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1. Introduction

The Turdn number of a graph H is the maximum number of edges in an H-free graph on n vertices, denoted ex(n, H).
This has been generalized in many different ways. For example, the rainbow Turdn number ex*(n, H), introduced in [14], is
the maximum number of edges in a graph on n vertices which can be properly edge-colored with no rainbow copy of H.
Another natural variation is the generalized Turdn number ex(n, F, H), which is the maximum number of copies of a graph F
in an n-vertex graph that contains no copy of H, and was first studied systematically by Alon and Shikhelman [1]. Both of
these problems have been extensively studied, see for example [12,14] and [1-4,7,8,10,15].

Gerbner, Mészaros, Methuku and Palmer [6] considered the following generalized problem which unites the two concepts
above. Given two graphs F and H, the generalized rainbow Turdn number, denoted by ex(n, F, rainbow-H), is the maximum
number of copies of F in an n-vertex graph which can be properly edge-colored to avoid a rainbow copy of H. Note that
trivially we have ex(n, F, rainbow-H) > ex(n, F, H). The question for F = H has been studied for paths, trees, cycles and
cliques, see [6,9,11].

Recently, B. Janzer [11] determined the order of magnitude of ex(n, Cs, rainbow-C;) for all cases except for s = 3. In the
case s =3, he gave the following bounds.
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Theorem 1.1 (Janzer [11]). Ifk > 2 is odd then ex(n, C3, rainbow-Ca) = Q(n'T1/%), and if k is even then ex(n, C3, rainbow-Co11) =
Q%) Furthermore, for every integer k > 2, we have

ex(n, C3, rainbow-Cy) = O (ex*(n, Cx)),

and

ex(n, C3, rainbow-Cyi) > ex(n, C3, Cy) = Q(ex(n, {C4, Cs, ..., Cok})),

ex(n, C3, rainbow-Cy4 1) > ex(n, C3, Copq1) = Q(ex(n, {C4, Cs, . .., Ci})).

Very recently, O. Janzer [12] settled a well-known conjecture of Keevash, Mubayi, Sudakov and Verstraéte [14], proving
that

ex*(n, Cox) = O(n' 174y, (1)

Together with Theorem 1.1, this yields ex(n, C3, rainbow-Co,) = 0 (n'*1/K), which is tight for k odd.
In this paper, we study the remaining open case for cycles, proving an upper bound on ex(n, C3, rainbow-Cy;1) which
matches the lower bound given by B. Janzer [11] for k even and which is expected to be sharp for k odd as well.

Theorem 1.2. For k > 2, we have

ex(n, C3, rainbow-Cypy1) = O (nl“/") )

In Section 2, we give a self-contained proof of the upper bound on ex(n, C3, rainbow-Cs) which gives an explicit constant,
although it is likely not best possible. In Section 3, we prove Theorem 1.2 by applying (1) to a subgraph in which every
rainbow copy of Cy extends to a rainbow copy of Cyi4q in the original graph. Throughout the paper, we use Py to denote
the path with k edges.

2. No rainbow Cs
Theorem 2.1. We have ex(n, C3, rainbow-Cs) < 32n3/2,

Proof. Let G be an n-vertex graph with a proper edge-coloring ¢ containing no rainbow copy of Cs. First, we will show that
G contains at most 4|E(G)| triangles.

Fix a vertex v € V(G) and let d denote the degree of v. We will count in two ways the pairs (S,e) where S C N(v)
contains [d/27] neighbors of v and e € E(G[S]) satisfies c(e) # c(vu) for every u € S. There are ((d(/jﬂ) ways to choose
the set S. Throw out any edge in G[S] whose color appears on an edge incident with v and S. Let E’ denote the set of
remaining edges in G[S]. Now E’ must be rainbow Pj3-free, otherwise we can find a rainbow copy of Cs in G. Therefore,
since Johnston, Palmer, and Sarkar [13] showed that ex*(n, P3) = %n, we have |E'| < % (%—‘ Thus, the number of triangles
containing v which are formed in this way, that is, the number of pairs of such a set S and an edge from E’ of a different
color, is at most 3 [%-‘ (ch/!ﬂ)'

On the other hand, we could instead first choose an edge e in the neighborhood of v to form our triangle, which can be
done in |[E(G[N(v)])| ways, and then select an additional [d/2] — 2 vertices from N(v) to form the rest of S. However, we
do not want the color of e to appear on an edge incident to v. Since the edge coloring is proper, this only requires us to
throw out at most one vertex from N(v) since at most one edge incident to v can have the same color as e. Thus, we can
pick the remaining vertices of S in at least (mt/jz_ﬁ_ 2) ways. Therefore, we have

E(GIN(W)] 2 <§PW d
|E( (v))|~<[d/21_2)—2 2 '(rdm)'

Thus, |E(G[N(v)])| < 6d, so the number of triangles in G is at most

1 1
3 2 [EGINWDI<5 > 6d(v)=4[EG)].

veV(G) veV(G)

We may assume that every edge of G is in a triangle, otherwise we could delete an edge without decreasing the number
of triangles. Now assume towards a contradiction that |E(G)| > 8n%/2,

One-by-one, delete vertices of degree less than 4./n in G. Note that not all vertices are deleted, since otherwise [E(G)| <
4n3/2, Denote by G’ the remaining induced subgraph with minimum degree §(G’) > 4./n, and let n’ = |V(G')|. Fix an
arbitrary vertex v € V(G').
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Fig. 1. If there is a vertex of degree at least 3 in F, then G contains a rainbow copy of Cs. Edges in F are dashed while edges in G are solid.

A cherry is a path of length 2. We will form an auxiliary graph F with vertex set V(F) = Ng/(v) which contains an edge
uw if and only if there are at least seven cherries of the form uxw in G’. We will show that F must contain a vertex of
degree at least 3 and use this vertex to find a rainbow copy of Cs in G.

Let S C Ng(v) be a set of |4/n] vertices. We will count the cherries in G’ with endpoints in S. Since each vertex x in

V(G") is the center vertex in exactly (dsz(x)) cherries* of this form, we can count the desired cherries as follows:

2:(@uﬁ>ﬂ<%2@u§_ﬂ<%zwwa®)>ﬂ<%ﬁGMﬂ)
2 )~ 2 B 2 - 2

xeV(G)

/ 2 2
| B@YISP? _ 16nISI2 (IS
- 4n’ - A4’ 2

where we use convexity and the fact that §(G") > 4./n. Thus, there must be some pair of vertices in S which are the
endpoints of at least seven cherries in G’, and hence, these vertices are adjacent in F. Since S was an arbitrary set of |/n]
vertices in N¢g/(v) = V (F), we have shown that a(F) < /n, where a(F) denotes the independence number of F. This gives
A(F) > |F|/a(F) —1>4/n//n—1>3, so there is a vertex u in F of degree at least 3. Let x, y, z be neighbors of u in F,
as in Fig. 1. By assumption, the edge uv is in at least one triangle in G, so there is a vertex w € V(G), possibly in {x, y, z},
which forms a triangle with uv.

Let c(vw) =1 and c(uw) = 2. Then since c is a proper coloring, at least one of vx, vy, and vz is colored with a new
color, say c(vx) = 3. Since ux is an edge in F, there are at least seven cherries in G’ with endpoints u and x, and hence,
at least one with new colors 4 and 5 which avoids v and w. Thus, there is a rainbow copy of Cs in G, and we reach a
contradiction. Therefore, G must contain at most 8n3/2 edges, and hence, at most 32n3/? triangles, as desired. MW

3. No rainbow Cyp41

Proof of Theorem 1.2. Let G be an n-vertex graph with a proper edge-coloring f : E(G) — C containing no rainbow copy of
Cok+1- We may assume each edge in G is in at least one triangle.

As in Section 2, we begin by giving a bound on the number of triangles in G in terms of the number of edges in G. Fix a
vertex v € V(G) and let d denote the degree of v. Pick a set S C N(v) containing [d/2] neighbors of v, and throw out any
edge in G[S] which is colored using some color which appears on an edge from v to S.

Then G[S] cannot contain a rainbow copy of Py,_q. A result of Ergemlidze, Gyori, and Methuku [5] showed that

ex*(n, Pyy1) < (97" + 2) n. Therefore, we obtain

EGishi<ex (| 2], p L 18k-4 1d
— 2 ’ 2k—1 — 7 2 .

By counting the triangles containing v and two adjacent vertices in S in two ways, we get

E(GIN(v)] )=t d

Thus, |E(GIN()])| < 727184, and the number of triangles in G is at most

1 72k — 16 144k — 32
3 2 [EGINWDI < ~—— 3 dv)=————IE@©)|
veV(G) veV(G)

* ds)=INc(®)NS|.
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We will show that |E(G)| = O (n'+1/¥).

Assume towards a contradiction that G has more edges. For each edge uv € E(G), arbitrarily fix a vertex w = w(uv)
such that u, v, and w form a triangle in G. We will find a subgraph of G in which any rainbow copy of Cy; can be extended
to a rainbow copy of Cy41 in G. To this end, randomly select a partition of V(G) into parts A of size L%J and B of size

[51. Similarly, take a random partition of C into parts X and Y of sizes L@J and [@1, respectively.

Let F be the subgraph with vertex set B which contains an edge uv € E(G[B]) if and only if the vertex w = w(uv) is
in A and f(uv) € X while f(uw), f(vw) € Y. Then the expected number of edges in F is least |E(G)|/64, so we can fix
partitions (A, B) and (X, Y) such that the corresponding graph F has at least this many edges.

Note that F inherits the proper edge-coloring f from G, so we can apply (1) to this subgraph. Since ex*(n, Cy) =
0 (n'*+1/%), there must be a rainbow copy of Cy in F. This cycle contains only vertices in B, so we can replace an arbitrary
edge uv in the cycle by a pair of edges uw and wv with w € A to create a copy of Cyk4q in G. Furthermore, the cycle in
F is colored only with colors from X, while the new edges have colors from Y, so we have found a rainbow copy of Cojy1.
But this is a contradiction, since G contains no rainbow copies of Cy,y1. Thus, |E(G)| = 0 (n'*+1/%), which implies that the
number of triangles in G is O (n't1/%), as desired. W
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