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Abstract

This paper approaches, using structural complexity theory, the question of whether there is a
chasm between knowing an object exists and getting one’s hands on the object or its properties. In
particular, we study the nontransparency of so-called backbones. A backbone of a boolean formula
F is a collection S of its variables for which there is a unique partial assignment ag such that Flag]
is satisfiable [22, 29]. We show that, under the widely believed assumption that integer factoring
is hard, there exist sets of boolean formulas that have obvious, nontrivial backbones yet finding
the values, ag, of those backbones is intractable. We also show that, under the same assumption,
there exist sets of boolean formulas that obviously have large backbones yet producing such a
backbone S is intractable. Furthermore, we show that if integer factoring is not merely worst-case
hard but is frequently hard, as is widely believed, then the frequency of hardness in our two results
is not too much less than that frequency. These results hold more generally, namely, in the settings
where, respectively, one’s assumption is that P # NP N coNP or that some problem in NP N coNP
is frequently hard.
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1. Introduction

An important concept in the study of the SAT problem is the notion of backbones. The term
was first used by Monasson et al. [22], and the following formal definition was provided by Williams,
Gomes, and Selman [29].

Definition 1.1. Let F be a boolean formula. A collection S of the variables of F' is said to be a
backbone if there is a unique partial assignment ag such that Flag] is satisfiable.

In that definition, ag assigns a value (true or false) to each variable in S, and Flag] is a
shorthand meaning F' except with each variable in S assigned the value specified for it in ag. A
backbone S is nontrivial if S # (). The size of a backbone S is the number of variables in S. For a
backbone S (for formula F'), we say that ag is the value of the backbone S.

For example, every satisfiable formula has the trivial backbone S = (). The formula x; A T3
has four backbones, 0, {z1}, {z2}, and {z1,x2}, with respectively the values (listing values as
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bit-vectors giving the assignments in the lexicographical order of the names of the variables in 5) e,
1, 0, and 10. The formula x; V T3 has no nontrivial backbones. (Every formula that has a backbone
will have a maximum backbone—a backbone that every other backbone is a subset of. This is clear
since if S and S5 are backbones of F, then so is S; U S3. Backbone variables have been called
“frozen variables,” because each of them is the same over all satisfying assignments.)

As Williams, Gomes, and Selman [29] note, “backbone variables are useful in studying the
properties of the solution space of a... problem.”3

And that surely is so. But it is natural to hope to go beyond that and suspect that if formulas
have backbones, we can use those to help SAT solvers. After all, if one is seeking to get one’s hands
on a satisfying assignment of an F' that has a backbone, one need but substitute in the value of the
backbone to have put all its variables to bed as to one’s search, and thus to “only” have all the
other variables to worry about.

The goal of the present paper is to understand, at least in a theoretical sense, the difficulty
of—the potential obstacles to doing—what we just suggested. We will argue that even for cases
when one can quickly (i.e., in polynomial time) recognize that a formula has at least one nontrivial
backbone, it can be intractable to find one such backbone. And we will argue that even for cases
when one can quickly (i.e., in polynomial time) find a large, nontrivial backbone, it can be intractable
to find the value of that backbone. In particular, we will show that if integer factoring is hard, then
both the just-made claims hold. Integer factoring is widely believed to be hard; indeed, if it were in
polynomial time, RSA (the Rivest-Shamir-Adleman cryptosystem) itself would fall.

In fact, integer factoring is even believed to be hard on average. And we will be inspired by that
to go beyond the strength of the results mentioned above. Regarding our results mentioned above,
one might worry that the “intractability” might be very infrequent, i.e., merely a rare, worst-case
behavior. But we will argue that if integer factoring—or indeed any problem in NP N coNP—is
frequently hard, then the bad behavior types we mention above happen “almost” as often: If the
frequency of hardness of integer factoring is d(n) for strings up to length n, then for some € > 0 the
frequency of hardness of our problems is d(n). (We are not defining here what is being counted by
“d(-),” but that will be covered rigorously in Section 2.2. Very loosely put, we are speaking, within
a framework such as “infinitely often” or “almost everywhere” as to which lengths n this holds for,
about how many errors efficient heuristic algorithms inherently must make.)

None of this means that backbones are not an excellent, important concept. Rather, this is
saying—proving, in fact, assuming that integer factoring is as hard as is generally believed—that
although the definition of backbone is merely about a backbone existing, one needs to be aware
that going from a backbone existing to finding a backbone, and going from having a backbone to
knowing its value, can be computationally expensive challenges.

The following section presents our results, and then the section after that, which we have
placed after the results section so that the reader is familiar with the results and proofs before
the related-work discussion, covers the related work. After that is the conclusion and a technical
appendix.

3We mention in passing that backbones also are very interesting for problems even harder than SAT, such as model
counting (see Gomes, Sabharwal, and Selman, [8])—i.e., #SAT [28]: counting the number of satisfying assignments of
a propositional boolean formula—especially given the currently huge runtime differences between SAT-solvers and
model counters. After all, a backbone S for a formula means all the solutions that one is seeking to count are trapped
within some subspace. That is, if a formula F has k variables, we can view the assignments to its variables as the
points on a k-dimensional hypercube H. If that formula F' has a backbone S, then all of F’s solutions fall within the
(k — |IS]])-dimensional subhypercube of H induced by the assignment (we here use the notation of Definition 1.1) ag.
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2. Results

Section 2.1 will formulate our results without focusing on density. Then in Section 2.2 we will
discuss how the frequency of hardness of sets of the type we have discussed is related to that of the
sets in NP N coNP having the highest frequencies of hardness.

2.1. Core results

We first look at whether there can be simple sets of formulas for which one can easily com-
pute/obtain a nontrivial backbone, yet one cannot easily find the value of that backbone.

Our basic result on this is stated below as Theorem 2.1. In this and most of our results, we
state as our hypothesis not that “integer factoring cannot be done in polynomial time,” but rather
that “P # NP NcoNP.” This in fact makes our claims stronger ones than if they had as their
hypotheses “integer factoring cannot be done in polynomial time,” since it is well-known (because
the decision version of integer factorization is itself in NP N coNP) that “integer factoring cannot
be done in polynomial time” implies “P # NP N coNP.” SAT will, as usual, denote the set of
satisfiable (propositional) boolean formulas. (We do not assume that SAT by definition is restricted
to CNF formulas.)

Theorem 2.1. If P # NP N coNP, then there exists a set A € P, A C SAT, of boolean formulas
such that:

1. There is a polynomial-time computable function f such that (VF € A)[f(F') outputs a nontrivial
backbone of F1.

2. There does not exist any polynomial-time computable function g such that g(F) computes the
value of backbone f(F).

Theorem 2.1 remains true even if one restricts the backbones found by f to be of size 1. We
state that, in a slightly more general form, as follows.

Theorem 2.2. Let k € {1,2,3,...}. If P # NP N coNP, then there exists a set A € P, A C SAT,
of boolean formulas such that:

1. There is a polynomial-time computable function f such that (VF € A)[f(F) outputs a size-k
backbone of F1.

2. There does not exist any polynomial-time computable function g such that g(F) computes the
value of backbone f(F).

We defer the proof of Theorem 2.2 (which itself implies Theorem 2.1) until after the statement
of Theorem 2.3.

Now let us turn to the question of whether, when it is obvious that there is at least one nontrivial
backbone, it can be hard to efficiently produce a nontrivial backbone. The following theorem shows
that, if integer factoring is hard, the answer is yes.

Theorem 2.3. If P # NP N coNP, then there exists a set A € P, A C SAT, of boolean formulas
(each having at least one variable) such that:

1. Fach formula F € A has a backbone whose size is at least 49% of F'’s total number of variables.
2. There does not exist any polynomial-time computable function g such that, on each F € A,
g(F) outputs a backbone whose size is at least 49%—or even at least 2%—of F'’s variables.
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PROOF OF THEOREMS 2.2 AND 2.3. Since they share a proof structure, we will prove Theorems 2.2
and 2.3 hand-in-hand, and in a rather narrative fashion. Each of those theorems starts with the
assumption that P ## NP N coNP. So let B be some set instantiating that, i.e., B € (NP N coNP)—P.
As all students learn when learning that SAT is NP-complete, we can efficiently transform the
question of whether a machine accepts a particular string into a question about whether a certain
boolean formula is satisfiable [3, 17, 20]. The original work that did that did not require (and did
not need to require) that the thus-created boolean formula transparently revealed what machine
and input had been the input to the transformation. But it was soon explicitly noted that one
can easily ensure—in fact, the natural ways one would write the reduction typically tacitly achieve
this—that the formula mapped to transparently reveals the machine and input that were the input
to the transformation; see Galil [7] or our appendix.

Galil’s observation can be summarized in the following strengthened version of the standard
claim regarding the so-called Cook-Karp-Levin Reduction. Here and throughout this paper, as is
standard, for any machine N we will use L(N) to denote the language accepted by machine N,
i.e., the set of strings accepted by machine N. Let Ny, N, ... be a fixed, standard enumeration
of clocked, polynomial-time, nondeterministic Turing machines, and w.l.o.g. assume that N; runs
within time n' + 4 on inputs of length n, and that N; and i are polynomially related in size and
easily obtained from each other (note: by the size of a natural number i we mean the number of
bits in the binary representation of 7). There is a function 7 gucoor (for conciseness, we are writing
Galil-Cook rather than Galil-Cook/Karp/Levin, although this version is closer to the setting of
Karp and Levin than to that of Cook, since Cook used Turing reductions rather than many-one
reductions) such that

1. For each N; and x: z € L(N;) if and only if rgaurcook(Ni, ©) € SAT.

2. There is a polynomial p such that rgair cook(Vi, ) runs within time polynomial (in particular,
with p being the polynomial) in |N;| and |z|* + .

3. There is a polynomial-time function s such that for each N; and x, s(7Gaui-cook(Ni, €)) outputs
the pair (N;, x).

We will be using two separate applications of the r function in our construction. But we need
those two applications to be variable-disjoint. We will need this as otherwise we’d have interference
with some of our claims about sizes of backbones and which variables are fixed and how many
variables we have. These are requirements not present in any previous work that used the r function
of Galil-Cook. We also will want to be able to have some literal names (in particular, literal names
using “z” that will be of the form z, z), Zz, or zz, for all ¢) available to us that we know are not part
of the output of any application of the Galil-Cook r function; we need them as our construction
involves not just two applications of the r function but also some additional variables. We can
accomplish all the special requirements just mentioned as follows. We will, w.l.o.g., assume that
in the output of the Galil-Cook function 7 ggiii-cook(Ni, ), every variable is of the form x; (the

[{3)]

there is not a generic example of a letter, but really means the letter “x” just as “z” earlier really
means the letter “z”), where j itself, when viewed as a pair of positive integers via the standard
fixed correspondence between NT and Nt x NT, has N; as its first component or actually, to be
completely precise, the positive integer corresponding to N; in the standard fixed correspondence
between positive integers and strings. Though not all implementations of the Galil-Cook r function
need have this property (and in fact, none has previously satisfied it as far as we know), we claim
that one can implement a legal Galil-Cook r function in such a way that it has this property yet

still has the property that this r function will have a polynomial-time inversion function s satisfying
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the behavior for s mentioned above. (For those wanting more information on how such a function
T Galil-Cook(Ni, ) can be implemented that has all the properties claimed above, we have included
as a technical appendix, a detailed construction we have built that accomplishes this.)

We now can specify the sets A needed by Theorems 2.2 and 2.3. Recall we have (thanks to the
assumptions of the theorems) fixed a set B € (NP N coNP)—P. B € NP, so let i be a positive integer
such that N; is a machine from the abovementioned standard enumeration such that L(V;) = B.
B € NP, so let j be a positive integer such that N; is a machine from the abovementioned standard
enumeration, such that L(N;) = B. Fix any positive integer k. Then for the case of that fixed
value k, the set A of Theorem 2.2 is as follows:

Az ={(z1 Az2a A A 2k A (T Galit-Cook(Ni, ©) ) )V(ZT AT A -+ - ANZx A (T Gatit-Cook(Nj, 2))) | 2 € X¥F.

One must keep in mind in what follows that, as per the previous paragraph, rgaui-coor NEVEr
outputs literals with names involving subscripted zs or z’s and the outputs of 7 g cook(Ni, ) and
T Galil-Cook(INj, ) share no variable names (since i # j).

Let us argue that A3 ; indeed satisfies the requirements of the A for the “£” case of Theorem 2.2.

A € P: Given a string y whose membership in A we are testing, we make sure y syntactically
matches the form of the elements of A (i.e., elements of A3 ). If it does, we then check that its k
matches our k, and we use s to get decoded pairs (i/,2’) and (j”,2”) from the places in our parsing
of y where we have formulas—call them Fj.; and F;4,—that we are hoping are the outputs of the
r function. That is, if our input parses as

(1 ANz N ANz N (Flep)) V (ZI AT A N2 A (Fright))

then if s(Fep) gives (Ny, @) our decoded pair is (¢, 2"), and Fygns is handled analogously. We also
check to make sure that ' = z2”, 1 = ¢/, and j = j”. If anything mentioned so far fails, then y & A.
Otherwise, we check to make sure that 7gaiicook(Ni, ') = Fiepr and rgaiii-cook(Nj, ') = Fright,
and reject if either equality fails to hold. (Those checks are not superfluous. s by definition has
to correctly invert on strings that are the true outputs of rguicoor, but we did not assume that
s might not output sneaky garbage when given other input values, and since Fj.; and Fgp; are
coming from our arbitrary input y, they could be anything. However, the check we just made
defangs the danger just mentioned.) If we have reached this point, we indeed have determined that
y € A, and for each y € A we will successfully reach this point.

A C SAT: For each z, either + € B or # ¢ B. In the former case (x € B),
T Galil-Cook(Ni, ) € SAT and so the left disjunct of (z1 Aza A -+ A zi A (7 Gatil-Cook(Niy 2))) V
(ZLIAZ N NZ N (T Gatil-Cook(Nj, x))) can be made true using that satisfying assignment and
setting each zy to true. On the other hand, if z ¢ B, then rgqii-cook(INj, ) € SAT and so the whole
formula can be made true using that satisfying assignment and setting each z, to false.

There is a polynomial-time computable function f such that (VF € A)[f(F) outputs
a nontrivial backbone of F|: On input F' € A, f will simply output {z1, 22, ..., 2z}, which is
a nontrivial backbone of F. Why is it a nontrivial backbone? If the x embedded in F' satisfies
x € B, then not only does TGalil—Cook(Ni7$) € SAT hold, but also TGalil—Cook(Nj,x) ¢ SAT must
hold, since otherwise we would have x € B A x € B, an impossibility. So if the x embedded in F
satisfies © € B, then there are satisfying assignments of (21 A 2z A -+ A 2k A (7 Gatit- Cook(Ni, ) ) V
(ZTIAZ A NZg A (T Gatil-Cook(Nj, x))), and every one of them has each z; set to true. Similarly, if
the x embedded in F satisfies z ¢ B, then our long formula has satisfying assignments, and every
one of them has each z; set to false. Thus {z1, 22, ..., 2} indeed is a size-k backbone.
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There does not exist any polynomial-time computable function g such that g(F)
computes the value of backbone f(F'): Suppose by way of contradiction that such a polynomial-
time computable function g does exist. Then we would have that B € P, by the following algorithm.
Let f be the function constructed in the previous paragraph, i.e., the one that outputs {z1, 22, ..., zx }
when I € A. Given z, in polynomial time—g¢ and f are polynomial-time computable, and although
r in general is not since its running time’s polynomial degree varies with its first argument and
so is not uniformly polynomial, 7 here is used only for the first-component values IV; and N; and
under that restriction it indeed is polynomial-time computable—compute

g(f((z1 A za A - Az A Galit-Cook(Nis ©))) V (2T AZ2 A -+ - A2 A (T Gait-Cook(Nj; ©)))))-

This must either tell us that the zys are true in all satisfying assignments, which tells us that it
is the left disjunct that is satisfiable and thus z € B, or it will tell us that the zys are false in all
satisfying assignments, from which we similarly can correctly conclude that x ¢ B. So B € P, yet
we chose B so as to satisfy B € (NP NcoNP) — P. Thus our assumption that such a g exists is
contradicted.

That ends our proof of Theorem 2.2—and so implicitly also of Theorem 2.1, since Theorem 2.1
follows immediately from Theorem 2.2.

Having seen the above proof, the reader will not need a detailed treatment of the proof of
Theorem 2.3. Rather, we describe how to convert the above construction into one that proves
Theorem 2.3. Recall that for the “k” case of Theorem 2.2 our set A was

{(z1 Aza Ao Az A (T Galit-Cook(Nis ) V (ZT A Z2 A -+ A Z A (T Gatit-Cook(Nj, @))) | 2 € X7}

For Theorem 2.3, let us use almost the same set. Except we will make two types of changes.
First, in the above, replace the two occurrences of k each with the smallest positive integer m’
satisfying

m’ 49
numars(r Gait-Cook(Ni, ) + numuvars(r gaiii- cook(Nj, x)) +2m/ ~ 100’

where numuvars counts the number of variables in a formula, e.g., numvars(Z1 A xe AT3) = 2, due to
the variables z1 and xo. Let m henceforward denote that value, i.e., the smallest (positive integer)
m/ that satisfies the above equation. Second, in the right disjunct, change each % to z.

Note that if © € B, then {z1, 29,..., 2} is a backbone whose value is the assignment of true to
each variable, and that contains at least 49% of the variables in the formula that x put into A.
Similarly, if ¢ B, then {z],z),...,2/,} is a backbone whose value is the assignment of false to

each variable, and that contains at least 49% of the variables in the formula that x put into A. It
also is straightforward to see that our thus-created set A belong to P and satisfies A C SAT.

So the only condition of Theorem 2.3 that we still need to show holds is the claim that, for the
just-described A, there does not exist any polynomial-time computable function g such that, on
each F' € A, g(F) outputs a backbone whose size is at least 2% of F’s variables. Suppose by way
of contradiction that such a function g does exist. We claim that would yield a polynomial-time
algorithm for B, contradicting the assumption that B ¢ P. Let us give such a polynomial-time
algorithm. To test whether z € B, in polynomial time we create the formula in A that is put
there by z, and we run our postulated polynomial-time g on that formula, and thus we get a
backbone, call it S, that contains at least 2% of F’s variables. Note that we ourselves do not get
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to choose which large backbone g outputs, so we must be careful as to what we assume about
the output backbone. We in particular certainly cannot assume that g happens to always output
either {z1,29,...,2m} or {z],25,...,2],}. But we don’t need it to. Note that the two backbones
just mentioned are variable-disjoint, and each contains 49% of F’s variables.

Now, there are two cases. One case is that S contains at least one variable of the form z, or zj.
In that case we are done. If it contains at least one variable of the form z; then z € B. Why? If
x € B, then the left-hand disjunct of the formula x puts into A is satisfiable and the right-hand
disjunct is not. From the form of the formula, it is clear that each z, is always true in each satisfying
assignment in this case, yet that for each zj there are satisfying assignments where z; is true and
there are satisfying assignments where z; is false. So if z € B, no 2 can belong to any backbone.

By analogous reasoning, if S' contains at least one variable of the form 2, then x ¢ B. It follows
from this and the above that S cannot possibly contain at least one variable that is a subscripted z
and at least one variable that is a subscripted 2/, since then x would have to simultaneously belong
and not belong to B.

The final case to consider is the one in which S does not contain at least one variable of the
form 2z, or zj. We argue that this case cannot happen. If this were to happen, then every variable
of F other than the variables {z1, 29, ..., zm, 21, 25, ..., 2, } must be part of the backbone, since S
must involve at least 2% of the variables and {z1, 29, ..., 2m, 21, 25, . . ., 2, } comprise at least 98%
of the variables. But that is impossible. We know that the variables used in 7 gaui cook(Ns, ) and
T Galil-Cook(INj, x) are disjoint. So the variables in the one of those two that is not the one that is
satisfiable can and do take on any value in some satisfying assignment, and so cannot be part of any
backbone. The only remaining worry is the case where one of 7 gatii-Cook(Nis ) OF T Gatil-Cook(Nj, )
contains no variables. However, the empty formula is by convention considered illegal, in cases such
as here where the formulas are not considered to be trapped into DNF or CNF. There is a special
convention regarding empty DNF and CNF formulas, but that is not relevant here.

We have thus established Theorem 2.3.

The 49% and 2% used in Theorem 2.3’s statement and proof are not at all magic, but are just
for concreteness. It is immediately clear that our above proof that establishes Theorem 2.3 is in
fact tacitly (namely, if one changes—from the fixed constants we used in that proof—to instead
the more flexible constants below) establishing the more general theorem that we now state as
Theorem 2.4. Theorem 2.3 is the € = 1 special case of Theorem 2.4. Note that the smaller the e the
stronger the claim, and so the fact that Theorem 2.4 speaks only of € < 1 is not a weakness.

Theorem 2.4. For each fized ¢, 0 < € < 1, the following claim holds. If P # NP N coNP, then
there exists a set A € P, A C SAT, of boolean formulas (each having at least one variable) such
that:

1. Each formula F € A has a backbone whose size is at least (50 — €)% of F'’s total number of
variables.

2. There does not exist any polynomial-time computable function g such that, on each F € A,
g(F) outputs a backbone whose size is at least (2€) % of F'’s variables.

2.2. Frequency of hardness

A skeptical person might worry about results of the previous section in the following way.
(Here, |F| will denote the number of bits in the representation of F.) “Just because something
is hard, doesn’t mean it is hard often. For example, consider Theorem 2.3. Perhaps there is a
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polynomial-time function ¢’ that, though it on infinitely many F € A fails to compute the value of
the backbone f(F), has the property that for each F' € A for which it fails it then is correct on the

F
(in lexicographical order) next 2222| | elements of A. In this case, the theorem is indeed true, but it
is a worst-case extreme that doesn’t recognize that in reality the errors may be few and far—very,
very far—between.”

In this section, we address that completely reasonable and important worry. We show that if
even one problem in NP N coNP is frequently hard, then the sets in our previous sections can be
made “almost” as frequently hard, in a sense of “almost” that we will make formal and specific.
Since it is generally believed—for example due to the generally believed typical-case hardness of
integer factoring—that there are sets in NP N coNP that are quite frequently hard, it follows that

F
the 2222' | behavior our skeptic was speculating about cannot happen. Or at least, if that behavior
did happen, then that would imply that every single problem in NP N coNP has polynomial-time
heuristic algorithms that make extraordinarily few errors.

Note that no one currently knows for sure how frequently-hard problems in NP N coNP can be.
But our results are showing that, whatever that frequency is, sets of the sort we’ve been constructing
are hard “almost” as frequently. This can at first seem a bit of a strange notion to get one’s head
around, especially as complexity theory often doesn’t pay much attention to frequency-of-hardness
issues (though such issues in complexity theory can be traced back at least as far as the work
of Schoning [26]). But this actually is analogous to something every computer science researcher
knows well, namely, NP-completeness. No one today knows for sure whether any NP problems are
not in P. But despite that the longstanding NP-completeness framework lets one right now, today,
prove clearly for specific problems that if any NP problem is not in P then that specific problem is
not in P. The results of this section are about an analogous type of argument, except regarding
frequency of hardness.

We now give our frequency-of-hardness version of Theorem 2.1. A claim is said to hold for
almost every n if there exists an ng beyond which the claims always holds, i.e., the claim fails at
most at a finite number of values of n. (In the theorems of this section, n’s universe is the natural
numbers, {0,1,2,...}. And we will defer the proving of this section’s theorems until the end of this
section, where we will argue that the results in effect follow from the constructions of the previous
section.)

Theorem 2.5. If h is any nondecreasing function and for some B € NP N coNP it holds that each
polynomial-time algorithm, viewed as a heuristic algorithm for testing membership in B, for almost
every n (respectively, for infinitely many n) errs on at least h(n) of the strings whose length is at
most n, then there exist an € > 0 and a set A € P, A C SAT, of boolean formulas such that:

1. There is a polynomial-time computable function f such that (VF € A)[f(F') outputs a nontrivial
backbone of F1.

2. Each polynomial-time computable function g will err (i.e., will fail to compute the value of
backbone f(F')), for almost every n (respectively, for infinitely many n), on at least h(n®) of
the strings in A of length at most n.

The precisely analogous result holds for Theorem 2.2. The analogous results also hold for
Theorems 2.3 and 2.4, and to be explicit, we state that for Theorem 2.3 as the following theorem
(and from this the analogue for Theorem 2.4 will be implicitly clear).



Theorem 2.6. If h is any nondecreasing function and for some B € NP N coNP it holds that each
polynomial-time algorithm, viewed as a heuristic algorithm for testing membership in B, for almost
every n (respectively, for infinitely many n) errs on at least h(n) of the strings whose length is at
most n, then there exist an € > 0 and a set A € P, A C SAT, of boolean formulas such that:

1. Each formula F' € A has a backbone whose size is at least /9% of F'’s total number of variables.

2. Each polynomial-time computable function g will err (i.e., will fail to compute a set of size
at least 2% of F’s variables that is a backbone of F), for almost every n (respectively, for
infinitely many n), on at least h(n®) of the strings in A of length at most n.

What the above theorems say, looking at the contrapositives to the above results, is that if any
of our above cases have polynomial-time heuristic algorithms that don’t make errors too frequently,
then every single set in NP N coNP (even those related to integer factoring) has polynomial-time
heuristic algorithms that don’t make errors too frequently.

To make the meaning of the above results clearer, and to be completely open with our readers,
it is important to have a frank discussion about the effect of the “€” in the above results. Let us do
this in two steps. First, we give as concrete examples two central types of growth rates that fall
between polynomial and exponential. And second, we discuss how innocuous or noninnocuous the
“e” above is.

As to our examples, suppose that for some fixed ¢ > 0 a particular function h(n) satisfies
h(n) = 24(°2n)°) Note that for each fixed € > 0, it holds that the function h'(n) defined as h(n¢)
itself satisfies the same bound, h/(n) = 241°8™)) " (Of course, the constant implicit in the “Q”
potentially has become smaller in the latter case.) Similarly, suppose that a particular function
h(n) satisfies h(n) = 2", Then for each fixed € > 0 it will hold that h(n¢) = 20"

The above at a casual glance might suggest that the weakening of the frequency claims between
the most frequently hard problems in NP N coNP and our problems is a “mere” changing of a
constant. In some sense it is, but constants that are standing on the shoulders of exponents have
more of a kick than constants sitting on the ground floor. And so as a practical matter, the
difference in the actual numbers when one substitutes in for them can be large. On the other hand,
polynomial-time reductions sit at the heart of computer science’s formalization of its problems,
and density distortions from n to n¢ based on the stretching of reductions are simply inherent in
the standard approaches of theory, since those are the distortions one gets due to polynomial-time
reductions being able to stretch their inputs to length n'/¢, i.e., polynomially. For example, it is
well known that if B is an NP-complete set, then for every ¢ > 0 it holds that B is polynomial-
time isomorphic (which is theoretical computer science’s strongest standard notion of them being
“essentially the same problem”) to some set B’ that contains at most 2" strings at each length n.

Simply put, the “almost” in our “almost as frequent” claims is the natural, strong claim, judged
by the amounts of slack that in theoretical computer are considered innocuous. And the results do
give insight into how much the density does or does not change, e.g., the first above example shows
that quasi-polynomial lower bounds on error frequency remain quasi-polynomial lower bounds on
error frequency. However, on the other hand, there is a weakening, and even though it is in a
“constant,” that constant is in an exponent and so can alter the numerical frequency quite a bit.*

[P

4In reality, how nastily small will the “¢” be? From looking inside the proofs of the results and thinking hard
about the lengths of the formulas involved in the proofs (and resulting from the “Galil” version of Cook-Karp-Levin’s
Theorem that we will be discussing in the next section), one can see that ¢’s value is primarily controlled by the
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Our use of B and A here reflects that of the theorems in this section. The crucial thing to note
is that the mapping from strings = (as to whether they belong to B) into the string that = puts
into A is (a) polynomial-time computable (and so the one string that = puts into A is at most
polynomially longer than z), and (b) one-to-one.

So any collection of m instances up to a given length n that fool a particular polynomial-time
algorithm for B are associated with at least m distinct instances in A all of length at most n?
(where the polynomial bound on the length of the formula that x, |z| = n, puts into A is that its
length is n? or less®). So if one had an algorithm for the “A” set such that the algorithm had at
most m’ errors on the strings up to length n?, it would certainly imply an algorithm for B that up
to length n made at most m’ errors. Namely, one’s heuristic of that form for B would be to take z,
map it to the string it put into A, and then run the heuristic for A on that string.

The results of this section are the immediate consequences of this observation, applied to the
constructions/results of the previous section. To make completely clear that that is the case and
why it is the case, we now provide a more detailed explanation of the proof of one of this section’s
theorems, namely, Theorem 2.5.

Proor oF THEOREM 2.5. Let A be defined as Az in Section 2.1, i.e.:

A= Az1 = {(z1 A (TGatit-Cook(Ni, ))) V (21 A (7 Galil-Cook(Nj, ®))) | © € X7}

where N; and N, are Turing machines such that L(N;) = B and L(N;) = B. We know from
our discussion in Section 2.1 that A € P and that, given any formula F' € A, {z} is a nontrivial
backbone of that formula, thus the function f(F') = {21} satisfies the requirements of the first part
of Theorem 2.5.

Since 7 Gaki-Cook TUNS in polynomial time, there exist polynomials p; and p; of equal degree ¢
such that the length of the formula 7 Gauicook(Ni, ) is at most p;(|z|) and the length of the formula
T Galil-Cook(INj, x) is at most p;(|x|). Note that there will exist natural numbers k& and N such that
forallmn > N,

kn? > | (21 A (7 gatil-Cook(Ni, 7)) V (Z1 A (T Gatil-Cook(Nj, 7)) |

for all strings x whose length is at most n. Let ng > N be a natural number such that every
polynomial-time algorithm, viewed as a heuristic for testing membership in B, errs on at least
h(ng) of the strings whose length is at most np. We claim that every polynomial-time algorithm,
viewed as a heuristic for computing the value of f(F') = {21} for inputs F' € A, errs on at least

running time of the NP machines for the NP sets B and B from the theorems of this section. If those machines
run in time O(n?), then e will vary, viewed as a function of g, roughly as (some constant times) the inverse of q.
For the particular case of Theorem 2.5, for example, our coming proof will make it clear that, where ¢ is as just
stated, for any 6 > 0 one can make the € in the theorem’s h(n®) be % — 4, i.e., the theorem’s lower bound is h(n%_é).
Indeed, the penultimate paragraph of that proof will actually establish—in the text immediately before it simplifies
by introducing d—a slightly stronger bound, namely, that there will be a constant ¢ > 0 (related to not just the
degree of but also the multiplicative constant of the running-time bound on the NP machines for B and B) such that

the lower bound the theorem is speaking of can be taken as h(cn%).

5We have for simplicity left out any lower-order terms and the leading-term constant, but that is legal except at
n € {0, 1}—since starting with n = 2 we can boost ¢ if needed—and no finite set of values, such as {0, 1} can cause
problems to our theorem, as it is about the “infinitely-often” and “almost-everywhere” cases. However, such boosting
does potentially interfere with the inverse-of-g relation mentioned in Footnote 4, and so if we wanted to maintain
that, we would in this argument instead use a lowest-degree-possible monotonic polynomial bounding the growth rate.
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h(np) of the strings whose length is at most k (np)?. Let us define ng by ng = k (np)?. Making
that variable substitution in our claim, we have that every polynomial-time algorithm, viewed as a

heuristic for computing the value of f(F') = {21} for inputs F' € A, errs on at least h (kié (nA)%)

of the strings whose length is at most n4. For any § > 0 it certainly holds that, for almost all
1 1 1

n, k ana > n5_6, and thus, since h is nondecreasing, it certainly holds that, for almost all n,
1 1 1
h (kiE nE) >h (nEﬂS). Depending on which part of the “respectively” in the theorem’s statement

one is speaking of, from the assumptions we have that almost every n > N can take the role of npg
(respectively, infinitely many n > N can take the role of ng). Thus setting € = % — § proves that A
satisfies the second part of Theorem 2.5.

To prove our claim, notice that, by our choice of npg, for all inputs = of length at most ng
the length of (21 A (7 Gatil-Cook(Nis x))) V (Z1 A (7 Gatit-Cook(INj, x))) is at most &k (np)?. Assume, by
contradiction, that there exists a polynomial-time algorithm ¢’ that, viewed as a heuristic for
computing the value of f(F) = {z1} for inputs F' € A, errs on fewer than h(npg) of the strings of
length at most k (np)?. Consider the following polynomial-time heuristic for testing membership
in B: On input z, calculate v = ¢'((21 A (7 Gatit-Cook(Ni> €))) V (ZT A (T Gatit-Cook(Nj, x)))); if v sets
z1 to true then output z € B and if v sets z; to false output z ¢ B. Based on our discussion in
Section 2.1, this heuristic will err exactly when ¢’ errs since, for instance, if v sets z; to true but
the correct value sets 21 to false that would imply x ¢ B. But ¢ errs on fewer than h(np) inputs
of length at most kn%, so the polynomial-time heuristic we just constructed errs on fewer than
h(np) inputs = of length at most np, a contradiction.

3. Related work

Our results can be viewed as part of a line of work that though interesting is, unfortunately, so
underpopulated as to barely merit being called a line of work. The true inspiration for this work
was an insightful structural complexity theory paper of Alan Demers and Allan Borodin [2] from
the 1970s, which never appeared in any form other than as a technical report. Their paper in effect
showed sufficient conditions for creating simple sets of satisfiable formulas such that it was unclear
why they were satisfiable.

Borodin and Demers’s work has been used only very rarely. In particular, it has been used to
get characterizations regarding unambiguous computation [9], and Rothe and his collaborators have
used it in various contexts to study the complexity of certificates [14, 25|, see also Fenner et al. [6]
and Valiant [27]. Also, one paper—Hemaspaandra, Hemaspaandra, and Menton [10]—shows that
the work has a connection to an “applied” area, namely, that paper shows that some problems about
the manipulation of elections have the property that if P 2 NP N coNP then their search versions
are not polynomial-time Turing reducible to their decision problems—a rare behavior among the
most familiar seemingly hard sets in computer science, since so-called self-reducibility [21] is known
to preclude that possibility for most standard NP-complete problems. The key issue that the
2020 paper of Hemaspaandra, Hemaspaandra, and Menton [10] left open is whether the type of
techniques it used, descended from Borodin and Demers [2], might be relevant in other domains, or
whether its results were a one-shot oddity. The present paper in effect is arguing that the former is
the case. Backbones are a topic important in both theory and artificial intelligence. This paper
shows that the inspiration of the line of work initiated by Borodin and Demers [2] can be used
to establish the opacity of backbones. It is important to acknowledge that our proofs regarding
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Section 2.1 are drawing on elements of the insights of Borodin and Demers [2], although in ways
unanticipated by that paper.

This paper uses density transfer arguments in the context of Borodin-Demers arguments. To
the best of our knowledge, the only paper to previously do that is the work—in the quite different
context of computational social choice theory—of Hemaspaandra, Hemaspaandra, and Menton [10].

Section 2.2 is about frequency of hardness. Very loosely put, its theorems show—among
other things—that the existence of a set in NP N coNP on which all deterministic polynomial-time
algorithms err, for almost every n, on at least h(n) strings of length at most n implies that there
exist an € > 0 and a set A € P, with A C SAT, such that some particular, important task regarding
backbones will, for each polynomial-time machine attempting to execute it correctly, fail for almost
all n on at least h(nc) of the strings in A of length at most n. Note that in our results, all strings
in A up to a given length are in some sense viewed as equally important. As a literature pointer to
those interested in contrasting frequency issues, we mention that Erdélyi et al. [5] (see also [24])
showed that a broad range of NP-complete sets are in in so-called basic deterministic heuristic
polynomial time relative to some so-called basic junta distribution; that claim, however, is about
distributional decision problems. It is also known, from a long line of work in complexity theory,
that if any NP-hard set has (under uniform weighting) a deterministic polynomial-time heuristic
algorithm that asymptotically has a relatively low density of errors, then the polynomial hierarchy
collapses (see the survey [15]).

This paper’s work may seem somewhat of the flavor of a paper on the topic of “search versus
decision,” an important theme in complexity theory. However, one must be careful, if one says
that about this paper, as to precisely what one means. For example, regarding Theorem 2.1, the
theorem is certainly not saying that finding the asserted backbones the theorem is speaking of is
harder than knowing whether they exist. In fact, both are easy. Rather, the theorem is saying
that, although knowing that a formula in A has a nontrivial backbone is easy and finding such
a backbone is easy, nonetheless finding the walue of that backbone is, under the P # NP N coNP
hypothesis, not easy. Of course, it is true that stating that a value exists is easy here and finding
it is hard. However, that is somewhat stretched as to being viewed as a typical case of search
versus decision. Readers interested in work on search versus decision might wish to look for
example at the paper of Bellare and Goldwasser [1] that shows a very nice search-versus-decision
separation in cryptography. However, that paper requires as its supporting hypothesis an extremely
strong assumption about double-exponential time classes separating. More recently, the work of
Hemaspaandra, Hemaspaandra, and Menton [10] mentioned above shows search-versus-decision
separations within the area of manipulative attacks on elections. There is also some coverage in the
survey paper Hemaspaandra [11], and search versus decision is also of importance in the context of
parallel computation (see, e.g., [18]), though parallel computation is not the subject of the present
paper.

Finally, note that most of our results rely on the assumption that P # NP N coNP, which as
noted above is likely true, since if it is false then integer factoring is in P and the RSA encryption
scheme falls. What results can one obtain if one allows oneself to assume only P # NP? That
question is explored in a recent paper by the authors that was motivated by the present work [13].
However, that later paper’s results, due to the weaker assumption, do not at all address the issues,
central to the present paper, of outputting a backbone or outputting the value of a backbone.
That paper studies not only backbones, but also another so-called “hidden structure” of formulas,
namely, backdoors. As pointers to earlier studies of the complexity issues regarding backbones and
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backdoors, we mention [23, 19, 4].

4. Conclusions

We argued, under assumptions widely believed to be true such as the hardness of integer
factoring, that knowing a large backbone exists doesn’t mean one can efficiently find a large
backbone, and finding a nontrivial backbone doesn’t mean one can efficiently find its value. Further,
we showed that one can ensure that these effects are not very infrequent, but rather that they can
be made to happen with “almost” the same density of occurrence as the error rates of the most
densely hard sets in NP N coNP.
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Appendix: Construction of a Galil-Cook r function with the properties claimed in Sec-
tion 2.1

For those who wish to be assured that a Galil-Cook “r” function can be implemented so as to
have all the properties we have “without loss of generality” assumed in Section 2.1, we here provide
such an implementation.

Let Ny, No, ... be as in Section 2.1. That is, it is a fixed, standard enumeration of clocked,
polynomial-time, nondeterministic Turing machines, such that each N; runs within time n’ + 4 on
inputs of length n, and NV; and ¢ are polynomially related in size and easily obtained from each
other. Fix any function r that implements the Cook-Karp-Levin reduction. That is, r is such that

1. for each N; and z: x € L(NN;) if and only if 7(V;, x) € SAT.
2. there is a polynomial p such that r(N;, ) runs within time polynomial (in particular, with p
being the polynomial) in |N;| and |z|* + .

It is very well known that such functions exist. Their existence—the Cook-Karp-Levin reduction—is
proven in almost every textbook that covers NP-completeness (see, e.g., Hopcroft and Ullman [16]),
and is the key moment that brings the theory of NP-completeness to life, by transferring the
domain from machines to a concrete problem that itself can be used to show that other concrete
NP problems are themselves NP-complete.

Note that the function r that we have thus fixed is not assumed to necessarily have an “inversion”
function s, and is not assumed to necessarily avoid using literals involving the letter “z”, and is not
assumed to necessarily have the property that two applications of the r function are guaranteed to

be variable-disjoint if they regard different machines (i.e., are not both about N; for the same value

).
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We now show how to use the above fixed function r as a building block to build our function
T Qalil-Cook, Which will have all the properties just mentioned, yet will retain the time and reduction-
to-SAT properties mentioned above regarding r. rqaui-cook, When its first argument is N; and its
second argument is x, does the following. It simulates the run of r when its first argument is /NV; and
its second argument is x, and so computes the formula g1 cook(Ni, ), which we will henceforth
denote by F' for conciseness of notation. It then counts the number of variables occurring in that
formula F'; let us denote that number by 7. (So for example if the formula F is z; A Z1 A w, then
v = 2, as there are two variables, z; and w.) Now, let F’ denote F', except each variable a in F'
will be replaced in F’ by the variable T(N,,q)» Where g is the location of a in lexicographic order
within the variables of F. ({-,-) is any standard, nice, easily computable, easily invertible pairing
function.) If we view w as coming lexicographically before z1, then in our example, F’ would be
z(N,2) NT(N, 2) N T(N;,1)- Despite the pairings used, this increases the length of F' by at most a
multiplicative factor of the number of bits of NV;. (Since each of our uses of 7 Gl cook In Section 2.1
only used the function on some two hypothetical, fixed machines, the time and length-of-output
effect of this variable-renaming is at most a multiplicative constant (that depends on the two
machines), and so is negligible in standard complexity-analysis terms). But although using the
same trick to encode x into the output by pairing it too into the variable names would be valid, it
would increase the formula size by a multiplicative factor of |z|, which is not negligible. So we take
a different approach, which instead increases the formula size just by an additive factor of O(|x|).
TGalil-Cook(Nia .’E) will output

(F')A(coVerVey V- Ve, ),

where in the above b; denotes the value of the ith bit of x and each ¢y above means to write T(N;y+1)
and each ¢; above means to write z(y;, 441

So, in our running example, if the value of x was 101, 7 gaui-cook(Ni; ) would be (z(y, 2) A
T(N;2) NN )) AN (TN 3y VBN 3y VTN 3y Y TN, 3) VTN 3))-

It is not hard to see that the rguii.coor We have constructed has all the promised properties. It
has the correct running time, it validly reduces from whether N; accepts  to the issue of whether
T Galil-Cook(Ni, ) is in SAT, it never outputs any literal involving the letter z, all its literals in fact
are tagged by the Nj; in use and so two applications created with regard to different machines (e.g.,
N4 and N7) are guaranteed to have variable-disjoint outputs, and it even is such that the desired s
function exists. Our s function will take an input, parse it to get (A) A (B), will decode N; from
the variable names in A and will decode x from the fact that it is basically written out by the bits
encoded by all but the first two disjuncts of B, and then will output the pair (V;, z). If anything
goes wrong in that process, as to unexpected syntax or so on, then what we were given is not an
actual output of some run of 7 gu-cook On a legal input, and we can output any junk pair that we
like, without violating our promise as to the behavior of s. (Some inputs that are not valid outputs
of 7 qalil-coor Will not trigger the above “if anything goes wrong,” since we did not here take the
(N;, x) we are about to output and compute 7 gai-cook(Vi, ) to see whether the output of that
matches our input. But we do not need to. The needed behavior here is that all valid inputs have
the right output, and we have achieved that.)
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