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1. Introduction

Over recent years there has been interest in extending classical graph theory results 

to the setting of vertex ordered graphs. A (vertex) ordered graph or labelled graph H on h

vertices is a graph whose vertices have been labelled with [h] := {1, . . . , h}. An ordered 

graph G with vertex set [n] contains an ordered graph H on [h] if (i) there is a mapping 

φ : [h] → [n] such that φ(i) < φ(j) for all 1 ≤ i < j ≤ h and (ii) φ(i)φ(j) is an edge in 

G whenever ij is an edge in H.

A foundation stone in extremal graph theory is Turán’s theorem which determines 

the number of edges in the densest Kr-free graph on n vertices. Furthermore, for every 

graph H, the Erdős–Stone–Simonovits theorem [7,8] determines, up to a small error 

term, the number of edges in the densest H-free n-vertex graph. It is natural to seek 

Turán-type results in the setting of ordered graphs. Indeed, this question was first raised 

by Füredi and Hajnal [10], and there are now many results in the area; see Tardos [28]

for a survey of such results (and the related problem of Turán-type results for edge

ordered graphs). In particular, Pach and Tardos [25] proved an analogue of the Erdős–

Stone–Simonovits theorem in the setting of ordered graphs. In their result they show 

that the so-called interval chromatic number governs the threshold (for graphs H of 

interval chromatic number at least 3), rather than the chromatic number (as is the case 

in the unordered setting). There are several Turán-type results for ordered graphs of 

interval chromatic number 2; see e.g. [12,13,20,24,25,28], as well as Turán-type results 

for ordered hypergraphs, see [11].

There have also been a number of recent results concerning Ramsey theory for ordered 

graphs, for example see the work of Balko, Cibulka, Král and Kynčl [2] and of Conlon, 

Fox, Lee and Sudakov [5].

In this paper we initiate the study of embedding spanning structures in ordered graphs. 

In particular, we study the minimum degree required to ensure an ordered graph has 

a perfect H-tiling. In both the ordered and unordered settings, an H-tiling in a graph 

G is a collection of vertex-disjoint copies of H contained in G. An H-tiling is perfect if 

it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors, 

perfect H-packings or perfect H-matchings. H-tilings can be viewed as generalisations 

of both the notion of a matching (which corresponds to the case when H is a sin-

gle edge) and the Turán problem (i.e. a copy of H in G is simply an H-tiling of size 

one).

A central result in the area is the Hajnal–Szemerédi theorem [14] from 1970, which 

characterises the minimum degree that ensures a graph contains a perfect Kr-tiling.

Theorem 1.1 (Hajnal and Szemerédi [14]). Every graph G whose order n is divisible by 

r and whose minimum degree satisfies δ(G) ≥ (1 − 1/r)n contains a perfect Kr-tiling. 

Moreover, there are n-vertex graphs G with δ(G) = (1 − 1/r)n − 1 that do not contain a 

perfect Kr-tiling.
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There has also been significant interest in the minimum degree threshold that ensures a 

perfect H-tiling for an arbitrary graph H. After earlier work on this topic (see e.g. [1,18]), 

Kühn and Osthus [21,22] determined, up to an additive constant, the minimum degree 

that forces a perfect H-tiling for any fixed graph H. In particular, they showed that, 

depending on H, the minimum degree threshold is governed by either the chromatic 

number χ(H) of H or the so-called critical chromatic number of H.

Definition 1.2 (Critical chromatic number). The critical chromatic number χcr(F ) of an 

unordered graph F is defined as

χcr(F ) := (χ(F ) − 1)
|F |

|F | − σ(F )
,

where σ(F ) denotes the size of the smallest possible colour class in any χ(F )-colouring

of F .

Theorem 1.3 (Kühn and Osthus [22]). Let δ(H, n) denote the smallest integer k such that 

every graph G whose order n is divisible by |H| and with δ(G) ≥ k contains a perfect 

H-tiling. For every unordered graph H,

δ(H, n) =

(

1 − 1

χ∗(H)

)

n + O(1),

where χ∗(H) := χcr(H) if hcf(H) = 1 and χ∗(H) := χ(H) otherwise.

The definition of hcf(H) = 1 is somewhat involved; see [22, Section 1.2] for the defini-

tion and several illuminating examples. The moral behind the dichotomy in Theorem 1.3, 

however, is rather straightforward to articulate. Indeed, it arises as there are two types of 

extremal construction for this problem: so-called space barriers (which ‘dominate’ when 

χ∗(H) = χcr(H)) and divisibility barriers (which ‘dominate’ when χ∗(H) = χ(H)).

In this paper we show that the corresponding problem for ordered graphs has a rich 

behaviour. Indeed, our main result resolves the problem for all ordered graphs H of 

interval chromatic number 2. Even in this restricted case the nature of the minimum 

degree threshold is diverse, with a range of extremal examples coming into play, including 

a construction which is neither a divisibility nor space barrier. Whilst we do not resolve 

the problem for all ordered graphs H, in Section 4 we introduce a framework that can be 

used to attack the problem in general. Moreover, another contribution of the paper is the 

approaches we develop. Indeed, as we will discuss in Section 3 we develop an approach to 

applying Szemerédi’s regularity lemma [27] and a (local-global) philosophy for absorbing, 

both of which we believe are applicable to other embedding problems for ordered graphs. 

In particular, a key property of the regularity method – which is regularly used to help 

embed (spanning) subgraphs in the unordered setting – breaks down for ordered graphs; 

we introduce an approach to overcome this.
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1.1. Our results

Denote by δ<(H, n) the smallest integer k such that every ordered graph G whose 

order n is divisible by |H| and with δ(G) ≥ k contains a perfect H-tiling. The goal of 

this paper is to study δ<(H, n); for this we will need a few definitions. In particular, 

while the chromatic number is a relevant parameter in the study of perfect H-tilings in 

graphs, the interval chromatic number plays a role in the study of perfect H-tilings in 

ordered graphs.

Definition 1.4 (Interval chromatic number). The interval chromatic number χ<(H) of 

an ordered graph H is the minimum number of intervals the vertex set [h] of H can be 

partitioned into, so that no two vertices belonging to the same interval are adjacent in 

H.

As well as χ<(H), another parameter α∗(H) plays a role in the study of perfect H-

tilings for ordered graphs with χ<(H) = 2. To introduce α∗(H) we need the following 

definitions.

Let α+
0 (H) := 0. For every 1 ≤ ℓ ≤ χ<(H), we let

α+
ℓ (H) := the largest k ∈ N such that [α+

ℓ−1(H) + 1, k] is an independent set in H.

(1)

By the definition of interval chromatic number, we always have α+
χ<(H)(H) = h and 

therefore 
⋃χ<(H)

ℓ=1 [α+
ℓ−1(H) + 1, α+

ℓ (H)] is a natural partition of [h] into intervals, each 

spanning an independent set. We also define such parameters in the reverse order. Let 

α−
0 (H) := h + 1. For every 1 ≤ ℓ ≤ χ<(H), we let

α−
ℓ (H) := the smallest k ∈ N such that [k, α−

ℓ−1(H) − 1] is an independent set in H.

Similarly, we have α−
χ<(H)(H) = 1 and therefore 

⋃χ<(H)
ℓ=1 [α−

ℓ (H), α−
ℓ−1(H) − 1] is a 

natural partition of [h]. We then define

α∗(H) := min
1≤ℓ<χ<(H)

min

{

α+
ℓ (H)

ℓ · h
,

h − α−
ℓ (H) + 1

ℓ · h

}

. (2)

When the underlying graph is clear, we simply write α+
ℓ , α−

ℓ and α∗.

The following proposition shows that for any ordered graph H, the parameter α∗(H)

provides a lower bound for δ<(H, n).

Proposition 1.5. Let H be an ordered graph on h vertices. For every n ∈ N with h|n, 

there is an n-vertex ordered graph G with δ(G) ≥ ⌊(1 − α∗(H))n⌋ − 1 that does not 

contain a perfect H-tiling.
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The main goal of this paper is to determine the asymptotics of δ<(H, n) for graphs H

with interval chromatic number 2. It turns out the value of δ<(H, n) in this case depends 

on structural properties of H encapsulated by the following three definitions.

Definition 1.6 (Property A). An ordered graph H on h vertices is said to have Property A

if H has no edges in the intervals [1, ⌊h/2⌋ + 1] and [⌈h/2⌉, h].

Note that an ordered graph H has Property A if and only if α∗(H) > 1/2.

Definition 1.7 (Property B). An ordered graph H on h vertices is said to have Property B

if for all partitions of [h] into two non-empty intervals [1, i] and [i +1, h], there is an edge 

between these two intervals.

Let H be an ordered graph on h vertices. If h is not isolated then let s(H) be the 

smallest vertex in H that is adjacent to h. Similarly, if 1 is not isolated then let l(H) be 

the largest vertex in H that is adjacent to 1.

Definition 1.8 (Property C). For an ordered graph H on h vertices, the vertex h is said to 

have Property C if h is not isolated, and there exists an edge in the interval [s(H), h −1]. 

Similarly, the vertex 1 is said to have Property C if 1 is not isolated and there exists an 

edge in the interval [2, l(H)].

Our main theorem shows that for any ordered graph H with interval chromatic number 

2, either its interval chromatic number χ<(H) or the new graph parameter α∗(H) governs 

the minimum degree threshold that forces the existence of a perfect H-tiling in ordered 

graphs of large minimum degree.

Theorem 1.9. Let H be an ordered graph on h vertices with χ<(H) = 2.

(i) Suppose that H does not have Property A. Then

δ<(H, n) = (1 − α∗(H) + o(1))n.

(ii) Suppose that H has both Property A and Property B. Then

δ<(H, n) =

(

1 − 1

χ<(H)
+ o(1)

)

n = (1/2 + o(1))n.

(iii) Suppose that H has Property A but not Property B, and one of the vertices 1, h has 

Property C. Then

δ<(H, n) =

(

1 − 1

χ<(H)
+ o(1)

)

n = (1/2 + o(1))n.
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(iv) Suppose that H has Property A but not Property B, and neither of the vertices 1, h

has Property C. Then

δ<(H, n) = (1 − α∗(H) + o(1))n.

In all cases of Theorem 1.9, except Case (iv), the minimum degree threshold is at 

least (1/2 + o(1))n. Furthermore, although the degree threshold for graphs in Cases (ii) 

and (iii) are the same, they have different types of extremal examples at work. Shortly 

in Section 2, we will show that there are three types of extremal examples. Indeed, space 

barriers yield Proposition 1.5 and therefore give the lower bound in Cases (i) and (iv), 

divisibility barriers provide the lower bound for Case (ii) and local barriers provide the 

lower bound in Case (iii) – while we recall that for unordered graphs there are only space 

and divisibility barriers (see [22]).

1.2. Notation

Given integers n ≥ m ≥ 1, let [m, n] := {m, . . . , n} and [n] := {1, . . . , n}. For two 

subsets X, Y of [n], we write X < Y if x < y for all x ∈ X and y ∈ Y . When X consists 

of a single element x, we simply write x < Y .

A vertex is isolated if it has no neighbours. An empty graph on n vertices consists of 

n isolated vertices with no edges. The empty graph on 0 vertices is called the null graph. 

For an ordered graph G and a linearly ordered set A ⊆ V (G), the induced subgraph G[A]

is the subgraph of G whose vertex set is A and whose edge set consists of all of the edges 

of G with both endpoints in A. We define G \X := G[V (G) \X]. For two disjoint subsets 

A, B ⊆ V (G), the induced bipartite subgraph G[A, B] is the subgraph of G whose vertex 

set is A ∪ B and whose edge set consists of all of the edges of G with one endpoint in A

and the other endpoint in B. For convenience, we also write G[A, A] := G[A].

Given an (ordered) graph G, a vertex x ∈ V (G) and a set X ⊆ V (G), we define 

dG(x, X) to be the number of neighbours that x has in X.

For two ordered graphs G1 and G2 with disjoint vertex sets, the join graph, denoted 

by G1 ∗ G2, is the ordered graph obtained from G1 and G2 by adding all edges between 

V (G1) and V (G2), and where the vertices are ordered so that V (G1) < V (G2) and both 

V (G1) and V (G2) preserve their orders from G1 and G2 respectively. Given an unordered 

graph G and a positive integer t, let G(t) be the graph obtained from G by replacing 

every vertex x ∈ V (G) by a set Vx of t vertices spanning an independent set, and joining 

u ∈ Vx to v ∈ Vy precisely when xy is an edge in G. That is we replace the edges of G

by copies of Kt,t. We will refer to G(t) as a blown-up copy of G.

Throughout the paper, we omit all floor and ceiling signs whenever these are not 

crucial. The constants in the hierarchies used to state our results are chosen from right 

to left. For example, if we claim that a result holds whenever 0 < a ≪ b ≪ c ≤ 1, then 

there are non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such that the 
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result holds for all 0 < a, b, c ≤ 1 with b ≤ f(c) and a ≤ g(b). Note that a ≪ b implies 

that we may assume in the proof that, for example, a < b or a < b2.

1.3. Organisation of paper

In the next section we describe the extremal examples which show that our main 

result is best possible. In Section 3 we give a high-level overview of our approach to 

the regularity and absorbing methods in the ordered setting. In Section 4, we introduce 

a general framework for attacking ordered tiling problems, and show how to use it to 

prove Theorem 1.9. In particular, in this section we state a so-called ‘almost perfect 

tiling’ theorem (Theorem 4.3) and two absorbing theorems (Theorems 4.1 and 4.6). In 

Section 5, we formally state Szemerédi’s regularity lemma and introduce related tools. 

We then prove Theorem 4.3 in Section 6, and prove Theorems 4.1 and 4.6 in Section 7. 

We close the paper with some concluding remarks in Section 8.

2. Extremal examples

2.1. Space barriers

We begin this section with the proof of Proposition 1.5 which provides a general lower 

bound on δ<(H, n) for all ordered graphs H.

The following observation will be useful. Suppose that G1 and H1 are ordered graphs 

and G′
1 and H ′

1 are obtained from G1 and H1 respectively by reversing the ordering on 

V (G1) and V (H1). Then clearly G1 contains a perfect H1-tiling if and only if G′
1 contains 

a perfect H ′
1-tiling. Further, α∗(H1) = α∗(H ′

1) and if α∗(H1) =
|H1|−α−

ℓ (H1)+1
ℓ|H1| for some 

1 ≤ ℓ < χ<(H1), then α∗(H ′
1) =

α+

ℓ (H′

1)
ℓ|H′

1| .

Proof of Proposition 1.5. By the observation above, without loss of generality we may 

assume that α∗ = α+
ℓ /(ℓ · h) for some 1 ≤ ℓ < χ<(H). Therefore to prove the proposition, 

it is sufficient to prove that for every 1 ≤ ℓ < χ<(H), there is an n-vertex graph G with 

δ(G) ≥
⌊(

1 − α+

ℓ

ℓ·h

)

n
⌋

− 1 that does not contain a perfect H-tiling.

For simplicity, we set s := (α+
ℓ · n)/h. Let A1 ∪ A2 ∪ . . . ∪ Aℓ be a partition of the 

interval [s + 1] such that A1 < A2 < . . . < Aℓ and ||Ai| − |Aj || ≤ 1 for every 1 ≤ i, j ≤ ℓ. 

Define

G := G1 ∗ G2 ∗ . . . ∗ Gℓ+1,

where Gi is an empty graph defined on Ai for every 1 ≤ i ≤ ℓ, and Gℓ+1 is a complete 

graph defined on [n] − ⋃ℓ
i=1 Ai. Note that n − s − 1 ≥ 0 as α+

ℓ < α+
χ<(H) = h. Therefore, 

Gℓ+1 is well-defined, and could be a null graph (only when h = n).
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We claim that for every copy of H in G,

|V (H) ∩ [s + 1]| ≤ α+
ℓ . (3)

If not, then there exists a copy of H in G with the vertices v1 < v2 < . . . < vh such that 

vα+

ℓ +1 ∈ [s +1]. In particular, there exists an integer kℓ ≤ ℓ such that vα+

ℓ +1 ∈ Akℓ
. By the 

maximality of α+
ℓ , the vertex vα+

ℓ +1 has a neighbour vℓ′ in H, where ℓ′ ∈ [α+
ℓ−1 + 1, α+

ℓ ]. 

Since Akℓ
is an independent set of G, this implies that there exists an integer kℓ−1 < kℓ

such that vα+

ℓ−1
+1 ∈ Akℓ−1

. Repeat this process until we reach to A1. Then we obtain an 

integer 1 ≤ ℓ0 ≤ ℓ and a sequence of numbers ℓ ≥ kℓ > kℓ−1 > . . . > ki > . . . > kℓ0
= 1

such that vα+
i +1 ∈ Aki

. In particular, we have vα+

ℓ0
+1 ∈ A1. By the maximality of α+

ℓ0

and ℓ0 ≥ 1, the vertex vα+

ℓ0
+1 has a neighbour vℓ′

0
in H, where vℓ′

0
< vℓ0

. However, we 

run out of the space for vℓ′

0
as A1 is an independent set with the smallest vertices.

Finally, suppose that G has a perfect H-tiling H. Then by (3) we have

|V (H) ∩ [s + 1]| ≤ n

h
· α+

ℓ = s < s + 1,

which contradicts the definition of a perfect H-tiling. �

We refer to such examples G as space barriers as, in this case, the obstruction to G

containing a perfect H-tiling is that the vertex class [s + 1] is ‘too big’.

2.2. Divisibility barriers

Proposition 2.1. Let H be an ordered graph on h vertices with χ<(H) = 2. Suppose that 

H has Property B. Then for every n ∈ N with h|n, there is an n-vertex ordered graph G

with δ(G) ≥ ⌊n/2⌋ − 2 that does not contain a perfect H-tiling.

Proof. Let k be the largest integer such that k ≤ ⌈n/2⌉ and k is not divisible by h. Let 

G be the disjoint union of two complete graphs on vertex sets [k] and [k + 1, n]. Note 

that k ≥ ⌈n/2⌉ − 1; and the minimum degree of G is min{k − 1, n − k − 1} ≥ ⌊n/2⌋ − 2.

Suppose that G has a perfect H-tiling. Then there must be at least one copy H ′ of 

H, for which both [k] ∩ V (H ′) and [k + 1, n] ∩ V (H ′) are non-empty. However, this is 

not possible for H with Property B, as there are no edges between [k] and [k + 1, n] in 

G. �

Note we call such graphs G divisibility barriers as the obstruction to containing a 

perfect H-tiling is a divisibility issue (in this case, the size of each of the two cliques is 

not divisible by h).
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2.3. Local barriers

Proposition 2.2. Let H be an ordered graph on h vertices with χ<(H) = 2. Suppose that 

one of the vertices 1, h has Property C. Then for every n ∈ N with h|n, there is an 

n-vertex ordered graph G with δ(G) = ⌊n/2⌋ that does not contain a perfect H-tiling.

Proof. Without loss of generality, we assume that the vertex h has Property C. Recall 

that s(H) is the smallest vertex in H that is adjacent to h. Since h has Property C, 

there exists an edge ab in H such that

s(H) ≤ a < b ≤ h − 1. (4)

Let G′ := G1 ∗ G2, where G1, G2 are empty graphs on the vertex sets [1, ⌈n/2⌉ − 1]

and [⌈n/2⌉, n − 1]. Then we construct an ordered graph G from G′ by adding the vertex 

n and all edges between n and [⌈n/2⌉, n − 1].

Suppose that G has a perfect H-tiling. Then there must be a copy of H in G such 

that n plays the role of h in it. By the construction of G, the image of s(H) in G lies 

in [⌈n/2⌉, n − 1]. Then by (4), the images of a, b in G must lie in [⌈n/2⌉, n − 1]. This 

contradicts the fact that [⌈n/2⌉, n − 1] is an independent set. �

We call such graphs G local barriers as the reason G does not contain a perfect H-

tiling is a localized issue (in this case, there is a vertex that does not lie in a single copy 

of H).

3. Applying the regularity and absorbing methods in the ordered setting

3.1. The regularity method

In this subsection we explain our approach to applying the regularity lemma in the 

ordered graph setting. Those readers unfamiliar with this result and related concepts 

should first read Section 5.

Let A1, . . . , Ak be large disjoint equal size vertex classes in an (unordered) graph G

so that each pair (Ai, Aj) (for distinct i, j ∈ [k]) is ε-regular of density at least d, where 

0 < ε < d. Such a structure is often found in an application of Szemerédi’s regularity 

lemma and provides a framework for embedding subgraphs H with χ(H) = k into G. 

Indeed, it is well-known that such a structure contains all fixed size subgraphs H of 

chromatic number at most k (see Lemma 5.7). In fact, for any fixed subgraph H with 

χ(H) = k, G[A1 ∪ · · · ∪ Ak] must contain an almost perfect H-tiling. Moreover, the 

famous blow-up lemma of Komlós, Sárközy and Szemerédi [17] allows one to embed any 

almost spanning, bounded degree graph F with χ(F ) = k into G[A1 ∪ · · · ∪ Ak]. These 

properties have been used in dozens of applications of the regularity lemma.

Ideally one would like to use such properties in the vertex ordered setting. Similarly 

as before, let A1, . . . , Ak be large disjoint equal size vertex classes in an n-vertex ordered 
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graph G so that each pair (Ai, Aj) (for distinct i, j ∈ [k]) is ε-regular of density at least 

d. Thus now the Ais are subsets of [n]. Let H be a fixed ordered graph with χ<(H) = k. 

One can find a copy of H in G[A1 ∪· · ·∪Ak]: as demonstrated by Lemma 6.2 in Section 6, 

one can find large subclasses Si ⊆ Ai for all i ∈ [k] and a permutation σ of [k] so that 

Sσ(1) < Sσ(2) < . . . < Sσ(k). This allows us then to embed H into G[S1 ∪ · · · ∪ Sk] where 

the ith interval of H is embedded into Sσ(i).

However, in general it is far from true that G[A1 ∪ · · · ∪ Ak] should contain an almost 

perfect H-tiling. To see this consider the case when k = 2 and H is the ordered path 213. 

Suppose G[A1, A2] is in fact complete bipartite (so certainly ε-regular) where A1 < A2. 

Then each copy of H in G[A1, A2] must have one vertex in A1 (the vertex playing the 

role of 1) and two vertices in A2; so any H-tiling in G[A1, A2] can only cover at most 

half of A1.

At first sight this suggests perhaps the regularity method is not suitable for embedding 

large structures in ordered graphs. However, in this paper we demonstrate a method for 

overcoming this difficulty. Suppose we wish to embed an (almost) perfect H-tiling in 

an ordered graph G where χ<(H) = r. We obtain large disjoint vertex sets A1, . . . , Ak

in G so that each pair (Ai, Aj) (for distinct i, j ∈ [k]) is ε-regular of density at least 

d; now (i) k may be significantly bigger than r and (ii) the size of the classes Ai may 

be far from equal. The class sizes and k are chosen so that however the vertices from 

A1 ∪ · · · ∪ Ak are labelled in [n], there is a small H-tiling H in G[A1 ∪ · · · ∪ Ak] such that 

|Ai ∩ V (H)|/|Aj ∩ V (H)| = |Ai|/|Aj | for all distinct i, j ∈ [k]. As we now explain, with 

this property to hand, one can easily find an almost perfect H-tiling in G[A1 ∪ · · · ∪ Ak]. 

Indeed, delete the vertices from H. Still each pair (Ai, Aj) is 2ε-regular and the ratios of 

the classes have been preserved. So we can find a small H-tiling in G[A1 ∪ · · · ∪ Ak] as 

before. Repeating this process allows us to cover almost all the vertices in G[A1∪· · ·∪Ak].

The challenge is to choose k not too large (else G will not be dense enough to guarantee 

such an ε-regular structure G[A1 ∪ · · · ∪ Ak]) whilst ensuring the chosen ratios |Ai|/|Aj |
have the ‘ratio preservation’ property described above. This latter point motivates the 

notion of a bottlegraph of H introduced in the next section.

3.2. The absorbing method

The so-called absorbing method, pioneered by Rödl, Ruciński and Szemerédi (see 

e.g. [26]) has proved an immensely powerful technique for embedding problems in graphs 

and hypergraphs. In particular, when one wishes to embed a spanning structure F in a 

(hyper)graph G, the method can provide a certain ‘absorbing gadget’ Abs in G. With 

this gadget to hand, one then seeks to embed only an almost spanning subgraph F ′ of F

into G; Abs will then have the power to extend the subgraph F ′ into a copy of F in G. 

If the structure F we seek is a perfect H-tiling, then we will say Abs is an H-absorbing 

set.

The now standard approach to construct H-absorbing sets for perfect H-tilings in 

(hyper)graphs originates from a paper of Lo and Markström [23]. Indeed, suppose one 
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wishes to find a perfect H-tiling in an n-vertex graph G where h := |H|. In the simplest 

case, they show that to construct an H-absorbing set in G it suffices to show that for 

every pair x, y ∈ V (G) there are Ω(nh−1) vertex classes X ⊆ V (G) \ {x, y} of size h − 1

so that both X ∪ {x} and X ∪ {y} span copies of H in G. Call such an (h − 1)-set X

good for x, y.

For many problems this property is relatively easy to establish. For example, in the 

(unordered) graph setting, a simple application of the regularity lemma can be used to 

establish this property when G is an n-vertex graph with minimum degree more than 

(1 − 1/χ(H) + o(1))n.

However, the analogous statement for ordered graphs is in general far from true. In 

particular, there are ordered graphs H and G where δ(G) is much greater than (1 −
1/χ<(H))n and yet there exist pairs of vertices x, y ∈ V (G) for which no (h − 1)-set is 

good for x, y. For example, for any n ∈ N divisible by 3, consider the complete 3-partite 

ordered graph G′ on [n − 2] with classes A1, A2, A3 of sizes n/3 − 1, n/3 − 1 and n/3

respectively, and where A1 < A2 < A3. Obtain G from G′ by adding vertices n − 1 and 

n where n is adjacent to every vertex in A1 ∪ A3 and n − 1 is adjacent to every vertex in 

A2 ∪ A3. Now choose H to be the ordered graph obtained from the complete bipartite 

graph K2,2 by labelling the elements in the first vertex class 1, 2; the elements in the 

second class 3, 4. Observe that χ<(H) = 2. Notice that δ(G) = 2n/3 − 1 and yet there 

are no good 3-sets X for n − 1, n. Indeed, this follows because any copy of H containing 

n in G \ {n − 1} must use vertices in A1 to play the role of 1, 2, whilst any copy of H

containing n − 1 in G \ {n} must use vertices in A2 to play the role of 1, 2.

Despite this difficulty, in Theorem 4.1, we are able to show the existence of an H-

absorbing set in any n-vertex ordered graph G with δ(G) > (1 − 1/χ<(H) + o(1))n (for 

every fixed ordered graph H). The key is that, as made precise by Lo and Markström [23], 

to obtain an H-absorbing set in G it is also sufficient to prove that for any x, y ∈ V (G)

there are ‘many’ good sets X ⊆ V (G) of the same fixed (constant) size so that both 

G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings; see Lemma 7.1 below.

The way we construct such good sets X for every x, y ∈ V (G) can be summarized by 

the following process – a philosophy to absorbing that we term local-global absorbing.

• Step 1: local absorbing. Prove that for any x ∈ V (G), most y ‘close’ to x (with respect 

to the ordering on V (G) = [n]) are such that there are many good (h − 1)-sets for 

x, y.

• Step 2: global absorbing. Piece together chains of the ‘local’ good sets found in Step 

1 to prove that for any pair x, y ∈ V (G) there are many good sets X of bounded size 

for x, y.

Note that our illustrative example above shows in general one cannot hope to replace 

the word most in Step 1 with all. On the other hand, the intuition why it is often easier 

to find good sets for x, y ∈ V (G) where x and y have labels close together is that such 

x and y can often play the role of the same vertex in copies of H. The above two-step 
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process is sufficient to prove Theorem 4.1; Step 1 corresponds to Lemma 7.2 and Step 2 

to Lemma 7.3.

On the other hand, to prove (a general case of) the other of our absorbing theorems 

(Theorem 4.6) we need a variant of this approach.

• Step 1: local absorbing. Prove that given any x, y ∈ V (G) = [n] with both vertices 

either not too large (i.e., bounded away from (1 − o(1))n) or not too small (i.e., not 

o(n)), there are many good (h − 1)-sets for x, y.

• Step 2: special global absorbing. Prove that given any x ∈ [o(n)] and y ∈ [n −o(n), n], 

there are many good (h − 1)-sets for x, y.

• Step 3: global absorbing. Piece together chains of our good sets found in Steps 1 and 

2 to prove that for any pair x, y ∈ V (G) there are many good sets X of bounded size 

for x, y.

The intuition why in Step 2 it is often easier to find good sets for x, y ∈ V (G) where x

is close to 1 and y is close to n is as follows: in ‘most’ copies of H in G containing x, x

must play the role of 1, whist in ‘most’ copies of H in G containing y, y must play the 

role of h.

4. A general framework and the proof of Theorem 1.9

4.1. General framework

In this section we introduce two theorems, which as well as being tools in the proof 

of our main result, are applicable to the general perfect H-tiling problem for ordered 

graphs.

First, as described in the previous section, we adapt the absorbing method to the 

setting of ordered graphs. Let H be an ordered graph. Given an ordered graph G, a 

set S ⊆ V (G) is an H-absorbing set for Q ⊆ V (G), if both G[S] and G[S ∪ Q] contain 

perfect H-tilings. In this case we say that Q is H-absorbed by S. Sometimes we will 

simply refer to a set S ⊆ V (G) as an H-absorbing set if there exists a non-empty set 

Q ⊆ V (G) \ S that is H-absorbed by S. Roughly speaking, the following result provides 

an absorbing set Abs in an ordered graph G of large minimum degree, where crucially 

Abs is an H-absorbing set for every not too large set of vertices Q ⊆ V (G) \ Abs.

Theorem 4.1 (Absorbing theorem). Let H be an h-vertex ordered graph and let η > 0. 

Then there exists an n0 ∈ N and 0 < ν ≪ η so that the following holds. Suppose that G

is an n-vertex ordered graph where n ≥ n0 and where

δ(G) ≥
(

1 − 1

χ<(H)
+ η

)

n.

Then V (G) = [n] contains a set Abs so that
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• |Abs| ≤ νn;

• Abs is an H-absorbing set for every W ⊆ V (G) \ Abs such that |W | ∈ hN and 

|W | ≤ ν3n.

Theorem 4.1 suffices for our applications in most cases. Indeed, it is immediately 

applicable to the perfect H-tiling problem for any ordered graph H where the minimum 

degree threshold for ensuring a perfect H-tiling in an ordered graph G is at least (1 −
1

χ<(H) +o(1))|G|. In particular, we will use this theorem for Cases (i)–(iii) of Theorem 1.9. 

For Case (iv) (and we suspect at least for some special cases of the general perfect H-

tiling problem) we require an absorbing theorem for ordered graphs with much smaller 

minimum degree. In this situation, some structural properties of H can help us improve 

the absorbing argument; see Theorem 4.6 below.

As indicated above, to apply the absorbing method one requires a sister almost perfect 

tiling theorem, which usually states that in a graph with large minimum degree all but 

o(n) vertices are covered by some H-tiling. Although the variety of extremal examples 

indicates that proving a sharp almost perfect H-tiling theorem for an arbitrary ordered 

graph H seems to be very difficult, in this section we propose a general framework for 

obtaining such almost perfect tiling theorems.

Let B be a complete k-partite unordered graph with parts U1, . . . , Uk, and σ be a 

permutation of the set [k]. An interval labeling of B with respect to σ is a bijection 

φ : V (B) → [|B|] such that φ(Ui) < φ(Uj) if σ(i) < σ(j). Given t ∈ N, recall that B(t)

is a blow-up of B with vertex set 
⋃

x∈V (B) Vx, where the Vxs are sets of t independent 

vertices. Let (B(t), φ) be the ordered graph obtained from B(t) by equipping V (B(t))

with a vertex ordering, satisfying Vx < Vy for every x, y ∈ V (B) with φ(x) < φ(y). We 

refer to (B(t), φ) as an ordered blow-up of B.

Definition 4.2 (Bottlegraph). For an ordered graph H, we say that a complete k-partite 

unordered graph B is a bottlegraph assigned to H, if for every permutation σ of [k] and 

every interval labeling φ of B with respect to σ, there exists a constant t = t(B, H, φ)

such that the ordered blow-up (B(t), φ) contains a perfect H-tiling.

Theorem 4.3 (Almost perfect tiling framework). Let H be an ordered graph on h vertices. 

Suppose that B is a bottlegraph assigned to H. Then for every η > 0, there exists an 

n0 ∈ N so that every ordered graph G on n ≥ n0 vertices with

δ(G) ≥
(

1 − 1

χcr(B)
+ η

)

n

contains an H-tiling covering all but at most ηn vertices.

With Theorem 4.3 at hand, in order to prove that all ordered graphs with a given 

minimum degree contain an almost perfect H-tiling, it is sufficient to show that certain 

‘interval labelled’ blow-ups of a specific graph B with a given critical chromatic number 
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contain perfect H-tilings. The latter statement usually can be verified easily by observa-

tion or by solving a linear optimization problem. Thus, for the general perfect H-tiling 

problem, the heart of the problem is to choose an ordered graph B whose critical chro-

matic number is not too big (so that the corresponding minimum degree condition in 

Theorem 4.3 is not too high) whilst ensuring B is indeed a bottlegraph assigned to H. 

These competing forces mean it is far from immediate what the correct choice of B is 

given an arbitrary ordered graph H. However, for a given class of ordered graphs H (as 

we will see in the case when χ<(H) = 2), there might be some intuitive ways to construct 

a ‘fairly good’ or even optimal bottlegraph using their structural properties.

The proofs of both Theorems 4.1 and 4.3 rely on Szemerédi’s regularity lemma, which 

will be formally introduced in Section 5. We then prove Theorem 4.3 in Section 6, and 

Theorem 4.1 in Section 7.

4.2. Graphs with interval chromatic number 2

In this section, we illustrate how to apply our general framework to prove Theorem 1.9. 

The following key lemma gives a construction of the bottlegraph for graphs with interval 

chromatic number 2.

Lemma 4.4. Let H be an ordered graph on h vertices with χ<(H) = 2. Recall that

α∗(H) = min

{

α+
1

h
,

h − α−
1 + 1

h

}

.

Then there exists a bottlegraph B of H such that χcr(B) = 1/α∗(H).

Proof. Let p := α∗h = min{α+
1 , h −α−

1 +1}. By the symmetry of the argument, without 

loss of generality we can assume that p = α+
1 .

We first assume that H does not have Property A. Then by the definition of p, we 

have p ≤ ⌊h/2⌋, and

all the edges of H are between the intervals [p] and [p + 1, h]. (5)

Let a, r be the integers such that h = ap + r, where a ≥ 2 and 0 ≤ r < p. Then we define 

B to be the complete multipartite graph with classes U0, U1, . . . , Ua, in which |U0| = r, 

and |U1| = . . . = |Ua| = p. We will show that B is a bottlegraph assigned to H.

Let φ be an interval labeling of B. If r = 0, then by (5), (B, φ) immediately contains 

a copy of H (i.e. (B(1), φ) contains a perfect H-tiling). So assume r �= 0. If there exists 

i ≥ 1 such that φ(Ui) < φ(U0), then again (B, φ) contains a copy of H. Therefore, 

without loss of generality, we can assume that φ(U0) < φ(U1) < . . . < φ(Ua).

Let c := lcm(p, r), the least common multiple of p and r, and t := c/r. Let B′ := B(t)

and U ′
0, U ′

1, . . . , U ′
a be the partite sets of B′ (where U ′

i corresponds to Ui). For a set 

A ⊆ V (B′) of size h, if |A ∩ U ′
i | = p, for all 0 ≤ i ≤ a − 1 and |A ∩ U ′

a| = r, we say 



J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171–201 185

A is a type I set; if |V (H) ∩ U ′
0| = 0, |V (H) ∩ U ′

i | = p, for all 1 ≤ i ≤ a − 1 and 

|V (H) ∩ U ′
a| = p + r, we say A is a type II set. Both type I and type II sets induce 

some complete multipartite graphs in B′, which contain a copy of H by (5). By the 

choice of c and t, V (B′) can be partitioned into t = c/r disjoint sets, where c/p of 

them are of type I and c/r − c/p of them are of type II; thus this ensures a perfect 

H-tiling in B′. So indeed B is a bottlegraph of H. Moreover, it is easy to compute that 

χcr(B) = (a + 1 − 1) h
h−r = a(h/ap) = h/p = 1/α∗(H).

Now we assume that H has Property A; then we have α−
1 ≤ ⌊h/2⌋ + 1 ≤ α+

1 . Observe 

that all the edges of H are between the intervals [α−
1 −1] and [α+

1 +1, h]. Let r := h −p, 

and take B := Kr,p. Note that p ≥ r = max{h − α+
1 , α−

1 − 1}. Therefore, for any interval 

labeling φ of B, the ordered graph (B, φ) contains a copy of H; so B is a bottlegraph 

assigned to H. Finally, we check that χcr(B) = h/p = 1/α∗(H). �

Applying Theorem 4.3 with Lemma 4.4, we immediately obtain a bound on the min-

imum degree that guarantees an almost perfect H-tiling for any H with χ<(H) = 2.

Theorem 4.5. Let H be an ordered graph on h vertices with χ<(H) = 2. For every η > 0, 

there exists an n0 ∈ N so that the following holds. Every ordered graph G on n ≥ n0

vertices with

δ(G) ≥ (1 − α∗(H) + η) n,

contains an H-tiling covering all but at most ηn vertices.

Proof of Theorem 1.9(i)–(iii). Our desired lower bounds on δ<(H, n) follow immediately 

from the extremal examples in Section 2. More specifically, the lower bound in (i) is 

given by the space barriers, i.e. Proposition 1.5; the lower bound in (ii) is given by the 

divisibility barriers, i.e. Proposition 2.1; the lower bound in (iii) is given by the local 

barriers, i.e. Proposition 2.2.

For an arbitrary small constant 0 < η < 1, let ν be defined as in Theorem 4.1, and 

fix an additional constant η′ satisfying the following:

0 < η′ ≪ ν ≪ η. (6)

Let n be a sufficiently large integer divisible by h.

Recall that an ordered graph H has Property A if and only if α∗(H) > 1/2. Then 

min{α∗(H), 1/2} is equal to α∗(H) in Case (i), and 1/2 in Cases (ii) and (iii). Therefore, 

for the rest of the proof, it is sufficient to show that every ordered graph G on n vertices 

with

δ(G) ≥ (1 − min{α∗(H), 1/2} + η) n

contains a perfect H-tiling.
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First of all, by Theorem 4.1, there exists an H-absorbing set Abs so that

• |Abs| ≤ νn;

• Abs is an H-absorbing set for any W ⊆ V (G) \ Abs such that |W | ∈ hN and 

|W | ≤ ν3n.

Set G′ := G \ Abs. Thus (6) implies that δ(G′) ≥ (1 − min{α∗(H), 1/2} + η′) |G′|. So 

by Theorem 4.5, G′ contains an H-tiling H1 covering all but a set W of vertices with 

|W | ≤ η′n ≤ ν3n. By the definition of the H-absorbing set, G[W ∪ Abs] contains a 

perfect H-tiling H2. Then H1 ∪ H2 is a perfect H-tiling of G. �

The proof of Theorem 1.9(iv) is similar but requires a stronger version of the absorbing 

theorem.

Theorem 4.6. Let H be an h-vertex ordered graph with χ<(H) = 2. Suppose that H has 

Property A but not Property B, and neither of the vertices 1, h has Property C. Then for 

every η > 0, there exists an n0 ∈ N and ν > 0 so that the following holds. Suppose that 

G is an n-vertex ordered graph where n ≥ n0 and where

δ(G) ≥ ηn.

Then V (G) contains a set Abs so that

• |Abs| ≤ νn;

• Abs is an H-absorbing set for any W ⊆ V (G) \ Abs such that |W | ∈ hN and 

|W | ≤ ν3n.

The proof of Theorem 4.6 contains some technical arguments; we postpone it to 

Section 7.

Proof of Theorem 1.9(iv). The upper bound on δ<(H, n) follows similarly from Theo-

rems 4.5 and 4.6, while the lower bound is given by the space barriers, i.e. Proposi-

tion 1.5. �

5. The regularity lemma and related tools

In the proof of our main results we will use Szemerédi’s regularity lemma [27]. In 

this section we will introduce all the information we require about this result. We first 

introduce some notation. The density of a bipartite graph with vertex classes A and B

is defined to be

d(A, B) :=
e(A, B)

|A||B| .



J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171–201 187

Given ε > 0, a graph G and two disjoint sets A, B ⊂ V (G), we say that the pair (A, B)G

(or simply (A, B) when the underlying graph is clear) is ε-regular if for all sets X ⊆ A

and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B|, we have |d(A, B) − d(X, Y )| < ε. Given 

d ∈ [0, 1), the pair (A, B)G is (ε, d)-regular if G is ε-regular, and d(A, B) ≥ d.

We now collect together some useful properties of ε-regular pairs.

Proposition 5.1. For 0 < ε ≪ d2 < d1 ≤ 1, there exists an integer K = K(ε, d2, d1)

such that the following holds. Let (A, B)G be an ε-regular pair of density d1 in a graph 

G where |A|, |B| ≥ K. Then there exists a spanning subgraph G′ ⊆ G such that (A, B)G′

is a 
√

ε-regular pair of density d, where |d − d2| ≤ ε.

Proof sketch. It suffices to consider the case when d1 −d2 ≥ ε (otherwise we set G′ := G). 

Let G′ be the graph obtained from G by retaining each edge with probability p := d2/d1, 

independently of all other edges. Then E(dG′(A, B)) = pd1 = d2.

Further, for every X ⊆ A and Y ⊆ B such that |X| ≥ ε|A| and |Y | ≥ ε|B|, we have 

that

E(eG′(X, Y )) =
d2

d1
eG(X, Y ) ∈ ((d2 − ε/d1)|X||Y |, (d2 + ε/d1)|X||Y |) .

Noting that there are at most 2|A|+|B| such pairs X, Y , we may repeatedly apply Cher-

noff’s bound to ensure with high probability the conclusion of the proposition holds. �

Proposition 5.2. For 0 < ε ≪ d2, d1 ≤ 1/2 with |d1 − d2| ≤ ε, let (A, B1)G and (A, B2)G

be ε-regular pairs of density d1 and d2 respectively in a graph G where B1 and B2 are 

disjoint. Then (A, B1 ∪ B2)G is a (
√

ε, min{d1, d2})-regular pair.

Proof. Let X ⊆ A and Y ⊆ B1 ∪ B2 where |X| ≥ √
ε|A| and |Y | ≥ √

ε(|B1| + |B2|). Let 

Y1 := Y ∩ B1 and Y2 := Y ∩ B2. If both |Y1| ≥ ε|B1| and |Y2| ≥ ε|B2| then it is easy 

to check the pair X, Y satisfies the condition in the definition of a 
√

ε-regular pair. So 

without loss of generality it suffices to check the case when |Y1| ≥ ε|B1| and |Y2| ≤ ε|B2|. 
In this case |Y2|/|Y | ≤ √

ε. Thus,

e(X, Y )

|X||Y | − d(A, B1 ∪ B2) ≥ (d1 − ε)(|Y | − |Y2|)
|Y | − max{d1, d2}

≥ (d1 − ε) − (d1 − ε)
√

ε − (d1 + ε) ≥ −
√

ε,

and

e(X, Y )

|X||Y | − d(A, B1 ∪ B2) ≤ (d1 + ε)(|Y | − |Y2|) + |Y2|
|Y | − min{d1, d2}

≤ (d1 + ε) + (1 − d1 − ε)
√

ε − (d1 − ε) ≤
√

ε.
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This proves that the pair X, Y satisfies the condition in the definition of a 
√

ε-regular 

pair. �

We will also make use of the following well-known property of regular pairs (see e.g., 

[19, Fact 1.5]).

Lemma 5.3 (Slicing lemma). Let (A, B) be an ε-regular pair of density d, and for some 

α > ε, let A′ ⊆ A, B′ ⊆ B with |A′| ≥ α|A| and |B′| ≥ α|B|. Then (A′, B′) is (ε′, d − ε)-

regular with ε′ := max{ε/α, 2ε}. �

We will apply the following degree form of Szemerédi’s regularity lemma [27].

Lemma 5.4 (Regularity lemma). For every ε > 0 and ℓ0 ∈ N there exists L0 = L0(ε, ℓ0)

such that for every d ∈ [0, 1] and for every graph G on n ≥ L0 vertices there exists a 

partition V0, V1, . . . , Vℓ of V (G) and a spanning subgraph G′ of G, such that the following 

conditions hold:

(i) ℓ0 ≤ ℓ ≤ L0;

(ii) dG′(x) ≥ dG(x) − (d + ε)n for every x ∈ V (G);

(iii) the subgraph G′[Vi] is empty for all 1 ≤ i ≤ ℓ;

(iv) |V0| ≤ εn;

(v) |V1| = |V2| = . . . = |Vℓ|;
(vi) for all 1 ≤ i < j ≤ ℓ either (Vi, Vj)G′ is an (ε, d)-regular pair or G′[Vi, Vj ] is empty.

We call V1, . . . , Vℓ clusters, V0 the exceptional set and the vertices in V0 exceptional 

vertices. We refer to G′ as the pure graph. The reduced graph R of G with parameters ε, 

d and ℓ0 is the graph whose vertices are V1, . . . , Vℓ and in which ViVj is an edge precisely 

when (Vi, Vj)G′ is (ε, d)-regular.

A t-partite graph with parts W1, . . . , Wt is nearly balanced if ||Wi| −|Wj || ≤ 1 for every 

1 ≤ i, j ≤ t. We will also make use of the following multipartite version of Lemma 5.4.

Lemma 5.5 (Multipartite regularity lemma). Given any integer t ≥ 2, any ε > 0 and any 

ℓ0 ∈ N there exists L0 = L0(ε, t, ℓ0) ∈ N such that for every d ∈ [0, 1] and for every 

nearly balanced t-partite graph G = (W1, . . . , Wt) on n ≥ L0 vertices, there exists an 

ℓ ∈ N, a partition W 0
i , W 1

i , . . . , W ℓ
i of Wi for each i ∈ [t] and a spanning subgraph G′ of 

G, such that the following conditions hold:

(i) ℓ0 ≤ ℓ ≤ L0;

(ii) dG′(x) ≥ dG(x) − (d + ε)n for every x ∈ V (G);

(iii) |W 0
i | ≤ εn/t for every i ∈ [t];

(iv) |W j
i | = |W j′

i′ | for every i, i′ ∈ [t] and j, j′ ∈ [ℓ];

(v) for every i, i′ ∈ [t] and j, j′ ∈ [ℓ] either (W j
i , W j′

i′ )G′ is an (ε, d)-regular pair or 

G′[W j
i , W j′

i′ ] is empty.



J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171–201 189

Similarly as before, for i ∈ [t] and j ∈ [ℓ] we call the W j
i clusters, the W 0

i the 

exceptional sets and the vertices in the W 0
i exceptional vertices. We refer to G′ as the 

pure graph. The reduced graph R of G with parameters ε, d and ℓ0 is the graph whose 

vertices are the W j
i (where i ∈ [t] and j ∈ [ℓ]) and in which W j

i W j′

i′ is an edge precisely 

when (W j
i , W j′

i′ )G′ is (ε, d)-regular.

The following well-known corollary of the regularity lemma shows that the reduced 

graph almost inherits the minimum degree of the original graph.

Proposition 5.6. Let 0 < ε, d, k < 1, G be an n-vertex graph with δ(G) ≥ kn and R be 

the reduced graph of G obtained by applying the regularity lemma with parameters ε, d. 

Then δ(R) ≥ (k − 2ε − d)|R|. �

The next key lemma allows us to use the reduced graph R of G as a framework for 

embedding subgraphs into G.

Lemma 5.7 (Key lemma [19]). Suppose that 0 < ε < d, that q, t ∈ N and that R is a 

graph with V (R) = {v1, . . . , vk}. We construct a graph G as follows: replace every vertex 

vi ∈ V (R) with a set Vi of q vertices and replace each edge of R with an (ε, d)-regular 

pair. For each vi ∈ V (R), let Ui denote the set of t vertices in R(t) corresponding to vi. 

Let H be a subgraph of R(t) with maximum degree ∆ and set h := |H|. Set δ := d − ε

and ε0 := δ∆/(2 + ∆). If ε ≤ ε0 and t − 1 ≤ ε0q then there are at least

(ε0q)h labelled copies of H in G

so that if x ∈ V (H) lies in Ui in R(t), then x is embedded into Vi in G.

Our applications of Lemma 5.7 will take the following form: suppose within an ordered 

graph G we have vertex classes V1 < . . . < Vk so that each pair (Vi, Vj)G is (ε, d)-regular. 

Then Lemma 5.7 tells us G contains (many) copies of any fixed size ordered graph H

with χ<(H) = k, where the ith vertex class of H is embedded into Vi.

6. Proof of Theorem 4.3

We will apply the following result of Komlós [16]; this result shows that the critical 

chromatic number of H governs the minimum degree threshold for the existence of almost 

perfect H-tilings in unordered graphs.

Theorem 6.1 (Komlós [16, Theorem 8]). Let μ > 0 and let F be an unordered graph. 

Then there exists an n0 = n0(μ, F ) ∈ N such that every graph G on n ≥ n0 vertices with

δ(G) ≥
(

1 − 1

χcr(F )

)

n

contains an F -tiling covering all but at most μn vertices.
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The next result ensures that in any k linear size disjoint vertex sets A1, . . . , Ak of an 

ordered graph G, one can find ‘nicely ordered’ linear size subsets Si of each Ai. As we 

will see shortly, this property is crucial for our application of the regularity lemma in the 

proof of Theorem 4.3. As pointed out by a referee, it is also a special case of the ‘same 

type lemma’ of Bárány and Valtr [4].

Lemma 6.2. For n ≥ k ≥ 2, let A1, A2, . . . , Ak be nonempty disjoint subsets of 

[n]. Then there exist sets S1, S2, . . . , Sk, where Si ⊆ Ai, and a permutation σ =

(σ(1), σ(2), . . . , σ(k)) of the set [k], such that the following conditions hold for all 

i, j ∈ [k]:

(i) |Si| ≥ ⌊|Ai|/k⌋;

(ii) Si < Sj if σ(i) < σ(j).

Proof. By removing elements if necessary we may assume that each Ai contains a mul-

tiple of k elements. Given any i ∈ [k], we refer to the jth smallest number in Ai as the 

jth element of Ai. Let i1 ∈ [k] be such that the (|Ai1
|/k)th element of Ai1

is smaller 

than the (|Aj |/k)th element of Aj for all j ∈ [k] \ {i1}. Define Si1
to consist of the first 

|Ai1
|/k elements of Ai1

. Next define i2 ∈ [k] \ {i1} such that the (2|Ai2
|/k)th element 

of Ai2
is smaller than the (2|Aj |/k)th element of Aj for all j ∈ [k] \ {i1, i2}. Define Si2

to contain the tth elements of Ai2
where t = (|Ai2

|/k) + 1, . . . , 2|Ai2
|/k. Continuing in 

this way we define sets Si1
< Si2

< · · · < Sik
where each Sij

⊆ Aij
has size |Ai|/k and 

{i1, . . . , ik} = [k]. This immediately implies the lemma. �

Proof of Theorem 4.3. We will fix additional constants satisfying the following hierarchy

0 < ε1 ≪ ε2 ≪ ε ≪ d, μ1, μ2 ≪ η, 1/|B|. (7)

Moreover, we choose an integer ℓ0 such that ℓ0 ≥ n0(μ1, B), where n0(μ1, B) is as defined 

in Theorem 6.1. In what follows, we assume that the order n of our given ordered graph 

G is sufficiently large for our estimates to hold. We now apply the regularity lemma 

(Lemma 5.4) with parameters ε1, d and ℓ0 to G to obtain a reduced graph R, clusters 

{Va, a ∈ V (R)}, an exceptional set V0, and a spanning subgraph G′ ⊆ G. Inequality (7)

together with Proposition 5.6 implies that

δ(R) ≥
(

1 − 1

χcr(B)
+

η

2

)

|R|. (8)

Since |R| ≥ ℓ0 ≥ n0(μ1, B), we can apply Theorem 6.1 to R to find a B-tiling B covering 

all but at most μ1|R| vertices. We delete all the clusters not contained in some copy of 

B in B from R and add all the vertices lying in these clusters to the exceptional set 

V0. Thus, |V0| ≤ ε1n + μ1n ≤ 2μ1n. From now on, we denote by R the subgraph of the 
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reduced graph induced by all the remaining clusters. Thus B now is a perfect B-tiling of 

R.

Fix an arbitrary copy B ∈ B with partite sets U1, . . . , Uk, and let A :=
⋃

a∈V (B) Va

and Ai :=
⋃

a∈Ui
Va. Since B is a complete multipartite graph, repeatedly applying 

Propositions 5.1 and 5.2 to G′[A], we can find a spanning subgraph G′′ ⊆ G′[A] such 

that for every distinct i, j ∈ [k], (Ai, Aj)G′′ is (ε2, d − ε2)-regular. The idea is that G′′

is a blow-up of the bottlegraph B, where the complete bipartite graphs between vertex 

classes are replaced by (ε2, d − ε2)-regular pairs. We now show that this bottlegraph-like 

structure will ensure that G′′ contains an almost perfect H-tiling. Then repeating this 

process for every B ∈ B will ensure the desired almost perfect H-tiling in G.

Let α := 1/(2k). By Lemma 6.2, there exist sets Si ⊆ Ai, and a permutation σ of 

[k] such that |Si| ≥ α|Ai|, and Si < Sj whenever σ(i) < σ(j). Moreover, by the slicing 

lemma (Lemma 5.3), we have that each (Si, Sj)G′′ is (ε, d − ε)-regular. Now we apply 

the key lemma (Lemma 5.7) on G′′[∪Si], and find a blown-up copy B1(t) of B, where 

|B1(t) ∩ Si| = |Ui|t for every i and t is a fixed integer given by the definition of the 

bottlegraph. Note that by the choice of the Si, B1 naturally has an interval ordering 

with respect to the permutation σ, and therefore B1(t) has a perfect H-tiling. After 

that, we can delete V (B1(t)) from A (and therefore from each Ai); crucially after this 

deletion, the ratio |Ai|/|Aj | amongst all pairs of classes Ai, Aj remains the same as 

before. Further, still for every distinct i, j ∈ [k], (Ai, Aj)G′′ is (2ε2, d − 2ε2)-regular.

These properties allow us to repeatedly apply this argument, thereby obtaining an 

H-tiling in G[A] covering all but at most μ2|A| vertices. More precisely, suppose we have 

subsets A′
i ⊆ Ai for all i ∈ [k] where: (i) |A′

i| ≥ μ2|Ai| for all i ∈ [k]; (ii) |A′
i|/|A′

j | =
|Ai|/|Aj | for all i, j ∈ [k]. Then by the slicing lemma, and as 2ε2/μ2 ≪ √

ε2 and ε2 ≪ d, 

we have that (A′
i, A

′
j)G′′ is an (

√
ε2, d/2)-regular pair for all distinct i, j ∈ [k]. Thus, we 

can repeatedly apply the argument in the paragraph above (now to the A′
i rather than 

the Ai), whilst still retaining property (ii) and terminating the process when we obtain 

subsets A′
i that no longer satisfy property (i). Notice that by (ii), as soon as (i) is no 

longer satisfied for some i ∈ [k], in fact |A′
i| < μ2|Ai| for all i ∈ [k]. Thus, this process 

will result in an H-tiling in G[A] covering all but at most μ2|A| vertices.

Finally, simply repeat this process for all copies of B in B; we obtain an H-tiling of 

G covering all but at most (2μ1 + μ2)n ≤ ηn vertices. �

7. Proof of the absorbing theorems

To prove Theorems 4.1 and 4.6, we make use of the following, now standard, lemma.

Lemma 7.1. Let h, s ∈ N and ξ > 0. Suppose that H is an ordered hypergraph on h

vertices. Then there exists an n0 ∈ N such that the following holds. Suppose that G is 

an ordered hypergraph on n ≥ n0 vertices so that, for any x, y ∈ V (G), there are at least 

ξnsh−1 (sh −1)-sets X ⊆ V (G) such that both G[X ∪{x}] and G[X ∪{y}] contain perfect 

H-tilings. Then V (G) contains a set M so that
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• |M | ≤ (ξ/2)hn/4;

• M is an H-absorbing set for any W ⊆ V (G) \ M such that |W | ∈ hN and |W | ≤
(ξ/2)2hn/(32s2h3).

Lemma 7.1 was proven in the case when G is unordered by Lo and Markström [23, 

Lemma 1.1]. However, the proof in the ordered setting is identical (so we do not provide 

a proof here). In particular, the original proof requires nowhere that the graphs are 

unordered.

7.1. Proof of Theorem 4.1

To prove Theorem 4.1 we must show that the hypothesis of Lemma 7.1 is satisfied. 

Define B[n](x, z) as the set [n] ∩ [x − z, x + z]. The following lemma provides a step in 

that direction.

Lemma 7.2. Let H be an h-vertex ordered graph and let 0 < η ≪ 1/h. Then there exists 

an n0 ∈ N and ρ, γ > 0 where 1/n0 ≪ ρ ≪ γ ≪ η and so that the following holds. 

Suppose that G is an ordered graph with vertex set [n] where n ≥ n0 and where

δ(G) ≥
(

1 − 1

χ<(H)
+ η

)

n.

Given any x ∈ [n], there are at least (1 − γ)|B[n](x, ηn/16)| elements y ∈ [n] so that

• y ∈ B[n](x, ηn/16);

• there are at least ρnh−1 (h − 1)-sets X ⊆ V (G) such that both G[X ∪ {x}] and 

G[X ∪ {y}] contain spanning copies of H.

Proof. Choose 0 < ρ ≪ 1/ℓ0 ≪ ε ≪ γ ≪ d ≪ η ≪ 1/h where ℓ0 ∈ N, and let n be 

sufficiently large. Let G be as in the statement of the lemma. Write r := χ<(H).

First of all, clearly there is a partition W1, . . . , Wt of [n] where

(i) t := ⌊8/η⌋;

(ii) |Wi| = ⌊ n
t ⌋ or ⌈ n

t ⌉ for all i ∈ [t];

(iii) Wi < Wj for every 1 ≤ i < j ≤ t;

(iv) there is some i∗ ∈ [t − 1] so that B[n](x, ηn/16) ⊆ Wi∗ ∪ Wi∗+1.

Note that (iii) implies that each of the Wis is an interval in [n].

Define G1 := G[W1, W2, . . . , Wt]; that is we have deleted all edges within each G[Wi]. 

Hence,

δ(G1) ≥
(

1 − 1

r
+

2η

3

)

n. (9)
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Apply Lemma 5.5 to G1 with parameters ε, d, t, ℓ0 to obtain a pure graph G′
1 and 

reduced graph R1 of G1, and a partition W 0
i , W 1

i , . . . , W ℓ
i of Wi for each i ∈ [t]. Crucially, 

we have defined G1 so that if W j1

i1
W j2

i2
∈ E(R1) then W j1

i1
< W j2

i2
or W j2

i2
< W j1

i1
. 

Inequality (9) together with Proposition 5.6 implies that

δ(R1) ≥ (1 − 1/r + η/2)|R1|. (10)

Now let R∗
1 be the induced subgraph of R1 obtained by deleting all W j

i∗+1. Thus, we 

have deleted precisely a (1/t)th proportion of V (R1) to obtain R∗
1. Therefore, (10) and 

(i) imply that

δ(R∗
1) ≥ (1 − 1/r + η/4)|R∗

1|. (11)

Write NR∗

1
(x) := {W j

i ∈ V (R∗
1) : dG1

(x, W j
i ) ≥ η|W j

i |/4}. The minimum degree condi-

tion on G1 ensures that

|NR∗

1
(x)| ≥ (1 − 1/r + η/4)|R∗

1|. (12)

Fix an arbitrary cluster W j∗

i∗ for some j∗ ∈ [ℓ]. Combining (11) and (12) ensures we 

can greedily choose clusters W j1

i1
, . . . , W

jr−1

ir−1
so that:

(a) W j1

i1
, . . . , W

jr−1

ir−1
together with W j∗

i∗ form a copy of Kr in R∗
1;

(b) W j1

i1
, . . . , W

jr−1

ir−1
∈ NR∗

1
(x);

(c) There is some z∗ ∈ {0, . . . , r − 1} so that

W j1

i1
< · · · < W jz∗

iz∗
< (W j∗

i∗ ∪ {x}) < W
jz∗+1

iz∗+1
< · · · < W

jr−1

ir−1
.

In particular, (c) is ensured by the choice of R∗
1 and (iv).

By the slicing lemma (Lemma 5.3) and the fact that W jk

ik
∈ NR∗

1
(x) for every k ∈

[r − 1], the pair (W j∗

i∗ , NG1
(x) ∩ W jk

ik
)G′

1
is (ε1/2, d/2)-regular. By the definition of 

(ε1/2, d/2)-regularity, all but at most rε1/2|W j∗

i∗ | vertices y ∈ W j∗

i∗ have degree at least 

(d/2 − ε1/2)|NG1
(x) ∩ W jk

ik
| ≥ dη|W jk

ik
|/12 into NG1

(x) ∩ W jk

ik
in G1 for every k ∈ [r − 1]. 

Fix such a vertex y. Define

W ′
k := NG1

(x) ∩ W jk

ik
∩ NG1

(y)

for each k ∈ [r − 1], and note that |W ′
k| ≥ dη|W jk

ik
|/12. Given any i �= j ∈ [r − 1], 

Lemma 5.3 implies that each pair (W ′
i , W ′

j)G′

1
and (W ′

i , W j∗

i∗ )G′

1
are (ε1/4, d/4)-regular. 

Recalling that χ<(H) = r, property (c) above together with Lemma 5.7 implies that 

there are at least ρnh−1 (h − 1)-sets X ⊆ W j∗

i∗ ∪ ⋃

W ′
k such that both G[X ∪ {x}] and 

G[X ∪ {y}] span copies of H.



194 J. Balogh et al. / Journal of Combinatorial Theory, Series B 155 (2022) 171–201

For each choice of the cluster W j∗

i∗ , there were at most rε1/2|W j∗

i∗ | ‘bad’ selections for 

y ∈ W j∗

i∗ . Since |W 0
i∗ | ≤ εn/t this implies that for all but at most (rε1/2 +ε)|Wi∗ | vertices 

y ∈ Wi∗ , there are at least ρnh−1 (h − 1)-sets X ⊆ V (G) such that both G[X ∪ {x}] and 

G[X ∪ {y}] span copies of H.

One can argue analogously (now considering the induced subgraph R∗∗
1 of R1 obtained 

by deleting all W j
i∗) to conclude the following: for all but at most (rε1/2 + ε)|Wi∗+1|

vertices y ∈ Wi∗+1, there are at least ρnh−1 (h − 1)-sets X ⊆ V (G) such that both 

G[X ∪ {x}] and G[X ∪ {y}] span copies of H.

Thus, (iv) above together with the fact that |Wi∗ |, |Wi∗+1| ≤ 3|B[n](x, ηn/16)| and 

ε ≪ γ implies that the conclusion of the lemma holds. �

With Lemma 7.2 to hand, we can now prove the following result. Note that Lemma 7.3

together with Lemma 7.1 immediately implies Theorem 4.1. Indeed, applying Lemma 7.3

ensures the hypothesis of Lemma 7.1 holds, and then the latter result yields the desired 

absorbing set Abs.

Lemma 7.3. Let H be an h-vertex ordered graph and 0 < η ≪ 1/h. Then there exists 

an n0 ∈ N and ξ > 0 where 1/n0 ≪ ξ ≪ η ≪ 1/h so that the following holds. Set 

s := ⌈32/η⌉. Suppose that G is an ordered graph with vertex set [n] where n ≥ n0 and 

where

δ(G) ≥
(

1 − 1

χ<(H)
+ η

)

n.

Given any x, y ∈ [n], there are at least ξnsh−1 (sh − 1)-sets X ⊆ V (G) such that both 

G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings.

Proof. Choose ξ so that 0 < ξ ≪ ρ′′ ≪ ρ′ ≪ ρ ≪ γ ≪ η where ρ and γ are as in 

Lemma 7.2. Let G be as in the statement of the lemma.

The idea for the proof is straightforward: we first prove the result for every x, y very 

close together except that instead of having s = ⌈32/η⌉ we have s = 1 (call this Step 1). 

Then for x, y slightly further apart, we have many choices of z ‘in the middle’ of x and 

y. Then applying Step 1 to both x, z and y, z (and ‘gluing’ the structures between x and 

z, and z and y together) we conclude that the lemma holds for such x, y except that now 

s = 2. Repeating this process we deduce that for x and y of increasing distance, one can 

conclude that the lemma holds for such x, y, but at the expense of increasing s. From 

this it is easy to deduce that the lemma holds for all x, y ∈ [n] with s := ⌈32/η⌉.

First suppose x, y ∈ [n] and |x − y| ≤ ηn/16. Then by Lemma 7.2 there are at least 

ηn/20 vertices z in B[n](x, ηn/16) ∩ B[n](y, ηn/16) for which

• there are at least ρnh−1 (h − 1)-sets X ⊆ V (G) such that both G[X ∪ {x}] and 

G[X ∪ {z}] span copies of H;
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• there are at least ρnh−1 (h − 1)-sets Y ⊆ V (G) such that both G[Y ∪ {y}] and 

G[Y ∪ {z}] span copies of H.

Choose z, X and Y to be disjoint; there are at least ηρ2n2h−1/(20(2h −1)!) −O(n2h−2) >

ρ′n2h−1 choices for the set S := {z} ∪ X ∪ Y . Notice that each such set S is chosen so 

that both G[S ∪ {x}] and G[S ∪ {y}] contain perfect H-tilings.

Next, we assume |x − y| ≤ ηn/9. There are at least ηn/9 − 2(ηn/9 − η/16) = ηn/72

vertices z such that

|x − z|, |y − z| ≤ ηn/16,

and for each such choice of z,

• there are at least ρ′n2h−1 (2h − 1)-sets X ⊆ V (G) such that both G[X ∪ {x}] and 

G[X ∪ {z}] contain perfect H-tilings;

• there are at least ρ′n2h−1 (2h − 1)-sets Y ⊆ V (G) such that both G[Y ∪ {y}] and 

G[Y ∪ {z}] contain perfect H-tilings.

Indeed, the first bullet point is obtained by applying the conclusion of the last paragraph 

with z playing the role of y; the last bullet point is obtained by applying the conclusion 

of the last paragraph with z playing the role of x. Similarly as before, choose disjoint 

z, X, Y ; there are at least ρ′′n4h−1 choices for the set S := {z} ∪ X ∪ Y , for which both 

G[S ∪ {x}] and G[S ∪ {y}] contain perfect H-tilings.

More generally, for any x, y ∈ [n], by repeated iterations of the above argument we 

obtain some t ≤ s such that there are at least ξ1/2nth−1 (th − 1)-sets X ′ ⊆ V (G) such 

that both G[X ′ ∪{x}] and G[X ′ ∪{y}] contain perfect H-tilings. For each such set X ′ we 

have that G \ X ′ contains more than ρnh/2 copies of H. Add s − t such disjoint copies of 

H to obtain from X ′ a set X. Then X is as desired and there are at least ξnsh−1 choices 

for X. �

7.2. Proof of Theorem 4.6

To prove Theorem 4.6, we need the following two lemmas to verify the hypothesis of 

Lemma 7.1.

Lemma 7.4. Let H be an h-vertex ordered graph with χ<(H) = 2, which satisfies the 

following properties:

(i) 1, ⌈h/2⌉, h are isolated vertices;

(ii) all edges of H are between the intervals A := [2, ⌈h/2⌉ −1] and B := [⌈h/2⌉ +1, h −1].
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Let 0 < η < 1. Then there exists an n0 ∈ N and ξ > 0 where 1/n0 ≪ ξ ≪ η, 1/h so that 

the following holds. Suppose that G is an ordered graph with vertex set [n] where n ≥ n0

and where

δ(G) ≥ ηn. (13)

Given any x, y ∈ [n], there are at least ξnh−1 (h − 1)-sets X ⊆ V (G) such that both 

G[X ∪ {x}] and G[X ∪ {y}] span copies of H.

Proof. Let H0 be a complete bipartite ordered graph with parts S0 < L0, where |S0| =
|A| + 1 and |L0| = |B| + 1. For a copy of H0 ⊆ G and a vertex v ∈ V (G) \ V (H0), we 

say H0 is good for v if one of the following holds: (a) v < S0 < L0; (b) S0 < v < L0; (c) 

S0 < L0 < v. By the assumption on H, if H0 is good for v, then G[V (H0) ∪ v] contains 

a spanning copy of H. Therefore, it is sufficient to find ξnh−1 copies of H0 in G which 

are good for both x and y.

Without loss of generality we assume x < y. Let V1 := {v ∈ [n] | v < x}, V2 := {v ∈
[n] | x < v < y}, and V3 := {v ∈ [n] | v > y}. By (13) and the pigeonhole principle, 

there exist 1 ≤ i ≤ j ≤ 3 such that e(G[Vi, Vj ]) ≥ ηn2/13. A standard application of 

the regularity method shows that there are at least ξnh−1 copies of H0 in G[Vi, Vj ]. By 

the construction of the Vis, each such copy of H0 is good for both x and y, and this 

completes the proof. �

Recall that s(H) is the smallest vertex in H that is adjacent to h, if h is not isolated.

Lemma 7.5. Let H be an h-vertex ordered graph with χ<(H) = 2, which satisfies the 

following properties:

(i) 1 and ⌈h/2⌉ are isolated vertices, while h is not isolated;

(ii) all edges of H are between the intervals [2, ⌈h/2⌉ − 1] and [⌈h/2⌉ + 1, h];

(iii) 1 ≤ s(H) < ⌈h/2⌉ and [s(H), h − 1] is an independent set.

Let 0 < η ≪ 1/h. Then there exists an n0 ∈ N and ξ > 0 where 1/n0 ≪ ξ ≪ η ≪ 1/h so 

that the following holds. Set s := 2(⌈h/2⌉ − s(H)). Suppose that G is an ordered graph 

with vertex set [n] where n ≥ n0 and

δ(G) ≥ ηn. (14)

For every x, y ∈ [n], there are at least ξnsh−1 (sh − 1)-sets X ⊆ V (G) such that both 

G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings.

Proof. Choose 0 < ξ ≪ ξ1, ξ2 ≪ ξ3 ≪ ε′ ≪ ε ≪ d ≪ d′ ≪ η ≪ 1/h, and without loss of 

generality we always assume x < y. Let A := [2, s(H) − 1], B := [s(H), ⌈h/2⌉ − 1], and 

C := [⌈h/2⌉ +1, h −1]. We also write a := |A|, b := |B| and c := |C|, then h = a +b +c +3. 
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Note that A and B ∪C are independent sets of H, and every edge of H is either between 

intervals A and C, or between B and h.

Claim 7.6. For x, y ≤ (1 − η/3)n, there are at least ξ1nh−1 (h − 1)-sets X1 ⊆ V (G) such 

that both G[X1 ∪ {x}] and G[X1 ∪ {y}] span copies of H.

Proof. Let H1 be a complete bipartite ordered graph with parts S1 < L1, where |S1| =
a + b + 1 and |L1| = c + 1. For a copy of H1 ⊆ G and a vertex v ∈ V (G) \ V (H1), we say 

H1 is good for v if either v < S1 < L1, or S1 < v < L1. Note that G[V (H1) ∪ v] contains 

a spanning copy of H, if H1 is good for v. Now let V1 := {v ∈ [n] | v < x}, V2 := {v ∈
[n] | x < v < y}, V3 := {v ∈ [n] | y < v ≤ (1 − η/3)n}, and V0 = [(1 − η/3)n + 1, n]. 

By (14) and the pigeonhole principle, there exists i ∈ [3] such that

e(G[Vi, V0]) ≥ 1

3

(ηn

3

) (

ηn − ηn

3

)

≥ 2η2n2

27
. (15)

Notice that for any choice of i ∈ [3], every copy of H1 in G[Vi, V0] is good for both x and 

y. So, as in the proof of Lemma 7.4, (15) implies that there are ξ1nh−1 copies of H1 in 

G[Vi, V0] which are good for both x and y, as desired. �

Claim 7.7. For x ≤ ηn/3 and y ≥ (1 − η/3)n, there are at least ξ2nbh−1 (bh − 1)-sets 

X2 ⊆ V (G) such that both G[X2 ∪ {x}] and G[X2 ∪ {y}] contain perfect H-tilings.

Proof. Let M := [x + 1, y − 1]. By (14), we have |N(y) ∩ M | ≥ ηn − 2ηn/3 = ηn/3. Let 

N be a subset of N(y) ∩ M of size ηn/6; then

e(G[N, M \ N ]) ≥
(ηn

6

)

(

ηn − 2ηn

3
− ηn

6

)

=
η2n2

36
.

A standard application of the regularity method shows that there exists an (ε′, d′)-regular 

pair (P ′, Q′) in G, where P ′ ⊆ N ; Q′ ⊆ M \ N ; |P ′|, |Q′| ≥ 2ξ3n. By Lemma 6.2 and 

Lemma 5.3, there exist sets P ⊆ P ′ and Q ⊆ Q′ such that: |P |, |Q| ≥ ξ3n; (P, Q) is an 

(ε, d)-regular pair in G; either P < Q or Q < P .

Case 1: P < Q.

Let H2 be a complete bipartite ordered graph with parts S2 < L2, where |S2| = a + b +1

and |L2| = c +1. By Lemma 5.7, there are at least ξ2nh−1 copies of H2 in G[P, Q], and for 

every such H2, we have x < S2 < L2 < y and S2 ⊆ P ⊆ N ⊆ N(y). Recall that each edge 

of H lies either between A and C, or between B and h. Therefore, G[V (H2) ∪{x}] contains 

a spanning copy of H, as H2 is a complete bipartite graph. Similarly, G[V (H2) ∪ {y}]

also contains a spanning copy of H, as H2 is a complete bipartite graph and S2 ⊆ N(y). 

Hence, there are at least ξ2nh−1 (h − 1)-sets X ′ ⊆ V (G) such that both G[X ′ ∪ {x}] and 

G[X ′ ∪ {y}] contain perfect H-tilings. By adding b − 1 additional disjoint copies of H
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(which can be easily found in G[P, Q] as (P, Q) is an (ε, d)-regular pair in G), one can 

immediately see that Claim 7.7 holds in this case.

Case 2: Q < P .

Let F1 be the complete bipartite ordered graph with parts S′
1 < L′

1, where |S′
1| = a +b +1

and |L′
1| = c +2. Let F2 be a complete bipartite ordered graph with parts S′

2 < L′
2, where 

|S′
2| = a + b + 2 and |L′

2| = c + 1. Note that both F1 and F2 contain a spanning copy of 

H.

Let F3 be the complete bipartite ordered graph with parts S′
3 < L′

3, where |S′
3| = a +b

and |L′
3| = c + 2. We say a copy of F3 is good for x if x < S′

3 < L′
3. Note that 

G[V (F3) ∪ {x}] contains a spanning copy of H, if F3 is good for x. Lastly, let F4

be the complete bipartite ordered graph with parts S′
4 < L′

4, where |S′
4| = a + 1

and |L′
4| = b + c + 1. We say a copy of F4 is good for y if S′

4 < L′
4 < y and 

L′
4 ⊆ N(y). Observe that G[V (F4) ∪ {y}] contains a spanning copy of H, if F4 is good 

for y.

Let H3 be the complete bipartite ordered graph with parts S3 < L3, where 

|S3| = b(a +b +1) −1 and L3 = b(c +2). By Lemma 5.7, there are at least ξ2nbh−1 copies 

of H3 in G[P, Q], and for every such H3, we have x < S3 < L3 < y and L3 ⊆ P ⊆ N(y). 

Note that such H3 can be decomposed into b − 1 copies of F1 and one good copy of F3. 

This indicates that G[V (H3) ∪ {x}] contains a perfect H-tiling. Similarly, such H3 can 

also be decomposed into b − 1 copies of F2 and one good copy of F4, which indicates 

that G[V (H3) ∪ {y}] contains a perfect H-tiling. �

For every x, y ≤ (1 − η/3)n or x ≤ ηn/3 and y ≥ (1 − η/3)n, simply adding enough 

disjoint copies of H to the sets obtained from Claims 7.6 or 7.7 completes the proof. For 

every x ≥ ηn/3 and y ≥ (1 − η/3)n, there are at least ηn/3 vertices z (i.e. the vertices in 

[ηn/3]) such that: (i) {y, z} satisfies the condition of Claim 7.7; (ii) {x, z} either satisfies 

the condition of Claim 7.6 or Claim 7.7. Applying Claims 7.6 and 7.7 on pairs {x, z} and 

{y, z} produces many disjoint copies of Xx,z
1 ∪Xy,z

2 (or Xx,z
2 ∪Xy,z

2 ), where Xx,z
1 refers to 

(h − 1)-sets obtained from Claim 7.6 for {x, z}, and similarly for Xx,z
2 and Xy,z

2 . Finally, 

adding enough extra disjoint copies of H to z ∪Xx,z
1 ∪Xy,z

2 (or z ∪Xx,z
2 ∪Xy,z

2 ), we show 

that for every x, y ∈ [n], there are at least ξn2bh−1 = ξnsh−1 (sh − 1)-sets X ⊆ V (G)

such that both G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings. �

Proof of Theorem 4.6. Since H has property A, it satisfies the following conditions:

• all edges of H are between the intervals [1, ⌈h/2⌉ − 1] and [⌊h/2⌋ + 2, h].

• if h is even, then the vertices h/2, h/2 + 1 are isolated; if h is odd, then the vertex 

(h + 1)/2 is isolated.

Furthermore, since H does not have property B, at least one of 1 and h must be isolated 

in H.
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We first assume that both 1, h are isolated, then by Definition 1.8 neither of them 

has Property C. Note that H satisfies the assumptions in Lemma 7.4. Together with 

Lemma 7.1 (applied with s = 1), this immediately implies Theorem 4.6.

Now without loss of generality, we assume that 1 is isolated in H but h is not. Since 

h does not have Property C, by Definition 1.8, [s(H), h − 1] is an independent set in H. 

Similarly, H satisfies the assumptions in Lemma 7.5, and this, together with Lemma 7.1, 

completes the proof. �

8. Concluding remarks

In this paper we have introduced a general framework for the perfect H-tiling problem 

in ordered graphs. This approach can be summarized as follows:

Step 1: Find a candidate extremal example; an n-vertex ordered graph G with minimum 

degree δ(G) = αn − O(1) without a perfect H-tiling.

Step 2: Find a bottlegraph B assigned to H with α ≥ 1 − 1/χcr(B).

Step 3: If α ≥ 1 − 1/χ<(H) then Theorems 4.1 and 4.3 now combine to yield the 

asymptotically exact threshold. Otherwise, one seeks an improved absorbing 

theorem, using structural information about H (á la Theorem 4.6).

Despite introducing this framework, we suspect determining the perfect H-tiling thresh-

old for an arbitrary H will be challenging in the sense that there could be a range of 

different extremal examples and optimal bottlegraphs, depending on the precise structure 

of H.

On the other hand, in the case when H is an h-vertex ordered graph and 12 ∈ E(H)

or (h − 1)h ∈ E(H), it is actually straightforward to deduce from Theorem 1.1 the 

minimum degree threshold for forcing a perfect H-tiling.

Proposition 8.1. Let n, h ∈ N such that h|n. Suppose H is an h-vertex ordered graph. 

If G is an n-vertex ordered graph with δ(G) ≥ (1 − 1/h)n, then G contains a perfect 

H-tiling.

Moreover, suppose 12 ∈ E(H) or (h − 1)h ∈ E(H). Then there are n-vertex ordered 

graphs with δ(G) ≥ (1 − 1/h)n − 1 that do not contain a perfect H-tiling.

Proof. Consider the unordered underlying graph G′ of any ordered n-vertex graph G

with δ(G) ≥ (1 − 1/h)n. Theorem 1.1 implies that G′ contains a perfect Kh-tiling. Since 

any ordered copy of Kh contains H, this ensures G contains a perfect H-tiling.

For the moreover part, notice such H satisfy α∗(H) = 1/h. The result then follows 

directly from Proposition 1.5. �

In [16], Komlós determined the minimum degree threshold for an (unordered) graph 

to contain an H-tiling covering a given proportion of the vertices; it would be interesting 

to obtain an ordered analogue of this result.
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Question 8.2. Let s ∈ (0, 1) and H be an ordered graph. What is the minimum degree 

threshold that ensures an ordered graph G contains an H-tiling covering at least an sth 

proportion of its vertices?

There has also been interest in Ramsey and Turán properties of edge ordered graphs

(see e.g. [3,28]); it would be interesting to study the perfect H-tiling problem in this 

setting also.

Other than tiling problems, there are many natural embedding problems to consider 

for ordered graphs. We now raise a couple of such problems. Here by an ordered cycle we 

just mean that it is a copy of some cycle C where V (C) has been assigned an ordering.

Question 8.3. Let k ≥ 2 be a fixed integer and let s ∈ (0, 1). What is the minimum degree 

threshold that ensures an ordered n-vertex graph G contains a copy of some ordered cycle 

C of length at least sn and with χ<(C) = k?

The following question can be viewed as raising an ordered version of the well-known 

El-Zahar conjecture [6].

Question 8.4. Let k, t ≥ 2 be fixed integers and let C = {C1, . . . , Ct} be a fixed family 

of t (not necessarily distinct) ordered cycles where χ<(Ci) = k for each i ∈ [t]. Set 

ni := |Ci|. What is the minimum degree threshold that ensures an ordered graph G on 

n := n1 + · · · + nt vertices contains vertex-disjoint copies of each cycle C1, . . . , Ct that 

together cover the vertex set of G?

We suspect our approaches to regularity and absorbing will be useful for attacking this 

problem for large n. Variants of Question 8.4 (e.g., when C contains cycles of different 

interval chromatic number) would also be interesting to investigate.

Remark. Since this paper was submitted, the third author and Freschi [9] have asymp-

totically determined δ<(H, n) for all ordered graphs H with χ<(H) ≥ 3. Their approach 

both relies on tools from this paper, as well as introducing new ideas. They have also 

given an asymptotic solution to Question 8.2. Further, Hurley, Joos and Lang [15] have 

proven some very general tiling results, including a generalisation of the Kühn–Osthus 

tiling theorem that allows tiles to be different and to have size that grows with the size of 

the host graph. As pointed out in [15], it would be interesting to seek analogous results 

in the setting of ordered graphs too.
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