
Iterative Program Synthesis for Adaptable Social Navigation

Jarrett Holtz1 and Simon Andrews2 and Arjun Guha3 and Joydeep Biswas1

Abstract— Robot social navigation is influenced by human
preferences and environment-specific scenarios such as ele-
vators and doors, thus necessitating end-user adaptability.
State-of-the-art approaches to social navigation fall into two
categories: model-based social constraints and learning-based
approaches. While effective, these approaches have fundamental
limitations – model-based approaches require constraint and
parameter tuning to adapt to preferences and new scenarios,
while learning-based approaches require reward functions,
significant training data, and are hard to adapt to new social
scenarios or new domains with limited demonstrations.

In this work, we propose Iterative Dimension Informed
Program Synthesis (IDIPS) to address these limitations by
learning and adapting social navigation in the form of human-
readable symbolic programs. IDIPS works by combining pro-
gram synthesis, parameter optimization, predicate repair, and
iterative human demonstration to learn and adapt model-free
action selection policies from orders of magnitude less data
than learning-based approaches. We introduce a novel predicate
repair technique that can accommodate previously unseen social
scenarios or preferences by growing existing policies.

We present experimental results showing that IDIPS: 1)
synthesizes effective policies that model user preference, 2)
can adapt existing policies to changing preferences, 3) can
extend policies to handle novel social scenarios such as locked
doors, and 4) generates policies that can be transferred from
simulation to real-world robots with minimal effort.

I. INTRODUCTION

Social navigation is a fundamental robot behavior that is

integrally tied to human preferences, and that needs to be

robust to potentially unknown; environment-specific deci-

sion making. State-of-the-art approaches to social navigation

fall into two major categories, model-based and model-

free approaches. Model-based approaches include those that

employ engineered models of social constraints, such as

the social force model [1] or human-robot proxemics [2].

However, no single model can capture all possible social

constraints, and adapting models requires tedious parameter

tuning [3]. Model-free approaches include those that leverage

Neural Networks (NNs) for Learning from Demonstration [4]

or Reinforcement Learning [5]. However, these approaches

suffer from limitations common to NNs: they are data-

intensive [6], difficult to understand [7], and challenging to

adapt to new domains without starting over [8].

Recent work on Layered Dimension Informed Program

Synthesis (LDIPS) [9] has shown that program synthesis,

when extended with dimensional analysis, addresses many

of these concerns by learning robot behaviors as human-

readable programs. However, while LDIPS can learn new

1University of Texas at Austin. {jaholtz,joydeepb}@utexas.edu
2University of Massachusetts, Amherst. sbandrews@umass.edu
3Northeastern University. a.guha@northeastern.edu

behaviors, it does not address policy adaptation. In this work,

we build upon LDIPS to present Iterative Dimension In-

formed Program Synthesis (IDIPS) to synthesize and adapt

social navigation behaviors from human demonstration. A

highlight video of our approach can be found at https:

//youtu.be/JoT8nZ_Rsto.

Given a set of demonstrations and an optional starting

behavior, IDIPS produces a new minimally altered behavior

consistent with the demonstrations. Iterative application of

IDIPS allows for continuous refinement based on further

demonstration. IDIPS employs three modules to accomplish

this: a synthesis module for learning new behaviors, a

parameter optimization module for adjusting real-numbered

parameter values, and a predicate repair module for ad-

justing logical components. For the synthesis module, we

extend LDIPS with MaxSMT constraints to handle po-

tentially conflicting human demonstrations by allowing for

partial satisfaction [10]. For the parameter repair module, we

employ SMT-Based Robot Transition Repair (SRTR) [11], an

approach for transition repair based on human corrections.

Finally, for the predicate repair module, we introduce a novel

technique for adapting the conditional logic with the minimal

syntactic changes to accommodate new demonstrations. An

open-source implementation of our approach can be found

at https://github.com/ut-amrl/pips.

We evaluate IDIPS in simulation and on real robots to

demonstrate the following: 1) IDIPS can synthesize effective

policies for social navigation that model the preferences of

distinct demonstration sets, 2) synthesized policies can be

automatically adapted towards the preferences of alternative

demonstrations with a small number of corrections, 3) IDIPS

can adapt synthesized policies to unseen scenarios, such

as a locked door, with a small number of corrections, and

4) synthesized programs can be transferred to a real-world

mobile service robot and adapted.

II. BACKGROUND AND RELATED WORK

We frame social navigation as a discounted-reward

Markov Decision Process (MDP) M = 〈S,A, T,R, γ〉
consisting of the state space S that includes robot, human,

and environment states; actions A represented either as

discrete motion primitives [12] or continuous local planning

actions [3]; the world transition function

T (s, a, s′) = P (st+1 = s′ | st = s, at = a) (1)

for the probabilistic transition to states s′ when taking action

a at previous state s; the reward function R : S×A×S 7→ R

; and discount factor γ. The solution to this MDP is repre-

sented as a policy π : S ×A 7→ A that decides what actions

to take based on the previous state-action pair. The optimal

social navigation policy π∗ maximizes the expectation over

the cumulative discounted rewards

π∗ = argπ max Jπ,

Jπ = E

[

t=∞
∑

t=0

γtR(st, π(st, at), st+1)

]

(2)

The social navigation problem has been extensively studied,

and there are two broad classes of algorithms – model-

based approaches that encode known models to represent

either R or π directly, and model-free approaches that do

not assume that R is known, and also do not enforce prior

model structure on the learned π.

Model-based approaches can be further classified based

on which of π and R are based on pre-defined models.

Some of the earliest approaches to autonomous navigation

in social settings were with model-based policies, including

standing in line [13] and person-following [14]. Unfortu-

nately such approaches require explicit enumeration of all

possible social scenarios, which is infeasible in real world

settings. To generalize behaviors to novel scenarios, social

factors have been used to model R, such as proxemics [2]

for social navigation [15], or the social force model [1],

[16], and learn π by optimizing for the discounted rewards.

Such an optimization may be computationally intractable

over continuous state and action spaces – to overcome this

limitation, multi-policy decision making (MPDM) for social

navigation [12] decomposes M into hierarchical policies,

where at the highest level, π selects lower-level controllers

(policies) as actions. MPDM is thus capable of real-time

optimization of the discounted objective function by rollouts

of the hierarchical policy over a receding horizon. However,

MPDM still requires model-based specifications of R, which

makes it hard to adapt to novel social circumstances such as

taking turns through busy doors, which may not be captured

by the models for R.

Model-free approaches rely on function approximators

to represent π and optionally R, most recently using deep

neural networks (DNNs). If R is known, deep reinforcement

learning (DRL) can be used to learn a DNN-based represen-

tation of π [5], [17]. If R is not known, inverse reinforcement

learning (IRL) for social navigation [18], [19] first infers

R, and then given access to T in simulation or via real-

world evaluation, learns π. If R is neither known, nor easy to

infer π from, learning for demonstration (LfD) approaches

such as Generative Adversarial Imitation Learning [4] are

used to infer π directly from state-action sequences from

user demonstrations. Despite their success at inferring π

DNN-based approaches suffer from known limitations - they

require significant data, are brittle to domain changes, and

once trained are hard to adapt to new settings.

We propose a novel solution to social navigation that

overcomes limitations of both model-based, and DNN-based

model-free social navigation: synthesis of π as symbolic

programs in a model-free LfD setting. IDIPS synthesizes

symbolic policies from orders of magnitude fewer demon-

strations than DNN-based approaches, and since IDIPS does

not assume any prior for R or π, it is capable of adapting

to completely new scenarios. IDIPS builds on recent work

on SMT-based solutions to social navigation [20] and robot

program repair [11], and extends them using dimension-

informed program synthesis [9].

III. SYMBOLIC POLICIES FOR ADAPTABLE

SOCIAL NAVIGATION

We propose learning π directly from demonstrations in the

form of symbolic action selection policies (ASPs) written

in the language described in prior work [9]. A symbolic

ASP represents π as a human-readable program where the

actions are discrete subpolicies such as follow, halt, or pass.

This formulation is similar to the MPDM formulation [12],

where the ASP serves the role of the reward-based subpolicy

selection in MPDM. For the remainder of this paper, we will

refer to these sub-policies as actions.

The structure of symbolic ASPs is essential to learning

and adapting these policies. Consider the structure of the

policy shown in Fig. 1. A full policy π consists of logical

branches that each return an action a, each branch consists

of a predicate b that represents decision logic, and is in

turn composed of expressions e that compute features from

elements of S and real-valued parameters xp that determine

the decision boundaries.

if (ai==GoAlone && |pr − Hp[0]| > 2.0): return GoAlone

elif (ai==GoAlone && (pr − Hp[1]).x > 1.0 &&

vr.x − Hv [0].x > 0.0 && |pr − Hp[0]| ≤ 2.0): return Pass

elif (ai==GoAlone && (pr − Hp[1]).x ≤ 1.0
&& |pr − Hp[0]| ≤ 2.0 ||

vr.x − Hv [0] ≤ 0.0 && |pr − Hp[0]| ≤ 1.0): return Follow

Fig. 1: An example symbolic action selection policy (ASP). Pred-
icates in each branch are outlined in orange. Expressions are
highlighted in purple, parameters in green, and actions in red.

The structure of the ASPs and the operator rules are

described by the language, but the actions, elements of S,

and the library of operators used to calculate e are particular

to the application domain to which IDIPS is applied. To

learn these policies from user demonstrations we require a

way to demonstrate the action transitions and world states.

A. End-User Policy Demonstrations

We propose two methods for leveraging user guidance

to generate demonstrations of the form 〈at, st, at+1〉. In

simulation, we simulate the state transition function T while

executing a policy π that continuously executes a fixed action

a to generate a series of demonstrations {〈a, st, a}. At any

time the user may interrupt the simulation, optionally rewind

to a time t − n, and provide a demonstration directing

the robot to transition to a fixed π′ that executes a′. This

process adds a single transition demonstration 〈a, st−n, a
′〉,

and continues until the user is satisfied.

In the real world, the robot observes states st and conti-

nously executes a policy π with the real world providing T .

At any time, the user may interrupt the robot and joystick

it through a series of states {st . . . st+n}. The user then

Similarly, ToNice-S is unable to navigate as efficiently as

ToNice-I, and thus has higher time to goal.

E. Real World Evaluation

To evaluate transferring IDIPS policies from simulation

to the real world, we employ a Cobot [22] mobile service

robot. Per COVID-19 safety guidelines, only a single human

participant was used for this case study. We consider two

scenarios in this environment and four policies transferred

from simulation (GoAlone, Nice-I, Greedy-I, ToNice-I). For

each policy, we vary the travel direction and speed of the

human and the starting location of the robot for a total of

25 trials per policy. For the results shown in Fig. 8, all of

the policies are able to accomplish the goal while roughly

maintaining their relationship in terms of our metrics. The

Nice-I behavior is still the most passive policy, while the

Greedy-I behavior is more aggressive, showing that repair

for domain transfer with IDIPS is effective.

F. Adapting To Unseen Scenarios

To evaluate IDIPS’s adaption to novel scenarios, we

performed two sets of experiments by adding a closed door

in both simulation and a real hallway Fig. 2. We evaluate

the Nice-I and Greedy-I policies, and those same policies

adapted using demonstrations of how to wait for the door

before proceeding (NiceDoor-I, GreedyDoor-I). We adapt the

policies separately for simulated and real-world examples

and record 200 trials with varying human counts in simu-

lation and ten trials with a single human in the real-world.

Fig. 10 shows the percentage of successful runs for each

policy. Neither original policy waits for the door, leading

to almost complete failure. In contrast, the repaired policies

are able to handle the new scenarios with minimal failures

in simulation and complete success in the real-world. This

adaptation would require extensive modification for Rosnav

and is only possible when relearning from scratch in DNN-

based approaches.

Policy Success Rates (%)

Simulation Real World

Nice-I 2 0

Greedy-I 7 0

NiceDoor-I 100 100

GreedyDoor-I 84 100

Fig. 10: Success rates for different ASPs on closed door scenarios.

VI. CONCLUSION

In this work, we presented an approach for learning and

adapting symbolic social navigation policies that builds on

dimension informed program synthesis. We model social

navigation as an action selection problem and learn and

adapt behaviors with small numbers of human-generated

demonstrations. Our experimental evaluation demonstrated

that this technique can learn effective social navigation

policies that model the preferences of the demonstrations

and that these symbolic policies can be efficiently adapted

for changing user preference and novel scenarios. Further, we

demonstrated in a case study that our technique can adapt

policies on real-world mobile service robots.

VII. ACKNOWLEDGMENTS

This work is conducted in collaboration between the

AMRL at UT Austin and Professor Arjun Guha at

Northeastern University, and is supported in part by

NSF (CAREER-2046955, IIS-1954778, SHF-2006404, CCF-

2102291 and CCF-2006404), ARO (W911NF-19-2-0333),

DARPA (HR001120C0031), Amazon, JP Morgan, and

Northrop Grumman Mission Systems.

REFERENCES

[1] D. Helbing and P. Molnár, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995.

[2] J. Mumm and B. Mutlu, “Human-robot proxemics: Physical and
psychological distancing in human-robot interaction,” in HRI, 2011,
pp. 331–338.

[3] D. V. Lu, D. B. Allan, and W. D. Smart, “Tuning cost functions for
social navigation,” in Social Robotics, G. Herrmann, M. J. Pearson,
A. Lenz, P. Bremner, A. Spiers, and U. Leonards, Eds. Cham:
Springer International Publishing, 2013, pp. 442–451.

[4] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in ICRA, 2018.

[5] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in IROS, 2017, pp. 1343–
1350.

[6] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The
limits and potentials of deep learning for robotics,” The International

Journal of Robotics Research, pp. 405–420, 2018.
[7] N. Topin and M. Veloso, “Generation of policy-level explanations for

reinforcement learning,” in AAAI, 2019.
[8] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,

N. Ratliff, and D. Fox, “Closing the Sim-to-Real Loop: Adapting
Simulation Randomization with Real World Experience,” in ICRA,
2019, pp. 8973–8979.

[9] J. Holtz, A. Guha, and J. Biswas, “ Robot Action Selection Learning
via Layered Dimension Informed Program Synthesis ,” in CORL, 2020.

[10] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
TACAS, 2008.

[11] J. Holtz, A. Guha, and J. Biswas, “ Interactive Robot Transition Repair
With SMT ,” in IJCAI, 2018, pp. 4905–4911.

[12] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in
dynamic social environments using multi-policy decision making,” in
IROS, 2016, pp. 1190–1197.

[13] Y. Nakauchi and R. Simmons, “A social robot that stands in line,”
Autonomous Robots, pp. 313–324, 2002.

[14] R. Gockley, J. Forlizzi, and R. Simmons, “Natural person-following
behavior for social robots,” in HRI, 2007, pp. 17–24.

[15] K. Charalampous, I. Kostavelis, and A. Gasteratos, “Robot navigation
in large-scale social maps: An action recognition approach,” Expert

Systems with Applications, vol. 66, pp. 261 – 273, 2016.
[16] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-

force based approach with human awareness-navigation in crowded
environments,” in IROS, 2013, pp. 1688–1694.

[17] T. V. D. Heiden, C. Weiss, N. S. Nagaraja, and H. V. Hoof, “Social
navigation with human empowerment driven reinforcement learning,”
ICANN, vol. abs/2003.08158, 2020.

[18] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: An experimen-
tal comparison,” in IROS, 2014, pp. 1341–1346.

[19] B. Okal and K. O. Arras, “Learning socially normative robot naviga-
tion behaviors with bayesian inverse reinforcement learning,” in ICRA,
2016, pp. 2889–2895.

[20] T. Campos, A. Pacheck, G. Hoffman, and H. Kress-Gazit, “Smt-based
control and feedback for social navigation,” in ICRA, 2019, pp. 5005–
5011.

[21] N. D. Jones, C. K. Gomard, and P. Sestoft, “Partial evaluation and
automatic program generation,” in Prentice Hall international series

in computer science, 1993.
[22] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal, “Cobots: Robust

symbiotic autonomous mobile service robots,” in IJCAI, 2015, p.
4423–4429.

