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1. Introduction

Over recent years there has been interest in extending classical graph theory results
to the setting of vertex ordered graphs. A (vertex) ordered graph or labelled graph H on h
vertices is a graph whose vertices have been labelled with [h] := {1,...,h}. An ordered
graph G with vertex set [n] contains an ordered graph H on [h] if (i) there is a mapping
¢ : [h] — [n] such that ¢(i) < ¢(j) for all 1 < i < j < h and (ii) ¢(7)o(j) is an edge in
G whenever ij is an edge in H.

A foundation stone in extremal graph theory is Turan’s theorem which determines
the number of edges in the densest K,.-free graph on n vertices. Furthermore, for every
graph H, the Erdds—Stone-Simonovits theorem [7,8] determines, up to a small error
term, the number of edges in the densest H-free n-vertex graph. It is natural to seek
Turan-type results in the setting of ordered graphs. Indeed, this question was first raised
by Fiiredi and Hajnal [10], and there are now many results in the area; see Tardos [28]
for a survey of such results (and the related problem of Turdn-type results for edge
ordered graphs). In particular, Pach and Tardos [25] proved an analogue of the Erdés—
Stone—Simonovits theorem in the setting of ordered graphs. In their result they show
that the so-called interval chromatic number governs the threshold (for graphs H of
interval chromatic number at least 3), rather than the chromatic number (as is the case
in the unordered setting). There are several Turdn-type results for ordered graphs of
interval chromatic number 2; see e.g. [12,13,20,24,25,28], as well as Turdn-type results
for ordered hypergraphs, see [11].

There have also been a number of recent results concerning Ramsey theory for ordered
graphs, for example see the work of Balko, Cibulka, Kril and Kyn¢l [2] and of Conlon,
Fox, Lee and Sudakov [5].

In this paper we initiate the study of embedding spanning structures in ordered graphs.
In particular, we study the minimum degree required to ensure an ordered graph has
a perfect H-tiling. In both the ordered and unordered settings, an H-tiling in a graph
G is a collection of vertex-disjoint copies of H contained in G. An H-tiling is perfect if
it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors,
perfect H-packings or perfect H-matchings. H-tilings can be viewed as generalisations
of both the notion of a matching (which corresponds to the case when H is a sin-
gle edge) and the Turédn problem (i.e. a copy of H in G is simply an H-tiling of size
one).

A central result in the area is the Hajnal-Szemerédi theorem [14] from 1970, which
characterises the minimum degree that ensures a graph contains a perfect K, -tiling.

Theorem 1.1 (Hajnal and Szemerédi [1/]). Every graph G whose order n is divisible by
r and whose minimum degree satisfies 6(G) > (1 — 1/r)n contains a perfect K, -tiling.
Moreover, there are n-vertex graphs G with 6(G) = (1 —1/r)n — 1 that do not contain a
perfect K,-tiling.



J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171-201 173

There has also been significant interest in the minimum degree threshold that ensures a
perfect H-tiling for an arbitrary graph H. After earlier work on this topic (see e.g. [1,18]),
Kiithn and Osthus [21,22] determined, up to an additive constant, the minimum degree
that forces a perfect H-tiling for any fixed graph H. In particular, they showed that,
depending on H, the minimum degree threshold is governed by either the chromatic
number x(H) of H or the so-called critical chromatic number of H.

Definition 1.2 (Critical chromatic number). The critical chromatic number X..(F) of an
unordered graph F' is defined as

|F|

Xer(F) = (x(F) — 1)m7

where o(F) denotes the size of the smallest possible colour class in any x(F')-colouring
of F.

Theorem 1.3 (Kihn and Osthus [22]). Let 6(H,n) denote the smallest integer k such that
every graph G whose order n is divisible by |H| and with 6(G) > k contains a perfect
H-tiling. For every unordered graph H,

5(H,n) = <1 - ﬁ) n+0(1),
where x*(H) := xer(H) if hef(H) =1 and x*(H) := x(H) otherwise.

The definition of hef(H) = 1 is somewhat involved; see [22, Section 1.2] for the defini-
tion and several illuminating examples. The moral behind the dichotomy in Theorem 1.3,
however, is rather straightforward to articulate. Indeed, it arises as there are two types of
extremal construction for this problem: so-called space barriers (which ‘dominate’ when
X*(H) = Xer(H)) and divisibility barriers (which ‘dominate’ when x*(H) = x(H)).

In this paper we show that the corresponding problem for ordered graphs has a rich
behaviour. Indeed, our main result resolves the problem for all ordered graphs H of
interval chromatic number 2. Even in this restricted case the nature of the minimum
degree threshold is diverse, with a range of extremal examples coming into play, including
a construction which is neither a divisibility nor space barrier. Whilst we do not resolve
the problem for all ordered graphs H, in Section 4 we introduce a framework that can be
used to attack the problem in general. Moreover, another contribution of the paper is the
approaches we develop. Indeed, as we will discuss in Section 3 we develop an approach to
applying Szemerédi’s regularity lemma [27] and a (local-global) philosophy for absorbing,
both of which we believe are applicable to other embedding problems for ordered graphs.
In particular, a key property of the regularity method — which is regularly used to help
embed (spanning) subgraphs in the unordered setting — breaks down for ordered graphs;
we introduce an approach to overcome this.
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1.1. Our results

Denote by d(H,n) the smallest integer k such that every ordered graph G whose
order n is divisible by |H| and with 6(G) > k contains a perfect H-tiling. The goal of
this paper is to study 6 (H,n); for this we will need a few definitions. In particular,
while the chromatic number is a relevant parameter in the study of perfect H-tilings in
graphs, the interval chromatic number plays a role in the study of perfect H-tilings in
ordered graphs.

Definition 1.4 (Interval chromatic number). The interval chromatic number x(H) of
an ordered graph H is the minimum number of intervals the vertex set [h] of H can be
partitioned into, so that no two vertices belonging to the same interval are adjacent in
H.

As well as y<(H), another parameter o*(H) plays a role in the study of perfect H-
tilings for ordered graphs with x<(H) = 2. To introduce «*(H) we need the following
definitions.

Let ag (H) := 0. For every 1 </ < x(H), we let

af (H) := the largest k € N such that [ ;(H) + 1, k] is an independent set in H.
(1)
By the definition of interval chromatic number, we always have a;( H)(H ) = h and

therefore UX<(H [of [(H)+1, of (H)] is a natural partition of [h] into intervals, each
spanning an independent set. We also define such parameters in the reverse order. Let
ag (H) :=h+1. For every 1 < /¢ < x(H), we let

a, (H) := the smallest k € N such that [k, «, ,(H) — 1] is an independent set in H.

Similarly, we have oo _ ) (H) = 1 and therefore UX<( la, (H), o, ;(H) —1] is a
natural partition of [h]. We then define

o*(H):= min
1<l<x<(H

~

+ —_
. [a;(H) h—a,(H)+1
. 2
— { 0 h 0 h (
When the underlying graph is clear, we simply write 042’, a, and o*.

The following proposition shows that for any ordered graph H, the parameter o*(H)
provides a lower bound for . (H,n).

Proposition 1.5. Let H be an ordered graph on h wvertices. For every n € N with h|n,
there is an m-vertex ordered graph G with 6(G) > |(1 —o*(H))n| — 1 that does not
contain a perfect H-tiling.



J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171-201 175

The main goal of this paper is to determine the asymptotics of 6 (H, n) for graphs H
with interval chromatic number 2. It turns out the value of §-(H,n) in this case depends
on structural properties of H encapsulated by the following three definitions.

Definition 1.6 (Property A). An ordered graph H on h vertices is said to have Property A
if H has no edges in the intervals [1, |h/2] 4+ 1] and [[h/2], h].

Note that an ordered graph H has Property A if and only if o*(H) > 1/2.

Definition 1.7 (Property B). An ordered graph H on h vertices is said to have Property B
if for all partitions of [h] into two non-empty intervals [1,] and [i+ 1, h], there is an edge
between these two intervals.

Let H be an ordered graph on h vertices. If h is not isolated then let s(H) be the
smallest vertex in H that is adjacent to h. Similarly, if 1 is not isolated then let I[(H) be
the largest vertex in H that is adjacent to 1.

Definition 1.8 (Property C). For an ordered graph H on h vertices, the vertex h is said to
have Property C if h is not isolated, and there exists an edge in the interval [s(H), h—1].
Similarly, the vertex 1 is said to have Property C if 1 is not isolated and there exists an
edge in the interval [2,(H)].

Our main theorem shows that for any ordered graph H with interval chromatic number
2, either its interval chromatic number x (H) or the new graph parameter o*(H) governs
the minimum degree threshold that forces the existence of a perfect H-tiling in ordered
graphs of large minimum degree.

Theorem 1.9. Let H be an ordered graph on h vertices with x<(H) = 2.
(i) Suppose that H does not have Property A. Then
0<(H,n)=(1—-a"(H)+o(1))n.

(ii) Suppose that H has both Property A and Property B. Then

S<(H,n) = <1 - + 0(1)) n = (1/2+ o(1))n.

b
X<(H)

(iii) Suppose that H has Property A but not Property B, and one of the vertices 1, h has
Property C. Then

1
X<(H)

d-(H,n)= (1— +0(1))n: (1/2 + o(1))n.
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(iv) Suppose that H has Property A but not Property B, and neither of the vertices 1,h
has Property C. Then

d<(H,n)=(1—-a"(H)+o(1))n.

In all cases of Theorem 1.9, except Case (iv), the minimum degree threshold is at
least (1/2 4+ o(1))n. Furthermore, although the degree threshold for graphs in Cases (ii)
and (iii) are the same, they have different types of extremal examples at work. Shortly
in Section 2, we will show that there are three types of extremal examples. Indeed, space
barriers yield Proposition 1.5 and therefore give the lower bound in Cases (i) and (iv),
divisibility barriers provide the lower bound for Case (ii) and local barriers provide the
lower bound in Case (iii) — while we recall that for unordered graphs there are only space
and divisibility barriers (see [22]).

1.2. Notation

Given integers n > m > 1, let [m,n] := {m,...,n} and [n] := {1,...,n}. For two
subsets X, Y of [n], we write X <Y ifz <y forallz € X and y € Y. When X consists
of a single element x, we simply write ¢ < Y.

A vertex is isolated if it has no neighbours. An empty graph on n vertices consists of
n isolated vertices with no edges. The empty graph on 0 vertices is called the null graph.
For an ordered graph G and a linearly ordered set A C V(G), the induced subgraph G[A4]
is the subgraph of G whose vertex set is A and whose edge set consists of all of the edges
of G with both endpoints in A. We define G\ X := G[V(G)\ X]. For two disjoint subsets
A, B C V(G), the induced bipartite subgraph G[A, B] is the subgraph of G whose vertex
set is AU B and whose edge set consists of all of the edges of G with one endpoint in A
and the other endpoint in B. For convenience, we also write G[A, A] := G[A].

Given an (ordered) graph G, a vertex x € V(G) and a set X C V(G), we define
dg(x, X) to be the number of neighbours that = has in X.

For two ordered graphs G; and G2 with disjoint vertex sets, the join graph, denoted
by G1 % G3, is the ordered graph obtained from G; and G5 by adding all edges between
V(G1) and V(G3), and where the vertices are ordered so that V(G1) < V(G2) and both
V(G1) and V(G2) preserve their orders from G and G respectively. Given an unordered
graph G and a positive integer ¢, let G(t) be the graph obtained from G by replacing
every vertex x € V(G) by a set V,, of ¢ vertices spanning an independent set, and joining
u € V, to v € V,, precisely when zy is an edge in G. That is we replace the edges of G
by copies of Ky ;. We will refer to G(t) as a blown-up copy of G.

Throughout the paper, we omit all floor and ceiling signs whenever these are not
crucial. The constants in the hierarchies used to state our results are chosen from right
to left. For example, if we claim that a result holds whenever 0 < a < b < ¢ < 1, then
there are non-decreasing functions f : (0,1] — (0,1] and ¢ : (0,1] — (0, 1] such that the
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result holds for all 0 < a,b,¢ < 1 with b < f(c) and a < g(b). Note that a < b implies
that we may assume in the proof that, for example, a < b or a < b2.

1.3. Organisation of paper

In the next section we describe the extremal examples which show that our main
result is best possible. In Section 3 we give a high-level overview of our approach to
the regularity and absorbing methods in the ordered setting. In Section 4, we introduce
a general framework for attacking ordered tiling problems, and show how to use it to
prove Theorem 1.9. In particular, in this section we state a so-called ‘almost perfect
tiling’ theorem (Theorem 4.3) and two absorbing theorems (Theorems 4.1 and 4.6). In
Section 5, we formally state Szemerédi’s regularity lemma and introduce related tools.
We then prove Theorem 4.3 in Section 6, and prove Theorems 4.1 and 4.6 in Section 7.
We close the paper with some concluding remarks in Section 8.

2. Extremal examples
2.1. Space barriers

We begin this section with the proof of Proposition 1.5 which provides a general lower
bound on d.(H,n) for all ordered graphs H.

The following observation will be useful. Suppose that G; and H; are ordered graphs
and G} and Hj are obtained from G; and H; respectively by reversing the ordering on
V(G1) and V(Hy). Then clearly G contains a perfect H;-tiling if and only if G} contains
a perfect Hi-tiling. Further, o*(H;) = o*(H]) and if o*(Hy) = Hilzag (HOFL ) some

£ Hq|
+ ’
1 <0< x<(Hy), then o (H}) = S,

Proof of Proposition 1.5. By the observation above, without loss of generality we may
assume that o =« /(¢ - h) for some 1 < ¢ < y(H). Therefore to prove the proposition,
it is sufficient to prove that for every 1 < ¢ < x(H), there is an n-vertex graph G with
0(G) > Ml — %) nJ — 1 that does not contain a perfect H-tiling.

For simplicity, we set s := (ozZ -m)/h. Let Ay U Ay U...U Ay be a partition of the
interval [s + 1] such that A; < Ay < ... < Ap and ||A;| — |4;|| <1 for every 1 < 1,5 < £
Define

G =Gy xGox...xGyyq,

where G; is an empty graph defined on A; for every 1 < i < ¢, and Gy41 is a complete

graph defined on [n] — Ule A;. Note that n —s—1> 0 as of < O‘;L(H) = h. Therefore,

G4 is well-defined, and could be a null graph (only when h = n).
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We claim that for every copy of H in G,
V(H)N[s+1]| < af. (3)

If not, then there exists a copy of H in G with the vertices vy < vy < ... < vp such that
Uaft1 € [s+1]. In particular, there exists an integer k; < £ such that Ui 11 € Ap,. By the
maximality of a, the vertex Uat 41 has a neighbour vy in H, where U elaf 41, of].
Since Ag, is an independent set of G, this implies that there exists an integer ky—1 < k¢
such that Vot 41 € Apk,_, - Repeat this process until we reach to A;. Then we obtain an
integer 1 < ¢y < ¢ and a sequence of numbers £ > ky > ko1 > ... > k; > ... >k, =1
such that v,+,, € Ag,. In particular, we have Vaf+1 € A,. By the maximality of O‘Z)
and fo > 1, the vertex vazroﬂ has a neighbour vy, in H, where vy < vy,. However, we
run out of the space for vy as A; is an independent set with the smallest vertices.
Finally, suppose that G has a perfect H-tiling H. Then by (3) we have

VH) N[s+1)| < —af =s<s+]1,

>3

which contradicts the definition of a perfect H-tiling. O

We refer to such examples G as space barriers as, in this case, the obstruction to G
containing a perfect H-tiling is that the vertex class [s + 1] is ‘too big’.

2.2. Divisibility barriers

Proposition 2.1. Let H be an ordered graph on h vertices with x<(H) = 2. Suppose that
H has Property B. Then for every n € N with h|n, there is an n-vertex ordered graph G
with 6(G) > |n/2] — 2 that does not contain a perfect H-tiling.

Proof. Let k be the largest integer such that & < [n/2] and k is not divisible by h. Let
G be the disjoint union of two complete graphs on vertex sets [k] and [k + 1,n]. Note
that & > [n/2] — 1; and the minimum degree of G is min{k —1,n —k -1} > |n/2| — 2.

Suppose that G has a perfect H-tiling. Then there must be at least one copy H' of
H, for which both [k] N V(H') and [k + 1,n] N V(H') are non-empty. However, this is
not possible for H with Property B, as there are no edges between [k] and [k + 1,n] in
G. O

Note we call such graphs G divisibility barriers as the obstruction to containing a
perfect H-tiling is a divisibility issue (in this case, the size of each of the two cliques is
not divisible by h).
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2.8. Local barriers

Proposition 2.2. Let H be an ordered graph on h vertices with x<(H) = 2. Suppose that
one of the vertices 1,h has Property C. Then for every n € N with hin, there is an
n-vertex ordered graph G with 6(G) = [n/2| that does not contain a perfect H-tiling.

Proof. Without loss of generality, we assume that the vertex h has Property C. Recall
that s(H) is the smallest vertex in H that is adjacent to h. Since h has Property C,
there exists an edge ab in H such that

s(Hy<a<b<h-1. (4)

Let G’ := G * G4, where G, G2 are empty graphs on the vertex sets [1, [n/2] — 1]
and [[n/2],n — 1]. Then we construct an ordered graph G from G’ by adding the vertex
n and all edges between n and [[n/2],n — 1].

Suppose that G has a perfect H-tiling. Then there must be a copy of H in G such
that n plays the role of h in it. By the construction of G, the image of s(H) in G lies
in [[n/2],n — 1]. Then by (4), the images of a,b in G must lie in [[n/2],n — 1]. This
contradicts the fact that [[n/2],n — 1] is an independent set. O

We call such graphs G local barriers as the reason G does not contain a perfect H-
tiling is a localized issue (in this case, there is a vertex that does not lie in a single copy
of H).

3. Applying the regularity and absorbing methods in the ordered setting
3.1. The regularity method

In this subsection we explain our approach to applying the regularity lemma in the
ordered graph setting. Those readers unfamiliar with this result and related concepts
should first read Section 5.

Let Ay,..., A; be large disjoint equal size vertex classes in an (unordered) graph G
so that each pair (A4;, A;) (for distinct 7, j € [k]) is e-regular of density at least d, where
0 < € < d. Such a structure is often found in an application of Szemerédi’s regularity
lemma and provides a framework for embedding subgraphs H with x(H) = k into G.
Indeed, it is well-known that such a structure contains all fized size subgraphs H of
chromatic number at most k (see Lemma 5.7). In fact, for any fixed subgraph H with
x(H) = k, G[A; U --- U Ag] must contain an almost perfect H-tiling. Moreover, the
famous blow-up lemma of Komlds, Sdrkozy and Szemerédi [17] allows one to embed any
almost spanning, bounded degree graph F' with x(F') = k into G[A; U --- U Ag]. These
properties have been used in dozens of applications of the regularity lemma.

Ideally one would like to use such properties in the vertex ordered setting. Similarly
as before, let Ay, ..., A be large disjoint equal size vertex classes in an n-vertex ordered
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graph G so that each pair (A4;, A;) (for distinct 4, j € [k]) is e-regular of density at least
d. Thus now the A;s are subsets of [n]. Let H be a fixed ordered graph with x.(H) = k.
One can find a copy of H in G[A;U- - -UAg]: as demonstrated by Lemma 6.2 in Section 6,
one can find large subclasses S; C A; for all i € [k] and a permutation o of [k] so that
So(1) < So2) < ... < Sy(ky- This allows us then to embed H into G[S1U---US,] where
the ith interval of H is embedded into S, ;).

However, in general it is far from true that G[A4; U- - - U Ag] should contain an almost
perfect H-tiling. To see this consider the case when k = 2 and H is the ordered path 213.
Suppose G[A1, As] is in fact complete bipartite (so certainly e-regular) where A; < As.
Then each copy of H in G[A;, As] must have one vertex in A; (the vertex playing the
role of 1) and two vertices in Ag; so any H-tiling in G[A1, A2 can only cover at most
half of A;.

At first sight this suggests perhaps the regularity method is not suitable for embedding
large structures in ordered graphs. However, in this paper we demonstrate a method for
overcoming this difficulty. Suppose we wish to embed an (almost) perfect H-tiling in
an ordered graph G where x.(H) = r. We obtain large disjoint vertex sets Ay, ..., Ag
in G so that each pair (A;, A;) (for distinct ¢,j € [k]) is e-regular of density at least
d; now (i) k may be significantly bigger than r and (ii) the size of the classes A; may
be far from equal. The class sizes and k are chosen so that however the vertices from
A1 U---UAy are labelled in [n], there is a small H-tiling H in G[A; U---U A] such that
|A; NV (H)|/|A; NV (H)| = |Ai|/|A;j]| for all distinct ¢, j € [k]. As we now explain, with
this property to hand, one can easily find an almost perfect H-tiling in G[4; U---U Ag].
Indeed, delete the vertices from H. Still each pair (A;, A;) is 2e-regular and the ratios of
the classes have been preserved. So we can find a small H-tiling in G[4A; U---U Ay] as
before. Repeating this process allows us to cover almost all the vertices in G[A;U- - -UAg].

The challenge is to choose k not too large (else G will not be dense enough to guarantee
such an e-regular structure G[A; U - --U Ay]) whilst ensuring the chosen ratios |A;|/|A;]
have the ‘ratio preservation’ property described above. This latter point motivates the
notion of a bottlegraph of H introduced in the next section.

3.2. The absorbing method

The so-called absorbing method, pioneered by Ro6dl, Rucinski and Szemerédi (see
e.g. [26]) has proved an immensely powerful technique for embedding problems in graphs
and hypergraphs. In particular, when one wishes to embed a spanning structure F in a
(hyper)graph G, the method can provide a certain ‘absorbing gadget’ Abs in G. With
this gadget to hand, one then seeks to embed only an almost spanning subgraph F’ of F
into G; Abs will then have the power to extend the subgraph F’ into a copy of F in G.
If the structure F' we seek is a perfect H-tiling, then we will say Abs is an H -absorbing
set.

The now standard approach to construct H-absorbing sets for perfect H-tilings in
(hyper)graphs originates from a paper of Lo and Markstrém [23]. Indeed, suppose one
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wishes to find a perfect H-tiling in an n-vertex graph G where h := |H|. In the simplest
case, they show that to construct an H-absorbing set in G it suffices to show that for
every pair z,y € V(G) there are Q(n"~1) vertex classes X C V(G) \ {x, y} of size h — 1
so that both X U {z} and X U {y} span copies of H in G. Call such an (h — 1)-set X
good for x,y.

For many problems this property is relatively easy to establish. For example, in the
(unordered) graph setting, a simple application of the regularity lemma can be used to
establish this property when G is an n-vertex graph with minimum degree more than
(1= 1/x(H) + o(1))n.

However, the analogous statement for ordered graphs is in general far from true. In
particular, there are ordered graphs H and G where §(G) is much greater than (1 —
1/x<(H))n and yet there exist pairs of vertices x,y € V(G) for which no (h — 1)-set is
good for z,y. For example, for any n € N divisible by 3, consider the complete 3-partite
ordered graph G’ on [n — 2] with classes Aj, As, A of sizes n/3 — 1, n/3 — 1 and n/3
respectively, and where A; < Ay < As. Obtain G from G’ by adding vertices n — 1 and
n where n is adjacent to every vertex in A; U Az and n — 1 is adjacent to every vertex in
As U Az. Now choose H to be the ordered graph obtained from the complete bipartite
graph Ko by labelling the elements in the first vertex class 1,2; the elements in the
second class 3,4. Observe that x<(H) = 2. Notice that 6(G) = 2n/3 — 1 and yet there
are no good 3-sets X for n — 1,n. Indeed, this follows because any copy of H containing
nin G\ {n — 1} must use vertices in A; to play the role of 1,2, whilst any copy of H
containing n — 1 in G \ {n} must use vertices in A to play the role of 1, 2.

Despite this difficulty, in Theorem 4.1, we are able to show the existence of an H-
absorbing set in any n-vertex ordered graph G with §(G) > (1 — 1/x<(H) + o(1))n (for
every fixed ordered graph H). The key is that, as made precise by Lo and Markstrém [23],
to obtain an H-absorbing set in G it is also sufficient to prove that for any z,y € V(G)
there are ‘many’ good sets X C V(G) of the same fixed (constant) size so that both
G[X U{x}] and G[X U {y}] contain perfect H-tilings; see Lemma 7.1 below.

The way we construct such good sets X for every z,y € V(G) can be summarized by
the following process — a philosophy to absorbing that we term local-global absorbing.

o Step 1: local absorbing. Prove that for any x € V(G), most y ‘close’ to « (with respect
to the ordering on V(G) = [n]) are such that there are many good (h — 1)-sets for
x,9.

e Step 2: global absorbing. Piece together chains of the ‘local’ good sets found in Step
1 to prove that for any pair z,y € V(G) there are many good sets X of bounded size
for z,y.

Note that our illustrative example above shows in general one cannot hope to replace
the word most in Step 1 with all. On the other hand, the intuition why it is often easier
to find good sets for x,y € V(G) where z and y have labels close together is that such
x and y can often play the role of the same vertex in copies of H. The above two-step
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process is sufficient to prove Theorem 4.1; Step 1 corresponds to Lemma 7.2 and Step 2
to Lemma 7.3.

On the other hand, to prove (a general case of) the other of our absorbing theorems
(Theorem 4.6) we need a variant of this approach.

e Step 1: local absorbing. Prove that given any z,y € V(G) = [n] with both vertices
either not too large (i.e., bounded away from (1 — o(1))n) or not too small (i.e., not
o(n)), there are many good (h — 1)-sets for z,y.

o Step 2: special global absorbing. Prove that given any x € [o(n)] and y € [n—o(n), n],
there are many good (h — 1)-sets for x,y.

o Step 3: global absorbing. Piece together chains of our good sets found in Steps 1 and
2 to prove that for any pair z,y € V(G) there are many good sets X of bounded size
for z,y.

The intuition why in Step 2 it is often easier to find good sets for z,y € V(G) where x
is close to 1 and y is close to n is as follows: in ‘most’ copies of H in G containing z, x
must play the role of 1, whist in ‘most’ copies of H in G containing y, y must play the
role of h.

4. A general framework and the proof of Theorem 1.9
4.1. General framework

In this section we introduce two theorems, which as well as being tools in the proof
of our main result, are applicable to the general perfect H-tiling problem for ordered
graphs.

First, as described in the previous section, we adapt the absorbing method to the
setting of ordered graphs. Let H be an ordered graph. Given an ordered graph G, a
set S C V(G) is an H-absorbing set for @ C V(G), if both G[S] and G[S U Q] contain
perfect H-tilings. In this case we say that Q is H-absorbed by S. Sometimes we will
simply refer to a set S C V(G) as an H-absorbing set if there exists a non-empty set
Q CV(G)\ S that is H-absorbed by S. Roughly speaking, the following result provides
an absorbing set Abs in an ordered graph G of large minimum degree, where crucially
Abs is an H-absorbing set for every not too large set of vertices @ C V(G) \ Abs.

Theorem 4.1 (Absorbing theorem). Let H be an h-vertex ordered graph and let n > 0.
Then there exists an ng € N and 0 < v < 1 so that the following holds. Suppose that G
is an n-vertex ordered graph where n > ny and where

5(G) > (1—ﬁ+n>n.

Then V(G) = [n] contains a set Abs so that
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o |Abs| < wn;
o Abs is an H-absorbing set for every W C V(G) \ Abs such that |W| € hN and
W| < vin.

Theorem 4.1 suffices for our applications in most cases. Indeed, it is immediately
applicable to the perfect H-tiling problem for any ordered graph H where the minimum
degree threshold for ensuring a perfect H-tiling in an ordered graph G is at least (1 —
m +0(1))|G]. In particular, we will use this theorem for Cases (i)—(iii) of Theorem 1.9.
For Case (iv) (and we suspect at least for some special cases of the general perfect H-
tiling problem) we require an absorbing theorem for ordered graphs with much smaller
minimum degree. In this situation, some structural properties of H can help us improve
the absorbing argument; see Theorem 4.6 below.

As indicated above, to apply the absorbing method one requires a sister almost perfect
tiling theorem, which usually states that in a graph with large minimum degree all but
o(n) vertices are covered by some H-tiling. Although the variety of extremal examples
indicates that proving a sharp almost perfect H-tiling theorem for an arbitrary ordered
graph H seems to be very difficult, in this section we propose a general framework for
obtaining such almost perfect tiling theorems.

Let B be a complete k-partite unordered graph with parts Us,...,Ug, and o be a
permutation of the set [k]. An interval labeling of B with respect to o is a bijection
¢ : V(B) — [|B]] such that ¢(U;) < ¢(U;) if (i) < o(j). Given t € N, recall that B(t)
is a blow-up of B with vertex set Uer(B) V., where the Vs are sets of ¢ independent
vertices. Let (B(t), ¢) be the ordered graph obtained from B(t) by equipping V (B(t))
with a vertex ordering, satisfying V, < V,, for every z,y € V(B) with ¢(z) < ¢(y). We
refer to (B(t), ¢) as an ordered blow-up of B.

Definition 4.2 (Bottlegraph). For an ordered graph H, we say that a complete k-partite
unordered graph B is a bottlegraph assigned to H, if for every permutation o of [k] and
every interval labeling ¢ of B with respect to o, there exists a constant t = t(B, H, ¢)
such that the ordered blow-up (B(t), ®) contains a perfect H-tiling.

Theorem 4.3 (Almost perfect tiling framework). Let H be an ordered graph on h vertices.
Suppose that B is a bottlegraph assigned to H. Then for every n > 0, there exists an
nog € N so that every ordered graph G on n > ngy vertices with

I(G) > (lxwl(B)Jrn)n

contains an H-tiling covering all but at most nn vertices.

With Theorem 4.3 at hand, in order to prove that all ordered graphs with a given
minimum degree contain an almost perfect H-tiling, it is sufficient to show that certain
‘interval labelled’” blow-ups of a specific graph B with a given critical chromatic number
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contain perfect H-tilings. The latter statement usually can be verified easily by observa-
tion or by solving a linear optimization problem. Thus, for the general perfect H-tiling
problem, the heart of the problem is to choose an ordered graph B whose critical chro-
matic number is not too big (so that the corresponding minimum degree condition in
Theorem 4.3 is not too high) whilst ensuring B is indeed a bottlegraph assigned to H.
These competing forces mean it is far from immediate what the correct choice of B is
given an arbitrary ordered graph H. However, for a given class of ordered graphs H (as
we will see in the case when x(H) = 2), there might be some intuitive ways to construct
a ‘fairly good’ or even optimal bottlegraph using their structural properties.

The proofs of both Theorems 4.1 and 4.3 rely on Szemerédi’s regularity lemma, which
will be formally introduced in Section 5. We then prove Theorem 4.3 in Section 6, and
Theorem 4.1 in Section 7.

4.2. Graphs with interval chromatic number 2

In this section, we illustrate how to apply our general framework to prove Theorem 1.9.
The following key lemma gives a construction of the bottlegraph for graphs with interval
chromatic number 2.

Lemma 4.4. Let H be an ordered graph on h vertices with x<(H) = 2. Recall that

T h—ay +1
a*(H):min{aTl, %}

Then there exists a bottlegraph B of H such that x..(B) =1/a*(H).

Proof. Let p:=a*h = min{af, h—aj +1}. By the symmetry of the argument, without
loss of generality we can assume that p = af.
We first assume that H does not have Property A. Then by the definition of p, we

have p < |h/2], and
all the edges of H are between the intervals [p] and [p + 1, h]. (5)

Let a,r be the integers such that h = ap+r, where a > 2 and 0 < r < p. Then we define
B to be the complete multipartite graph with classes Uy, Uy, ..., U,, in which |Uy| = r,
and |Uy| = ... = |U,| = p. We will show that B is a bottlegraph assigned to H.

Let ¢ be an interval labeling of B. If » = 0, then by (5), (B, ¢) immediately contains
a copy of H (i.e. (B(1),¢) contains a perfect H-tiling). So assume r # 0. If there exists
i > 1 such that ¢(U;) < ¢(Up), then again (B, ¢) contains a copy of H. Therefore,
without loss of generality, we can assume that ¢(Up) < ¢(Uy) < ... < ¢(Uy).

Let ¢ := lem(p, ), the least common multiple of p and r, and t := ¢/r. Let B’ := B(t)
and U§, U, ..., U, be the partite sets of B’ (where U/ corresponds to U;). For a set
A CV(B') of size h, if [ANU]| =p, forall0 <i<a—1and |[ANU,| = r, we say
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Ais a type I set; if [V(H)NU|l =0, |[V(H)NU]| =p, forall 1 <i < a—1 and
[V(H)NU.| = p+r, we say A is a type II set. Both type I and type II sets induce
some complete multipartite graphs in B’, which contain a copy of H by (5). By the
choice of ¢ and ¢, V(B’) can be partitioned into ¢ = ¢/r disjoint sets, where ¢/p of
them are of type I and ¢/r — ¢/p of them are of type II; thus this ensures a perfect
H-tiling in B’. So indeed B is a bottlegraph of H. Moreover, it is easy to compute that
Xer(B) = (a-+ 1~ 1) = alh/ap) = h/p = 1/ (H).

Now we assume that H has Property A; then we have a; < [h/2] +1 < a; . Observe
that all the edges of H are between the intervals [a; — 1] and [a] +1, h]. Let r := h—p,
and take B := K, ,. Note that p > r = max{h —af,aj —1}. Therefore, for any interval

labeling ¢ of B, the ordered graph (B, ¢) contains a copy of H; so B is a bottlegraph
assigned to H. Finally, we check that x..(B) = h/p=1/a*(H). O

Applying Theorem 4.3 with Lemma 4.4, we immediately obtain a bound on the min-
imum degree that guarantees an almost perfect H-tiling for any H with x-(H) = 2.

Theorem 4.5. Let H be an ordered graph on h vertices with x<(H) = 2. For everyn > 0,
there exists an ng € N so that the following holds. Every ordered graph G on n > ng
vertices with

6(G) = (L —a™(H) +n)n,
contains an H-tiling covering all but at most nn vertices.

Proof of Theorem 1.9(i)—(iii). Our desired lower bounds on 6 (H, n) follow immediately
from the extremal examples in Section 2. More specifically, the lower bound in (i) is
given by the space barriers, i.e. Proposition 1.5; the lower bound in (ii) is given by the
divisibility barriers, i.e. Proposition 2.1; the lower bound in (iii) is given by the local
barriers, i.e. Proposition 2.2.

For an arbitrary small constant 0 < 1 < 1, let v be defined as in Theorem 4.1, and
fix an additional constant 7’ satisfying the following:

0<n <rv<n. (6)

Let n be a sufficiently large integer divisible by h.

Recall that an ordered graph H has Property A if and only if o*(H) > 1/2. Then
min{a*(H),1/2} is equal to o (H) in Case (i), and 1/2 in Cases (ii) and (iii). Therefore,
for the rest of the proof, it is sufficient to show that every ordered graph G on n vertices
with

0(G) > (1 —min{a*(H),1/2} +n)n

contains a perfect H-tiling.
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First of all, by Theorem 4.1, there exists an H-absorbing set Abs so that

o |Abs| < vnm;
e Abs is an H-absorbing set for any W C V(G) \ Abs such that |W| € hN and
W] < v3n.

Set G’ := G\ Abs. Thus (6) implies that §(G’) > (1 — min{a*(H),1/2} +7')|G’|. So
by Theorem 4.5, G’ contains an H-tiling H; covering all but a set W of vertices with
|[W| < n'n < v3n. By the definition of the H-absorbing set, G[W U Abs| contains a
perfect H-tiling Hs. Then Hi U Hs is a perfect H-tiling of G. O

The proof of Theorem 1.9(iv) is similar but requires a stronger version of the absorbing
theorem.

Theorem 4.6. Let H be an h-vertex ordered graph with x<(H) = 2. Suppose that H has
Property A but not Property B, and neither of the vertices 1, h has Property C. Then for
every n > 0, there exists an ng € N and v > 0 so that the following holds. Suppose that
G is an n-vertex ordered graph where n > ng and where

0(G) > nn.

Then V(G) contains a set Abs so that

o |Abs| <wvn;
o Abs is an H-absorbing set for any W C V(G) \ Abs such that |W| € hN and
W| < vn.

The proof of Theorem 4.6 contains some technical arguments; we postpone it to
Section 7.

Proof of Theorem 1.9(iv). The upper bound on é.(H,n) follows similarly from Theo-
rems 4.5 and 4.6, while the lower bound is given by the space barriers, i.e. Proposi-
tion 1.5. O

5. The regularity lemma and related tools

In the proof of our main results we will use Szemerédi’s regularity lemma [27]. In
this section we will introduce all the information we require about this result. We first
introduce some notation. The density of a bipartite graph with vertex classes A and B
is defined to be

__e(A,B)
d(A,B) = 4B
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Given € > 0, a graph G and two disjoint sets A, B C V(G), we say that the pair (A, B)g
(or simply (A, B) when the underlying graph is clear) is e-regular if for all sets X C A
and Y C B with |X| > ¢|4| and [Y| > ¢|B|, we have |d(4,B) — d(X,Y)| < e. Given
d € [0,1), the pair (4, B)g is (e, d)-regular if G is e-regular, and d(A, B) > d.

We now collect together some useful properties of e-regular pairs.

Proposition 5.1. For 0 < ¢ < dy < dy < 1, there exists an integer K = K(g,da,dy)
such that the following holds. Let (A, B)g be an e-regular pair of density di in a graph
G where |Al,|B| > K. Then there exists a spanning subgraph G' C G such that (A, B) ¢
is a \/e-reqular pair of density d, where |d — da| < €.

Proof sketch. It suffices to consider the case when dy —ds > £ (otherwise we set G’ := G).
Let G’ be the graph obtained from G by retaining each edge with probability p := ds/d;,
independently of all other edges. Then E(dg/ (A, B)) = pd; = ds.

Further, for every X C A and Y C B such that |X| > ¢|A| and |Y| > ¢|B|, we have
that

d
E(eor(X,Y)) = Fea(X.Y) € (d2 /)| X[V, (da + /)| XY
Noting that there are at most 2/41H15] such pairs X, Y, we may repeatedly apply Cher-
noff’s bound to ensure with high probability the conclusion of the proposition holds. O

Proposition 5.2. For 0 < ¢ < dg,dy < 1/2 with |d; — da| < ¢, let (A, B1)g and (A, B2)g
be e-reqular pairs of density di and do respectively in a graph G where By and By are
disjoint. Then (A, By U Bs)g is a (y/€,min{dy, da})-regular pair.

Proof. Let X C A and Y C B; U By where | X| > /¢|A| and |Y| > /&(|B1| + | Bz2|). Let
Y1 :=Y NB; and Y3 := Y N Bs. If both |Y1] > ¢|B;| and [Ya| > €|Bs| then it is easy
to check the pair X,Y satisfies the condition in the definition of a /e-regular pair. So
without loss of generality it suffices to check the case when |Y1| > ¢|B;| and |Y3| < ¢|Bs.
In this case |Y3|/|Y| < v/e. Thus,

e(X,Y) (di =)V = Yal)
XY d(A, B, U By) > Vi {dy,da}
> (di —¢e) = (dy —e)Ve — (di +¢) > =V,
and
el(;(li;) (A By UBy) < T 5)(|Y|;| YD)+ 2l ingay, o)

S(d1+6)+(1—d1—€)\/g—(d1—€)S\/g.
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This proves that the pair X,Y satisfies the condition in the definition of a /e-regular
pair. O

We will also make use of the following well-known property of regular pairs (see e.g.,
[19, Fact 1.5]).

Lemma 5.3 (Slicing lemma). Let (A, B) be an e-reqular pair of density d, and for some
a>e, let AA C A, B' C B with |A'| > a|A| and |B’| > «|B|. Then (A’,B’) is (¢’,d —¢)-
regular with €’ := max{e/a,2c}. O

We will apply the following degree form of Szemerédi’s regularity lemma [27].

Lemma 5.4 (Regularity lemma). For every e > 0 and ¢y € N there exists Ly = Lo(e, {o)
such that for every d € [0,1] and for every graph G on n > Lo vertices there exists a
partition Vo, Vi,..., Ve of V(G) and a spanning subgraph G’ of G, such that the following
conditions hold:

(i) bo < €< Lo;
(i) de/(z) > da(x) — (d+e)n for every x € V(G);
(iii) the subgraph G'[V;] is empty for all 1 < i < ¢;
(iv) [Vol < en;
) Vil = Val = ... = Vil
(vi) foralll < i< j </ either (V;,V))a is an (¢,d)-regular pair or G'|V;, V] is empty.

We call Vi,...,Vp clusters, Vi the exceptional set and the vertices in Vy exceptional
vertices. We refer to G’ as the pure graph. The reduced graph R of G with parameters €,
d and €y is the graph whose vertices are Vi, ...,V and in which V;Vj is an edge precisely
when (V;, V})ar is (e, d)-regular.

A t-partite graph with parts W1, ..., W, is nearly balanced if ||W;|—|W;|| < 1 for every
1 <i,j <t. We will also make use of the following multipartite version of Lemma 5.4.

Lemma 5.5 (Multipartite reqularity lemma). Given any integer t > 2, any € > 0 and any
¢y € N there exists Ly = Lo(e,t,0y) € N such that for every d € [0,1] and for every
nearly balanced t-partite graph G = (W1,...,Wy) on n > Lo vertices, there exists an
¢ €N, a partition W2, W}r, ..., W} of W; for eachi € [t] and a spanning subgraph G’ of

G, such that the following conditions hold:

0 << Lo;
( ) > da(z) — (d+e)n for every x € V(G);
W2 < En/t for every i € [t]
|WJ\ = \W] | for every i,i' € [t] and j,j" € [¢];
(v) for every i,i' € [t] and j,j' € [{] either (Wij,Wg/)G/ is an (e,d)-regular pair or
G’[Wf,W»J/ | is empty.

7

i) £
i) d
(111)
)
)
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Similarly as before, for i € [t] and j € [(] we call the W/ clusters, the W2 the

7

exceptional sets and the vertices in the W? exceptional vertices. We refer to G’ as the
pure graph. The reduced graph R of G with parameters €, d and £y is the graph whose
vertices are the W/ (where i € [t] and j € [¢]) and in which W/ Wij;' is an edge precisely
when (W7, WZ/)G/ is (e, d)-regular.

The following well-known corollary of the regularity lemma shows that the reduced

graph almost inherits the minimum degree of the original graph.

Proposition 5.6. Let 0 < ¢,d,k < 1, G be an n-vertex graph with §(G) > kn and R be
the reduced graph of G obtained by applying the regularity lemma with parameters €,d.
Then 6(R) > (k—2¢ —d)|R|. O

The next key lemma allows us to use the reduced graph R of G as a framework for
embedding subgraphs into G.

Lemma 5.7 (Key lemma [19]). Suppose that 0 < & < d, that ¢,t € N and that R is a
graph with V(R) = {v1,...,v,}. We construct a graph G as follows: replace every vertex
v; € V(R) with a set V; of q vertices and replace each edge of R with an (g, d)-regular
pair. For each v; € V(R), let U; denote the set of t vertices in R(t) corresponding to v;.
Let H be a subgraph of R(t) with mazimum degree A and set h := |H|. Set § :==d —¢
and gg := 62/(2+ A). If e < e and t — 1 < g9q then there are at least

(e0q)™ labelled copies of H in G
so that if x € V(H) lies in U; in R(t), then x is embedded into V; in G.

Our applications of Lemma 5.7 will take the following form: suppose within an ordered
graph G we have vertex classes V1 < ... <V} so that each pair (V;, V})q is (¢, d)-regular.
Then Lemma 5.7 tells us G contains (many) copies of any fixed size ordered graph H
with x<(H) = k, where the ith vertex class of H is embedded into V.

6. Proof of Theorem 4.3
We will apply the following result of Komlds [16]; this result shows that the critical
chromatic number of H governs the minimum degree threshold for the existence of almost

perfect H-tilings in unordered graphs.

Theorem 6.1 (Komlds [16, Theorem 8]). Let ;n > 0 and let F' be an unordered graph.
Then there exists an ng = no(p, F) € N such that every graph G on n > ng vertices with

5(G) > (1— X;(F))n

contains an F-tiling covering all but at most un vertices.
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The next result ensures that in any k linear size disjoint vertex sets Aj, ..., A; of an
ordered graph G, one can find ‘nicely ordered’ linear size subsets S; of each A;. As we
will see shortly, this property is crucial for our application of the regularity lemma in the
proof of Theorem 4.3. As pointed out by a referee, it is also a special case of the ‘same
type lemma’ of Bardny and Valtr [4].

Lemma 6.2. For n > k > 2, let Ay, As,..., Ar be nonempty disjoint subsets of
[n]. Then there exist sets Si,Sa,...,Sk, where S; C A;, and a permutation o =
(o(1),0(2),...,0(k)) of the set [k], such that the following conditions hold for all
i,j € [k]:

() 1S:] > [1Asl/k];
(11) S < Sj ’LfO'(Z) < O'(_j)

Proof. By removing elements if necessary we may assume that each A; contains a mul-
tiple of k elements. Given any i € [k], we refer to the jth smallest number in A; as the
jth element of A;. Let i; € [k] be such that the (|A4;,|/k)th element of A;, is smaller
than the (|A4;|/k)th element of A; for all j € [k] \ {i¢1}. Define .S;, to consist of the first
|Ai,|/k elements of A;,. Next define is € [k] \ {1} such that the (2|A4;,|/k)th element
of A;, is smaller than the (2|A4;|/k)th element of A; for all j € [k] \ {41,42}. Define S,
to contain the tth elements of A;, where t = (|A;,|/k) + 1,...,2|A;,|/k. Continuing in
this way we define sets S;, < S;, <--- < S;, where each S;; C A;; has size |4;]/k and
{#1,...,9%} = [k]. This immediately implies the lemma. 0O

Proof of Theorem /.3. We will fix additional constants satisfying the following hierarchy

0<er <e<Ke<dpr,pe <n,1/|Bl (7)

Moreover, we choose an integer £y such that £y > ng(p1, B), where ng(u1, B) is as defined
in Theorem 6.1. In what follows, we assume that the order n of our given ordered graph
G is sufficiently large for our estimates to hold. We now apply the regularity lemma
(Lemma 5.4) with parameters e1,d and ¢y to G to obtain a reduced graph R, clusters
{Va,a € V(R)}, an exceptional set Vj, and a spanning subgraph G’ C G. Inequality (7)
together with Proposition 5.6 implies that

5(R) > (1 - —xcrl(B) n g) IR). (8)

Since |R| > £y > no(p1, B), we can apply Theorem 6.1 to R to find a B-tiling B covering
all but at most p1|R| vertices. We delete all the clusters not contained in some copy of
B in B from R and add all the vertices lying in these clusters to the exceptional set
Vo. Thus, |Vo| < e1n + pin < 2pyn. From now on, we denote by R the subgraph of the
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reduced graph induced by all the remaining clusters. Thus B now is a perfect B-tiling of
R.

Fix an arbitrary copy B € B with partite sets Uy,...,Ux, and let A := UaeV(B) Va
and A; := Uani V,. Since B is a complete multipartite graph, repeatedly applying
Propositions 5.1 and 5.2 to G’[A], we can find a spanning subgraph G” C G’[A] such
that for every distinct 4,5 € [k], (Ai, Aj)g~ is (e2,d — e2)-regular. The idea is that G”
is a blow-up of the bottlegraph B, where the complete bipartite graphs between vertex
classes are replaced by (e2,d — €2)-regular pairs. We now show that this bottlegraph-like
structure will ensure that G” contains an almost perfect H-tiling. Then repeating this
process for every B € B will ensure the desired almost perfect H-tiling in G.

Let  := 1/(2k). By Lemma 6.2, there exist sets S; C A;, and a permutation o of
[k] such that |S;| > a|A;|, and S; < S; whenever o(i) < o(j). Moreover, by the slicing
lemma (Lemma 5.3), we have that each (S;,5;)q~ is (¢,d — ¢)-regular. Now we apply
the key lemma (Lemma 5.7) on G”[US;], and find a blown-up copy Bi(t) of B, where
|B1(t) N S;| = |Ui|t for every i and t is a fixed integer given by the definition of the
bottlegraph. Note that by the choice of the S;, B; naturally has an interval ordering
with respect to the permutation o, and therefore Bj(t) has a perfect H-tiling. After
that, we can delete V(B1(t)) from A (and therefore from each A;); crucially after this
deletion, the ratio |A4;|/|A;| amongst all pairs of classes A;, A; remains the same as
before. Further, still for every distinct 4, j € [k], (A;, Aj)qr is (2e2,d — 2e2)-regular.

These properties allow us to repeatedly apply this argument, thereby obtaining an
H-tiling in G[A] covering all but at most us|A| vertices. More precisely, suppose we have
subsets A} C A; for all i € [k] where: (i) |A}| > po|A;| for all i € [k]; (ii) |A]|/|A)] =
|A;|/|A;] for all 4, j € [k]. Then by the slicing lemma, and as 2e5 /12 < (/22 and 2 < d,
we have that (Aj, A})g~ is an (\/g2,d/2)-regular pair for all distinct 4,j € [k]. Thus, we
can repeatedly apply the argument in the paragraph above (now to the A. rather than
the A;), whilst still retaining property (ii) and terminating the process when we obtain
subsets A} that no longer satisfy property (i). Notice that by (ii), as soon as (i) is no
longer satisfied for some i € [k], in fact |A}| < ua]A;| for all i € [k]. Thus, this process
will result in an H-tiling in G[A] covering all but at most us|A| vertices.

Finally, simply repeat this process for all copies of B in B; we obtain an H-tiling of
G covering all but at most (2u1 + p2)n < nn vertices. O

7. Proof of the absorbing theorems

To prove Theorems 4.1 and 4.6, we make use of the following, now standard, lemma.

Lemma 7.1. Let h,s € N and £ > 0. Suppose that H is an ordered hypergraph on h
vertices. Then there exists an ng € N such that the following holds. Suppose that G is
an ordered hypergraph on n > ng vertices so that, for any x,y € V(G), there are at least
&nsh=1 (sh—1)-sets X C V(G) such that both G[X U{x}] and G[X U{y}] contain perfect
H-tilings. Then V(G) contains a set M so that
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o M <(&/2)" /4
o M is an H-absorbing set for any W C V(G) \ M such that |W| € hN and |W| <
(£/2)*n/(3252h3).

Lemma 7.1 was proven in the case when G is unordered by Lo and Markstrom [23,
Lemma 1.1]. However, the proof in the ordered setting is identical (so we do not provide
a proof here). In particular, the original proof requires nowhere that the graphs are
unordered.

7.1. Proof of Theorem /.1

To prove Theorem 4.1 we must show that the hypothesis of Lemma 7.1 is satisfied.
Define Bpy(z,2) as the set [n] N [z — 2,2 + 2]. The following lemma provides a step in
that direction.

Lemma 7.2. Let H be an h-vertex ordered graph and let 0 < n < 1/h. Then there exists
an ng € N and p,v > 0 where 1/ng < p < v < n and so that the following holds.
Suppose that G is an ordered graph with vertex set [n] where n > ng and where

#G) 2 <1 - X<1H) +n> !

Given any x € [n], there are at least (1 — )| By, (x,nn/16)| elements y € [n] so that

e y € Bpy(x,mn/16);
e there are at least pn"~1 (h — 1)-sets X C V(G) such that both G[X U {z}] and
G[X U {y}] contain spanning copies of H.

Proof. Choose 0 < p < 1/{) € ¢ € 7 < d < n < 1/h where ¢y € N, and let n be
sufficiently large. Let G be as in the statement of the lemma. Write r := x«(H).
First of all, clearly there is a partition W7, ..., W; of [n] where

(i) t:= [8/n];

(ii) |W;il = %] or [%] for all i € [t];

(i) Wi < W for every 1 <i < j <t

(iv) there is some i* € [t — 1] so that B, (z,nn/16) € Wix U Wi 1.

Note that (iii) implies that each of the W;s is an interval in [n].
Define G := G[W;, Wa, ..., W,]; that is we have deleted all edges within each G[W};].
Hence,

5(Gy) >< %+2§”> n. 9)



J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171-201 193

Apply Lemma 5.5 to G; with parameters ¢,d,t,{y to obtain a pure graph G} and
reduced graph Ry of Gy, and a partition W2, W ... W of W; for each i € [t]. Crucially,
we have defined Gy so that if W/'W}? € E(R;) then W' < W} or W/? < W}

Inequality (9) together with Proposition 5.6 implies that
0(R1) = (1 =1/r +n/2)|Ral. (10)

Now let R} be the induced subgraph of R; obtained by deleting all Wf 41- Thus, we
have deleted precisely a (1/t)th proportion of V(R;) to obtain Rj. Therefore, (10) and
(i) imply that

6(Ry) = (1 —1/r+n/4)|Ryl. (11)

Write Ng: () := {(W/ € V(R}) : dg, (z, W) > n|W/|/4}. The minimum degree condi-
tion on G; ensures that

|Nr; ()] = (1= 1/r +n/4)|Ry]. (12)

Fix an arbitrary cluster Wf* for some j* € [£]. Combining (11) and (12) ensures we

can greedily choose clusters WiJf? RN Wij:':ll so that:

(a) Wi, ..., Wij:_’ll together with W2 form a copy of K, in R};
(b) Wb, , W/~ € Np; ();

11 7"

(¢) There is some z* € {0,...,r — 1} so that

Wi < < Wi < (WL U{ah) <W/ 0 << Wi
In particular, (c) is ensured by the choice of R} and (iv).
By the slicing lemma (Lemma 5.3) and the fact that W/* € Ngs:(z) for every k €
[r — 1], the pair (Wi , Ng,(z) N Wi’“)g/l is (¢1/2,d/2)-regular. By the definition of
(1/2,d/2)-regularity, all but at most re*/2|W7 | vertices y € W have degree at least
(d/2 —e'/?)|Ng, (z)N WZ]:\ > dn\WZJk" |/12 into Ng, (z)N ij’“ in Gy for every k € [r—1].

?

Fix such a vertex y. Define
Wy == No, (x) N Wik 0 Na, (y)

for each k € [r — 1], and note that |W| > d17|Wij:|/12. Given any i@ # j € [r — 1],
Lemma 5.3 implies that each pair (W], W})g, and (W, Wf*)gll are (e'/4,d/4)-regular.
Recalling that x<(H) = r, property (c) above together with Lemma 5.7 implies that
there are at least pn"~1 (h — 1)-sets X C Wf U |J W/, such that both G[X U {z}] and
G[X U {y}] span copies of H.
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For each choice of the cluster WZ{, there were at most ret/ 2\WZ{| ‘bad’ selections for
y € W . Since [W2| < en/t this implies that for all but at most (re'/2+&)|W;- | vertices
y € Wi« there are at least pn"~1 (h —1)-sets X C V(G) such that both G[X U {x}] and
G[X U {y}] span copies of H.

One can argue analogously (now considering the induced subgraph R;* of R; obtained
by deleting all W2) to conclude the following: for all but at most (re'/2 + )| Wi 4|
vertices y € Wi«11, there are at least pn"~! (h — 1)-sets X C V(G) such that both
G[X U {z}] and G[X U {y}] span copies of H.

Thus, (iv) above together with the fact that [Wi«|, |[Wi- 11| < 3| By, (2,mn/16)| and
€ < «y implies that the conclusion of the lemma holds. 0O

With Lemma 7.2 to hand, we can now prove the following result. Note that Lemma 7.3
together with Lemma 7.1 immediately implies Theorem 4.1. Indeed, applying Lemma 7.3
ensures the hypothesis of Lemma 7.1 holds, and then the latter result yields the desired
absorbing set Abs.

Lemma 7.3. Let H be an h-vertex ordered graph and 0 < 1 < 1/h. Then there exists
an ng € N and € > 0 where 1/ng < £ < n < 1/h so that the following holds. Set
s = [32/n]. Suppose that G is an ordered graph with vertex set [n] where n > ng and
where

5(G) > (1—ﬁ+n>n.

Given any x,y € [n], there are at least Eén*"=1 (sh — 1)-sets X C V(G) such that both
G[X U{z}] and G[X U{y}] contain perfect H-tilings.

Proof. Choose ¢ so that 0 < £ < p”" < p) < p < 7 < n where p and ~ are as in
Lemma 7.2. Let G be as in the statement of the lemma.

The idea for the proof is straightforward: we first prove the result for every z,y very
close together except that instead of having s = [32/n] we have s =1 (call this Step 1).
Then for z,y slightly further apart, we have many choices of z ‘in the middle’ of z and
y. Then applying Step 1 to both x, z and y, z (and ‘gluing’ the structures between 2 and
z, and z and y together) we conclude that the lemma holds for such z,y except that now
s = 2. Repeating this process we deduce that for x and y of increasing distance, one can
conclude that the lemma holds for such x,y, but at the expense of increasing s. From
this it is easy to deduce that the lemma holds for all x,y € [n] with s := [32/7].

First suppose z,y € [n] and |z — y| < nn/16. Then by Lemma 7.2 there are at least
nn,/20 vertices z in By, (z,mn/16) N By, (y,nm/16) for which

o there are at least pn"~! (h — 1)-sets X C V(@) such that both G[X U {x}] and
G[X U {z}] span copies of H;
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o there are at least pn"~! (h — 1)-sets Y C V(G) such that both G[Y U {y}] and
G[Y U {z}] span copies of H.

Choose z, X and Y to be disjoint; there are at least np*n?"~1/(20(2h—1)!) —O(n?"~2) >
p'n?"=1 choices for the set S := {z} U X UY. Notice that each such set S is chosen so
that both G[S U {z}] and G[S U {y}] contain perfect H-tilings.

Next, we assume |z — y| < nn/9. There are at least nn/9 — 2(nn/9 — n/16) = nn /72
vertices z such that

|.7J - Z‘v |y - Z| < 77”/167
and for each such choice of z,

o there are at least p'n?"=1 (2h — 1)-sets X C V(G) such that both G[X U {z}] and
G[X U {z}] contain perfect H-tilings;

o there are at least p'n?"~! (2h — 1)-sets Y C V(G) such that both G[Y U {y}] and
G[Y U {z}] contain perfect H-tilings.

Indeed, the first bullet point is obtained by applying the conclusion of the last paragraph
with z playing the role of y; the last bullet point is obtained by applying the conclusion
of the last paragraph with z playing the role of x. Similarly as before, choose disjoint
2, X,Y; there are at least p”’n*"~! choices for the set S := {2} U X UY, for which both
G[S U {z}] and G[S U {y}] contain perfect H-tilings.

More generally, for any x,y € [n], by repeated iterations of the above argument we
obtain some t < s such that there are at least £'/2nt"=1 (th — 1)-sets X' C V(G) such
that both G[X'U{x}] and G[X'U{y}| contain perfect H-tilings. For each such set X’ we
have that G'\ X’ contains more than pn” /2 copies of H. Add s —t such disjoint copies of
H to obtain from X’ a set X. Then X is as desired and there are at least £n°"~! choices
for X. O

7.2. Proof of Theorem /.6

To prove Theorem 4.6, we need the following two lemmas to verify the hypothesis of
Lemma 7.1.

Lemma 7.4. Let H be an h-vertex ordered graph with x(H) = 2, which satisfies the
following properties:

(i) 1,[h/2], h are isolated vertices;
(ii) all edges of H are between the intervals A := [2,[h/2]—1] and B := [[h/2]+1,h—1].
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Let 0 < n < 1. Then there exists an ng € N and £ > 0 where 1/ng < £ < n,1/h so that
the following holds. Suppose that G is an ordered graph with vertex set [n] where n > ng
and where

0(G) > nn. (13)

Given any x,y € [n], there are at least Eén"~1 (b — 1)-sets X C V(G) such that both
G[X U{z}] and G[X U {y}] span copies of H.

Proof. Let Hy be a complete bipartite ordered graph with parts Sy < Lo, where |Sy| =
|A] + 1 and |Lg| = |B| + 1. For a copy of Hy C G and a vertex v € V(G) \ V(Hy), we
say Hy is good for v if one of the following holds: (a) v < Sy < Lo; (b) So < v < Ly; (c)
So < Lo < v. By the assumption on H, if Hy is good for v, then G[V (Hy) U v] contains

h=1 copies of Hy in G which

a spanning copy of H. Therefore, it is sufficient to find &n
are good for both = and y.

Without loss of generality we assume z < y. Let Vi :={v € [n] |v < a}, Va:={v €
[n] | 2 < v <y},and V3 := {v € [n] | v > y}. By (13) and the pigeonhole principle,
there exist 1 < ¢ < j < 3 such that e(G[V;,V;]) > nn?/13. A standard application of
the regularity method shows that there are at least ¢én”*~1 copies of Hy in G[V;,V;]. By
the construction of the V;s, each such copy of Hj is good for both = and y, and this

completes the proof. O
Recall that s(H) is the smallest vertex in H that is adjacent to h, if h is not isolated.

Lemma 7.5. Let H be an h-vertex ordered graph with x(H) = 2, which satisfies the
following properties:

(i) 1 and [h/2] are isolated vertices, while h is not isolated;
(i) all edges of H are between the intervals [2,[h/2] — 1] and [[h/2] + 1, h);
(i) 1 < s(H) < [h/2] and [s(H),h — 1] is an independent set.

Let 0 < n < 1/h. Then there exists an ng € N and & > 0 where 1/ng < £ < n < 1/h so
that the following holds. Set s := 2([h/2] — s(H)). Suppose that G is an ordered graph
with vertex set [n] where n > ng and

5(G) > . (14)

For every x,y € [n], there are at least {én*"~1 (sh — 1)-sets X C V(G) such that both
G[X U{z}] and G[X U {y}] contain perfect H-tilings.

Proof. Choose 0 < £ € £, < 3K e’ K ek d<kd <« n<1/h, and without loss of
generality we always assume z < y. Let A :=[2,s(H) — 1], B := [s(H), [h/2] — 1], and
C :=[[h/2]+1, h—1]. We also write a := |A|, b:= |B| and ¢ := |C|, then h = a+b+c+3.
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Note that A and BUC are independent sets of H, and every edge of H is either between
intervals A and C', or between B and h.

Claim 7.6. For z,y < (1 —1n/3)n, there are at least £;n~! (h —1)-sets X1 C V(G) such
that both G[X1 U {x}] and G[X1 U {y}] span copies of H.

Proof. Let H; be a complete bipartite ordered graph with parts S; < L1, where |S;| =
a+b+1and |L1| = ¢+ 1. For a copy of H; C G and a vertex v € V(G) \ V(H;), we say
H, is good for v if either v < S7 < Ly, or S; < v < Lj. Note that G[V (H;) Uv] contains
a spanning copy of H, if H; is good for v. Now let Vi :={v € [n] |v <z}, Vo :={v €
w2 <v<yhVs={oeln]|y<v< (1—n/3)n} and Vo = [(1—n/3)n+ 1],
By (14) and the pigeonhole principle, there exists i € [3] such that

2n2

(61 o)) 2 5 (B) (= 20) = 2 (15)

—3\3 3 27

Notice that for any choice of i € [3], every copy of H; in G[V;, Vi is good for both x and
y. So, as in the proof of Lemma 7.4, (15) implies that there are &;n"~! copies of H; in
G|V;, Vo] which are good for both z and y, as desired. O

Claim 7.7. For x < nn/3 and y > (1 — n/3)n, there are at least &nb~1 (bh — 1)-sets
X2 CV(Q) such that both G[ X2 U{z}] and G[X2 U {y}] contain perfect H-tilings.

Proof. Let M := [z + 1,y — 1]. By (14), we have |[N(y) N M| > nn — 2nn/3 = nn/3. Let
N be a subset of N(y) N M of size nn/6; then

A v > () (-2 )

A standard application of the regularity method shows that there exists an (¢/, d')-regular
pair (P, Q') in G, where P’ C N; Q' C M \ N; |P'|,|Q’'| > 2¢3n. By Lemma 6.2 and
Lemma 5.3, there exist sets P C P’ and @ C @’ such that: |P|,|Q| > &n; (P, Q) is an
(e, d)-regular pair in G; either P < Q or Q < P.

Case 1: P < Q.

Let Hs be a complete bipartite ordered graph with parts So < Lo, where [Sa| = a+b+1
and |Ly| = c+1. By Lemma 5.7, there are at least £&an”~! copies of H, in G[P, Q], and for
every such Hy, we have x < Sy < Ly < yand S; C P C N C N(y). Recall that each edge
of H lies either between A and C, or between B and h. Therefore, G[V (Hz)U{x}] contains
a spanning copy of H, as Hs is a complete bipartite graph. Similarly, G[V (H2) U {y}]
also contains a spanning copy of H, as Hj is a complete bipartite graph and Sy C N(y).
Hence, there are at least £&an~! (h—1)-sets X’ C V(G) such that both G[X'U{x}] and
G[X' U {y}] contain perfect H-tilings. By adding b — 1 additional disjoint copies of H
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(which can be easily found in G[P, Q] as (P, Q) is an (g, d)-regular pair in G), one can
immediately see that Claim 7.7 holds in this case.

Case 2: () < P.

Let Fy be the complete bipartite ordered graph with parts S < L}, where |S]| = a+b+1
and |L}| = ¢+2. Let F3 be a complete bipartite ordered graph with parts S} < L/, where
|S4] = a+ b+ 2 and |L}| = ¢+ 1. Note that both F; and F» contain a spanning copy of
H.

Let F3 be the complete bipartite ordered graph with parts S5 < L%, where |S;| = a+b
and |L4| = ¢+ 2. We say a copy of F3 is good for x if x < S, < Lj. Note that
G[V(F3) U {z}] contains a spanning copy of H, if F3 is good for z. Lastly, let Fj
be the complete bipartite ordered graph with parts S; < Lf, where |S}| = a + 1
and |L}] = b+ ¢+ 1. We say a copy of Fy is good for y if S} < L) < y and
L) C N(y). Observe that G[V (F4) U {y}] contains a spanning copy of H, if F, is good
for y.

Let Hs be the complete bipartite ordered graph with parts S3 < Ls, where
|S3] = b(a+b+1)—1and Ly = b(c+2). By Lemma 5.7, there are at least £,n®"~! copies
of Hz in G[P, @], and for every such Hs, we have < S3 < L < y and L3 C P C N(y).
Note that such H3 can be decomposed into b — 1 copies of F; and one good copy of Fj.
This indicates that G[V (Hs) U {«}] contains a perfect H-tiling. Similarly, such Hj can
also be decomposed into b — 1 copies of F» and one good copy of Fy, which indicates
that G[V(Hs) U {y}] contains a perfect H-tiling. O

For every x,y < (1 —n/3)n or x < nn/3 and y > (1 — n/3)n, simply adding enough
disjoint copies of H to the sets obtained from Claims 7.6 or 7.7 completes the proof. For
every x > nn/3 and y > (1 —1n/3)n, there are at least nn/3 vertices z (i.e. the vertices in
[nn/3]) such that: (i) {y, z} satisfies the condition of Claim 7.7; (ii) {x, z} either satisfies
the condition of Claim 7.6 or Claim 7.7. Applying Claims 7.6 and 7.7 on pairs {z, z} and
{y, z} produces many disjoint copies of X;"*UX3"* (or X5*UXY?), where X|"* refers to
(h — 1)-sets obtained from Claim 7.6 for {z, z}, and similarly for X5°* and X3"*. Finally,
adding enough extra disjoint copies of H to zUX"*UXY* (or zUX5*UXY?), we show
that for every x,y € [n], there are at least én2*"—1 = ¢nsh=1 (sh — 1)-sets X C V(G)
such that both G[X U {z}] and G[X U {y}] contain perfect H-tilings. O

Proof of Theorem 4.6. Since H has property A, it satisfies the following conditions:
o all edges of H are between the intervals [1, [h/2] — 1] and [|h/2] + 2, h].

e if h is even, then the vertices h/2,h/2 4+ 1 are isolated; if h is odd, then the vertex
(h+1)/2 is isolated.

Furthermore, since H does not have property B, at least one of 1 and A must be isolated
in H.
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We first assume that both 1,h are isolated, then by Definition 1.8 neither of them
has Property C. Note that H satisfies the assumptions in Lemma 7.4. Together with
Lemma 7.1 (applied with s = 1), this immediately implies Theorem 4.6.

Now without loss of generality, we assume that 1 is isolated in H but h is not. Since
h does not have Property C, by Definition 1.8, [s(H),h — 1] is an independent set in H.
Similarly, H satisfies the assumptions in Lemma 7.5, and this, together with Lemma 7.1,
completes the proof. O

8. Concluding remarks

In this paper we have introduced a general framework for the perfect H-tiling problem
in ordered graphs. This approach can be summarized as follows:

Step 1: Find a candidate extremal example; an n-vertex ordered graph G with minimum
degree 6(G) = an — O(1) without a perfect H-tiling.

Step 2: Find a bottlegraph B assigned to H with a > 1 — 1/x.(B).

Step 3: If a > 1 — 1/x<(H) then Theorems 4.1 and 4.3 now combine to yield the
asymptotically exact threshold. Otherwise, one seeks an improved absorbing
theorem, using structural information about H (4 la Theorem 4.6).

Despite introducing this framework, we suspect determining the perfect H-tiling thresh-
old for an arbitrary H will be challenging in the sense that there could be a range of
different extremal examples and optimal bottlegraphs, depending on the precise structure
of H.

On the other hand, in the case when H is an h-vertex ordered graph and 12 € E(H)
or (h —1)h € E(H), it is actually straightforward to deduce from Theorem 1.1 the
minimum degree threshold for forcing a perfect H-tiling.

Proposition 8.1. Let n,h € N such that h|n. Suppose H is an h-vertex ordered graph.
If G is an n-vertex ordered graph with 6(G) > (1 — 1/h)n, then G contains a perfect
H-tiling.

Moreover, suppose 12 € E(H) or (h —1)h € E(H). Then there are n-vertex ordered
graphs with 6(G) > (1 — 1/h)n — 1 that do not contain a perfect H-tiling.

Proof. Consider the unordered underlying graph G’ of any ordered n-vertex graph G
with §(G) > (1 —1/h)n. Theorem 1.1 implies that G’ contains a perfect Kj-tiling. Since
any ordered copy of K}, contains H, this ensures G contains a perfect H-tiling.

For the moreover part, notice such H satisfy a*(H) = 1/h. The result then follows
directly from Proposition 1.5. O

In [16], Koml6s determined the minimum degree threshold for an (unordered) graph
to contain an H-tiling covering a given proportion of the vertices; it would be interesting
to obtain an ordered analogue of this result.
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Question 8.2. Let s € (0,1) and H be an ordered graph. What is the minimum degree
threshold that ensures an ordered graph G contains an H-tiling covering at least an sth
proportion of its vertices?

There has also been interest in Ramsey and Turan properties of edge ordered graphs
(see e.g. [3,28]); it would be interesting to study the perfect H-tiling problem in this
setting also.

Other than tiling problems, there are many natural embedding problems to consider
for ordered graphs. We now raise a couple of such problems. Here by an ordered cycle we
just mean that it is a copy of some cycle C' where V(C') has been assigned an ordering.

Question 8.3. Let k > 2 be a fized integer and let s € (0,1). What is the minimum degree
threshold that ensures an ordered n-vertex graph G contains a copy of some ordered cycle
C of length at least sn and with x<(C) =k?

The following question can be viewed as raising an ordered version of the well-known
El-Zahar conjecture [6].

Question 8.4. Let k,t > 2 be fived integers and let C = {C',...,C*} be a fized family
of t (not necessarily distinct) ordered cycles where x<(C*) = k for each i € [t]. Set
n; = |C%. What is the minimum degree threshold that ensures an ordered graph G on
n:=mny + -+ ng vertices contains vertex-disjoint copies of each cycle C*,...,C* that
together cover the vertex set of G¢

We suspect our approaches to regularity and absorbing will be useful for attacking this
problem for large n. Variants of Question 8.4 (e.g., when C contains cycles of different
interval chromatic number) would also be interesting to investigate.

Remark. Since this paper was submitted, the third author and Freschi [9] have asymp-
totically determined d.(H,n) for all ordered graphs H with x«(H) > 3. Their approach
both relies on tools from this paper, as well as introducing new ideas. They have also
given an asymptotic solution to Question 8.2. Further, Hurley, Joos and Lang [15] have
proven some very general tiling results, including a generalisation of the Kiithn—Osthus
tiling theorem that allows tiles to be different and to have size that grows with the size of
the host graph. As pointed out in [15], it would be interesting to seek analogous results
in the setting of ordered graphs too.
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