GAFF15 was developed to 

reproduce MP2/aug-cc-pVTZ instead of B97X/6-31G(d).   

 

Table 1. Efficiency and accuracy of various optimization method combined with constraint 

method 

  B3LYP/ ANI/ ANI/ ANI/ ANI/ GAFF 
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6-31G* CG-BS CG-WS L-BFGS BFGS 

CPU time (second) 11183.0 98.6 60.0 173.4 76.1 0.14 

Optimization Steps 25.5 410.1 152.7 1007.3 443.0 1146.7 

AUE (kcal/mol) 0.60 1.11 1.13 1.05 1.07 1.34 

RMSE (kcal/mol) 0.73 1.31 1.34 1.25 1.26 1.56 

R 0.88 0.70 0.70 0.75 0.74 0.70 

Ave. RMSD (Å) 0.16 0.36 0.35 0.31 0.32 0.39 

 

3.2 Efficiency and accuracy of two CG optimization methods in producing one-

dimensional torsional PES   

 We evaluated the two CG optimization methods in generating one-dimensional PES 

for 160 molecules in Dataset 3 and two-dimensional PES for alanine dipeptide. Here, we 

only reported the results obtained by CG-WS, as the results of CG-BS are essentially 

similar to those of CG-WS.  

 Each molecule in Dataset 3 belongs to one of five groups according to the number of 

heavy atoms it has (Figure S3). The aim is to study how the predictions depend on the 

sizes of molecules. For a given molecule, ab initio optimizations of some conformations 

may fail due to the occurrence of steric clashes between atoms when the rotatable torsional 

angle takes some specific values.  In total, there are 2868 conformations left for 160 

molecules (on average 17.92 conformations per molecule).  

 To generate a PES of a molecule, we applied the mean value of all the conformations 

as the reference. By this way, two PESs of the same molecule can be compared. To evaluate 

the reliability of ANI-1x energy, Smith et al. developed a  parameter, which is the standard 

deviation of ANI-1x potentials predicted by an ensemble of models, weighed by square 
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root of the number of atoms in a molecule.25 They found that with  smaller than 0.23 

kcal/mol, about 98% of molecules in their molecular set have the predicted errors smaller 

than 1.5 kcal/mol. 

 Single Point Energy Calculations. Among the 2868 conformations, 14 have the 

relative conformational energies larger than 15.0 kcal/mol. The G between the ANI-1x 

and  B97x/6-31G(d) for those conformations are very big, with an RMSE of ~19.5 

kcal/mol. As expected, the mean  values are also very big, 1.6 kcal/mol. Therefore, the 

following performance evaluation was conducted without those outliers. Of note, those 

outliers come from three molecules (#25 in Figure S1A, #21 and #22 in Figure S1E), for 

which the inner bond of the torsional angle is a double bond. The PESs generated using the 

single-point ωB97X/6-31G(d) and ANI-1x energies are demonstrated in Figure S4 of the 

Supporting Information. It is demonstrated most ANI-1x PESs are fitted very well to those 

predicted by DFT. Figure 2A shows the distribution of the mean absolute energy deviations 

(MAD) between the ANI-1x and DFT single-point energies for the 160 molecules. The 

average MAD for ANI-1x single-point energy vs. reference DFT single-point energy is 

0.63 kcal/mol, while the significantly larger RMSE, 1.03 kcal/mol, is caused by about 9.7% 

conformations whose G are larger than 1.5 kcal/mol. The scatter plot of the two types 

of single-point energies is shown in Figure 2C. Exploration of the PESs shown in Figure 

S4 can identify those outliers shown in Figure 2A and 2C.  



19 

 

 

Figure 2. Performance of torsional PESs generated using ANI-1x and CG-WS for 160 

molecules. A: mean absolute energy deviations (MAD) between single-point ANI-1x 

potential energies and single-point ωB97X/6-31G(d) energies on the Jaguar optimized 

geometries. B: MAD of the conformational energies by ANI-1x/CG-WS and ωB97X/6-

31G(d) after geometric optimization. C: Scatter plot between single-point ANI-1x potential 

energies and single-point ωB97X/6-31G(d) energies. D: Scatter plot between ANI-1x 

potential energies and ωB97X/6-31G(d) energies after geometric optimization.   

 As pointed out above, the accuracy of ANI-1x potential energy can be evaluated by  

parameter. In Table 2, we demonstrated how the performance of ANI-1x varies as a 
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function of rho. Interestingly, we also observed that using  cutoff of 0.23 kcal/mol, 98% 

of conformations have G between ωB97X/6-31G(d) and ANI-1x smaller than 1.5 

kcal/mol. Unfortunately, with such a stringent cutoff, the data coverage, the percent of data 

with  smaller than the cutoff, is only 57%.  As shown in Table 2, the  cutoff of 0.6 

achieves a good balance between data coverage (93%) and ANI-1x accuracy (MAD and 

RMSE of 0.55 and 0.89 kcal/mol, respectively, and 92% of conformations satisfy the 

condition of E < 1.5 kcal/mol).  

 

Table 2. Summary of ANI-1x performance using  as the selection parameter, all energies 

are in kcal/mol. MAD and RMSE are mean absolute energy deviation and root-mean-

square energy deviation, respectively.  

 cutoff 

 

MAD 

 

RMSE 

 

No. 

Outliers 

(E  1.5)  

No. Data 

≤ Rho 

Percent of 

data with 

E < 1.5 (%) 

Percent of data 

with  < cutoff 

(%) 

Single point calculations with ANI-1x and B97x/6-31G(d) 

0.23 0.35 0.59 36 1622 98 57.1 

0.25 0.37 0.6 48 1775 97 62.5 

0.3 0.42 0.66 82 2092 96 73.7 

0.35 0.46 0.73 113 2271 95 80.0 

0.4 0.48 0.77 139 2396 94 84.4 

0.45 0.51 0.81 172 2498 93 88.0 

0.5 0.53 0.84 185 2564 93 90.3 

0.6 0.55 0.89 208 2641 92 93.0 

0.7 0.56 0.91 222 2678 92 94.3 

0.8 0.56 0.91 228 2704 92 95.2 

0.9 0.57 0.92 239 2738 91 96.4 

1 0.58 0.95 248 2758 91 97.1 

unlimited 0.61 1.03 276 2840 90 100.0 

After optimizations with ANI-1x/CG-WS and B97x/6-31G(d) 

0.23 0.37 0.76 36 1596 98 56.2 

0.25 0.38 0.76 43 1728 98 60.8 

0.3 0.44 0.84 83 2064 96 72.7 

0.35 0.49 0.95 128 2264 94 79.7 

0.4 0.53 1.01 162 2415 93 85.0 

0.45 0.55 1.03 182 2501 93 88.1 

0.5 0.57 1.07 201 2577 92 90.7 

0.6 0.59 1.09 230 2670 91 94.0 

0.7 0.61 1.14 248 2701 91 95.1 
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0.8 0.63 1.17 266 2742 90 96.5 

0.9 0.63 1.18 268 2755 90 97.0 

1 0.64 1.2 273 2775 90 97.7 

unlimited 0.65 1.23 288 2840 90 100.0 

 

 Conformational Energies after Constrained ANI-1x/CG-WS optimization. 

Torsional angle PESs calculated using the optimized geometries play an important role in 

developing MMFFs. The ANI-1x/CG-WS optimized PESs and ωB97X/6-31G(d) 

optimized PESs for the 160 molecules are demonstrated in Figure S5 of the Supporting 

Information. Overall, the ANI-1x/CG-WS PESs reproduce the DFT PESs very well as 

demonstrated in Figure 2. The distribution of MAD between the ANI-1x and DFT energies 

after geometric optimization for the 160 molecules is shown in Figure 2B, while the scatter 

plot of the two types of conformational energies after optimization is shown in Figure 2D. 

The average MAD for ANI-1x versus DFT energies is 0.65 kcal/mol, slightly larger than 

that for the single-point energies which is 0.61 kcal/mol. As expected, the RMSE value for 

ANI-1x versus DFT energies after optimization, 1.23 kcal/mol, is also slightly larger than 

the corresponding single-point calculation counterpart. Again, exploration of the PESs 

shown in Figure S5 can identify those outliers shown in Figure 2B and 2D. The above 

result is reasonable as ANI-1x/CG-WS optimized geometries may be slightly different 

from those optimized by DFT as shown in Figure 3A. We also plotted the MADs before 

and after geometric optimization in Figure 3B.  Apparently, for most conformations the 

difference of MAD values is small, however, for about 10% of conformations, the MADs 

between ANI-1x and ωB97/6-31G(d) are larger than 1.5 kcal/mol. As shown in Table 2, 

for using a  cutoff of 0.6 kcal/mol, the data coverage (94%) is slightly larger than that of 

single point calculations, while the percent of conformations satisfying E < 1.5 kcal/mol, 

91%, is slightly smaller.    
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Figure 3. Impact of different optimization methods on structures and mean absolute energy 

deviations (MAD) of the two potentials (𝑴𝑨𝑫 = ⌊∆𝑬𝑨𝑵𝑰−𝟏𝒙 − ∆𝑬𝛚𝐁𝟗𝟕𝐗/𝟔−𝟑𝟏𝐆(𝐝)⌋ ). A: 

Distribution of RMSD between ANI-1 optimized structures and ωB97/6-31G(d) optimized 

structures for 160 molecules. B: Scatter plot MADs before (x-axis) and after geometric 

optimization (y-axis). 

 Structure similarity between ANI-1 optimization and DFT optimization. To 

critically assess the performance of CG-WS algorithm in conjunction with ANI-1x 

potential in geometry optimization, we performed geometric optimizations for the 160 

molecules consisting of C, H, N and O and each has up to 18 conformations. ωB97X/6-

31G(d) optimization was also performed for the same set of conformations of 160 

molecules. The distribution of RMSDs is illustrated in Figure 3A. The distribution has a 

mean value of 0.05 Å and 90.9% of RMSDs are lower than 0.1 Å. The detailed RMSDs 

for each molecule was presented in Figure S5 of the Supporting Information. In brief, our 

CG-WS algorithm in conjunction with ANI-1x can produce very similar geometries as 

those optimized by DFT.     
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3.3 Efficiency and accuracy of two CG optimization methods in producing two-

dimensional torsional PES 

 We generated 1296 alanine dipeptide (alanine with the N-terminal linking an acetyl 

group and the C-terminal being a N-methyl amide group) conformations with the peptide 

 and  angles being rotated from 0 to 360 degrees at a step of 10 degrees. Without further 

optimization using a MMFF, we then performed constrained geometric optimization using 

calculated B97x/6-31G(d) and ANI-1x/CG-WS. The structure as well as  (blue and red 

bonds) and  (red and green) angles are shown in Figure 4A. About 40% of conformations 

were not successfully optimized by B97x/6-31G(d) using the default setting of Gaussian 

16.38 With several rounds of restarting, still 9 conformations cannot meet the default 

convergence condition. On the other hand, all jobs finished with the first try by ANI-

1x/CG-BS; and only 9 failed by ANI-1x/CG-WS. For the 9 failed jobs, all optimization 

jobs succeeded after restarting. Therefore, ANI-1x/CG-BS is more robust than ANI-1x/CG-

WS. As for the computational time, the average number of optimization steps and 

computation time for ANI-1x/CG-WS are 116.8 and 36.9 seconds, while the corresponding 

values are 24.4 and 6574.9 seconds for DFT. On average, ANI-1x/CG-WS optimization 

only uses 0.6% of the CPU time required for B97x/6-31G(d) optimization.  

 The average value of RMSDs of the heavy atoms are 0.10  0.06 Å between the ANI-

1x/CG-WS and DFT optimized geometries. As expected, DFT has lower absolute energies 

than ANI-1x/CG-WS for most conformations and the mean difference (𝐸𝐴𝑁𝐼 − 𝐸𝐷𝐹𝑇) is 

1.36 kcal/mol. However, the MAE and RMSE values of the relative energies are much 

smaller, which are 0.32 and 0.49 kcal/mol, respectively. The correlation between the two 

sets of relative energy data is 0.99.  The performance of ANI-1x/CG-BS is same as that of 

ANI-1x/CG-WS except that 𝐸𝐴𝑁𝐼 − 𝐸𝐷𝐹𝑇 = 1.39  kcal/mol is slightly larger. However, 

CG-BS is more robust than CG-WS, as the former has no failed jobs while the latter has 

10 out of 1296 optimization jobs failed. It is worth mentioning that after one-round 
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restarting, all the 10 jobs achieved the convergence. We generated the Ramachandran plots 

of the two-torsional PESs calculated using DFT and ANI-1x/CG-WS (Figure 4C and 4D). 

Encouragingly, the overall shapes of the two Ramachandran plots resemble to each other 

very well. The RMSD values are also shown in a contour plot with 20 filled intervals using 

the 2D-contour function in Matlab (Figure 4B). Note that the RMSDs between the DFT 

and ANI-1x/CG-WS geometries were calculated using least-square fitting for the heavy 

atoms only. 

 

Figure 4. Ramachandran plots for the alanine dipeptide. A: Definition of  (blue and red 

bonds) and  (red and green bonds) torsional angles. B: a contour plot of RMSD values 

between the ANI-1x/CG-WS and DFT optimized geometries. C: A Ramachandran plot 

using the DFT potential energies. D: A Ramachandran plot using the ANI-1x/CG-WS 

potential energies.   
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4. DISCUSSION  

4.1 Optimization algorithms 

 CG, BFGS and L-BFGS all can use the Wolfe line search.  However, we found that 

both BFGS and L-BFGS failed under some circumstances when applying Wolfe line 

searches, which is consistent with previous study. Thus, we utilized a constant step size of 

α=1 for both the quasi-Newton algorithms.  

For two CG algorithms, we modified the forces of relevant atoms through a series of 

rotational operations. The successful implementation of the algorithm is demonstrated by 

very small RMSDs in generating one-dimensional PESs (~0.05 Å) and two-dimensional 

PESs (~0.1 Å). However, the algorithm of modifying forces for the restrained atoms is not 

applicable to the LBFGS and BFGS methods, as both algorithms modify the search 

directions determined by Eq. 3.  Thus, both the search direction and force to constrain the 

dihedral angle should be modified for the two quasi-Newton methods. We will improve the 

two quasi-Newton methods so that they can be applied to perform constrained geometry 

optimization in future.     

4.2 Can pre-geometry optimization using ANI-x speed up DFT optimization? 

 We also investigated if using an optimized geometry with ANI-1x can shorten the DFT 

optimization time. For 100 molecules in Dataset 1, the DFT optimization time per molecule 

is shorten about 23%, while the optimization steps reduced 18% using geometries pre-

optimized by ANI-1x/CG-WS. In contrast, after the ANI/L-BFGS optimization, the DFT 
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optimization time and steps reduced 16.0% and 18.0%, respectively. Therefore, the two 

optimization methods can reduce ab initio compute time almost equally efficient. However, 

for large molecules in Dataset 2, the optimization time reduced only about 9% and 12% 

after pre-optimization using ANI/CG-WS and ANI/L-BFGS, respectively. It is obvious that 

beneficial effect wanes for large molecules. In conclusion, one can save considerable CPU 

time by conducting ANI-1x/CG-WS optimization prior to DTF optimization, which is 

essential in large-scale ab initio calculations.  

 

4.3 Dependence of ANI-1x performance on molecular size 

 To evaluate the dependence of ANI-1x performance on molecular size, we divide the 

160 molecules in Dataset 3 into 5 groups and each group has 32 molecules (Figure S3). 

Group 1 has smallest numbers of heavy atoms, while Group 5 has largest numbers of heavy 

atoms. We investigated the dependence of molecular size for the following properties, 

RMSD of the heavy atoms between the ANI-1x/CG-WS and DFT optimized geometries, 

MAD and RMSE of the conformational energies, and the correlation coefficient between 

the two set of energies.   

 As shown in Figure 5A, the smaller the molecule size is, the smaller RMSD of the 

ANI-1x/CG-WS optimized structure relative to the DFT optimized structure is. However, 

even for Group 5, the median RMSD, 0.055 Å, is still acceptable. Not as obvious as RMSD, 

MAD becomes larger from Group 1 to Group 5 when molecular size increases (Figure 

5B). We noticed that the Group 3 and Group 4 have the similar MAD values for both single-
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point and optimized energies. Unlike RMSD and MAD, the molecular size-dependence is 

not obvious for RMSE as illustrated by Figure 5C. The RMSE of Group 1 was higher than 

Groups 2, 3 and 4, mainly due to ANI-1x performs very badly for two outliers.  As to 

correlation between the ANI-1x/CG-WS and DFT energies, the difference is quite small, 

all five molecule groups achieved good correlations. . 

 Apparently, geometric optimization has a large impact on MAD, RMSE and R. The 

decrease of R value for Group 5 after optimization is understandable (Figure 5D), as the 

optimized geometries by ANI-1x/CG-WS and DFT may be different (Figure S5). If the 

RMSD values are small, as for the first four groups, the MAD and RMSE are comparable 

between single-point and optimized energies.   

 

Figure 5. The dependence of ANI-1x/CG-WS performance on molecular size. A: Median 
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RMSD between the structures optimized by ANI-1x/CG-WS and B97x/6-31G(d). B and 

C: Median MAD (Panel B) and RMSE (Panel C) for single-point and optimized energies 

by ANI-1x/CG-WS and DFT. D: Correlation coefficient between single-point and 

optimized energies by ANI-1x/CG-WS and DFT. 

 

4.4 The quality of ANI-1x directly determines the performance of ANI-1x/CG-WS 

 As mentioned above, large structural RMSD after geometric optimization contributes 

to large RMSE between ANI-1x/CG-WS and DFT energies. As our initial structures were 

already optimized even though using a different ab initio model (B3LYP/6-31G* with 

solvent effect being taken into consideration), we expect that the RMSD of the geometries, 

MAD and RMSE values between the ANI-1x/CG-WS and DFT optimized energies should 

be very small. Indeed, we observed the two types PESs agree with each other very well for 

most molecules in our dataset. We selected a subset of 9 molecules, whose molecular sizes 

and RMSD values are relatively large, for further investigation. The 2D-structures of the 9 

molecules are shown in Figure 6.  
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Figure 6.  2D-structures of the nine-molecule subset with the torsional angles for 

generating PESs colored in red.  A: dC B: rU C: dT D: dA E: dG F: Sucrose1 G: Sucrose2, 

H: Lactose1, I: Lactose2. 

 We calculated four types of PESs, which were generated using  (1) ANI-1x energies 

based on the B97x/6-31G(d) optimized geometries using Jaguar (denoted by ANI-

1x//DFT), (2) B97x/6-31G(d) energies based on the B97x/6-31G(d) optimized 

geometries (denoted by B97x/6-31G(d)//DFT), (3) ANI-1x energies after ANI-1x/CG-

WS optimization (denoted by ANI-1x//CG-WS), and (4) B97x/6-31G(d) energies 

calculated using the CG-WS optimized geometries (denoted by B97x/6-31G(d)//CG-

WS). Figure 7 illustrate the four types of PESs for the nine molecules. A general 

observation is that if a single-point ANI-1x//DFT PES fitted well to the corresponding 

single-point B97x/6-31G(d)//DFT, the two PESs based on the ANI-1x/CG-WS optimized 
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geometries, ANI-1x//CG-WS and B97x/6-31G(d)// CG-WS also fitted well to each other, 

as the cases for first five molecules (Figure 7A-7E). More importantly, ANI-1x/CG-WS 

optimization can improve the overlay of the PES curves (blue and brown curves).  

However, when the ANI-1x//DFT PES of a molecule cannot reproduce its B97x/6-

31G(d)//DFT PES well, as the cases for the last four molecules (Figure 7F-7I), ANI-

1x/CG-WS optimization cannot improve the overlay of the PES curves. This result suggest 

that a high-quality ANI potential is the key to achieve high accuracy on prediction the ANI 

energies after CG-WS geometric optimization. 

 

Figure 7. Potential energy surfaces of nine large molecules calculated using four different 

protocols. The starting geometries were optimized by B3LYP/6-31G* using the Jaguar 

software, and the RMSDs between the initial and ANI-1x/CG-WS are shown as green dots.  
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4.5. Application of ANI-1x/CG-WS in torsional parameter development   

So far, our evaluation on ANI-1x/CG-WS is based on molecular geometries optimized 

by using B3LYP/6-31G* with the solvent effect taken into consideration. However, in 

practice, we do not have structures optimized by an ab initio model.  To further test the 

applicability of the CG-WS algorithm in MMFF development, we followed the standard 

procedure to prepare structures prior to ANI-1x/CG-WS. First, we draw molecules shown 

in Figure 6 using the Maestro molecular graphics software (www.schrodinger.com), and 

then generated residue topologies using the Antechamber module,41 next we conducted 

constrained minimizations for molecules described by GAFF.15 The GAFF-optimized 

geometries were then subjected to ANI-1x/CG-WS optimization. We found that the median 

RMSD of the nine molecules (in total 162 conformations) starting from GAFF-optimized 

structures was 0.091 Å, which is slight lower than that using the B3LYP/631G* optimized 

structures, which is 0.095 Å.   

 We then generated four types of PESs, which are ANI-1x//DFT, B97x/6-

31G(d)//DFT, ANI-1x//CG-WS, and B97x/6-31G(d)//CG-WS. Note that DFT here refers 

to B97x/6-31G(d). The initial structures are GAFF-optimized geometries. The RMSD 

values between DFT and ANI-1x/CG-WS optimized geometries were also calculated and 

shown in Figure 8 (dotted lines). Comparisons on the four types of PESs suggest that the 

four types of PESs overlayed very well. It is encouraging to observe that the accuracy of 

fitting the ANI-1x/CG-WS PESs reproducing the DFT ones is significantly improved using 

GAFF-optimized geometries, due to the much smaller RMSD values.        
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Figure 8. Potential energy surfaces of nine large molecules calculated using four different 

protocols. The starting geometries were generated by performing constrained optimizations 

using GAFF.   

 In MMFF development for arbitrary organic molecules, an important task is to develop 

high-quality torsional angle parameters to depict the torsional PESs. It will become a 

burden to generate PESs with high-quality ab initio models for a large set of organic 

molecules. On another hand, ANI-1x/CG-WS could significantly speed up the geometric 

optimization and potential energy calculation, and its accuracy is still acceptable compared 

to those obtained by ab initio calculations. For a typical molecule with a size of regular 

small-molecule drugs, such as the Group 5 molecules, the RMSE is about 1.5 kcal/mol. 

Interesting, for the 9 molecules in Figure 6, only one conformation has its  value, 0.61, 

slightly larger than the suggested cutoff, 0.6. No matter what, it is a good practice to 
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eliminate low quality data using  parameter in generating PES with ANI-1x/CG-WS. 

Thus, we may not apply ANI-1x/CG-WS potential energies directly to derive force field 

parameters, however, the accuracy is sufficient to detect bad torsional angle parameters. 

Once those low-quality force field parameters being discovered, we can then generate 

torsional PES with a high-quality ab initio model, and subsequentially conduct force field 

parameterization. Instead of developing ANI potentials using training data produced by 

high-quality and computer time-demanding ab initio models, in our opinion, it is more 

important to expand the chemical space coverage and to improve the single-point accuracy 

of an ANI model, since according to Figure 3B, there is a strong correlation between the 

single-point MADs and those after geometric optimization.  With the continually improved 

ANI potentials, we believe that our CG-WS and CG-BS algorithms can be a useful tool in 

general purpose force field development.   

 

Conclusions 

 In this work, we developed and assessed four geometry optimization algorithms in 

conjunction with ANI-1x potential. The four geometry optimization algorithms consist of 

two conjugated gradient (CG) and two quasi-Newton algorithms, namely CG-BS (CG with 

backtracking line search), CG-WS (CG with Wolfe line search), BFGS (Broyden–

Fletcher–Goldfarb–Shanno) and L-BFGS (low memory BFGS). CG-WS was a new 

algorithm developed in this work. All four algorithms can be applied to conduct full 

geometry optimization. Among the four algorithms, CG-WS is the most efficient, CG-BS 

is the most robust, and L-BFGS and BFGS achieve the smallest 𝐸 = 𝐸𝐴𝑁𝐼 − 𝐸𝑄𝑀 values. 
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Both CG-WS and BFGS methods are recommended for this type of tasks. We developed 

an algorithm to project forces to a plane or line so that the two CG methods can perform 

constrained geometry optimization for a molecule described by Cartesian coordinates. The 

performance of CG-BS and CG-WS is quite similar except that the former is relatively 

more robust, and the latter is slightly more efficient and accurate. Therefore, both CG-WS 

and CG-BS are recommended for performing constrained geometry optimization.  

 We have explored the potential of applying ANI in molecular mechanics force field 

(MMFF) development. Although the accuracy of CG-WS or BFGS in conjunction with 

ANI-1x potential energies is less accurate in comparison with those obtained through ab 

initio optimization, they are much more efficient and the computer time is less than 1% of 

the DFT for molecules in our datasets. Thus, we concluded that CG-WS, CG-BS or BGFS 

in conjunction with ANI-1x potential although is not accurate enough to produce reference 

data for force field parameterization, they are good enough to detect problematic molecules 

or torsional parameters in MMFF development. Moreover, we suggested using the  cutoff 

of 0.6 kcal/mol, to eliminate those datapoints which may have poor accuracy of ANI-1x 

potential. With the continuously-increased quality of ANI, it is expected that CG-WS, CG-

BS and BGFS algorithms, which in principle can be combined with any ANI potentials, 

will have a great application in improving the quality of an existing small molecule MMFF.   

 

Supporting Information 

Table S1 demonstrates the efficiency and accuracy of four optimization methods for 8 

large molecules. Figures S1 and Figure S2 shows 100 and 8 molecules in Dataset 1 and 

Dataset 2, respectively. Figure S3 shows the 2D-structures of the 160 molecules in Dataset 

3 and the torsional angles for which torsional scanning were performed (colored in red); 
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Figure S4 shows the torsional PESs using the B97x/6-31G(d) and ANI-1x based on the 

B3LYP/6-31G* optimized geometries; and Figure S5 shows the torsional PESs using the 

B97x/6-31G(d) and ANI-1x after geometric optimization using the same ab initio model 

and ANI-1x/CG-WS, respectively.  
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Table S1. Efficiency and accuracy of various optimization method combined with constraint 

method for 8 large molecules  

  B3LYP/ 

6-31G* 

ANI/ 

CG-BS 

ANI/ 

CG-WS 

ANI/ 

L-BFGS-WS 

ANI/ 

BFGS 

GAFF 

CPU time (second) 335438.0 1281.1 462.8 2004.1 959.0 0.56 

Optimization Steps 57.7 1093.3 340.8 3161.7 1161.6 1580.4 

AUE (kcal/mol) 2.28 2.99 2.85 2.92 2.94 3.74 

RMSE (kcal/mol) 2.80 3.32 3.17 3.51 3.55 4.20 

R 0.71 0.69 0.72 0.78 0.72 0.50 

Ave. RMSD (Å) 1.27 1.39 1.36 1.19 1.24 1.41 
*For minimization using GAFF, drms was set to 0.05.  
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Figure S1A 
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Figure S1B 
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Figure S1C 

 

 

Figure S1. 2D-structures of 100 drug molecules with atom numbers ranged from 13 to 50. 

 

 

 

 

 

Figure S2. 2D-structures of 8 large molecules with atom numbers ranged from 65 to 120. 
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Figure S3A 
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Figure S3B 
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Figure S3C 
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Figure S3D 
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Figure S3E 

 

 

 

Figure S3. 2D-structures of 160 molecules arranged into five groups according to the numbers 

of heavy atoms, from the lowest (Group 1, Figure S3A) to highest (Group 5, Figure S3E). The 

torsional angles for which PESs were generated are colored in red. 
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Figure S4A 
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Figure S4B 
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Figure S4C 
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Figure S4D 
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Figure S4E 

 

 

Figure S4. PESs for 160 molecules. A to E correspond to Group 1-5 molecules in Figure S3. 

Each subplot shows a one-dimensional potential surface scan generated using ωB97/6-31G(d) 

energies (red curves), and the ANI-1x energies (black curves) based on the B3LYP/6-31G* 

optimized structures using Jaguar. The rho values for ANI-1x calculations and RMSDs between 

ANI-1x-optimized and DFT*-optimized geometries are shown as green triangles and blue 

squares, respectively.  
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Figure S5A
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 Figure S5B
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Figure S5C 
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 Figure S5D 
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Figure S5E 

 

 

Figure S5. PESs for 160 molecules. A to E correspond to Group 1-5 molecules in Figure S3. 

Each subplot shows a one-dimensional potential surface scan generated using ωB97/6-31G(d) 

energies after geometric optimization (cyan curves), and using ANI-1x after optimization by I-

ACG/ANI-1x (orange curves). The rho values for ANI-1x calculations and RMSDs between 

ANI-1x-optimized and wB97x/6-31G(d)-optimized geometries are shown as green triangles 

and blue squares, respectively.  
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