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Given graphs F and H , the generalized rainbow Turán number ex(n, F , rainbow-H) is the 
maximum number of copies of F in an n-vertex graph with a proper edge-coloring 
that contains no rainbow copy of H . B. Janzer determined the order of magnitude of 
ex(n, Cs, rainbow-Ct) for all s ≥ 4 and t ≥ 3, and a recent result of O. Janzer implied 
that ex(n, C3, rainbow-C2k) = O (n1+1/k). We prove the corresponding upper bound for 
the remaining cases, showing that ex(n, C3, rainbow-C2k+1) = O (n1+1/k). This matches the 
known lower bound for k even and is conjectured to be tight for k odd.

 2021 Elsevier B.V. All rights reserved.

1. Introduction

The Turán number of a graph H is the maximum number of edges in an H-free graph on n vertices, denoted ex(n, H). 
This has been generalized in many different ways. For example, the rainbow Turán number ex∗(n, H), introduced in [14], is 
the maximum number of edges in a graph on n vertices which can be properly edge-colored with no rainbow copy of H . 
Another natural variation is the generalized Turán number ex(n, F , H), which is the maximum number of copies of a graph F
in an n-vertex graph that contains no copy of H , and was first studied systematically by Alon and Shikhelman [1]. Both of 
these problems have been extensively studied, see for example [12,14] and [1–4,7,8,10,15].

Gerbner, Mészáros, Methuku and Palmer [6] considered the following generalized problem which unites the two concepts 
above. Given two graphs F and H , the generalized rainbow Turán number, denoted by ex(n, F , rainbow-H), is the maximum 
number of copies of F in an n-vertex graph which can be properly edge-colored to avoid a rainbow copy of H . Note that 
trivially we have ex(n, F , rainbow-H) ≥ ex(n, F , H). The question for F = H has been studied for paths, trees, cycles and 
cliques, see [6,9,11].

Recently, B. Janzer [11] determined the order of magnitude of ex(n, Cs, rainbow-Ct) for all cases except for s = 3. In the 
case s = 3, he gave the following bounds.
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Theorem 1.1 (Janzer [11]). If k ≥ 2 is odd then ex(n, C3, rainbow-C2k) = �(n1+1/k), and if k is even then ex(n, C3, rainbow-C2k+1) =
�(n1+1/k). Furthermore, for every integer k ≥ 2, we have

ex(n,C3, rainbow-C2k) = O (ex∗(n,C2k)),

and

ex(n,C3, rainbow-C2k) ≥ ex(n,C3,C2k) = �(ex(n, {C4,C6, . . . ,C2k})),
ex(n,C3, rainbow-C2k+1) ≥ ex(n,C3,C2k+1) = �(ex(n, {C4,C6, . . . ,C2k})).

Very recently, O. Janzer [12] settled a well-known conjecture of Keevash, Mubayi, Sudakov and Verstraëte [14], proving 
that

ex∗(n,C2k) = �(n1+1/k). (1)

Together with Theorem 1.1, this yields ex(n, C3, rainbow-C2k) = O (n1+1/k), which is tight for k odd.

In this paper, we study the remaining open case for cycles, proving an upper bound on ex(n, C3, rainbow-C2k+1) which 
matches the lower bound given by B. Janzer [11] for k even and which is expected to be sharp for k odd as well.

Theorem 1.2. For k ≥ 2, we have

ex(n,C3, rainbow-C2k+1) = O
(

n1+1/k
)

.

In Section 2, we give a self-contained proof of the upper bound on ex(n, C3, rainbow-C5) which gives an explicit constant, 
although it is likely not best possible. In Section 3, we prove Theorem 1.2 by applying (1) to a subgraph in which every 
rainbow copy of C2k extends to a rainbow copy of C2k+1 in the original graph. Throughout the paper, we use Pk to denote 
the path with k edges.

2. No rainbow C5

Theorem 2.1. We have ex(n, C3, rainbow-C5) ≤ 32n3/2 .

Proof. Let G be an n-vertex graph with a proper edge-coloring c containing no rainbow copy of C5 . First, we will show that 
G contains at most 4|E(G)| triangles.

Fix a vertex v ∈ V (G) and let d denote the degree of v . We will count in two ways the pairs (S, e) where S ⊂ N(v)

contains ⌈d/2⌉ neighbors of v and e ∈ E(G[S]) satisfies c(e) 	= c(vu) for every u ∈ S . There are 
( d
⌈d/2⌉

)

ways to choose 
the set S . Throw out any edge in G[S] whose color appears on an edge incident with v and S . Let E ′ denote the set of 
remaining edges in G[S]. Now E ′ must be rainbow P3-free, otherwise we can find a rainbow copy of C5 in G . Therefore, 

since Johnston, Palmer, and Sarkar [13] showed that ex∗(n, P3) = 3
2
n, we have |E ′| ≤ 3

2

⌈

d
2

⌉

. Thus, the number of triangles 

containing v which are formed in this way, that is, the number of pairs of such a set S and an edge from E ′ of a different 

color, is at most 3
2

⌈

d
2

⌉

( d
⌈d/2⌉

)

.

On the other hand, we could instead first choose an edge e in the neighborhood of v to form our triangle, which can be 
done in |E(G[N(v)])| ways, and then select an additional ⌈d/2⌉ − 2 vertices from N(v) to form the rest of S . However, we 
do not want the color of e to appear on an edge incident to v . Since the edge coloring is proper, this only requires us to 
throw out at most one vertex from N(v) since at most one edge incident to v can have the same color as e. Thus, we can 
pick the remaining vertices of S in at least 

( d−3
⌈d/2⌉−2

)

ways. Therefore, we have

|E(G[N(v)])| ·
(

d − 3

⌈d/2⌉ − 2

)

≤
3

2

⌈

d

2

⌉

·
(

d

⌈d/2⌉

)

.

Thus, |E(G[N(v)])| ≤ 6d, so the number of triangles in G is at most

1

3

∑

v∈V (G)

|E(G[N(v)])| ≤
1

3

∑

v∈V (G)

6d(v) = 4|E(G)|.

We may assume that every edge of G is in a triangle, otherwise we could delete an edge without decreasing the number 
of triangles. Now assume towards a contradiction that |E(G)| ≥ 8n3/2 .

One-by-one, delete vertices of degree less than 4
√
n in G . Note that not all vertices are deleted, since otherwise |E(G)| <

4n3/2 . Denote by G ′ the remaining induced subgraph with minimum degree δ(G ′) ≥ 4
√
n, and let n′ = |V (G ′)|. Fix an 

arbitrary vertex v ∈ V (G ′).
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Fig. 1. If there is a vertex of degree at least 3 in F , then G contains a rainbow copy of C5 . Edges in F are dashed while edges in G are solid.

A cherry is a path of length 2. We will form an auxiliary graph F with vertex set V (F ) = NG ′ (v) which contains an edge 
uw if and only if there are at least seven cherries of the form uxw in G ′ . We will show that F must contain a vertex of 
degree at least 3 and use this vertex to find a rainbow copy of C5 in G .

Let S ⊆ NG ′ (v) be a set of ⌊
√
n⌋ vertices. We will count the cherries in G ′ with endpoints in S . Since each vertex x in 

V (G ′) is the center vertex in exactly 
(dS (x)

2

)

cherries4 of this form, we can count the desired cherries as follows:

∑

x∈V (G ′)

(

dS(x)

2

)

≥ n′
( 1

n′
∑

dS(x)

2

)

= n′
( 1

n′
∑

s∈S dG ′(s)

2

)

≥ n′
( 1

n′ · δ(G ′)|S|
2

)

≥
(δ(G ′)|S|)2

4n′ ≥
16n|S|2

4n′ > 7

(

|S|
2

)

,

where we use convexity and the fact that δ(G ′) ≥ 4
√
n. Thus, there must be some pair of vertices in S which are the 

endpoints of at least seven cherries in G ′ , and hence, these vertices are adjacent in F . Since S was an arbitrary set of ⌊
√
n⌋

vertices in NG ′ (v) = V (F ), we have shown that α(F ) ≤
√
n, where α(F ) denotes the independence number of F . This gives 

�(F ) ≥ |F |/α(F ) − 1 ≥ 4
√
n/

√
n − 1 ≥ 3, so there is a vertex u in F of degree at least 3. Let x, y, z be neighbors of u in F , 

as in Fig. 1. By assumption, the edge uv is in at least one triangle in G , so there is a vertex w ∈ V (G), possibly in {x, y, z}, 
which forms a triangle with uv .

Let c(vw) = 1 and c(uw) = 2. Then since c is a proper coloring, at least one of vx, vy, and vz is colored with a new 
color, say c(vx) = 3. Since ux is an edge in F , there are at least seven cherries in G ′ with endpoints u and x, and hence, 
at least one with new colors 4 and 5 which avoids v and w . Thus, there is a rainbow copy of C5 in G , and we reach a 
contradiction. Therefore, G must contain at most 8n3/2 edges, and hence, at most 32n3/2 triangles, as desired. �

3. No rainbow C2k+1

Proof of Theorem 1.2. Let G be an n-vertex graph with a proper edge-coloring f : E(G) → C containing no rainbow copy of 
C2k+1 . We may assume each edge in G is in at least one triangle.

As in Section 2, we begin by giving a bound on the number of triangles in G in terms of the number of edges in G . Fix a 
vertex v ∈ V (G) and let d denote the degree of v . Pick a set S ⊂ N(v) containing ⌈d/2⌉ neighbors of v , and throw out any 
edge in G[S] which is colored using some color which appears on an edge from v to S .

Then G[S] cannot contain a rainbow copy of P2k−1 . A result of Ergemlidze, Győri, and Methuku [5] showed that 

ex∗(n, Pk+1) <
(

9k
7

+ 2
)

n. Therefore, we obtain

|E(G[S])| ≤ ex∗
(⌈

d

2

⌉

, P2k−1

)

≤
18k − 4

7
·
⌈

d

2

⌉

.

By counting the triangles containing v and two adjacent vertices in S in two ways, we get

|E(G[N(v)])| ·
(

d − 3

⌈d/2⌉ − 2

)

≤
18k − 4

7
·
⌈

d

2

⌉

·
(

d

⌈d/2⌉

)

.

Thus, |E(G[N(v)])| ≤ 72k−16
7

d, and the number of triangles in G is at most

1

3

∑

v∈V (G)

|E(G[N(v)])| ≤
72k − 16

21

∑

v∈V (G)

d(v) =
144k − 32

21
|E(G)|.

4 dS (x) = |NG (x) ∩ S|.
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We will show that |E(G)| = O (n1+1/k).

Assume towards a contradiction that G has more edges. For each edge uv ∈ E(G), arbitrarily fix a vertex w = w(uv)

such that u, v , and w form a triangle in G . We will find a subgraph of G in which any rainbow copy of C2k can be extended 
to a rainbow copy of C2k+1 in G . To this end, randomly select a partition of V (G) into parts A of size ⌊ n

2
⌋ and B of size 

⌈ n
2
⌉. Similarly, take a random partition of C into parts X and Y of sizes ⌊ |C |

2
⌋ and ⌈ |C |

2
⌉, respectively.

Let F be the subgraph with vertex set B which contains an edge uv ∈ E(G[B]) if and only if the vertex w = w(uv) is 
in A and f (uv) ∈ X while f (uw), f (vw) ∈ Y . Then the expected number of edges in F is least |E(G)|/64, so we can fix 
partitions (A, B) and (X, Y ) such that the corresponding graph F has at least this many edges.

Note that F inherits the proper edge-coloring f from G , so we can apply (1) to this subgraph. Since ex∗(n, C2k) =
O (n1+1/k), there must be a rainbow copy of C2k in F . This cycle contains only vertices in B , so we can replace an arbitrary 
edge uv in the cycle by a pair of edges uw and wv with w ∈ A to create a copy of C2k+1 in G . Furthermore, the cycle in 
F is colored only with colors from X , while the new edges have colors from Y , so we have found a rainbow copy of C2k+1 . 
But this is a contradiction, since G contains no rainbow copies of C2k+1 . Thus, |E(G)| = O (n1+1/k), which implies that the 
number of triangles in G is O (n1+1/k), as desired. �
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[7] D. Gerbner, E. Győri, A. Methuku, M. Vizer, Generalized Turán problems for even cycles, J. Comb. Theory, Ser. B 145 (2020) 169–213, https://doi .org /10 .

1016 /J .JCTB .2020 .05 .005.
[8] L. Gishboliner, A. Shapira, A generalized Turán problem and its applications, Int. Math. Res. Not. 2020 (11) (2020) 3417–3452, https://doi .org /10 .1093 /

imrn /rny108.
[9] W.T. Gowers, B. Janzer, Generalizations of the Ruzsa-Szemerédi and rainbow Turán problems for cliques, Comb. Probab. Comput. 30 (4) (2021) 591–608, 

https://doi .org /10 .1017 /S0963548320000589.
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