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Abstract—With the sharply growing complexity and rapid de-
ployment of smart technologies in our modern society, risk-aware
management and coordination in day-to-day operation of the in-
terlinked critical infrastructures is urgently needed. In particular,
the interconnected water and power systems (WaPS) are in need of
joint and cooperative operation to maximize the economic benefits
during normal operating conditions and resilience services during
emergencies. While contingency analysis is used to assist the system
operators in gaining knowledge of the system’s static security,
such understanding is more challenging to achieve in the case
of integrated WaPS. This article proposes a novel optimization
model for under-emergency operation of the integrated WaPS,
considering contingencies in both networks. In order to ensure the
delivery of water demand, the proposed formulation considers the
hydraulic constraints of the water networks, which is naturally a
nonlinear model. The proposed nonlinear model is approximated
using a piece-wise linearization approach to convert the optimiza-
tion model into a mixed-integer linear programming formulation.
The proposed analytics are applied to a modified IEEE 24-bus
reliability test system that is jointly operated with two and three
commercial-scale water networks. The proposed model is evalu-
ated using various disaster severity levels (i.e., N − k contingency
scenarios) and verify the promising performance of the proposed
integrated WaPS model when facing failures and threatening high
impact low probability emergencies.

Index Terms—Contingency analysis, dc optimal power flow
(DCOPF), emergency response, interdependent networks, water
and power systems (WaPS), water–energy nexus (WEN).
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NOMENCLATURE

A. Sets

g ∈ NG Set of system generating units.
t ∈ NT Set of time intervals.
n ∈ B Set of system buses.
k ∈ L Set of system transmission lines.
r ∈ R Set of water system reservoirs.
p ∈ P Set of water system pumps.
s ∈ S Set of water system pipes.

B. Variables and Functions

P sh
t The shedding amount of load at time t.

Qt Water flow rate at time t.
Rr

t Vector of reservoirs’ water inflow rate for each
reservoir r at time t.

Qj
t Water flow rate through pipe j at time t.

Qp
t Water flow rate through pump p at time t.

Ht Pressure heads at time t.
Hj

n,t Pressure heads associated with pipe j and node n at
time t.

Hp
n,t Pressure heads associated with pump p and node n

at time t.
Hr

t Pressure heads associated with reservoir r at time t.
Sign(.) Sign function.
ΔEt The difference of tanks’ inflow/outflow rate at time

t.
T in
t Vector of water inflow to tanks at time t.

T out
t Vector of water outflow to tanks at time t.

Vt Volume of stored water in tanks at time t.
Wt Pumps’ speed at time t.
P p
t Power consumption for pump p at time t.

P p,adj
b,t Vector of water electricity consumption in bus b at

time t.
Xi,j

t Continuous decision variable for pressure head
breakpoint i associated with pipe j at time t.

Xu,m,p
t Continuous decision variable for pressure head

breakpoint u associated with pump p at time t.
Pg,t Expected power output of generating unit g at time

t.
Pk(nm),t Power flow through transmission line k (connecting

bus n to m) at time t.
Pdn,t Total power-water demand at time t (MW).
θi,t Voltage angle for bus i at time t.
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C. Binary Variables

Y i,j
t Binary variable for pressure head breakpoint i as-

sociated with pipe j at time t.
HUpper

i,m,p,t Binary variable for the upper triangle in the rectan-
gle at time t.

HLower
i,m,p,t Binary variable for the lower triangle in the rectan-

gle at time t.
φg,t Binary variable for the connection status of gener-

ator g at time t (1 if it is available, 0 otherwise).
νk,t Binary variable for the connection status of power

line k at time t (1 if it is online, 0 otherwise).
τpt Binary variable for the connection status of pump

stations p at time t (1 if it is online, 0 otherwise).

D. Parameters

Pd,t Total electricity demand at time t.
Pdn, Pdn Maximum/Minimum electricity demand.
xk Reactance of transmission line k.
Pmax
k Maximum power flow limit of line k.

Pmax
g Maximum capacity limit of generating unit g.

Pmin
g Minimum capacity limit of generating unit g.

Dt Vector of water demand (m3/s) at time t.
Ĥ Reservoirs’ geographical height.
Vmin Tanks’ minimum volume.
Vmax Tanks’ Maximum volume.
ΔE Minimum charging/discharging difference for

tanks.
ΔE Maximum charging/discharging difference for

tanks.
rp Pipe parameter.
Hmin Minimum nodal pressure heads.
Hmax Maximum nodal pressure heads.
Qmax/min Maximum/Minimum water flow rate to the network.
P p

max/min Maximum/Minimum power consumption for pump
p.

qpi Water flow rate of breakpoint i for pump p.
qji Water flow rate of breakpoint i for pipe j.
csht The price of shedding load at time t ($/MW).
cr,t Vector of reservoirs’ water price at time t.
cg,t linear cost coefficients of generating unit g at time

t ($/MW).
wp

i Speed breakpoint i for pump p.
a1,2,3, z1,2 Performance parameters for pumps.
C Incidence matrix of pumps’ location.

I. INTRODUCTION

POWER and water networks are known among the most
critical interconnected infrastructures due to their crucial

role in human life and our modern society. Water networks are
considered the most energy-intensive shareholder of the total
electricity demand [1]. Approximately 4% of the electricity
consumption in the United States is utilized by water networks
around the country [2]. Drinking water and wastewater account
for around 40% of the consumed energy for local govern-
ments [3]. Furthermore, water networks in California absorb
around 20% of the total electricity consumed [4]. Therefore,

there is an urgent need to improve the water networks’ operation
reliability and resiliency, i.e., water treatment, water purification,
cooling, wastewater, etc., as the demanded electricity associated
with water facilities is projected to increase due to the sharp rise
in the population and use in industry applications.

In the traditional practice, water and power systems (WaPS)
have been designed and planned as two separate and uncoupled
systems, while in reality, the operation of both systems is jointly
interdependent [5]. Power system operators are in need of water
for refining fuels and generating electricity, while on the other
hand, water facilities require electricity in order to operate nor-
mally. Further, the operation of mutually interdependent power
and water systems is more critical and challenging in the case of
limited availability of resources or failures in either network. If
a shortage in delivering the demanded electricity is realized,
water networks may not be supplied with sufficient energy
required for pumping the water through pipelines, resulting in
a failure in both networks. This interrelationship ecosystem of
water and power is commonly known as water–energy nexus
(WEN) [6]–[8].

Predominantly, the WEN has been investigated in the litera-
ture regarding policy, regulatory challenges, and its connections
to economic growth and climate change [9]–[11]. Kao et al.[12]
studied the impact of climate change on water reservoir man-
agement and hydropower plant operation. A literature review on
water distribution network optimization with respect to WEN is
studied in [13]. A physics-based approach for modeling WEN to
optimize the structure of water, wastewater, and power systems
is studied in [14]. WEN linkage analysis is investigated in [15]
to illustrate the effect of considering the interaction of coupled
WaPS on various economic sectors. Optimal dispatch of WaPS
and its impact on battery storage is studied in [16]. WaPS eco-
nomic dispatch is employed in [17], focusing on the network’s
supply side. Moazeni et al. [18] studied the economic dispatch of
WaPS considering the energy management of various building
applications. The demand response and frequency regulation of
the water network are investigated in [19]. Zuloaga et al. [20]
studied the operational resilience of WaPS under the condition
of limited availability of water and/or energy. Focusing on the
operation of WEN from the power system point of view, the
utilization of energy flexibility through coordination of WaPS is
investigated in [21]. Alhazmi et al. [22] studied the integration of
WaPS using dc optimal power flow (DCOPF). Modeling such
interconnected infrastructures individually is not preferred as
it may result in suboptimal solutions in both networks. Joint
operation of WaPS using a different power flow mechanism is
investigated in [23]. The aforementioned studies investigated the
operation of WaPS in different sectors under normal operating
conditions in both networks, yet failed to study the operation
of WaPS under emergency scenarios (i.e., failure in power
transmission lines and/or in water network pipelines).

Mostly assuming “independent” network operation, the ex-
iting studies on WaPS focus solely on the operation of one
network alone and either entirely ignore or partially take into
account a few of the other network’s constraints [24]–[28].
The conventional models failed to comprehensively account for
the “interdependent” operation of the integrated networks of

Authorized licensed use limited to: The George Washington University. Downloaded on July 18,2022 at 20:22:45 UTC from IEEE Xplore.  Restrictions apply. 



4352 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 58, NO. 4, JULY/AUGUST 2022

WaPS considering the complete operational constraints of both
networks. The operation of WaPS faces growing challenges
and vulnerability in the face of high impact low probability
(HILP) events that cause damages to both networks, resulting in
a partial or entire blackout in the systems. Lack of coordination
between WaPS networks under emergency operating conditions
may cause a delay in the recovery of both networks. Such lack
of coordination was experienced during the hurricane Maria in
Puerto Rico [29]. Hurricane Maria caused damage to nearly
90% of the power network in Puerto Rico, and various locations
were not supplied with demanded water for a long time due to
the severance of the hurricane and the absence of coordination
between several interlinked sectors, e.g., power and water oper-
ators, which caused a delay in the response and recovery of both
systems [30], [31].

Different from the state-of-the-art models, where the oper-
ation of WaPS is modeled and evaluated in normal operating
conditions, this article bridges the gap in co-optimization and
joint operation of WaPS under emergency scenarios. We propose
a computationally efficient mixed-integer linear programming
(MILP) formulation that jointly optimizes the operation of WaPS
in presence of different contingencies in both power and water
networks and under various disaster severity levels. Note that
the disaster severity level is here reflected through the order
of system contingencies (failures), i.e., the number of system
elements failed or become unavailable. The presented model
aims to enhance flexibility and advance the resilience of the
joint WaPS in the face of infrastructure failures and extreme
HILP events. Fig. 1 illustrates a big picture of the proposed
framework for the integrated operation of the interdependent
WaPS under emergency operating scenarios. First, the water and
electricity data management system is formed by gathering the
WaPS operation datasets. Then, if there is no damage observed
in both power and water systems, the WaPS is concluded to
be in the normal operating condition. However, if a failure in
any component of the WaPS (either power or water networks or
both) is realized, the proposed optimization under contingency
will run to compute potential electric load outages. In summary,
the main contributions of this article are as follows:

1) This article proposes a day-ahead optimization model for
the operation of WaPS under emergency scenarios. The
operational constraints of the water network are effectively
modeled and integrated with the DCOPF models of the
power system.

2) Different from the existing literature, the proposed model
studies the contingencies in both power and water net-
works under various disaster severity levels, i.e., N − 1,
N − 2, andN − 3. The suggested model captures the con-
tingencies in power generation units, transmission lines,
and water network pumps.

3) The integrated model of WaPS include the complete hy-
draulic nonlinear constraints of the water network, and is
thus nonlinear. The hydraulic constraints are linearized
and the model gets transformed into a MILP formula-
tion that can be effectively solved via the off-the-shelf
solvers.

Fig. 1. Overview of the proposed methodology for optimal WaPS operation
under emergency scenarios.

The rest of this article is organized as follows. Section II
presents the proposed contingency-responsive joint optimization
framework of power–water systems considering the complete
hydraulic constraints of the water network. Numerical case stud-
ies and simulation results on a modified IEEE 24-bus reliability
test system jointly operated with two and three 15-node water
networks are presented in Section III. Finally, this article is
concluded in Section IV.

II. PROPOSED METHODOLOGY

This section presents the proposed mathematical model for
contingency analysis in a jointly operated WaPS. The proposed
model of the water network consists of reservoirs, pipes, pumps,
and tanks, which is mathematically represented using a directed
graph G = (N ,A), where N denote the set of N water network
nodes representing R reservoirs and T tanks. A is the set of A
arcs, which consists of pipes and pumps. Water flow rate q is
maintained by increasing the pressure head, using pump stations,
or by adequate elevation difference between two nodes, such that
if the water network is supplied by groundwater and the gravity is
insufficient, a pumping station is needed to increase the pressure
head and facilitate the flow of water. The water flow direction
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Fig. 2. Schematic diagram of the water network components.

is determined by the water flow rate’s positive and negative
values q. Water networks’ schematic diagram and their hydraulic
components are demonstrated in Fig. 2. Fig. 2 demonstrates the
hydraulic components of a typical water network and shows the
notations that are used in this article. The water moves from the
reservoirRr to customers through a network of water pipes. The
water flow (Q) moves in the pipes by the pressure difference H
or by increasing the pressure using pumps. Tank is used to store
the water and assist the network during emergency operating
conditions. ΔEt denotes the difference between the tank water
inflow (T in) and outflow(T out).

A. Objective Function

The WaPS operation objective during emergency operating
conditions is to minimize the total cost of the system in the
presence of contingencies. Therefore, the objective function is
modeled by minimizing the cost of load outages and power
generation in WaPS, formulated as follows:

min
NT∑
t=1

NG∑
g=1

D∑
i=1

R∑
r=1

(
cshi,tP

sh
i,t + cg,tPg,t + cr,tR

r
t

)
. (1)

The proposed under-emergency optimization model is subjected
to a set of constraints in both power and water networks de-
scribed in the following.

B. WaPS Integration and Contingency Constraints

The contingencies in power systems are modeled within the
DCOPF mechanism and is jointly formulated with the water
network as follows:

P p,adj
b,t =

P∑
p=1

CP p
t ∀b, ∀t (2)

Pdn,t = Pd,t + P p,adj
b,t ∀n, ∀t (3)

Pdn ≤ Pd,t + P p,adj
b,t ≤ Pdn ∀n, ∀t (4)

Pk,t =
θn,t − θm,t

xk
∀k,∀t (5)

− Pmax
k νk,t ≤ Pknm,t ≤ Pmax

k νk,t ∀k,∀t (6)

pmin
g φg,t ≤ Pg,t ≤ Pmax

g φg,t ∀t (7)

∑
g∈NG

Pg,t +
∑
i∈D

P sh
i,t −

∑
k∈ L

Pk,t =
∑
d∈D

Pdn,t ∀t (8)

0 ≤ P sh
i,t ≤ Pdn,t ∀i ∈ D, n, ∀t. (9)

Constraint (2) adjusts the dimension of pump electricity con-
sumption, while constraint (3) integrates the water network’s
electricity consumption with power system demand. Total elec-
tricity demand for the joint WaPS is bounded in (4). The power
flow in transmission lines is introduced in (5) and bounded
to its maximum and minimum limits in (6), considering the
availability status of lines νk,t. Constraint (7) limits the output
of each power generating unit to its maximum and minimum
capacities, where φg,t identifies the status of generation units.
Power balance constraint considering the load outage in WaPS
is described in (8). The interrupted load is bounded above in
(9) not to exceed the nodal load demand in normal operating
conditions.

C. Water Flow Constraints

Water demand is delivered to customers through a network of
pipes, pumps, and tanks. During peak hours, tanks are utilized to
smoothen the pumpage demand to assist the water network dur-
ing emergency scenarios. The water flow hydraulic constraints
are modeled as follows:

Rr
t −Dt −Qt −ΔEt = 0 ∀t (10)

−Qmax ≤ Qt ≤ Qmax ∀t (11)

Qp
t ≥ 0 ∀t (12)

Hn,t −Hn+1,t = rp | Qj
t |1.852 Sign(Qj

t ) ∀t (13)

Hr
t − Ĥ = 0 ∀t (14)

Hmin ≤ Ht ≤ Hmax ∀t (15)

Vt+1 = Vt +ΔEt ∀t (16)

ΔEt = T in
t − T out

t ∀t (17)

ΔE ≤ ΔEt ≤ ΔE ∀t (18)

Vt = Saht ∀t (19)

Vmin ≤ Vt ≤ Vmax ∀t (20)

ΔHt = Wt

(
a1 − a2

(
Qt

Wt

)a3
)

∀t (21)

P p
t = W 3

t

(
z1 − z2

(
Qt

Wt

))
∀t (22)

P p
minτ

p
t ≤ P p

t ≤ P p
maxτ

p
t ∀p,∀t. (23)

The dynamic flow balance in the water network is formulated
in (10). Water flow through pipelines and pumps are bounded in
(11) and (12), respectively. The Hazen–Williams formula [32]
is used in (13) to model the flow of water through pipes.
Hazen–Williams formula is a quantitative term that is used
to measure the pressure loss in water pipes due to friction.
Constraints (14) set the pressure head at the reservoir node to
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its geographical heights. Nodal pressure head is limited in (15).
The dynamic operation of water flow in tanks is modeled in
(16). Constraints (17) definesΔEt, which governs the difference
between charging and discharging water flow of tanks. ΔEt is
limited in (18). Constraint (19) formulates the pressure head
at the tank nodes, which is driven by the water stored in the
related tanks. The volume of each tank is bounded in (20).
Water pumps increase the nodal head pressure to increase the
water flow. The controlled increase of pressure by pumps is
formulated in (21). Pumps electricity consumption is modeled
in (22). The availability status of water pump stations is bounded
in (23).

D. Linearization

Nonlinearity is presented in constraints (13), (22), and (23).
Solving nonlinear programming (NLP) models might be time-
intensive, and an optimal feasible solution might not be guaran-
teed in large-scale water networks. Linearization and relaxation
techniques are hence used to linearize and approximate the
original NLP problem to a linear counterpart that is computa-
tionally more attractive and for which a globally optimal solution
can be ensured. There are multiple techniques to linearize the
nonlinear hydraulic constraints of a water network. A quasi-
convex hull relaxation approach is used in [28] and [33] to relax
the mixed-integer nonlinear programming (MINLP) models.
Fooladivanda and Taylor [34] and Zamzam et al.[35] presented a
mixed-integer second-order cone relaxation approach for finding
the feasibility region of the water flow problem. Piece-wise lin-
earization has been widely used in the literature to approximate
the nonlinear functions of the hydraulic constraints [19], [21]–
[23], [36], [37]. The convex piece-wise linearization has showed
that the linear approximations of the hydraulic constraints can
lead to a reasonably acceptable range of solutions in lower
computation times; thus, due to the promising accuracy and com-
putational benefits of the resulting linear optimization model,
the piece-wise linearization technique was approached in this
article to convert our NLP model to a MILP. The approximated
linearized constraints are modeled as follows:

I−1∑
i=1

Y i,j
t = 1 ∀j,∀t (24)

Xi,j
t ≤ Y i−1,j

t + Y i,j
t ∀j,∀i, ∀t (25)

I∑
i=1

Xi,j
t = 1 ∀j,∀t (26)

XI,j
t ≤ Y I−1,j

t ∀j,∀t (27)

X1,j
t ≤ Y 1,j

t ∀j,∀t (28)

Qj
t =

I∑
i=1

Xi,j
t qji ∀j,∀t (29)

Hj
n,t −Hj

n+1,t =

I∑
i=1

Xi,j
t ΔHj

t (q
j
i ) ∀j,∀t (30)

U∑
u=1

M∑
m=1

Xu,m,p
t = 1 ∀p, ∀t (31)

Qp
t =

U∑
u=1

M∑
m=1

Xu,m,p
t qpu ∀p, ∀t (32)

Wt =
U∑

u=1

M∑
m=1

Xu,m,p
t wp

m ∀p, ∀t (33)

ΔHp
t =

U∑
u=1

M∑
m=1

ΔHp
t (q

p
u, w

p
m)Xu,m,p

t ∀p, ∀t (34)

P p
t =

U∑
u=1

M∑
m=1

P p
t (q

p
u, w

p
m)Xu,m,p

t ∀p, ∀t (35)

U∑
u=1

M∑
m=1

(
HUpper

u,m,p,t +HLower
u,m,p,t

)
= 1 ∀p, ∀t (36)

Xu,m,p
t ≤ HUpper

u,m−1,p,t +HUpper
u+1,m,p,t

+HUpper
u,m,p,t +HLower

u−1,m,p,t ∀u, ∀m, ∀p,∀t
+HLower

u,m+1,p,t +HLower
u,m,p,t (37)

Constraints (24)–(30) represent the linear approximation for the
nonlinear constraint (13). Constraints (24) drives only one binary
variable to take the value of 1, while (25)–(28) indicate that only
nonzero values are selected for Xi,j

t and Xi+1,j
t . Pressure head

difference for pipes is ensured to be selected appropriately to
evaluate the approximated functions in constraints (29)–(30).
The linearized formulation of the nonlinear constraints (21)–(22)
is modeled using the triangle technique in (31)–(37). Constraint
(31) presents the weight of the convex combination of the
selected triangle. The linear combinations of any selected values
for water flow through pumps and pump’s speed are modeled
in (32) and (33), respectively, while the bivariate nonlinear
functions for each pump’s pressure difference and electricity
consumption are approximated in (34) and (35), respectively.
Only one triangle is forced to be selected in constraint (36) for
the convex combination, and constraint (37) ensures that only
values other than zero of Xi,m,p

t can be associated with all three
vertices of the triangle. Detailed illustration of the linearization
technique is provided in [23].

The complete formulation for the integrated WaPS in the form
of a MILP optimization model is presented in the following,
which considers the contingency-driven emergency response in
the joint operation of WaPS.

min(1)

subject to (2)− (12), (14)− (20), (23)− (37)

III. NUMERICAL CASE STUDIES

A. System Descriptions, Data, and Assumptions

The proposed formulation for the resilient operation of the
interconnected power and water networks under contingency
scenarios is applied on a modified IEEE 24-bus reliability test
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Fig. 3. Schematic diagram of the commercial-scale 15-node water network.

Fig. 4. Schematic diagram of the IEEE 24-bus reliability test system supplying
two water networks.

system jointly operated and connected to two commercial-scale
water networks. The IEEE 24-bus reliability test system consists
of 12 generating units, 34 transmission lines, and 17 load points.
Each water network consists of 15 nodes connected to a power
grid load point, as shown in Fig. 4. Each water network consists
of 15 nodes, i.e., 11 pipelines, 3 pumps, and 2 tanks, and is
connected to a power grid load point. The precise locations
for each water network component, e.g., pumping stations,
water tanks, water demand nodes, etc., are illustrated in Fig. 3.
The initial volume of all water tanks is set to zero. All data
for the studied WaPS (i.e., generation capacity, load profiles,
transmission line parameters, water demand profiles, pipeline
parameters, etc.) are provided in [38] and [39]. The simulations
are performed using CPLEX solver to handle the reformulated
MILP model. A mathematical programming language (AMPL)
environment [40], using a PC with an Intel Xeon E5-2620 v2

Fig. 5. Scheduled electricity consumption of water pumps in normal operating
condition: CS-I.

processor, 16 GB of memory, and 64-bit operating system, is
used to perform all the simulations.

B. Results and Discussions

In order to demonstrate the performance of the proposed
model, four different case studies are presented:

1) Case Study I (CS-I) presents the day-ahead normal op-
eration of the WaPS, which integrates water networks’
and the power network’s operations jointly and interde-
pendently, where the DCOPF mechanism and hydraulic
water constraints are efficiently integrated.

2) Case Study II (CS-II) models the N − 1 contingencies
in the joint operation of the WaPS, taking into account
the DCOPF mechanism for the power network and water
network hydraulic model in emergency states.

3) Case Study III (CS-III) represents the joint operation of the
WaPS under a higher (e.g., level-2) disaster severity, i.e.,
N − 2 contingencies, taking into account simultaneous
failures in two components of the WaPS, thereby emer-
gency operation of WaPS.

4) Case Study IV (CS-IV) represents the operation of the
WaPS under a higher disaster severity, i.e., N − 3 con-
tingencies.

Fig. 5 illustrates the day-ahead electricity consumption of
water pumps in CS-I, when the joint WaPS operates normally.
Water tanks’ performance for the 24-h operation period is shown
in Fig. 6. It can be observed from Fig. 6 that water tanks are
assisting the water network during peak hours (e.g., hours 7–13)
by discharging (negative value) and supplying the water demand,
while it is charging (positive value) during off-peak hours (e.g.,
hours 1–7). The daily load profile for the integrated WaPS in CS-I
is shown in Fig. 7. In the face of emergencies, i.e., CS-II, CS-III
and CS-IV, the amount of load shad at each hour is evaluated as
demonstrated in Fig. 8.

The operational cost for all case studies and the computational
results are presented in Table I. The total operating cost for CS-I,
when normal operation of the joint WaPS is studied, is reported
at $42 348.17. The optimal operation cost for the interlinked
WaPS, taking into account the failure of one component of the
WaPS (i.e., N − 1 scenarios) in CS-II and two components
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Fig. 6. Scheduled water flow rate of tanks in normal operating conditions:
CS-I.

Fig. 7. Load Profile for the integrated WaPS in normal operating conditions:
CS-I.

Fig. 8. Average load outage in WaPS when contingencies are applied.

(i.e., N − 2 scenarios) in CS-III, are recorded at $45 113.22
and $47 234.72, respectively. In CS-IV with N − 3 contingency
analysis, the operation cost of the joint WaPS is reported at
$50 027.92. As expected, one can observe that the higher the
number of contingencies, the higher the WaPS operation cost.

The computation time for CS-I is reported 92.1 s, while that
of the CS-II and CS-III are recorded at 123.2 s and 149.2 s,
respectively. The computation time for CS-IV is noted 164.3 s.
It can be observed that the proposed solution is computationally
efficient to be used for the integrated operation of WaPS under
emergencies.

TABLE I
TOTAL OPERATION COST AND OPTIMIZATION COMPUTATION TIME IN

DIFFERENT TEST CASES

Fig. 9. Schematic diagram of the IEEE 24-bus reliability test system supplying
three water networks.

TABLE II
TOTAL OPERATION COST AND OPTIMIZATION COMPUTATION TIME IN

DIFFERENT CONTINGENCY SCENARIOS

C. On the Scalability of the Proposed Framework: Impact of
an Additional Water Network

In order to evaluate the effectiveness and the scalability of
the proposed framework, we study the impact of adding an
additional water network to the integrated system. A total of
three water networks are jointly operated with the IEEE 24-bus
reliability test system. Fig. 9 shows a schematic diagram of the
studied system. Water networks are connected to load points
1, 2, and 13. The new model is tested under three contingency
scenarios, i.e., N − 1, N − 2, and N − 3. The operational cost
for all contingency scenarios and the computational results are
shown in Table II. Under N − 1 scenario, when one network
component fails, the total outage cost is computed as $56 245.05.
The computational time is recorded at 112.4 s. When N − 2 and
N − 3 contingency scenarios are applied to the integrated WaPS
model, the total cost of outages is reported at $59 950.23 and
$61 412.95, respectively. During such emergency conditions, the
amount of load shad at each hour is demonstrated in Fig. 10.
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Fig. 10. Average load outage in WaPS when contingencies are applied.

The computational time when N − 2 and N − 3 scenarios
are applied is found at 153.6 s and 170.9 s, respectively. The
numerical results demonstrate that the proposed framework is
scalable and the computational time is acceptable for decision-
making on the daily operation of the interconnected networks.

IV. CONCLUSION

Different from the state-of-the-art models, this article pro-
posed a novel framework for the joint and coordinated oper-
ation of the water and electricity networks under contingency
scenarios. In order to comprehensively evaluate the effective-
ness of the interconnected WaPS, the DCOPF mechanism and
hydraulic water system operation have been taken into account.
Piece-wise linearization technique was used to approximate the
hydraulic water constraints and convert the NLP model to a
tractable MILP formulation, which commercial off-the-shelf
solvers can quickly solve. The proposed model was applied
to IEEE 24-bus reliability power test system connected to two
commercial-scale water networks, each consisting of 15 nodes.
To further verify the efficiency and scalability of the proposed
framework on large-scale systems, the proposed model was
applied to a higher number of water networks, i.e., three water
networks, each consisting of 15 nodes supplied by the IEEE 24-
bus power test system. The simulation results included N − 1,
N − 2, and N − 3 contingency scenarios and demonstrated the
promising performance of the proposed integrated WaPS model
in enhancing the reliability and resilience of the critical WaPS
infrastructures during failure emergencies.
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