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Abstract—Hardware/Software (HW/SW) co-design exploits the
synergy between software and hardware to fulfill system design
constraints. System designers have utilized diverse optimization
algorithms to set boundaries between software and hardware.
Discrete Particle Swarm Optimization (DPSO) and Genetic Al-
gorithm (GA) are efficient meta-heuristic algorithms for HW/SW
partitioning. However, these algorithms might suffer from pre-
mature convergence. Moreover, the accuracy and the speed of
convergence of PSO depend on control parameters, which might
vary among different applications. In this work, we extended
DPSO and GA with distributed greedy local search mechanisms
that improve the performance of DPSO and GA. We also tuned
the acceleration parameters of DPSO using a neural network. We
partitioned real-world applications implemented using OpenCL
nd Intel’s Hardware Research Acceleration Program (HARP)
infrastructure. The results show that DPSO with tuned param-
eters improves the accuracy of DPSO by up to 62.8%, and its
execution time by up to 29%. On the other hand, local search-
based DPSO improves the accuracy of DPSO by up to 55.4%,
and the local search-based GA improves the accuracy of GA by
up to 82.6%. However, the local search-based technique increases
the execution time of the algorithm.

Index Terms—HW/SW partitioning, particle swarm optimiza-
tion, genetic algorithm, machine learning, CPU-FPGA platforms.

I. INTRODUCTION

Hardware/Software (HW/SW) co-design exploits the syn-
ergy between software and hardware, Field Programmable
Gate Array (FPGA), to fulfill system design requirements and
constraints. These requirements include execution time, FPGA
utilization, and energy consumption. HW/SW partitioning is
a crucial stage in HW/SW co-design. HW/SW partitioning
is dividing an application into SW components and HW
components. The HW components are implemented on the
FPGA while the SW components are executed on the FPGA.

HW/SW partitioning is an optimization problem that aims
at achieving a predefined objective function subject to a set
of constraints. It could be formulated as a Single Objective
Optimization (SOO) or Multi-Objective Optimization (MOO)
problem. Many research studies carried out the partitioning
process manually. However, the majority of research stud-
ies have used algorithms to perform the partitioning. These

algorithms are mainly divided into three categories: exact,
meta-heuristic, and hybrid algorithms. Exact algorithms fully
explore the design space and find the optimal solutions.
However, they are cumbersome and slow when used in a
large/complex design space [1]. On the other hand, meta-
heuristic algorithms balance the exploration and exploitation
of design space to find sub-optimal solution(s). Hence, meta-
heuristic algorithms are faster than exact algorithms [1]. In
hybrid algorithms, a combination of two or more algorithms
are used [2].

Due to the deployment of FPGAs in cloud data centers (e.g
Figure 1), HW/SW co-design is used to meet the requirements
not only for Embedded Systems (ESs) but also for cloud
and High Performance Computing (HPC) applications [3].
Examples of cloud and data center systems that integrate
FPGAs are Amazon EC2 [4], Intel’s Hardware Research
Acceleration Program [5] and Microsoft Catapult [6]. These
emerging hybrid architectures along with high-level synthesis
tools allow for a variety of HPC and cloud applications to be
accelerated and benefit from the heterogeneous mix of CPUs
and FPGAs, targeting increased performance and systems
utilization.

HW/SW partitioning is an NP-hard problem by nature.
Emerging HPC and cloud applications are larger and often

Fig. 1. Emerging CPU-FPGA hybrid architecture in a cloud data center.



process a large set of data, which increase the search space
and make the problem more complex compared to the tra-
ditional ESs design space. As such, an agile and efficient
partitioning algorithm is crucial to improve the overall system
performance. Genetic Algorithm (GA) [7] and Particle Swarm
Optimization (PSO) [8] are efficient population-based stochas-
tic optimization algorithms. Discrete binary PSO (DPSO)
was introduced to solve binary problems such as HW/SW
partitioning [9]. GA and DPSO has been proposed and used for
different HW/SW partitioning studies [10]–[12]. However, in a
large, complex search-space these algorithms might be trapped
in a local optima and suffer from premature convergence [1],
[13], [14]. In addition, DPSO speed and solution cost depend
mainly on its parameters, such as inertia value, cognitive
parameter, and social parameter. Existing HW/SW partitioning
studies that used the DPSO algorithm, used generally accepted
values for these parameters.

In this paper, we extended GA and DPSO using distributed
greedy local search mechanisms to mitigate the premature
convergence of the algorithms. Moreover, we investigated the
effect of DPSO parameters on its speed and solution cost
and tuned the DPSO parameters using machine learning. The
contributions of this paper are as follows:

• Partitioned real-world OpenCL applications such as k −
means clustering algorithm, Canny edge detection al-
gorithm, and Advanced Encryption Standard (AES) al-
gorithm on one of the state-of-the-art CPU-FPGA archi-
tectures, Intel HARP v2.

• Developed a cost function that combines execution time,
energy consumption and FPGA resource utilization and
measured it for each .

– Measured the execution time of applications on an
Intel HARP v2 node for both CPU and FPGA.

– Estimated the energy consumption of applications
considering published power consumption of differ-
ent FPGA structures, and technology scaling.

• Mitigated the problem of premature convergence of the
GA and the DPSO algorithms using distributed greedy
local search mechanisms.

• Tuned the parameters of DPSO using Artificial Neural
Network (ANN).

This paper is organized as follows: Section II presents
the related work. Section III discusses the PSO and the GA
algorithms, and the HW/SW partitioning problem. Section IV
describes our methodology and experimental setup. Section
V discusses the DPSO algorithm variations. The results are
presented and discussed in section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

HW/SW partitioning techniques are classified mainly into
two main categories: manual and automatic. In manual parti-
tioning, programmers partitions the source code into SW and
HW components [15]. They depend on their understanding of
the application’s source code and the system’s architecture.

As such, manual partitioning is slow and can result in unopti-
mized partitioning, depending on the size of applications and
experience of programmers/engineers. Automated partitioning
techniques, which utilize optimization algorithms to partition
an application into SW and HW components, is desired,
especially with the increasing size of applications today.

There are three main categories of automatic partitioning
algorithms: exact, meta-heuristic, and hybrid algorithms. Us-
ing exact algorithms, an application is normally represented
as a graph or a Finite State Machine (FSM). Then, an exact
algorithm partitions the graph in a way that minimizes a
linear objective function [16]. The objective function could
be performance or energy consumption. This model results
in an optimal solution; however, it’s predominant drawback
is time complexity when exploring a complex design space.
This leaves the exact algorithms inefficient when exploring
large design spaces [17].

Meta-heuristic (MH) algorithms, on the other hand, explore
the search space intelligently to find sub-optimal solutions. As
these algorithms do not exhaustively explore the search space,
they offer no guarantees of finding the optimum solution. They
are faster than the exact algorithms and can find an approx-
imate solution in a reasonable time. In hybrid algorithms, a
combination of exact/MH or MH/MH algorithms is used to
achieve an efficient partitioning in a reasonable time [10].

There exist many different optimization algorithms and
works for the HW/SW partitioning problem. As such, it is
almost impossible to compare and contrast all of them. In
this work, we focus on GA and DPSO algorithms and their
variations as they have been used for different partitioning
problems [2], [11], [12]. Table I summarizes various combina-
tions of DPSO and GA with other exact and MH algorithms.
It also shows the efficiency of our variations of the DPSO,
which are LPSO and APSO, over the original algorithm in
terms of the quality of the resultant partitioning solutions and
the algorithm execution time.

Furthermore, our study handled real application graphs
as compared to existing work that considered random
graphs [16], [18]. Finally, the majority of research studies
focused on optimizing a single objective function, for instance,
reducing the execution time [19], boosting throughput [20],
reducing the energy consumption [21], and decreasing HW
area [22], while some studies considered two objectives [18],
[23]. Our work targets optimizing performance, power con-
sumption, and FPGA area by calculating a cost function.

III. BACKGROUND: PSO AND GA IN THE CONTEXT OF
HW/SW PARTITIONING

In this section, we discuss the DPSO and GA algorithms
in the context of HW/SW partitioning. We also formulate
the HW/SW partitioning problem as a single-optimization
function that combines different objectives (weighted sum of
different metrics) in one cost function.

A. Particle Swarm Optimization Algorithm
Particle swarm optimization is a stochastic optimization

technique developed by Kennedy and Eberhart [8]. They later



TABLE I
PSO AND GA IN HYBRID HW/SW PARTITIONING ALGORITHMS

Hybrid Par-
titioning ap-
proach

Publication Contribution

GA & PSO [2] Generates a better quality solution com-
pared to PSO and faster than GA. Slow
exploration of design space compared to
PSO.

FCM & PSO [10] Generates better partitioning solution in a
shorter time compared to PSO and FCM.
Applicable to both binary and extended par-
titioning but there is No consideration for
communication cost between HW and SW.

TS & PSO [2] Combines the parallel nature of PSO with
the memory feature of TS to reduce the PSO
run-time for large graphs.

BB & PSO [24] Exploits the efficiency of PSO to speed up
the partitioning process, BB generates more
accurate partitioning decision compared to
the proposed algorithm.

FEO & PSO [25] The authors a conformist PSO (CPSO) to
avoid trapping in a local minimum and
enhance search diversity. In order to im-
prove the quality of the CPSO output, they
combined the CPSO with fireworks explo-
sion operations( FEO) which stimulates the
swarm to traverse disparate regions looking
for an optimal solution.

GA & TS [26] the authors used the TA as a local search
technique with GA. This combination of
TS and GA is one variation of Memetic
Algorithm (MA). They demonstrate the ro-
bustness of the algorithm and its ability
to generate a better quality solution as the
expense of the execution time.

APSO our
approach

The operational parameters of the PSO are
artificially tuned to improve the convergence
speed and the quality of the partitioning
solution.

LPSO our
approach

greedy search technique is used to miti-
gate trapping into local optimum. The fur-
ther searching extension improves the accu-
racy/quality of the partitioning decision.

modified it to work with discrete binary problems [9], called
PSO for the rest of the paper. The algorithm mimics the social
behavior of animal herds and bird flocks in search for food.
In order to search the space effectively, each particle has two
attributes; the particle position Xi and velocity Vi.

Each particle uses equation 1 to update its velocity and
equation 2 to update its position. Table II defines the parame-
ters used in equations 1, and 2, where k indicates the number
of iterations.

V i
k+1 = WkV

i
k + c1r1(P

i
k −Xi

k) + c2r2(P
g
k −Xi

k) (1)

Xi
k+1 = Xi

k + V i
k+1 (2)

The acceleration parameters of PSO, which include c1,
c2, and w, play a significant role in balancing exploration
and exploitation of the design space. Hence, these parameters
significantly impact the convergence speed and accuracy of
PSO [27], [28]. Moreover, these parameters might vary from
one application to another. However, research studies that
utilized PSO have used rule-thumbed (or generally accepted)

TABLE II
PSO PARAMETERS’ DEFINITION

Parameter Definition
c1 cognitive parameter (self confidence constant)
c2 social parameter (swarm confidence constant)

r1,r2 perturbation factors
Wk inertia weight
Xk

i particle position
Vk particle velocity
Pi
k particle best known position

Pg
k swarm best known position

acceleration parameters. For instance, existing HW/SW parti-
tioning work have chosen constant values in the range [0.4 -
0.9] for w [27], and in the range [0 - 2] for c1 and c2 [11],
[25], [28]–[30]. The constant parameters were chosen based
on accepted values used in the literature and not optimized for
the HW/SW partitioning problem.

B. HW/SW Partitioning Problem Formulation

Mathematically, the HW/SW partitioning problem could be
formulated as a single objective function or a combination
of single-objective functions. The mathematical formulation
depends on the system’s ultimate objective and describes the
output of the system. It could be either a minimization or a
maximization problem. In SOO, as the name suggests, there
is one goal to optimize. However, in MOO, the objective
function has more than a single objective to optimize. Adding
more objectives increases the complexity of the optimization
problem. In addition, these objectives can be conflicting, so a
trade-off often has to be made. The following shows different
objective functions starting from a constrained single objective
function to multi-objective formulation.

min
x

F (x) = w1f1(x) + w2f2(x), ....+ wMfM (x)

s.t. fi(x) ≤ bi∀i ∈ M
(3)

Each of these single objective functions (f1(x) to fM (x))
represents one cost criterion which is execution time , energy
consumption, or resource utilization (HW area). w1, w2, etc
represent the weights of the each optimization objective and
bi represents a constraints on the objective, if applicable.

IV. METHODOLOGY

This section describes the different benchmarks we targeted,
the software and hardware tools we used and the methodology
that we followed for this study.

A. CPU-FPGA Hardware

We used Intel’s second generation of the Hardware Research
Acceleration Program and infrastructure (HARP v2) [5]. Each
node in HARP consists of an Intel Broadwell Xeon CPU
(14 cores) that is integrated with Intel Arria 10 GX 1150
FPGA into a multi-chip package. The CPU and the FPGA
are connected through two PCIe Gen3x8 and one Quick Path
Interface (QPI). The traffic between the CPU and the FPGA is
distributed over these channels based on link utilization, using



Fig. 2. HARP Architecture.

a Virtual Channel (VC) streaming unit as shown in Figure 2.
The FPGA fabric consists of the FPGA’s Interface Unit (FIU)
and an Accelerator Functional Unit (AFU).

B. Applications
We modified/developed three Open Computing Language

(OpenCL) applications to partition and run on a HARP v2
node. The applications are chosen to cover different real-world
applications such as machine learning, image processing, and
data security.

• k-means Clustering: This is an unsupervised clustering
algorithm that takes a data set where each data point
consists of N-dimensional observations. The algorithm
divides the data set into K clusters depending on a
certain similarity criterion, such as Euclidean distance.
The algorithm is implemented in OpenCL [31].

• Advanced Encryption Standard (AES): Sharing and vir-
tualization of cloud resources have enabled a tremendous
number of customers to access a vast range of cloud
services. However, this sharing has posed a security
challenge for Cloud Service Providers (CSPs) [32]. AES
is a symmetric block cipher encryption algorithm that is
extensively used in the cloud.

• Canny Edge Detection Algorithm: Visual social media
is exporting billions of images to the cloud daily [33].
Image processing algorithms, which are used to process
these images, are data and compute-intensive. One of
these algorithms is Canny edge detection. In our previ-
ous work, we accelerated Canny through a collaborative
execution between CPU and FPGA [15].

C. Modeling applications and the objective function
Each application is modeled as a control graph. To generate

a graph for each benchmark application, we utilized the LLVM
compiler and toolchain to build the application graphs. We
used the front end of the LLVM Clang to generate an
IR code from the OpenCL code. Then we converted the
IR code into CFG using a LLVM optimizer and analyzer.
To evaluate the cost of each node of a graph, we need to
assign cost parameters. These parameters include the execution
time or latency of the node in SW, the latency in HW, SW

energy consumption, HW energy consumption and HW area.
In this study, we measured/estimated the five parameters that
determine the total cost of each node. We measured the SW
latency SWL and the HW latency HWL on a HARP node in
µseconds. We estimated SW energy consumption SWEn in µ
joules of each node using the Thermal Dissipate Power (TDP)
document of the CPU and the latency. Moreover, we estimated
HW energy consumption HWEn in µ joules by estimating
the energy consumption of the different HW resources of the
FPGA. We reused the measured energy consumption of these
individual HW resources such as Adaptive Logic Modules
(ALMs), Digital Signal Processors (DSPs), and registers from
literature [34], [35]. We scaled the energy to reflect nanometer
technology differences among the literature results (90 nm and
65 nm) to our FPGA (20 nm). To scale the results accurately,
we built a Multi-variate Linear Regression (MLR) model to
predict a proper scaling factor of energy among the different
nanometer technologies. We trained and tested the MLR model
on a data set generated using the Cacti 6.0 simulator. Finally,
we used Intel’s Offline Compiler resources utilization report
that shows the number of Adaptive Logic Modules (ALMs),
DSPs, and registers for FPGA utilization.

For each application, we divided the graph of each appli-
cation into nodes. Each node is a set of Basic Blocks (BBs).
The reason behind this grouping of BBs is to assign each node
with a more accurate measure/estimate of the cost parameters.
When assigning cost at the BB level, most of the cost
parameters’ values are not accurate. For instance, we cannot
accurately measure the latency, or energy consumption at the
level of one BB because it is very small in size, consisting
of few instructions. As such, actual time measurements on the
real hardware were not accurate. We used higher granularity
than one BB by grouping from three to ten BBs, calling each
group a component. Tables III, IV, V show the components of
k-means, Canny, and AES respectively and the cost parameters
of each component. Eventually, we have a control-flow graph
for each application that consists of a set of components and
each component has five cost parameters. We used equation 3
as a cost function that calculates a weighted sum of latency,
energy consumption and FPGA utilization, with weights of 1,
0.6, and 0.3 respectively. The solutions are bounded by the
CPU latency and energy consumption, and FPGA area.

TABLE III
COMPONENTS COST OF K-MEANS ALGORITHM.

Component LSW LHW AHW ESW EHW

C1 2354 100 213600 235400 310
C2 10 3 213600 1000 310
C3 1313939 14154 209328 131393900 250
C4 985455 10615 209328 98545500 270
C5 1642424 17692 222144 164242400 260
C6 656969 7077 170880 65696900 249
C7 1970908 7077 222144 197090800 260

V. DISCUSSION

A. LPSO: PSO-based greedy distributed local search

To mitigate the premature convergence (converging to a
local optimal solution) of the PSO algorithm, we implemented



TABLE IV
COMPONENTS COST OF Canny EDGE DETECTION ALGORITHM.

Component LSW LHW AHW ESW EHW

C1 50 42 170880 500 350
C2 50 42 170880 500 350
C3 258 48 209328 25800 360
C4 250 48 209328 25000 350
C5 311 132 213600 31100 280
C6 311 132 213600 31100 280
C7 187 79 209328 18700 280
C8 437 185 222144 43700 280
C9 400 194 222144 40000 280
C10 714 339 226416 71400 420
C11 135 100 209328 13500 320
C12 135 100 209328 13500 320

TABLE V
COMPONENTS COST OF ADVANCED ENCRYPTION STANDARD ALGORITHM.

Component LSW LHW AHW ESW EHW

C1 6 7 209328 630 300
C2 50 21 128160 525 180
C3 34 14 85440 3400 180
C4 30 11 205056 3000 170
C5 17 6 170880 1700 160
C6 34 20 128160 3400 160
C7 29 13 85440 2900 170
C8 7 9 209328 700 300
C9 6 7 209328 600 300
C10 50 21 128160 5000 180
C11 34 14 85440 3400 180
C12 58 22 128160 5800 170
C13 38 14 85440 3800 160
C14 17 6 205056 1700 160
C15 30 11 209328 3000 170
C16 7 9 209328 700 300

a distributed greedy local search at the end of each iteration
of the PSO algorithm. For each particle in the swarm, we
locally search for a neighboring particle that has a lower cost.
If we find such a particle, we replace the original particle.
Otherwise, we leave the original particle. We apply the local
search around all particles in the swarm and at the end of
each iteration. The modified algorithm either outperforms the
original PSO (in most cases) or gives similar results.

B. Memetic algorithm (MA): GA-based local search

GA also suffers from the premature convergence when
applied to HW/SW partitioning. Hence, we implemented a
greedy local search around each chromosome in the population
at the end of each generation. This search aims at finding
a better quality partitioning solution around each solution in
the population. If the local search finds a better solution,
we replace the original chromosome with the neighboring
chromosome at a lower cost.

C. APSO: Artificially-tuning PSO parameters using machine
learning

Most of the literature used acceptable (fixed) parameter
values for the PSO algorithm. In this work, we use a machine
learning technique to optimize the parameters, increase the
accuracy of the algorithm and reduce its execution time. We

specifically use the Artifical Neural Network (ANN) algorithm
to tune the PSO parameters.

To train the ANN algorithm to tune the PSO acceleration
parameters, we generated a data set from the aforementioned
applications. The data set size is 3200 records for each
application with a total of 9600 records for the three appli-
cations. Each record in the dataset consists of source-level
characteristics of the application, such as the number of for
loops and if statements, Intermediate Level (IR) level charac-
teristics such as the number of BBs, and static and dynamic
characteristics (e.g. the number of branch instructions, the
number of branches mis-predictions and Cycles Per Instruction
(CPI)). In addition, it includes the number of Compute Units
(CUs) that represents the replication of the OpenCL kernel in
hardware.

The cost of the resulting partitioning decision and the PSO
execution time were calculated using a range of possible
acceleration parameters. For instance, we varied the inertia
weight (w) in the range [0 - 4] with a step size of 0.5 and
the acceleration coefficients (c1 & c2) in the range [0 - 10]
with a step size of 0.5. We noticed that different values of
the acceleration parameters and inertia value affect the cost of
PSO solution and its execution time.

The ANN algorithm consists of two hidden layers with
(16 - 32) nodes each. We used 1000 epochs to forward
and backward propagation to adjust the weights. Adaptive
Moment Estimation (Adam) optimizer is used, among all other
optimizers, since it combines good features of other optimizers
such as of Adadelta and RMSprop. We used cross validation
and evaluated the ANN algorithm using Root Mean Squared
Error (RMSE) as a loss function.

VI. RESULTS

This section presents and discusses the results of the differ-
ent partitioning algorithms: GA, MA, PSO, APSO, and LPSO
in terms of the partitioning cost and the partitioning latency.
The experiments were conducted using different numbers of
iterations (10, 30, 60) and for ten different sizes of the
population (10-100) with a step of 10. Because the aforemen-
tioned optimization algorithms depend on randomly generated
seed variables and population, we ran each experiment 10
times and recorded the average to observe the accuracy of
these algorithms. For each pair of an iteration number and
a population size, 10 different randomized populations were
generated and then used to run the different optimization
algorithms. The experimental parameters of GA and DPSO
are shown in Table VI.

Figures 3, 4, 5 shows the partitioning cost using the different
optimization algorithms, GA, MA, discrete PSO, APSO and
LPSO. Figure 3 shows the partitioning cost of the k-means
benchmark using different sizes of the population and 10, 30,
60 iterations. As shown, APSO results in an average percent
reduction in the cost of 4.2% and up to 10%. This is because
the APSO parameters are optimized for this benchmark in a
way that guides the swarm to find a more accurate solution.
LPSO also outperforms PSO as it conducts a more extensive



Fig. 3. Partitioning cost of GA, MA, PSO, APSO and LPSO using 10, 30, and 60 iterations and different sizes of population for k-means algorithm.

TABLE VI
PSO AND GA EXPERIMENTAL PARAMETERS.

Parameter Value
PSO

Population size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Particle size 7, 12, 16

Ma. no. of iterations 10, 30, 60
Cognitive value 2

Social value 2
Inertia weight 1 - 0.3

GA
Population size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Chromosome dimensions 7, 12, 16
Max. no. of iterations 10, 30, 60

Mating pool size 3, 6, 8
Cross over rate 0.5

Mutation single point

greedy search than PSO in the neighborhood of the leading
particles in the swarm. It results in up to 11.4% reduction in
the cost and an average of 5.9% cost reduction. The average
here is taken for all iterations/population sizes.

On the other hand, MA improves the fitness of the solution
compared to GA by up to 82.6% and 63.6% on average. This
is due to the ability of MA to improve the divergence of the
population and replace some solutions in the population with
lower cost solutions. The GA algorithm results in a lower
partitioning cost when the size of the population is ten. For
the same number of iterations, increasing the size of GA
population affect the quality of the solution negatively. The
reason is a larger population needs more iterations to reach a
better solution.

Figure 4 shows the partitioning cost of the Canny bench-
mark using different sizes of the population and 10, 30, 60
iterations. APSO reduces the cost by 30.4% on average and
up to 62.8%. LPSO also outperforms PSO by up to 55.4% and

an average of 25.4% cost reduction. The average cost of APSO
and LPSO is comparable. On the other hand, MA reduces the
cost of the solution by up to 26.3% and an average of 18.7%
compared to GA.

Figure 5 shows the partitioning cost of the AES using differ-
ent sizes of the population and iterations. APSO outperforms
PSO with up to 17.5% and an average of 4.4% cost reduction.
LPSO also reduces the cost over PSO by up to 23.4% and
an average of 5.1%. However, these algorithms give the same
level of cost when the population size is larger than 60. On the
other hand, MA improves the solution cost compared to GA
with up to 40% and an average of 33% reduction of the cost,
and gives better results for all different sizes of the population.

The number of iterations and the population size that results
in the lowest cost vary from one optimization algorithm
to another. It also varies based on the graph size of the
application. Our results show that the best iteration/populations
for APSO is 10/50 and 10/80 for LPSO. LPSO requires a
larger population than the PSO as LPSO performs an extensive
local search around the swarm best solution, which requires
more particles to perform the search. The best number of
iterations for MA is 20 with a population between 90 and 100,
while the GA algorithm favors an iteration number of 30 with
a low population of 10 considering our three applications. This
is because MA performs an extensive local search compared
to GA, and that requires more individuals.

To verify the accuracy of one of our partitioning estimated
cost and execution time with the actual measurements on
hardware, we implemented two solutions on a HARP node
and measured the actual execution time. The results show an
overhead in the execution time of 3% and 2.9% for the two
experiments for Canny, which is due to communication.

Finally, we measured the execution time of the optimization
algorithms. The APSO algorithm has the lowest execution time
among all other optimization algorithms for all different num-



Fig. 4. Partitioning cost of GA, MA, PSO, APSO and LPSO using 10, 30, and 60 iterations and different sizes of population for Canny algorithm.

Fig. 5. Partitioning cost of GA, MA, PSO, APSO and LPSO using 10, 30, and 60 iterations and different sizes of population for AES algorithm.

bers of iterations and population sizes. This is because APSO
has intelligently-tuned the acceleration parameters. APSO is
faster than PSO by up to 29%. On the other hand, PSO
has lower execution time than GA, MA, and LPSO. This
is due to the slow genetic operators that are used in GA
and MA and the local search extensions used in MA and
LPSO. We also found that increasing both the population size
and the number of iterations increase the execution time of
the partitioning algorithms as both require more computation
and communication among the population’s individuals during
each iteration.

VII. CONCLUSION

HW/SW co-design has been used to fulfil system design
requirements and achieve its constraints. The growing com-

plexity of the design space and the emergence of FPGA
in high-performance and cloud computing systems have de-
manded more efficient partitioning solutions. In this work, we
considered real-world application implemented using OpenCL,
including K-means, Canny edge detector, and AES algorithms.
We partitioned the applicatios into components, and we used
the Intel’s HARP-v2 infrastructure to measure/estimate the
execution time, energy consumption and FPGA utilization of
each component, and to validate our results.

In addition, we used a cost function that combines different
objectives such as the execution time, the HW area, and the
energy consumption. We targeted PSO and GA population-
based optimization algorithms, which have demonstrated their
efficiency in HW/SW partitioning. However, these algorithms



suffer from premature convergence. Also, the speed of con-
vergence and solution cost of PSO depend on its acceleration
parameters. Most researcher use PSO with rule-thumbed pa-
rameters. These parameters might need to be changed from
one problem to another to produce better solutions. In this
study, we tuned these parameters using a neural network
algorithm that produces a PSO variation that is more accurate
than PSO by up to 62.8% and faster by up to 29%. Moreover,
we extended the PSO and the GA algorithms with a distributed
greedy local search mechanisms that mitigate the premature
convergence. The local-search-based PSO improves the accu-
racy of PSO by up to 55.4% at the expense of the execution
time. A GA-based local search technique (MA) was proved to
improve the accuracy of MA by up to 82.6% at the expense
of the execution time.
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