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ABSTRACT

An efficient yet accurate method for producing large amount of energy data for
molecular mechanical force field (MMFF) parameterization is on demanding, especially
for torsional angle parameters which are typically derived to reproduce ab initio rotational
profiles or torsional PESs. Recently, an active learning potential (ANI-1x) for organic
molecules which can produce smooth and physically meaningful potential energy surfaces
(PESs) has been developed. The high efficiency and accuracy make ANI-1x especially
attractive for geometry optimization at low cost. To apply ANI-1x potential in MMFF
parameterization, one needs to perform constrained geometry optimization. In this work,
we first developed a computational protocol to constrain rotatable torsional angles and
other geometric parameters for a molecule whose geometry is described by Cartesian
coordinates. The constraint is successfully achieved by force projection for the two
conjugated gradient (CG) algorithms. We then conducted large-scale assessments on how
ANI-1x along with four different optimization algorithms in reproducing DFT energies and
geometries for two CG algorithms, CG backtracking line search (CG-BS) and CG Wolfe
line search (CG-WS), and two quasi-Newton algorithms, Broyden—Fletcher—Goldfarb—
Shanno (BFGS) and low-memory BFGS (L-BFGS). Note that CG-BS is a new algorithm
we developed in this work. All four algorithms take the ANI energies and forces to optimize
a molecule geometry. Last, we conducted a large-scale assessment of applying ANI-1x in
MMEFF development in three aspects. First, we performed full optimizations for 100 drug
molecules each consisting of five distinct conformations. The average root-mean-square
error (RMSE) between ANI-1x and DFT is about 1.3 kcal/mol and the root-mean-square

displacement (RMSD) of heavy atoms is about 0.35 A. Second, we generated torsional



PESs for 160 organic molecules, and constrained optimizations were performed for up to
18 conformations for each PES. We found that RMSE of all the conformers is 1.23
kcal/mol. Last, we carried out constrained optimizations for alanine dipeptide with both ¢
and ¢ angles being frozen. The Ramachandran plots indicates that the two CG algorithms
in conjunction with ANI-1x potential could well reproduce the DFT optimized geometries
and torsional PESs. We concluded that CG-BS and CG-WS are good choices for generating
PESs, while CG-WS or BFGS is ideal for performing full geometry optimization. With the
continuously increased quality of ANI, it is expected that the computational algorithms and
protocols presented in this work will have great applications in improving the quality of an

existing small molecule MMFF.
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1 INTRODUCTION

The physical and chemical properties of a molecule is closely related to its geometry.!-
3 It is of great importance to obtain accurate molecular geometries. The potential energy
surface (PES) has been widely used to depict the relationship between different molecular
geometries and their corresponding single-point energies. In computational chemistry, the
most important geometric PES types include bond length PES, bond angle PES and
dihedral angle PES, besides the usual electrostatics and dispersion terms. To generate a
PES, first, we should generate a series of different geometries varying one or multiple
geometric parameters for the molecule. However, the ideal low-energy geometries of a
molecule with geometric parameters fixed at certain values are usually unknown, thus,
constrained geometry optimization is needed to obtain reasonable molecular geometries
during a PES generation.*

Accurate calculation of potential energies is the foundation of geometry optimization.
Quantum-mechanical (QM) methods are very popular for molecule energy calculations and
geometry optimization.>> Considering the large computational cost of ab-initio methods,
many approximate methods have been designed to speed up the energy calculations and
geometry optimization. Approximate methods replace some of the computationally
expensive integrals with empirically determined parameters, to achieve a large speedup.*
68 However, the accuracy is also substantially degraded in comparison to the high-level ab
initio methods due to the imposed approximations.’ Additionally, the computational cost
of approximate methods is still quite high, potentially limiting the system size that can be
treated. Empirical interatomic potentials can also be used to calculate the potential energy,

which were developed through fitting to reproduce ab initial or experimental data.'®-!!



However, molecular mechanics force field (MMFF)-based potentials may perform poorly
when studying new systems as it is hard to guarantee the satisfactory transferability of force
field parameters.'?1

Machine learning (ML) is revolutionizing many areas of science and technology,!’
which has also been used to construct various forms of atomistic potentials and has been
successfully applied in energetics study of chemical and biological systems.!®>2
Encouragingly, ML potentials have achieved a speed-up of as much as 5 orders of
magnitude compared to QM calculations without significantly loss of accuracy in
predicting molecular energies. One such approach, Accurate NeurAl networK engINe for
Molecular Energies (ANAKIN-ME or ANI) method successfully constructed a
transferable neural network potential (ANI-1) that utilizes a modified version of the
symmetry functions to construct single-atom atomic environment vectors.?>>* The ANI-1
potential was trained on 22 million randomly selected molecular conformations from 57
thousand distinct small molecules utilizing density functional theory (DFT) energies.?
Furthermore, active learning-based ANI potential (ANI-1x) constructed for only 5 million
conformations of molecules outperforms the original ANI-1 potential.?> The active
learning and transfer learning-based ANI potentials (ANI-1ccx) exceeds the accuracy of
DFT, which was retrained to a much smaller data set (about 500 thousand intelligently
selected conformations from ANI-1x) at the CCSD(T)/CBS level of accuracy.?> 2® ANI-
1/1x/1ccx can do only for molecules with C, H, N, and O elements, while ANI-1/2x can
also deal with S, F and Cl.

Considering the outstanding advantages of efficiency and accuracy of ANI-1x

potential, it is very attractive to apply it in geometry minimization, which is an important



task in computer-aided drug design.* 2> However, an efficient minimization engine,
especially one can conduct constrained geometry minimization utilizing an ANI potential
is currently not available. Although we can borrow the optimization engine implemented
in the Gaussian software by taking ANI-1x as an external potential, we found that many
jobs were not able to converge successfully and the usages of Central Processing Unit (CPU)
are not efficient, especially for optimizations with frozen coordinates. The reason lies that
the PESs generated by ML may be less smoothly in comparison with those of ab initio
potentials. The following are the motivations of this work: (1) to develop/implement
different optimization algorithms in combination with ANI-1x potential for performing full
geometry optimization and generating torsional PESs with one or more torsional angles
being frozen; (2) to evaluate the performance of the optimization algorithms using three
molecular datasets; and (3) to work out a set of practical guidance to facilitate us to generate
high-quality PESs for MMFF development. The developed optimization algorithm as well
as the established guidance can also be applied with other ML-based atomistic potentials,
such as ANI-1ccx. The python scripts which implement the two CG and two quasi-Newton
optimization algorithms are available in GitHub
(https://github.com/junmwang/pyani_mmff). Note that the ANI-1x energy and force are

calculated using TorchANI?® implemented as a python module.

2 METHODOLOGIES
2.1 Conjugate gradient methods
Geometry optimization is still a common and complex problem to be solved

efficiently.® Popular atomistic energy optimization strategies include gradient descent



methods, CG methods and Newton's methods.*! The "full" Newton's method requires the
second derivative matrix (Hessian matrix) of a system in order to find its extrema. The
most commonly-used quasi-Newton algorithms include Broyden—Fletcher—Goldfarb—

S,3%"33 which are found to

Shanno (BFGS) algorithm and its low-memory extension L-BFG
be superior to CG methods in some circumstances. However, for most systems of practical
interest, it may be prohibitively expensive to compute the second derivative matrix, which
is estimated from successive values of gradient. The CG method is a general method to
find a local minimum using the derivatives of the potential energy with respect to the
position of the atoms.
For N atoms, the optimization objective function is to minimize the potential energy:
V(r) =V (rie Ty, Tz Tox T2y T2z0 ) (1)
An obvious, but not very efficient strategy is to move an atom in the direction of the
negative gradient. To improve optimization efficiency, CG uses a new “conjugate”
direction of movement that depends on the previous direction of movement, and adopts an
iterative procedure taking the form of:
ri1 =1+ ah; (2)
in which a > 0 is a step length scalar and A; is a search direction. The search direction at
the very first iteration is the direction of the negative gradient: hy = g, = f, = —VV(1y).
Then the search directions are calculated iteratively according to Eq. 3:
[i=-VW{), Giva=Ffi M1 =091 +vhy ()
Where yis a scalar factor, computed according to the Polak-Ribiere algorithm as it is more

efficient than Fletcher-Reeves method under some circumantances>*:

y = max((fi+9) 7,01 (4
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To ensure the convergence of Eq. 2, a is supposed to satisfy the Wolfe line search
conditions®’:
V(r;+ah) —V(@) < —oiafih; (5
VW(r;+ah)"h; = —o,fTh; (6
Where 0 <61<02< 1.

Wolfe condition (Eq. 5) can ensure the step size is not excessively large, while wolfe
condition (Eq. 6) can ensure the step size is not too small. In this work, we provide two
methods to obtain the a value. First, we set @ = a,,;, and then increase o from a,,;, to
A max Using the following formula:

ais =1.01a; (7)
To ensure the step length @; decreases V (r;) 'sufficiently’, the following Wolfe line search
conditions is used to scale down o
V(r; +aph) —V(r) < —oiaffih;  (8)
and the iterative form is changed with:
riyg =1 +afh;  9)

Of note, we reset 3 to 1.0 after every iteration, and then repeatedly scale it to half until it
satisfies the aforementioned Wolfe line search conditions (Eq. 8). We called this
backtracking line search algorithm CG-BS. The second method was using the traditional
Wolfe line search method,*® thus it is named as CG-WS. In a short, CG-BS employs the
first Wolfe condition (Eq. 8) to ensure the step size is not excessively large, while CG-WS
employs both conditions (Egs. 5 and 6). Of note, it is shown that the PRP (Polak-Ribi¢re-
Polyak) method is globally convergent when the line search employs a constant step size

a < 1/4L, where L is a Lipschitz constant for force.>® Thus, a small step size can also be

employed for CG method.



2.2 BFGS and L-BFGS methods
BFGS and L-BFGS are two quasi-Newton methods which utilizing Hessian matrix in
the optimization procedure. The search direction of BFGS and L-BFGS was determined
using following equations.
pi=B'fi (10
Where B;, an approximation to the Hessian matrix was calculated using Eq. 11 for the

BFGS method.

Biy1 = (By — '”)B 1(By - )+ (11)

ST}’[
Wheres; =r;,1 — = fi — fi+1. While B; for L-BFGS was calculated by Eq. 12.

z+1 (Ht zUT)BOI(Ht OUt) +Z 0( ]+1 UT) (P}S AST)(Ht—]ﬂ Ut) (12)

1

Where p; = ———, U;
Pj AszAy]-’ J

=By—p jy]-Asl-T. However, according to actual needs, we can take

the nearest m item as shown in Eq. 13.

By = (ITi=4 UT)Bg (Tt m Ue) + Ziz0 (I UF) (pysisT) (Micjua Ue) - (13)
Although the step size obtained from Wolfe line search could ensure the BFGS
updating is stable, both BFGS and L-BFGS methods may fail for non-convex functions
with line searches satisfying the Wolfe conditions.?” The step size a=1 is widely applied for
both the BFGS and L-BSGS algorithms. Thus, in this study, we applied the constant step
size =1 for both methods in geometry optimizations.
2.3 Dihedral angle constraint
To generate PESs, one needs to perform geometry optimization with one or more

geometric parameters (such as torsional angles) being frozen. It is straightforward to add



constraints to internal coordinates, however, ANI-1x only takes Cartesian coordinates as
an input. Some degrees of freedom can be eliminated through adding a dihedral angle bias
potential (restrained optimization) or through revising the force during optimization
process (constrained optimization). Adding a bias potential could not completely restrict
the change of a dihedral angle. While revising force could eliminate any changes for the
dihedral angle in question. For the purpose of generating PESs, we adopt the second
approach, i.e., to fix one or multiple geometric parameters by revising the forces. Of note,
this approach is in line with the partial optimization in many ab initio packages including
Gaussian 16.% For an angle or a torsional angle, the force is revised through a series of
rotations along with coordinate axes. The process of revising forces for a fixed torsional
angle was illustrated in Figure 1. Specifically, for a torsional angle A-B-C-D consisting of
atoms A, B, C, and D, we first translate r4p.p so that B is moved to the coordinate origin,
and rotate rypcp = [r4, 75, 7c, 7p] to make C locate on the x-axis along with force f 4pcp =
[f, f5 fc, fo]- Note that we use 7,5cp and 1’ 45p to represent coordinates before and after
a translational or rotational operation, respectively. This notation rule also applies to forces.
In the following equations (Eqgs. 14 to 19), 75 and Rcy, etc. are spatial transformation
matrices.

T apcp = TTapcp  (142)

" apcp = RexTapep  (14b)

f'aBco = Rexfasep (14c)

We then rotate 7’45 to make A locate on xy-plane along with force fiscp:
T 4pcp = RyxyTapcp (15a)
f ’ABCD = RAxyf ABCD (15b)

10



ABC is constrained in the xy-plane by setting the z-direction forces of A, B and C
atoms to zero, and setting the y-direction forces of B and C atoms to zero, i.€., fg, = fp, =
0, fcy = fez = 0, faz = 0. Then we rotate ’4p¢p so that A is back to its previous plane
along with its force:

T 4pcp = RAxy_erBCD (16a)
f’ABCD = RAxy_lfABCD (16b)

Similarly, we rotate r45.p so that D is in the xy-plane:

T 4pcp = RpxyTapcop (17a)
f ’ABCD = Rnyf ABCD (17b)

Then BCD is constrained in this plane by resetting the z-direction force of D to zero:
fpz = 0. Next, we rotate r45.p So that the atoms back to their initial translated positions
along with the updated forces.

T apcp = RCx_lRny_erBCD (18a)

f'ascp = Rex “Rpxy ™ fascop (18b)

Last, we translate r4p-pback to its previous position:
" ascp = —TsTancp (19)

After all the above translational-rotational operations, ’45.p in Eq. 19 equals to rsgcp in
Eq. 14. We also developed algorithms for constraining bond angles and bond lengths. We
applied a similar procedure to constrain multiple geometric parameters (N¢or + Ngngre +
Nypona = 2, where Nior, Nangies Npona» are numbers of constrained torsional angles,
angles and bonds, respectively). For example, to generate a Ramachandran plot, we need

to constrain both the ¢ and ¢ angles of an amino acid residue. It is pointed out that one may

11



project forces to a plane or line using alternative approaches. Our approach is convenient
and works well with the two CG algorithms described above when a molecule’s geometry

is described by Cartesian coordinates.

Figure 1. Schematic illustration of revising forces for a torsional angle which is frozen
during the CG-WS optimization. (a). Initial coordinates and forces of Atoms A, B, C
and D; (b). Translating r4p¢p so that B is at the coordinate origin and aligning 7 4pcp
so that Atom C is in x-axis through a rotational operation; (c). Rotating r4pcp so that
D is in the xy-plane, and resetting the z-direction force of D to zero; (d) Rotating r4pcp
so that A is in the xy-plane, and resetting the z-direction force of A to zero; (¢). Rotating

T apcp SO that the atoms back to their initial positions along with the updated forces.

2.3 PES calculation with DFT

We prepared three datasets for the evaluation of four optimization algorithms in

12



geometry optimizations using the ANI-1x energies and forces. Dataset 1 consists of 100
drug molecules (Figure S1) with varied numbers of atoms NATOM from 13 to 50. Dataset
2 has 8 large molecules identified as potential inhibitors of SARS CoV-2 3CL protease.*
The eight molecules have NATOM ranged from 65 to 120, as shown in Figure S2. The
first two molecule sets were applied to assess the four algorithms in full geometry
optimization. Each molecule in both sets has five distinct conformations generated using
Omega2 module of the OpenEye software package (www.eyesopen.com). Full DFT
optimization at ®B97X/6-31G(d) level were performed for every conformer using the
Gaussian 16 software.’® Note that in the rest of the manuscript, DFT refers to ®B97X/6-
31G(d) unless explicitly stated otherwise.

The last dataset, Dataset 3, consists 160 molecules which were used to develop GAFF
torsional angle parameters.'®> Each molecule in this dataset has 2 to 23 heavy atoms (C, N
and O) and only one rotatable torsional angle was applied in torsional PES generation. The
2D structures of those molecules and their rotatable bonds which are colored in red are
shown in Figure S3. To generate a torsional PES for a molecule, the torsional angle was
rotated from 0 to 360 degrees at a step of 20 degrees. In total 18 conformations were
generated.

Next, the AMBER topology for a molecule was generated utilizing GAFF force field."”
For each conformation, we performed minimization using the Pmemd module of
AMBER18% to generate a Z-matrix input with the torsional angle in question being frozen

using the Antechamber module,*' and conducted constrained optimization at the B3LYP/6-
13



31G* level using the Jaguar software.** Solvent effect was taken into consideration using
polarizable continuum model (PCM) with the exterior dielectric constant being set to a
value according to the calculated hydration free energy: gout=2 if AGsor > -1.0; gour= 4 if -
9.0 < AGson <-1.0; gout = 10 if -18.0 < AGsoiv < -9.0; and gout = 80 if AGsov < -18.0 kcal/mol.
Interior dielectric constant €in was set to 1. Note a hydration free energy AGson was
calculated with the inner dielectric constant €in being set to 1 and exterior dielectric constant
eout being set to 78.3. In above, we provided details on how we generated molecular
geometries for Dataset 3 molecules. However, for the following DFT and ANI-1x
calculations, only the molecular geometry information was applied.

The optimized geometries by Jaguar were then applied to calculate single-point
energies at ®B97X/6-31G(d) level,* as well as constrained optimizations at the same level
using the Gaussian 16 package.*® It is pointed out that no solvent effect was considered in
DFT calculations. A single-point energy of the ANI-1x% potential was calculated using the
DFT optimized geometry, while a full or constrained optimization was performed using the
same starting geometry as used in DFT optimization. Moreover, the same convergence
criteria were utilized in geometry optimizations by both ®B97X/6-31G(d) and ANI-1x/CG,
i.e., the maximum force and displacement are 0.00045 and 0.0018 in atomic units,
respectively; and the RMS force and displacements are 0.0030 and 0.0012 in atomic units,
respectively. An optimization job fails if it cannot converge within 10,000 steps, the
predefined maximum number of iterations. This is the worst scenario in a geometry

optimization in this study. However, a failed job can be restarted using the last geometry
14



of the last optimization.

To establish computational protocols of applying CG/ANI-1x in torsional force field
parameterization, we also selected a subset of molecules which have at least 14 heavy
atoms. The geometries of those molecules were optimized by GAFF force field prior to
ANI-1x/CG-WS and DFT optimization.

To generate Ramachandran plots for alanine dipeptide, we rotated the ¢ and ¢ angles
from 0 to 360 degrees at a step of 10 degrees. Constrained optimization was then performed
for each conformation using the DFT and ANI-1x/CG-WS method. The PESs and
Ramachandran plots were then produced for comparison using the Python Matplotlib

module** and Matlab (https://www.mathworks.com) software.

3. RESULTS
3.1 Efficiency and accuracy of four optimization methods in full geometry
optimization

We evaluated the performance of full geometry optimization using two datasets. The
performance, measured by the Central Processing Unit (CPU) time, number of
optimization steps, AUE (average unsigned error), RMSE (root-mean-square error) and
correlation coefficient R, is listed in Table 1 for 100 drug molecules and Table S1 for 8
large molecules. Each molecule has five distinct conformations. The AUE, RMSE and R
measure how well an ANI/CG model reproduces the relative conformational energies by

DFT. Note that we used the mean value of all five conformations as the reference to
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calculate the relative conformational energies. As shown in Table 1, CG-WS is most
efficient method while L-BFGS is the least efficient. The computer time of CG-BS and
BFGS are slightly longer than that of CG-WS. As the accuracy is concerned, the BFGS and
L-BFGS methods have smaller AUE/RMSE than CG-WS and CG-BS. However, the
accuracy of all the four methods is comparable and the differences of AUE and RMSE are
less than 0.1 kcal/mol. As far as the absolute energy is concerned, most ANI-1x energies
are more positive than the ab initio ones and the average AE = E,y; — Eqy are 2.58,2.57,
2.32 and 2.35 kcal/mol, for the CG-BS, CG-WS, L-BFGS and BFGS respectively. The
number of conformations (the total is 100 x 5 = 500) that have the closest energies to
®B97X/6-31(d) are 5, 19, 368 and 108, for the four optimization methods correspondingly.

As for large molecules shown in Figure S2, the rank orders of computer time and
optimization steps are the same as Dataset 1. Interestingly, the two CG methods achieved
smaller AUE and RMSE than the two quasi-Newton methods.

We also compared the conformational energies calculated by another DFT method and
GAFF. As shown in Table 1, the AUE and RMSE of B3LYP/6-31G*, 0.60 and 0.73
kcal/mol, are much smaller than those of ANI-1x methods. The AUE and RMSE of GAFF
are about 0.3 kcal/mol larger, partially due to the fact that GAFF!> was developed to

reproduce MP2/aug-cc-pVTZ instead of ®B97X/6-31G(d).

Table 1. Efficiency and accuracy of various optimization method combined with constraint
method

| B3LYP/ | ANI/  [ANI/ | ANI/ | ANU | GAFF
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6-31G* | CG-BS | CG-WS | L-BFGS BFGS
CPU time (second) | 11183.0 | 98.6 60.0 173.4 76.1 0.14
Optimization Steps | 25.5 410.1 152.7 1007.3 443.0 | 1146.7
AUE (kcal/mol) 0.60 1.11 1.13 1.05 1.07 1.34
RMSE (kcal/mol) | 0.73 1.31 1.34 1.25 1.26 1.56
R 0.88 0.70 0.70 0.75 0.74 10.70
Ave. RMSD (A) 0.16 0.36 0.35 0.31 0.32 0.39

3.2 Efficiency and accuracy of two CG optimization methods in producing one-
dimensional torsional PES

We evaluated the two CG optimization methods in generating one-dimensional PES
for 160 molecules in Dataset 3 and two-dimensional PES for alanine dipeptide. Here, we
only reported the results obtained by CG-WS, as the results of CG-BS are essentially
similar to those of CG-WS.

Each molecule in Dataset 3 belongs to one of five groups according to the number of
heavy atoms it has (Figure S3). The aim is to study how the predictions depend on the
sizes of molecules. For a given molecule, ab initio optimizations of some conformations
may fail due to the occurrence of steric clashes between atoms when the rotatable torsional
angle takes some specific values. In total, there are 2868 conformations left for 160
molecules (on average 17.92 conformations per molecule).

To generate a PES of a molecule, we applied the mean value of all the conformations
as the reference. By this way, two PESs of the same molecule can be compared. To evaluate
the reliability of ANI-1x energy, Smith et al. developed a p parameter, which is the standard

deviation of ANI-1x potentials predicted by an ensemble of models, weighed by square
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root of the number of atoms in a molecule.” They found that with p smaller than 0.23
kcal/mol, about 98% of molecules in their molecular set have the predicted errors smaller
than 1.5 kcal/mol.

Single Point Energy Calculations. Among the 2868 conformations, 14 have the
relative conformational energies larger than 15.0 kcal/mol. The AAG between the ANI-1x
and ©B97x/6-31G(d) for those conformations are very big, with an RMSE of ~19.5
kcal/mol. As expected, the mean p values are also very big, 1.6 kcal/mol. Therefore, the
following performance evaluation was conducted without those outliers. Of note, those
outliers come from three molecules (#25 in Figure S1A, #21 and #22 in Figure S1E), for
which the inner bond of the torsional angle is a double bond. The PESs generated using the
single-point ®B97X/6-31G(d) and ANI-1x energies are demonstrated in Figure S4 of the
Supporting Information. It is demonstrated most ANI-1x PESs are fitted very well to those
predicted by DFT. Figure 2A shows the distribution of the mean absolute energy deviations
(MAD) between the ANI-1x and DFT single-point energies for the 160 molecules. The
average MAD for ANI-1x single-point energy vs. reference DFT single-point energy is
0.63 kcal/mol, while the significantly larger RMSE, 1.03 kcal/mol, is caused by about 9.7%
conformations whose AAG are larger than 1.5 kcal/mol. The scatter plot of the two types
of single-point energies is shown in Figure 2C. Exploration of the PESs shown in Figure

S4 can identify those outliers shown in Figure 2A and 2C.
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Figure 2. Performance of torsional PESs generated using ANI-1x and CG-WS for 160
molecules. A: mean absolute energy deviations (MAD) between single-point ANI-1x
potential energies and single-point ®B97X/6-31G(d) energies on the Jaguar optimized
geometries. B: MAD of the conformational energies by ANI-1x/CG-WS and ®B97X/6-
31G(d) after geometric optimization. C: Scatter plot between single-point ANI-1x potential
energies and single-point ®B97X/6-31G(d) energies. D: Scatter plot between ANI-1x

potential energies and ®B97X/6-31G(d) energies after geometric optimization.

As pointed out above, the accuracy of ANI-1x potential energy can be evaluated by p

parameter. In Table 2, we demonstrated how the performance of ANI-1x varies as a
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function of rho. Interestingly, we also observed that using p cutoff of 0.23 kcal/mol, 98%
of conformations have AAG between ®wB97X/6-31G(d) and ANI-1x smaller than 1.5
kcal/mol. Unfortunately, with such a stringent cutoff, the data coverage, the percent of data
with p smaller than the cutoff, is only 57%. As shown in Table 2, the p cutoff of 0.6
achieves a good balance between data coverage (93%) and ANI-1x accuracy (MAD and
RMSE of 0.55 and 0.89 kcal/mol, respectively, and 92% of conformations satisfy the

condition of AAE < 1.5 kcal/mol).

Table 2. Summary of ANI-1x performance using p as the selection parameter, all energies
are in kcal/mol. MAD and RMSE are mean absolute energy deviation and root-mean-

square energy deviation, respectively.

p cutoff MAD A RMSE No. No. Data Percent of Percent of data
Outliers <Rho data with  with p < cutoff
(AAE > 1.5) AAE <1.5(%) (%)
Single point calculations with ANI-1x and wB97x/6-31G(d)
0.23 0.35 0.59 36 1622 98 57.1
0.25 0.37 0.6 48 1775 97 62.5
0.3 0.42 0.66 82 2092 96 73.7
0.35 0.46 0.73 113 2271 95 80.0
0.4 0.48 0.77 139 2396 94 84.4
0.45 0.51 0.81 172 2498 93 88.0
0.5 0.53 0.84 185 2564 93 90.3
0.6 0.55 0.89 208 2641 92 93.0
0.7 0.56 0.91 222 2678 92 94.3
0.8 0.56 0.91 228 2704 92 95.2
0.9 0.57 0.92 239 2738 91 96.4
1 0.58 0.95 248 2758 91 97.1
unlimited = 0.61 1.03 276 2840 90 100.0
After optimizations with ANI-1x/CG-WS and wB97x/6-31G(d)
0.23 0.37 0.76 36 1596 98 56.2
0.25 0.38 0.76 43 1728 98 60.8
0.3 0.44 0.84 83 2064 96 72.7
0.35 0.49 0.95 128 2264 94 79.7
0.4 0.53 1.01 162 2415 93 85.0
0.45 0.55 1.03 182 2501 93 88.1
0.5 0.57 1.07 201 2577 92 90.7
0.6 0.59 1.09 230 2670 91 94.0
0.7 0.61 1.14 248 2701 91 95.1
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0.8 0.63 1.17 266 2742 90 96.5

0.9 0.63 1.18 268 2755 90 97.0
1 0.64 1.2 273 2775 90 97.7
unlimited = 0.65 1.23 288 2840 90 100.0

Conformational Energies after Constrained ANI-1x/CG-WS optimization.
Torsional angle PESs calculated using the optimized geometries play an important role in
developing MMFFs. The ANI-1x/CG-WS optimized PESs and «®B97X/6-31G(d)
optimized PESs for the 160 molecules are demonstrated in Figure SS of the Supporting
Information. Overall, the ANI-1x/CG-WS PESs reproduce the DFT PESs very well as
demonstrated in Figure 2. The distribution of MAD between the ANI-1x and DFT energies
after geometric optimization for the 160 molecules is shown in Figure 2B, while the scatter
plot of the two types of conformational energies after optimization is shown in Figure 2D.
The average MAD for ANI-1x versus DFT energies is 0.65 kcal/mol, slightly larger than
that for the single-point energies which is 0.61 kcal/mol. As expected, the RMSE value for
ANI-1x versus DFT energies after optimization, 1.23 kcal/mol, is also slightly larger than
the corresponding single-point calculation counterpart. Again, exploration of the PESs
shown in Figure S5 can identify those outliers shown in Figure 2B and 2D. The above
result is reasonable as ANI-1x/CG-WS optimized geometries may be slightly different
from those optimized by DFT as shown in Figure 3A. We also plotted the MADs before
and after geometric optimization in Figure 3B. Apparently, for most conformations the
difference of MAD values is small, however, for about 10% of conformations, the MADs
between ANI-1x and ®B97/6-31G(d) are larger than 1.5 kcal/mol. As shown in Table 2,
for using a p cutoff of 0.6 kcal/mol, the data coverage (94%) is slightly larger than that of
single point calculations, while the percent of conformations satisfying AAE < 1.5 kcal/mol,

91%, is slightly smaller.
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Figure 3. Impact of different optimization methods on structures and mean absolute energy
deviations (MAD) of the two potentials (MAD = [AE ANI-1x — AEng7x/6_3m(d)J). A:
Distribution of RMSD between ANI-1 optimized structures and ®B97/6-31G(d) optimized
structures for 160 molecules. B: Scatter plot MADs before (x-axis) and after geometric
optimization (y-axis).

Structure similarity between ANI-1 optimization and DFT optimization. To
critically assess the performance of CG-WS algorithm in conjunction with ANI-1x
potential in geometry optimization, we performed geometric optimizations for the 160
molecules consisting of C, H, N and O and each has up to 18 conformations. ®B97X/6-
31G(d) optimization was also performed for the same set of conformations of 160
molecules. The distribution of RMSDs is illustrated in Figure 3A. The distribution has a
mean value of 0.05 A and 90.9% of RMSDs are lower than 0.1 A. The detailed RMSDs
for each molecule was presented in Figure S5 of the Supporting Information. In brief, our
CG-WS algorithm in conjunction with ANI-1x can produce very similar geometries as

those optimized by DFT.

22



3.3 Efficiency and accuracy of two CG optimization methods in producing two-

dimensional torsional PES

We generated 1296 alanine dipeptide (alanine with the N-terminal linking an acetyl
group and the C-terminal being a N-methyl amide group) conformations with the peptide
¢ and @ angles being rotated from 0 to 360 degrees at a step of 10 degrees. Without further
optimization using a MMFF, we then performed constrained geometric optimization using
calculated ®B97x/6-31G(d) and ANI-1x/CG-WS. The structure as well as ¢ (blue and red
bonds) and ¢ (red and green) angles are shown in Figure 4A. About 40% of conformations
were not successfully optimized by ®B97x/6-31G(d) using the default setting of Gaussian
16.3® With several rounds of restarting, still 9 conformations cannot meet the default
convergence condition. On the other hand, all jobs finished with the first try by ANI-
1x/CG-BS; and only 9 failed by ANI-1x/CG-WS. For the 9 failed jobs, all optimization
jobs succeeded after restarting. Therefore, ANI-1x/CG-BS is more robust than ANI-1x/CG-
WS. As for the computational time, the average number of optimization steps and
computation time for ANI-1x/CG-WS are 116.8 and 36.9 seconds, while the corresponding
values are 24.4 and 6574.9 seconds for DFT. On average, ANI-1x/CG-WS optimization
only uses 0.6% of the CPU time required for ®B97x/6-31G(d) optimization.

The average value of RMSDs of the heavy atoms are 0.10 + 0.06 A between the ANI-
1x/CG-WS and DFT optimized geometries. As expected, DFT has lower absolute energies
than ANI-1x/CG-WS for most conformations and the mean difference (E4n; — Eppr) 18
1.36 kcal/mol. However, the MAE and RMSE values of the relative energies are much
smaller, which are 0.32 and 0.49 kcal/mol, respectively. The correlation between the two
sets of relative energy data is 0.99. The performance of ANI-1x/CG-BS is same as that of
ANI-1x/CG-WS except that E4n; — Eppr = 1.39 kcal/mol is slightly larger. However,
CG-BS is more robust than CG-WS, as the former has no failed jobs while the latter has

10 out of 1296 optimization jobs failed. It is worth mentioning that after one-round
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restarting, all the 10 jobs achieved the convergence. We generated the Ramachandran plots
of the two-torsional PESs calculated using DFT and ANI-1x/CG-WS (Figure 4C and 4D).
Encouragingly, the overall shapes of the two Ramachandran plots resemble to each other
very well. The RMSD values are also shown in a contour plot with 20 filled intervals using
the 2D-contour function in Matlab (Figure 4B). Note that the RMSDs between the DFT
and ANI-1x/CG-WS geometries were calculated using least-square fitting for the heavy

atoms only.
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Figure 4. Ramachandran plots for the alanine dipeptide. A: Definition of ¢ (blue and red

ZT

c 150

bonds) and ¢ (red and green bonds) torsional angles. B: a contour plot of RMSD values
between the ANI-1x/CG-WS and DFT optimized geometries. C: A Ramachandran plot
using the DFT potential energies. D: A Ramachandran plot using the ANI-1x/CG-WS

potential energies.
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4. DISCUSSION

4.1 Optimization algorithms

CG, BFGS and L-BFGS all can use the Wolfe line search. However, we found that
both BFGS and L-BFGS failed under some circumstances when applying Wolfe line
searches, which is consistent with previous study. Thus, we utilized a constant step size of
a=1 for both the quasi-Newton algorithms.

For two CG algorithms, we modified the forces of relevant atoms through a series of
rotational operations. The successful implementation of the algorithm is demonstrated by
very small RMSDs in generating one-dimensional PESs (~0.05 A) and two-dimensional
PESs (~0.1 A). However, the algorithm of modifying forces for the restrained atoms is not
applicable to the LBFGS and BFGS methods, as both algorithms modify the search
directions determined by Eq. 3. Thus, both the search direction and force to constrain the
dihedral angle should be modified for the two quasi-Newton methods. We will improve the
two quasi-Newton methods so that they can be applied to perform constrained geometry
optimization in future.

4.2 Can pre-geometry optimization using ANI-x speed up DFT optimization?

We also investigated if using an optimized geometry with ANI-1x can shorten the DFT
optimization time. For 100 molecules in Dataset 1, the DFT optimization time per molecule
is shorten about 23%, while the optimization steps reduced 18% using geometries pre-

optimized by ANI-1x/CG-WS. In contrast, after the ANI/L-BFGS optimization, the DFT
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optimization time and steps reduced 16.0% and 18.0%, respectively. Therefore, the two
optimization methods can reduce ab initio compute time almost equally efficient. However,
for large molecules in Dataset 2, the optimization time reduced only about 9% and 12%
after pre-optimization using ANI/CG-WS and ANI/L-BFGS, respectively. It is obvious that
beneficial effect wanes for large molecules. In conclusion, one can save considerable CPU
time by conducting ANI-1x/CG-WS optimization prior to DTF optimization, which is

essential in large-scale ab initio calculations.

4.3 Dependence of ANI-1x performance on molecular size

To evaluate the dependence of ANI-1x performance on molecular size, we divide the
160 molecules in Dataset 3 into 5 groups and each group has 32 molecules (Figure S3).
Group 1 has smallest numbers of heavy atoms, while Group 5 has largest numbers of heavy
atoms. We investigated the dependence of molecular size for the following properties,
RMSD of the heavy atoms between the ANI-1x/CG-WS and DFT optimized geometries,
MAD and RMSE of the conformational energies, and the correlation coefficient between
the two set of energies.

As shown in Figure 5A, the smaller the molecule size is, the smaller RMSD of the
ANI-1x/CG-WS optimized structure relative to the DFT optimized structure is. However,
even for Group 5, the median RMSD, 0.055 A, is still acceptable. Not as obvious as RMSD,
MAD becomes larger from Group 1 to Group 5 when molecular size increases (Figure

5B). We noticed that the Group 3 and Group 4 have the similar MAD values for both single-
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point and optimized energies. Unlike RMSD and MAD, the molecular size-dependence is
not obvious for RMSE as illustrated by Figure SC. The RMSE of Group 1 was higher than
Groups 2, 3 and 4, mainly due to ANI-1x performs very badly for two outliers. As to
correlation between the ANI-1x/CG-WS and DFT energies, the difference is quite small,
all five molecule groups achieved good correlations. .

Apparently, geometric optimization has a large impact on MAD, RMSE and R. The
decrease of R value for Group 5 after optimization is understandable (Figure 5D), as the
optimized geometries by ANI-1x/CG-WS and DFT may be different (Figure S5). If the
RMSD values are small, as for the first four groups, the MAD and RMSE are comparable

between single-point and optimized energies.
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Figure 5. The dependence of ANI-1x/CG-WS performance on molecular size. A: Median
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RMSD between the structures optimized by ANI-1x/CG-WS and ®B97x/6-31G(d). B and
C: Median MAD (Panel B) and RMSE (Panel C) for single-point and optimized energies
by ANI-1x/CG-WS and DFT. D: Correlation coefficient between single-point and

optimized energies by ANI-1x/CG-WS and DFT.

4.4 The quality of ANI-1x directly determines the performance of ANI-1x/CG-WS

As mentioned above, large structural RMSD after geometric optimization contributes
to large RMSE between ANI-1x/CG-WS and DFT energies. As our initial structures were
already optimized even though using a different ab initio model (B3LYP/6-31G* with
solvent effect being taken into consideration), we expect that the RMSD of the geometries,
MAD and RMSE values between the ANI-1x/CG-WS and DFT optimized energies should
be very small. Indeed, we observed the two types PESs agree with each other very well for
most molecules in our dataset. We selected a subset of 9 molecules, whose molecular sizes
and RMSD values are relatively large, for further investigation. The 2D-structures of the 9

molecules are shown in Figure 6.
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Figure 6. 2D-structures of the nine-molecule subset with the torsional angles for
generating PESs colored in red. A: dC B: rU C: dT D: dA E: dG F: Sucrosel G: Sucrose2,
H: Lactosel, I: Lactose2.

We calculated four types of PESs, which were generated using (1) ANI-1x energies
based on the ®wB97x/6-31G(d) optimized geometries using Jaguar (denoted by ANI-
1x//DFT), (2) ©®B97x/6-31G(d) energies based on the ®B97x/6-31G(d) optimized
geometries (denoted by wB97x/6-31G(d)//DFT), (3) ANI-1x energies after ANI-1x/CG-
WS optimization (denoted by ANI-1x//CG-WS), and (4) ©®B97x/6-31G(d) energies
calculated using the CG-WS optimized geometries (denoted by ®wB97x/6-31G(d)//CG-
WS). Figure 7 illustrate the four types of PESs for the nine molecules. A general
observation is that if a single-point ANI-1x//DFT PES fitted well to the corresponding

single-point ®B97x/6-31G(d)//DFT, the two PESs based on the ANI-1x/CG-WS optimized
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geometries, ANI-1x//CG-WS and ®B97x/6-31G(d)// CG-WS also fitted well to each other,
as the cases for first five molecules (Figure 7A-7E). More importantly, ANI-1x/CG-WS
optimization can improve the overlay of the PES curves (blue and brown curves).
However, when the ANI-1x//DFT PES of a molecule cannot reproduce its ®B97x/6-
31G(d)//DFT PES well, as the cases for the last four molecules (Figure 7F-7I), ANI-
1x/CG-WS optimization cannot improve the overlay of the PES curves. This result suggest
that a high-quality ANI potential is the key to achieve high accuracy on prediction the ANI

energies after CG-WS geometric optimization.
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Figure 7. Potential energy surfaces of nine large molecules calculated using four different
protocols. The starting geometries were optimized by B3LYP/6-31G* using the Jaguar

software, and the RMSDs between the initial and ANI-1x/CG-WS are shown as green dots.
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4.5. Application of ANI-1x/CG-WS in torsional parameter development

So far, our evaluation on ANI-1x/CG-WS is based on molecular geometries optimized
by using B3LYP/6-31G* with the solvent effect taken into consideration. However, in
practice, we do not have structures optimized by an ab initio model. To further test the
applicability of the CG-WS algorithm in MMFF development, we followed the standard
procedure to prepare structures prior to ANI-1x/CG-WS. First, we draw molecules shown
in Figure 6 using the Maestro molecular graphics software (www.schrodinger.com), and

4 next we conducted

then generated residue topologies using the Antechamber module,
constrained minimizations for molecules described by GAFFE.!> The GAFF-optimized
geometries were then subjected to ANI-1x/CG-WS optimization. We found that the median
RMSD of the nine molecules (in total 162 conformations) starting from GAFF-optimized
structures was 0.091 A, which is slight lower than that using the B3LYP/631G* optimized
structures, which is 0.095 A.

We then generated four types of PESs, which are ANI-1x//DFT, ©®B97x/6-
31G(d)//DFT, ANI-1x//CG-WS, and ®B97x/6-31G(d)//CG-WS. Note that DFT here refers
to ®B97x/6-31G(d). The initial structures are GAFF-optimized geometries. The RMSD
values between DFT and ANI-1x/CG-WS optimized geometries were also calculated and
shown in Figure 8 (dotted lines). Comparisons on the four types of PESs suggest that the
four types of PESs overlayed very well. It is encouraging to observe that the accuracy of

fitting the ANI-1x/CG-WS PESs reproducing the DFT ones is significantly improved using

GAFF-optimized geometries, due to the much smaller RMSD values.
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Figure 8. Potential energy surfaces of nine large molecules calculated using four different
protocols. The starting geometries were generated by performing constrained optimizations
using GAFF.

In MMFF development for arbitrary organic molecules, an important task is to develop
high-quality torsional angle parameters to depict the torsional PESs. It will become a
burden to generate PESs with high-quality ab initio models for a large set of organic
molecules. On another hand, ANI-1x/CG-WS could significantly speed up the geometric
optimization and potential energy calculation, and its accuracy is still acceptable compared
to those obtained by ab initio calculations. For a typical molecule with a size of regular
small-molecule drugs, such as the Group 5 molecules, the RMSE is about 1.5 kcal/mol.
Interesting, for the 9 molecules in Figure 6, only one conformation has its p value, 0.61,

slightly larger than the suggested cutoff, 0.6. No matter what, it is a good practice to
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eliminate low quality data using p parameter in generating PES with ANI-1x/CG-WS.
Thus, we may not apply ANI-1x/CG-WS potential energies directly to derive force field
parameters, however, the accuracy is sufficient to detect bad torsional angle parameters.
Once those low-quality force field parameters being discovered, we can then generate
torsional PES with a high-quality ab initio model, and subsequentially conduct force field
parameterization. Instead of developing ANI potentials using training data produced by
high-quality and computer time-demanding ab initio models, in our opinion, it is more
important to expand the chemical space coverage and to improve the single-point accuracy
of an ANI model, since according to Figure 3B, there is a strong correlation between the
single-point MADs and those after geometric optimization. With the continually improved
ANI potentials, we believe that our CG-WS and CG-BS algorithms can be a useful tool in

general purpose force field development.

Conclusions

In this work, we developed and assessed four geometry optimization algorithms in
conjunction with ANI-1x potential. The four geometry optimization algorithms consist of
two conjugated gradient (CG) and two quasi-Newton algorithms, namely CG-BS (CG with
backtracking line search), CG-WS (CG with Wolfe line search), BFGS (Broyden—
Fletcher—Goldfarb—Shanno) and L-BFGS (low memory BFGS). CG-WS was a new
algorithm developed in this work. All four algorithms can be applied to conduct full
geometry optimization. Among the four algorithms, CG-WS is the most efficient, CG-BS

is the most robust, and L-BFGS and BFGS achieve the smallest AE = E4y; — Eqp values.
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Both CG-WS and BFGS methods are recommended for this type of tasks. We developed
an algorithm to project forces to a plane or line so that the two CG methods can perform
constrained geometry optimization for a molecule described by Cartesian coordinates. The
performance of CG-BS and CG-WS is quite similar except that the former is relatively
more robust, and the latter is slightly more efficient and accurate. Therefore, both CG-WS
and CG-BS are recommended for performing constrained geometry optimization.

We have explored the potential of applying ANI in molecular mechanics force field
(MMFF) development. Although the accuracy of CG-WS or BFGS in conjunction with
ANI-1x potential energies is less accurate in comparison with those obtained through ab
initio optimization, they are much more efficient and the computer time is less than 1% of
the DFT for molecules in our datasets. Thus, we concluded that CG-WS, CG-BS or BGFS
in conjunction with ANI-1x potential although is not accurate enough to produce reference
data for force field parameterization, they are good enough to detect problematic molecules
or torsional parameters in MMFF development. Moreover, we suggested using the p cutoff
of 0.6 kcal/mol, to eliminate those datapoints which may have poor accuracy of ANI-1x
potential. With the continuously-increased quality of ANI, it is expected that CG-WS, CG-
BS and BGFS algorithms, which in principle can be combined with any ANI potentials,

will have a great application in improving the quality of an existing small molecule MMFF.

Supporting Information

Table S1 demonstrates the efficiency and accuracy of four optimization methods for 8
large molecules. Figures S1 and Figure S2 shows 100 and 8 molecules in Dataset 1 and
Dataset 2, respectively. Figure S3 shows the 2D-structures of the 160 molecules in Dataset

3 and the torsional angles for which torsional scanning were performed (colored in red);
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Figure S4 shows the torsional PESs using the ®B97x/6-31G(d) and ANI-1x based on the
B3LYP/6-31G* optimized geometries; and Figure S5 shows the torsional PESs using the

®B97x/6-31G(d) and ANI-1x after geometric optimization using the same ab initio model

and ANI-1x/CG-WS, respectively.
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Table S1. Efficiency and accuracy of various optimization method combined with constraint
method for 8 large molecules

B3LYP/ | AN/ AN/ AN/ AN/ GAFF

6-31G* | CG-BS | CG-WS L-BFGS-WS | BFGS
CPU time (second) | 335438.0 | 1281.1 | 462.8 2004.1 959.0 0.56
Optimization Steps | 57.7 1093.3 | 340.8 3161.7 1161.6 | 1580.4
AUE (kcal/mol) 2.28 2.99 2.85 2.92 2.94 3.74
RMSE (kcal/mol) 2.80 3.32 3.17 3.51 3.55 4.20
R 0.71 0.69 0.72 0.78 0.72 0.50
Ave. RMSD (A) 1.27 1.39 1.36 1.19 1.24 1.41

“For minimization using GAFF, drms was set to 0.05.
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Figure S1C

Figure S2. 2D-structures of 8 large molecules with atom numbers ranged from 65 to 120.
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torsional angles for which PESs were generated are colored in red.
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Figure S4. PESs for 160 molecules. A to E correspond to Group 1-5 molecules in Figure S3.
Each subplot shows a one-dimensional potential surface scan generated using ®B97/6-31G(d)
energies (red curves), and the ANI-1x energies (black curves) based on the B3LYP/6-31G*
optimized structures using Jaguar. The rho values for ANI-1x calculations and RMSDs between
ANI-1x-optimized and DFT*-optimized geometries are shown as green triangles and blue

squares, respectively.
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ANI-1x opt wB97xopt  a+ rhoof ANI-Ix = RMSD of ANI-1x/CG-WS to DFT
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Figure SSB

ANI-1x opt wB97x opt +  rho of ANI-1x = RMSD of ANI-1X/CG-WS to DFT
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Figure S5C

+— ANI-1x opt + wB97x opt s rho of ANI-1x + RMSD of ANI-1x/CG-WS to DFT
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Figure S5D
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Torsion Angle(degree)

ANI-1x opt wB97x opt +  rho of ANI-Lx < RMSD of ANI-1x/CG-WS to DFT
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Figure SS5E

ANI-1x opt wB97x opt rhoof ANI-Ix  +  RMSD of ANI-1x/CG-WS to DFT
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Figure SS5. PESs for 160 molecules. A to E correspond to Group 1-5 molecules in Figure S3.

Each subplot shows a one-dimensional potential surface scan generated using ®B97/6-31G(d)

energies after geometric optimization (cyan curves), and using ANI-1x after optimization by I-

ACG/ANI-1x (orange curves). The rho values for ANI-1x calculations and RMSDs between

ANI-1x-optimized and wB97x/6-31G(d)-optimized geometries are shown as green triangles

and blue squares, respectively.
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