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ABSTRACT

As a land-sea interface, the fingerprints of climate perturbations may be immediately and profoundly felt in
sandy beaches and the macroinvertebrates they harbour. In particular, extreme climatological events can result
in long-lasting or irreversible ecological changes, and therefore, it has become critical to understand how these
ecosystems respond to strong pulse perturbations. This study assessed the main impacts prompted by the
2015-2016 El Nifio on a Southwestern Atlantic sandy beach ecosystem. A long-term (1982-2019) analysis was
carried out, attending historical climate components and multilevel indicators of change across levels of ecolog-
ical organization. The trophic networks of four ecosystem states were compared, and the macroinvertebrate
community structure was analysed in terms of species richness, abundance and biomass and deconstructed by
taxonomy, beach zone occupied, feeding, and development modes. The potential recovery pathway of the system
was also assessed. Climatic effects were reflected in a marked increase in sea surface temperature anomalies,
rainfall, and in the discharge of the widest estuary of the world (Rio de la Plata). An abrupt disruption of ecological
attributes due to El Nifio effects was evidenced. After the event, the ecosystem shifted to a higher organization
of the flow structure (Ascendency), a lower adaptive potential (Overhead), and a marked increase in efficiency
(Robustness), reflecting a more vulnerable state to absorb disturbances. The decrease in species abundance
and biomass was particularly noticeable in molluscs, filter feeders, and low intertidal/subtidal groups. By

Abbreviations: BCB, Barra del Chuy Beach; CC, Climate change; ENSO, El Nifio-Southern Oscillation; PP, Primary production; RdIP, Rio de la Plata; SST, Sea surface temperature; SSTA,
Sea surface temperature anomalies; SAO, Southwestern Atlantic Ocean.
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contrast, polychaetes/deposit feeders were favoured, triggering a transitional community state dominated by op-
portunistic species. The results highlight how extreme climatic events could prevent the recovery of a sandy
beach ecosystem, as pulses may induce lag and legacy effects.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Perceived as ecosystems at risk, sandy beaches are under great
pressure and are increasingly affected by a variety of anthropogenic
and natural hazards acting simultaneously at multiple temporal and
spatial scales (Defeo et al., 2009; McLachlan and Defeo, 2018; Fanini
et al.,, 2020). As a land-sea interface, the fingerprints of climate change
(CC) may be immediately and profoundly felt in sandy beaches and
the macroinvertebrates they harbour, a consequence of increasing
erosion coupled with sea-level rise, storminess, and onshore winds
(Schoeman et al., 2014; Bindoff et al., 2019). When combined with the
long-term stress imposed by CC, extreme climatological events (the
‘press and pulse’ framework; Smith, 2011) can result in long-lasting or
irreversible ecological changes (Harris et al., 2020). Thus, it has also be-
come critical to understand how these ecosystems respond to strong
pulse perturbations (McLachlan et al., 2013; McLachlan and Defeo,
2018; Cavanaugh et al., 2019).

The El Nifio-Southern Oscillation (ENSO) is the dominant mode of in-
terannual climate variability across the Pacific Ocean basin, severely
disrupting global climate patterns (Wolter, 1987; Barnard et al., 2017;
Cai et al,, 2020). ENSO exhibits two opposite phases defined by an anom-
alous cooling (La Nifia) and a warming (El Nifio) phase, causing large-
scale changes in ocean and atmospheric circulation and increasing the
likelihood of extreme climatic events (including storms, floods, and
droughts) with strong repercussions on human well-being (Santoso
etal, 2017). As a pseudocyclical phenomenon, ENSO occurs irregularly
every two to seven years, making its prediction difficult. As CC unfolds,
El Nifio events develop in a warmer mean state, leading to thermal stress
(Bertrand et al., 2020). Thus, climate model projections suggest an in-
crease in the frequency and intensity of El Nifio extreme events (Cai
et al., 2014; Santoso et al., 2017), potentially triggering profound social-
ecological consequences on coastal ecosystems, including sandy beaches
(McLachlan and Defeo, 2018). Marked El Nifio effects in sandy shores
have been evidenced both on the physical environment (Barnard et al.,
2017; Orlando et al.,, 2019) and at different levels of ecological organiza-
tion, including ecosystems (Revell et al., 2011), communities (Arntz et al.,
1987), and populations (Riascos et al., 2009; Ortega et al.,, 2012).

Ocean warming displays a clear signal in the Southwestern Atlantic
Ocean (SAO), particularly over the continental shelf of southern Brazil,
Uruguay, and northern Argentina, which comprise one of the largest
and most energetic marine hotspots worldwide (Hobday and Pecl,
2014). The adjacent Rio de la Plata (RdIP) basin is also subject to intense
warming (Franco et al., 2020). Sea surface temperature anomalies
(SSTA) have shown an increasing trend over time, particularly after
shifting from a cold to a warm period during the 1990s (Ortega et al.,
2016). The position of the warm waterfront of the Brazil Current evi-
denced a consistent long-term poleward shift (Gianelli et al., 2019a),
and the advection of warm waters into the northeast Uruguayan slope
has been enhanced by the increase in speed and frequency of onshore
winds (Ortega et al.,, 2013). Ocean warming has been responsible for
the occurrence of mass mortality events in species with a cool-water af-
finity (Ortega et al., 2016), the increasing occurrence of harmful algal
blooms (Martinez et al., 2017; Gianelli et al., 2019b) and a shift from
cool-water to warm-water species in the relative representation of
Uruguayan fisheries landings (Gianelli et al., 2019a). The RdIP Estuary
drains the fourth largest river basin in the world and the second largest
of South America. Its plume enters the Southwestern Atlantic continen-
tal shelf and spreads along the coasts of Argentina, Uruguay, and Brazil

(Piola et al., 2005). The interannual variability of the RdIP discharge is
closely associated with ENSO cycles, which partially modulate the
plume dynamics (Piola et al., 2005). Large precipitation anomalies
over the RdIP basin associated with El Nifio events significantly increase
the river discharge (Piola et al., 2005; Bodnariuk et al., 2021), producing
a significant decrease in salinity along the Uruguayan shelf (Ortega and
Martinez, 2007). The intensity of the signal is seasonally dependent,
with the greatest impact registered from spring to the end of summer
(Pisciottano et al., 1994; Cazes-Boezio et al., 2003). In particular, the
2015-2016 El Nifio was recognized as one of the three strongest events
in the past 145 years, similar to 1982-1983 and 1997-1998 (Herring
et al,, 2018; Wang et al.,, 2019; https://ggweather.com/enso/oni.htm,
last accessed November 2020). By October 2014, the above average
sea surface temperature (SST) in the El Nifio 3.4 region indicated the de-
velopment of the event, which persisted throughout 2015 and dissi-
pated during late May/early June 2016 (https://origin.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ONI_v5.php, last accessed
November 2020). The 2015-2016 El Nifio prompted a sharp increase
in rainfall and in the freshwater discharge of the RdIP in April 2016, hit-
ting the Atlantic coast of Uruguay as a strong pulse perturbation.

The dissipative Barra del Chuy beach (BCB), located on the Atlantic
coast of Uruguay, shows high autochthonous primary production (PP)
and supports rich benthic macrofauna that have sustained a small-scale
fishery since the last century (Lercari et al., 2018). At BCB, long-term sci-
entific evidence shows tropicalization of the filter-feeding guild, which in-
cludes a decline in abundance of the cold-water yellow clam Mesodesma
mactroides and an increase in the relative representation of the mole
crab Emerita brasiliensis, a species with tropical affinities (Celentano and
Defeo, 2016). These changes have been mainly attributed to a systematic
increase in SST- and related CC-driven stressors (Ortega et al., 2016). Food
web-based ecosystem indicators (Ulanowicz, 1986, 2004, 2014) have
reflected a low resilience of BCB and therefore a highly vulnerable system
to face unexpected disturbances such as those imposed by the 2015-2016
El Nifio, which could have disrupted internal ecosystem cycling.

This study assessed the effects of the 2015-2016 El Nifio on the
structure and functioning of the BCB ecosystem. A multilevel analysis
was carried out through a long-term (1982-2019) before-after frame-
work, attending changes at different levels of ecological organization,
including the ecosystem trophic network and the macroinvertebrate
community. The latter was deconstructed to discriminate among taxo-
nomic groups, supralittoral and intertidal forms, and groups with differ-
ent feeding habits and development modes. The potential recovery
pathway of the system was also assessed.

2. Materials and methods
2.1. Study area

The study was performed at BCB (33°40'S; 53°20'W) located on the
eastern coast of Uruguay in the SAO (Fig. 1). This dissipative beach is
characterized by fine to very fine well-sorted sands (mean grain size =
0.20 mm, sorting = 0.70 mm), a gentle beach slope (slope = 3.53%),
and a wide surf zone (Lercari et al., 2010). The high productivity of
this microtidal system (tidal range = 0.5 m) supports the greatest mac-
rofaunal richness, diversity, abundance and biomass among Uruguayan
beaches (Lercari and Defeo, 2006, 2015). The BCB is delimited by two
freshwater discharges, a natural discharge in the NE (Chuy Stream)
and an artificial discharge in the SW (Andreoni Canal). Both discharges
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Fig. 1. Study area, showing the location of Barra del Chuy beach along the eastern coast of Uruguay in the Southwestern Atlantic Ocean.

generally follow a SW-NE direction. The Canal drains a wide basin used
for agricultural activities, affecting the beach quality around La Coronilla
town (Lercari et al., 2002; Jorge-Romero et al., 2019) with 1153 resi-
dents (https://www.ine.gub.uy/web/guest/343, last accessed January
2021). On the NE extreme of the beach, Barra del Chuy town has only
370 inhabitants (https://www.ine.gub.uy/web/guest/343, last accessed
January 2021). The selected sampling site, located 13 km away from
the mouth of the Canal (Fig. 1), is considered undisturbed by urbaniza-
tion and the effects of both freshwater discharges (Lercari et al., 2002;
Jorge-Romero et al., 2019).

2.2. Tracking the signal

2.2.1. Data source

SSTA and satellite precipitation data were obtained from the IRI/LDEO
Climate Data Library datasets of the National Climatic Data Center
(https://iridl.ldeo.columbia.edu/, last accessed November 2020;
Grumbine, 1996; May et al., 1998; Cavalieri et al., 1997; Reynolds et al.,
2007; and Janowiak et al., 1999, respectively). To describe long-term
trends of ocean climate, SSTA was calculated by averaging 8° x 9° grid
cells (30°S-39°S; 60°W-52°W) of the SAO shelf and the adjacent oceanic
region. The SSTA was also linearly detrended to reflect the actual variabil-
ity in the SSTA patterns rather than long-term trends towards warming in
the area. Likewise, precipitation in the RAIP basin region was calculated by
averaging 18° x 11° grid cells (25°S-36°S; 70°W-52°W) and standardized
by computing the difference between monthly climatology (long-term
mean 1979-1995) and the original data, and dividing the resulting esti-
mate by the standard deviation using IRI expert mode functions facilities.
Monthly RdIP discharge (Q, m?s~") was obtained from Instituto Nacional
del Agua, Argentina (https://www.ina.gov.ar/, last accessed November
2020); the Q anomaly was calculated by computing the difference be-
tween long-term monthly climatology estimates (1982-2018) and the
original data. SSTA, rainfall, and Q were averaged between September
and April, when ENSO had the highest impacts in the RdIP basin (Cazes-
Boezio et al.,, 2003; Robertson and Mechoso, 1998, 2003).

Almost 40 years (1982-2019) of intensive field surveys were dumped
to disentangle the ecological responses of BCB to the pressures imposed
by the 2015-2016 El Nifio using a before-after approach. Macrofaunal
abundance and biomass estimates were obtained through systematic
sampling. Three transects spaced 8 m apart were set perpendicular to
the shoreline, with sampling units at 4 m intervals starting at the base

of the dunes and continuing in a seaward direction to the lower limit of
the swash zone, determined by the minimum tide advance during the
sampling period. In each sampling unit, a sheet metal cylinder 16 cm in
diameter and 40 cm in depth was used. Each individual retained after
sieving through a 0.5 mm mesh was fixed in 5% formalin for later analysis,
including species identification, counting, and weight determinations
(0.0001 g) (Brazeiro and Defeo, 1996).

Complementary input data for ecosystem modelling comprised values
gathered from published and unpublished information for the study area
and from empirical relationships (see Supplementary Materials A). Phyto-
plankton biomass was estimated from in vivo pigment fluorescence
(2016 unpublished data; see Cremella et al., 2018 for conversion and cor-
rection algorithms) and converted to wet biomass (Odebrecht et al.,
1995). Zooplankton biomass was obtained from Lercari et al. (2010).
Fish biomass was estimated based on trawl samples parallel to the coast
(Lercari et al., 2018). Bird biomass was estimated based on richness and
abundance surveys (Lercari et al., 2018). Detritus biomass was estimated
in situ from total suspended solids, considering fractions of living (phyto-
plankton) and inorganic materials (Lercari et al., 2010).

2.2.2. Ecosystem modelling

The chosen strategy comprised a long-term comparison of four eco-
system states before (n = 2) and after (n = 2) the occurrence of the
2015-2016 El Nifio event. A baseline scenario developed by Lercari
et al. (2018) for 1982 allows us to grasp long-term changes. Three tro-
phic models were built to capture the state before (2013) and immedi-
ately after El Nifio (spring 2016 to autumn 2017) and to track changes
up to 2018. The four scenarios were modelled through Ecopath with
Ecosim 6 (EWE 6), which allows the representation of ecosystems as in-
terconnected networks of trophic groups based on biomass and linked
by diet information (Polovina, 1984; Christensen and Pauly, 1992). As
a mass-balanced model, each functional group (species with similar
life-history traits and ecological role) was represented by a linear equa-
tion that describes how group production equals the sum of the entire
group losses (Christensen and Pauly, 1998; Christensen and Walters,
2004; Christensen et al., 2005), as follows:

Bi(P/B);—X_'}_1B;(Q/B);DC;i—Y;~Bi(P/B);— (1—EE;) = 0

where B; and B; are the biomasses of prey and predators, respectively;
(P/B); is the production/biomass ratio; (Q/B); is the consumption/
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biomass ratio for predator j; DCj; is the fraction of prey i in the diet of
predator j; Yi is the total fishery catch rate; and EE; is the ecotrophic ef-
ficiency, defined as the proportion of production i that is utilized in the
system.

Whenever possible, functional groups were defined at the species
level, including detritus, phytoplankton, zooplankton, the macrobenthic
community, insects, fishes, and birds. P/B and Q/B ratios were taken
from published information or empirical relationships (Brey, 2012)
and corrected for local SST (NOAA; https://iridl.ldeo.columbia.edu/,
last accessed November 2020). DC estimates were mainly compiled
from published information, qualitative records, and general knowledge
of the trophic ecology of the groups (see Supplementary Materials B and
C for input data and diet information, respectively).

The Pedigree index was calculated (Pauly et al., 2000; Christensen
and Walters, 2004), and model quality was classified according to
Lassalle et al. (2014). The theoretical and practical rigor of each model
was validated through prebalance diagnosis (PREBAL: Link, 2010), en-
suring confidence in model design and parameterization (see Supple-
mentary Materials D). Physiological system constraints were assured
according to Christensen et al. (2008) and Heymans et al. (2016).
Given the general strategy used to attain mass balance, only slight mod-
ifications of diet input data were needed.

Several ecosystem attributes based on Ulanowicz theory (1986)
were assessed to characterize the system in terms of its structure and
functioning (Christensen et al., 2005): (1) The Total System Throughput
(TST), ecosystem size in terms of biomass flows, defined as the sum of
all flows in the system (consumption, respiration, exports, imports,
and detritus). (2) The System Omnivory Index (SOI), the extent to
which an ecosystem exhibits web-like features. The SOI strongly corre-
lates with system maturity and stability. (3) Ascendency (A), a measure
of the average mutual information (organization of the flow structure)
in a system, scaled by TST. It characterizes the degree of development
and organization of the system. (4) Capacity (C), the upper limit of the
size of A, which represents the maximum potential of ecosystem devel-
opment. (5) Overhead (O), the difference between C and A, which
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represents the ecosystem potential for recovery or innovative
restructuring to face unexpected perturbations (e.g., resilience). The
Robustness index (Ulanowicz, 2014; Fath, 2015) was also quantified
to analyse ecosystem sustainability in terms of growth (e.g., total
system throughput) and development (e.g., information or connec-
tivity). It measures the probability that a system lies within its
upper and lower boundary when exposed to a certain stress factor
(Mumby et al., 2014). The compromise between efficiency and resil-
ience was assessed by positioning each model on a hypothetical
curve of “ecosystem fitness for evolution” (—A/C * In(A/C)) vs. “de-
gree of order” (a = A/C(1>a>0)).

2.2.3. Community structure

A 16-year time-series dataset of the macroinvertebrate (benthos
plus insects) community was analysed to assess the structural and func-
tional changes in the 2015-2016 ENSO-associated anomalies (before:
2006-2013, during: autumn 2016, and after: spring 2016 to summer
2019). Community abundance and biomass for the years 2014 and
2015 were estimated based on the interpolation of the previous and fol-
lowing years due to logistical difficulties that prevented the continuity
of the surveys. To assess temporal fluctuations in the abundance and
biomass of the macroinvertebrate community, non-metric multidimen-
sional scaling (NMDS) analysis was performed with PRIMER-6 software
(Anderson et al., 2015) to obtain two-dimensional (2D) ordination of
Bray-Curtis distances between pairs of samples from different times
based on root-root transformed data. A one-way PERMANOVA
(Anderson et al., 2015) was performed to assess differences in commu-
nity structure, both for abundance and biomass, using root-root trans-
formed data and the Bray-Curtis similarity index for three-year
periods before and after El Nifio.

2.24. Deconstructive approach
Unlike when only aggregate richness is considered, different groups of

disaggregated species may exhibit contrasting patterns in response to El
Nifio effects. Thus, deconstructing biodiversity could provide a more

254
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Fig. 2. Long-term (1982-2018) variations during September-April in (A) SSTA and (B) detrended SSTA time series of the SW Atlantic shelf and the adjacent oceanic region and
(C) standardized rainfall and (D) Q anomaly in the Rio de la Plata basin. Shaded bars highlight the three historical extreme El Nifio events.
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Table 1
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Ecosystem attributes (including flow and organization indicators) of the four Ecopath models for Barra del Chuy beach: baseline (1982), before (2013) and after (spring 2016-autumn

2017, and 2018) the 2015-2016 El Nifio event.

Parameter Baseline Before After 2018 Unit
19822 2013 2016-17

Sum of all consumption 823 1479 768 1273 g/m?/year

Sum of all exports 3000 16,069 56,414 16,236 g/m?/year

Sum of all respiratory flows 323 731 289 566 g/m?/year

Sum of all flows into detritus 3193 16,693 56,634 16,618 g/m?/year

Total system throughput 7339 34,971 114,105 34,695 g/m?/year

Sum of all production 3645 17,242 57,011 17,242 g/m?/year

Calculated total net primary production 5129 16,790 56,692 16,790 g/m?/year

Total primary production/total respiration 10 23 196 30

Finn's cycling index 1.700 0.710 0.101 0.537

Net system production 2987 16,059 56,403 16,223 g/m?/year

Total primary production/total biomass 82 106 167 108

Total biomass/total throughput 0.005 0.005 0.003 0.004 /year

Total biomass (excluding detritus) 40 158 339 156 g/m?

Connectance index 0.211 0.189 0.203 0.197

System omnivory index 0.106 0.066 0.092 0.066

Total catch of the yellow clam 20.60 3.35 0.45 2.37 t/km?/year

Ascendency (A%) 47 64 90 66

Overhead (0%) 53 36 10 34

Ecopath pedigree index 0.313 0.413 0.418 0.413

Measure of fit 0.900 1.872 1.951 1.872

@ Lercari et al., 2018.

complete understanding to help disentangle factors driving species rich-
ness patterns in sandy beaches (Defeo and McLachlan, 2011). The macro-
invertebrate dataset was therefore deconstructed considering four
different grouping criteria: taxonomic category (molluscs, polychaetes,
and crustaceans); beach zone occupied (supralittoral, upper intertidal
and low intertidal/subtidal); feeding mode (deposit/detritivores, filter-
suspension feeders and predators/scavengers); and development mode
(direct and indirect). Finally, the response of individual species to El
Nifio was also assessed through long-term variations in abundance and
biomass.

3. Results
3.1. Climatic trends
A systematic long-term increase in SSTA was recorded (SSTA =
0.033 year 24 R? = 0.40; p < 0.001), showing a predominance of pos-
itive anomalies after 1998 (Fig. 2A). The linear trend indicated a regional
warming rate of 0.33 °C per decade, which was particularly noticeable
0.40
0.35 4
0.30

0.25 -

0.20

Robustness

0.15 -

0.10

0.05 -

0.00

from 2000 onwards (0.50 °C per decade). The 2014-2015 period was
particularly warm, recording SSTA >2 °C above climatological values
(Fig. 2A) and 1.5 °C for the detrended time series (Fig. 2B). Nevertheless,
detrended SSTA evidenced the occurrence of a cold period from Sep-
tember 2015 to April 2016 (Fig. 2B). Standardized rainfall showed the
highest values during the three extreme El Nifio events that occurred
in 1982-1983, 1997-1998, and 2015-2016. In the latter, rainfall in the
basin region surpassed more than two standard deviations (Fig. 2C).
In this vein, the RdIP displayed high positive Q anomalies during ex-
treme warm ENSO events, with 5000 m>-s~! above the historical values
for 2015-2016 and 10,000 m>-s~! for 2016-2107 (Fig. 2D).

3.2. Ecosystem structure

The consistency of the input data was ensured by PREBAL diagnoses
(see Supplementary Materials D and E for PREBAL diagnoses and output
data, respectively). Following Lassalle et al. (2014), the overall pedigree

index indicated an average to high-quality level of the analysed models
(Table 1).

1382 Baseline

2013 Before
112018

2017 After

0.4

0.6 0.8 1

Degree of order

Fig. 3. Long-term variations in Robustness vs. degree of order of the four ecosystem models for Barra del Chuy beach: 1982 (¢), before (02013) and after (2017 and ::: 2018) El Nifio

events.
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Ecosystem indicators showed a rapid and unequivocal effect of the
2015-2016 El Nifio event disrupting the internal ecosystem structure
and functioning (Table 1 and Fig. 3). The ecosystem size, measured by
TST, tripled after the pulse perturbation, returning to pre-event values
by 2018. The SOI increased by one-third after El Nifio, reaching values
similar to the baseline and returning to pre-event values by 2018. After
the perturbation, the gap between Ascendency and Overhead was the
highest on record. The organization of the flow structure (Ascendency)
increased from 64% to 90%, whereas the recovery potential (Overhead)
decreased from 36% to 10%, with the consequent decrease in resilience.
In 2018, the system still showed an imbalance between attributes but ex-
hibited values similar to the pre-disturbed state. Compared to the base-
line, the Robustness analysis revealed a substantial increase in efficiency
towards 2013, reaching its highest immediately after El Nifio (Fig. 3).

3.3. Community structure

The total abundance and biomass of the macroinvertebrate commu-
nity (Fig. 4A and B) drastically decreased after El Nifio (spring 2016: 72%
and 16% of the pre-event values, respectively), a tendency that contin-
ued until summer 2017. In 2019, both community attributes reached
26% and 39% of pre-event values, respectively. Species richness reached
its lowest value in seven years, immediately after El Nifio (Fig. 4C).
NMDS ordination based on abundance (Fig. 5A) identified three groups
ata similarity level of 65% (stress = 0.12), showing rapid turnover of the
community after El Nifio but comprising an independent group in 2019.
According to biomass (Fig. 5B), NMDS also identified three groups at a
similarity level of 60% (stress = 0.07), showing a gradual turnover of
the community towards 2019. PERMANOVA showed differences in the
community structure before and after El Nifio, both for abundance
(t =2.88; p = 0.001) and biomass (t = 2.24; p = 0.001).
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Fig. 5. NMDS ordination according to macroinvertebrate abundance (A) and biomass
(B) for Barra del Chuy beach before (0) and during and after (@) the El Nifio event.
Ellipses indicate the similarity level (60%) from cluster analysis.

3.4. Deconstructive approach

The abundance (Fig. 6A-D) and biomass (Fig. 6E-H) of almost all
members of the macrofauna markedly decreased after El Nifio, except
for polychaetes, deposit feeders/detritivores, and upper intertidal spe-
cies. Taxonomic deconstruction showed that molluscs, which domi-
nated the community abundance and biomass before the pulse
perturbation (Fig. 6A and E), sharply decreased after El Nifio, exhibiting
their lowest abundance since 2006 (spring 2016: less than 3% of the pre-
event value). Crustacean abundance and biomass also decreased,
representing only 20% and 5% of pre-event values, respectively. By con-
trast, polychaetes reached their highest abundance since 2006, increas-
ing by a factor of four after El Nifio and markedly decreasing afterwards.
Deconstruction by feeding group showed that filter feeders dominated
the pre-disturbed state and reached their lowest abundance and bio-
mass after El Nifio (less than 2% of pre-event values in both cases;
Fig. 6B and F). Likewise, predators/scavengers also decreased in abun-
dance (32% of pre-event value), showing no variation in biomass after
El Nifio. Deposit feeders/detritivores followed a reverse trend in abun-
dance, doubling after EI Nifio and dominating the community for the
following two years. Deconstruction by beach zone occupied showed
that low intertidal/subtidal and supralittoral species decreased after El
Nifio (abundance: 11% and 14%, biomass: 6% and 14% of pre-event
values, respectively), while the abundance of upper intertidal species al-
most doubled after the pulse perturbation, and biomass decreased by
half (Fig. 6C and G). Deconstruction by development mode showed
that both categories decreased after El Nifio (Fig. 6D and H). The
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Fig. 6. Long-term fluctuations (2006-2019) in macrofaunal abundance (left panels) and biomass (right panels) deconstructed by taxonomic group (A, E), feeding mode (B, F), beach zone
occupied (C, G), and development mode (D, H) for Barra del Chuy beach. Au: autumn; Sp: spring. The shaded bar highlights the 2015-2016 El Nifio event.

abundance and biomass of all analysed groups showed negative trends
towards 2019.

A substantial change in the relative representation of species abun-
dance and biomass was registered after El Nifio (Fig. 7A and B). The yel-
low clam M. mactroides dominated the community before the pulse
perturbation (abundance = 34%, biomass = 62%), whereas Euzonus
furcifera dominated the post-disturbance scenario (spring 2016: abun-
dance = 80%, biomass = 67%) until 2017. After El Nifio, M. mactroides
represented 1% of the total community abundance and 6% of the com-
munity biomass (less than 2% of pre-event values in both cases) but
showed a marked increase in biomass from 2018 (69% of the commu-
nity) onwards.

4. Discussion

Long-term data evidenced an abrupt disruption of ecological attri-
butes of the sandy beach system at all levels of ecological organization
due to the effects of the extreme 2015-2016 EI Nifio event. Marked im-
pacts on stability indices (e.g., Robustness), community structure
(e.g., abundance, biomass, and species richness), species composition,
and dominance stood out. A transitional community state dominated
by opportunistic species was set after the pulse perturbation. By 2018,
the structural and functional restructuring prompted by El Nifio would
have increased the vulnerability of the BCB system compared with the
pre-disturbed state. This loss of resilience could explain the variability
and potentially lagged responses observed by 2019.

The notorious climatic effects of the 2015-2016 El Nifio in the study
zone were reflected in a marked increase in SSTA and rainfall and in the

discharge of the widest estuary of the world (RdIP). These impacts can
be attributed in part to the unusually warm conditions in 2014, accom-
panied by the long-term warming context in the SAO (Ortega et al.,
2016; Franco et al., 2020). The detrended time series also denoted
high SSTA during the exceptionally warm period 2014-2015. The com-
bination of these stressors derived from a pulse perturbation, together
with rising sea levels, increasing onshore winds, and storm surges al-
ready documented in the area (Ortega et al., 2013; McLachlan and
Defeo, 2018), acted in a synergic way, magnifying the detrimental
effects on BCB. This has critical implications for sandy beach ecosystems,
which can be considered a narrow land-sea interface extremely vulner-
able to a combination of press and pulse climate perturbations
(McLachlan and Defeo, 2018). Increased rainfall in the Andreoni Canal
basin could also have increased local discharge, causing added impacts
(e.g., nutrient enrichment, erosion). However, the effects of the RdIP,
which drains the second largest river basin in South America, are dras-
tically higher when compared with local ones (Lercari et al. 2002).
The long-term analysis, which included ecosystem modelling for the
last 40 years, unambiguously denoted that BCB is under high pressure
derived from the interaction between multiple stressors. Drastic ecosys-
tem effects were quantified in response to the 2015-2016 El Nifio,
which led to a lower sustainability of the system and an alternative
state in 2018. The ecosystem was particularly sensitive to changes in
PP. On sandy beaches located in the SAO, El Nifio has been described
as a strong driver leading significant interannual PP changes
(Odebrecht et al., 2014), as rising temperatures and onshore winds
could trigger blooms of autochthonous surf diatom populations
(Boyce and Worm, 2015). At BCB, Asterionellopsis guyunusae could
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reach high abundance and elevated PP rates during conditions of high
precipitation and freshwater runoff, as observed in similar dissipative
beaches on the Brazilian coast (Odebrecht et al., 1995; Reynaldi, 2000;
Rérig and Garcia, 2003). This could explain the clear fluctuation in eco-
system flow size measured by TST and in the sum of all production- and
PP-related indicators. The increased omnivory (SOI) could indicate an
enhancement of system resistance to the impacts driven by El Nifio
(Christensen and Pauly, 1992), counteracting the magnitude of environ-
mental stress (Odum, 1985; Saint-Béat et al., 2015). However, the lower
sustainability of BCB immediately after El Nifio, evidenced by the gap
between Ascendency and Overhead, could have amplified the vulnera-
bility of the system to cope with stressors (Elliott et al., 2007; Saint-
Béat et al., 2015), being unable to recover after two years of the event.
The turnover of Ascendency and Overhead to an almost pre-disturbed
state by 2018 could have been favoured by the development of the
2017-2018 La Nifla event from September 2017 to April 2018
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_v5.php, last accessed November 2020), favouring cold-
water species such as M. mactroides, which dominated the community
before and during the 2015-2016 El Nifio. Furthermore, the deconstruc-
tive analysis at the species level revealed that recovery to 2019 was un-
successful, concurrently with the occurrence of a new El Nifio event
from September 2018 to July 2019 (https://origin.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ONI_v5.php, last accessed No-
vember 2020). In this sense, the results support that overlapping pres-
sures could compromise (influence or inhibit) the achievement of the
pre-disturbed state. Coastal ecosystems are inherently variable, follow-
ing complex trajectories and exhibiting hysteresis during recovery
(Elliott et al., 2007; Borja et al., 2010; Duarte et al., 2015; McLachlan
and Defeo, 2018), as seems to be the case for BCB.

The impoverishment of the macrofaunal community, prompted by
El Nifio, was primarily reflected in abundance, biomass, and species
richness in spring 2016. The marked decrease in abundance and bio-
mass continued until summer 2017, leading to a contrasting community
state in comparison with the pre-disturbed scenario. Although NMDS

suggested a rapid reorganization of the macroinvertebrate community
structure, recovery to 2019 was unsuccessful, challenging ecosystem re-
silience. Sandy-beach macrofauna have shown low adaptive capacity in
response to El Nifio events (Arntz et al., 2006; McLachlan and Defeo,
2018). Revell et al. (2011) also reported that reductions in invertebrate
mean body size and biomass were detected up to two years after the
1997-1998 El Nifio in California beaches. The occurrence of CC-related
stressors (e.g., sustained increases in storm wave events and onshore
winds) acting together could aggravate this scenario. Indeed, SSTA has
noticeably increased in the RdIP over the last two decades. This change
in the background press, together with the occurrence of extreme pulse
events such as El Nifio, may influence community responses, as ob-
served in other systems (Harris et al., 2018, 2020).

Faunal groups were affected to a dissimilar extent. Molluscs, filter
feeders, and low intertidal/subtidal groups showed a sharply negative
response to El Nifio-driven changes. A transitional community domi-
nated by the opportunistic polychaete E. furcifera was set after pulse
perturbation due to an enhancement in food availability, as freshwater
runoff produced short-term deposition of organic matter from terres-
trial sources (Lopes Costa et al., 2020). Freshwater runoff could have
also modified sediment compaction and moisture, favouring the micro-
organism associations from which deposits/detritivores feed (Otegui
et al,, 2012). The same pattern was found on South Pacific beaches,
where El Nifio prompted the establishment of a macrofaunal commu-
nity dominated by small opportunistic polychaetes (Arntz et al., 1987).

Changes in community biomass were strongly driven by shifts in the
clam M. mactroides. The dramatic decrease in its abundance during El
Nifio events has been associated with the combined effects of the in-
creasing trend in SST since the late 1990s (Ortega et al., 2012) and the
characteristic positive SSTA during these events (Barreiro, 2010),
which negatively affect this mollusc with cold-water affinities (Ortega
et al., 2016). By contrast, this scenario favoured warm-water species
such as the wedge clam Donax hanleyanus and the mole crab
E. brasiliensis, which are subordinate competitors for space and food in
this suspension-feeding guild (Ortega et al., 2012; Defeo et al., 2013;
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Celentano and Defeo, 2016). A high abundance of M. mactroides tends to
occur during La Nifia years, characterized by a cyclonic configuration of
wind stress anomalies in the SAO, with cold and salty waters and on-
shore wind stress anomalies on the Uruguayan Atlantic coast (Manta
et al., 2018). In this sense, detrended SSTA evidenced the occurrence
of a cold period from September 2015 to April 2016, explaining the
high macroinvertebrate community abundance and biomass, despite
the development of El Nifio. As previously registered in BCB, a drastic
decrease in the abundance of dominant species such as M. mactroides
would have a significant negative impact on the marine food web, mod-
ifying ecosystem functioning and therefore the provision of ecosystem
services (Lercari et al., 2018; Jorge-Romero et al., 2019). A progressive
loss of habitat suitability, together with spawning and recruitment fail-
ures at suboptimum conditions, could trigger overall long-term popula-
tion declines (McLachlan and Defeo, 2018), affecting the structure of the
community and constraining the functioning of the sandy beach ecosys-
tem (Jorge-Romero et al., 2019). These findings support the perception
that disturbances can alter ecological interactions and therefore contrib-
ute to the simplification and destabilization of coastal ecosystems
(McCauley et al., 2012).

5. Conclusions and prospects

This study adds new insights into El Nifio-induced changes in sandy
beach ecosystems, highlighting how extreme climatic events can result
in strong responses at different levels of ecological organization. Pro-
found changes in relative species abundance and biomass shifted the
structure of the macroinvertebrate community. In addition, increased
PP and the concomitant boost in TST led the system to a state of a higher
degree of order and lower Robustness. The negative trends observed in
2019 suggest a higher vulnerability of the BCB system to cope with
climate-driven changes, supporting the occurrence of prolonged recov-
ery periods and hysteresis. Thus, it cannot be assumed that sandy beach
ecosystems will immediately recover when perturbations disappear or
shrink. The results become even more relevant in the context of one of
the largest and most energetic warming hotspots worldwide. However,
the formal detection and attribution of biological responses to a
compounding impact of press (CC) and pulse (e.g., El Nifio, La Nifia)
perturbations is highly challenging, particularly in sandy beach ecosys-
tems, whose macrofauna have wide natural fluctuations in abundance
and are extremely sensitive to environmental variations. A critical step
will be to quantify the relative influence of these drivers, operating
simultaneously at different spatial and temporal scales, as well as the
mechanisms operating behind the observed changes. This is of utmost
importance in sandy beaches, which have been recognized as ecosys-
tems at risk that are being increasingly threatened by long-lasting
climate-driven stressors (McLachlan and Defeo, 2018).
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