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We present IrRep – a Python code that calculates the symmetry eigenvalues of electronic Bloch states 
in crystalline solids and the irreducible representations under which they transform. As input it receives 
bandstructures computed with state-of-the-art Density Functional Theory codes such as VASP, Quantum 
Espresso, or Abinit, as well as any other code that has an interface to Wannier90. Our code is applicable 
to materials in any of the 230 space groups and double groups preserving time-reversal symmetry with 
or without spin-orbit coupling included, for primitive or conventional unit cells. This makes IrRep a 
powerful tool to systematically analyze the connectivity and topological classification of bands, as well as 
to detect insulators with non-trivial topology, following the Topological Quantum Chemistry formalism:
IrRep can generate the input files needed to calculate the (physical) elementary band representations 
and the symmetry-based indicators using the CheckTopologicalMat routine of the Bilbao Crystallographic 
Server. It is also particularly suitable for interfaces with other plane-waves based codes, due to its flexible 
structure.

Program summary
Program Title: IrRep
CPC Library link to program files:: https://doi .org /10 .17632 /yznd2ky9r6 .1
Developer’s repository link: https://github .com /stepan -tsirkin /irrep
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: Symmetry properties of electronic band structures in solids are tightly related to 
their topological features. This relation is set mathematically by the formalisms of Topological Quantum 
Chemistry [1,2] and symmetry-based indicators of topology [3], but their application requires knowledge 
of the irreducible representations of the bands. Therefore, a code to calculate irreducible representations 
of ab initio bands is essential for a systematic theoretical search and classification of topological materials.
Solution method: IrRep reads wave functions from files generated by VASP, Abinit, or Quantum Espresso 
(also files written as input for Wannier90), determines the space group and symmetry operations via 
the spglib library, evaluates the eigenvalues of the symmetry operations for the selected bands, and 
applies Group Theory to determine their irreducible representations.
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1. Introduction

Symmetries are fundamental to the properties of quantum systems [1]. In particular, knowledge of the symmetry operations under 
which energy eigenstates transform is crucial to determine the degeneracy of energy levels, the allowed couplings to external fields, 
and the effect of symmetry-breaking perturbations. For instance, the degeneracies present in the vibrational spectrum of a molecule are 
determined by the dimensions of its symmetry group’s irreducible (co-)representations (IRs). For electrons in periodic crystals, the band 
structure of a material in reciprocal space cannot be characterized without studying the symmetry properties of its wave functions [2,3]: 
symmetries can protect or prevent band crossings, predict splittings produced by spin-orbit coupling, and explain gap openings coming 
from specific terms in the Hamiltonian.

With the discovery of topological insulators [4,5], the symmetry analysis of band structures has regained importance. Recently it was 
discovered that electrons in periodic lattices with crystalline symmetries can yield rich physics due to the interplay of symmetry and 
topology [6–12]. Two main developments in the application of symmetry to the identification and classification of topological insulators 
gave a gigantic push to the field: First, the theory of Topological Quantum Chemistry (TQC) [13–15] built upon physical elementary 
band representations (PEBRs) classified all possible atomic limits in all nonmagnetic materials, identifying topological bands as those that 
cannot be expressed as a sum of band representations. Among the topological bands, a subset can be distinguished from trivial bands 
by computing a set of symmetry-based indicators [16–18] from the irreducible representations under which the bands transform. The set 
of symmetry-based indicators in each space group can be computed from the band representations, and have been tabulated in [19,20]. 
Calculation of the IRs of bands at high-symmetry points is fundamental for the application of these methods and has led to the prediction 
of many topological insulators [21–24] and new phases [25–35].

In this work we present IrRep, a robust, open source Python code that calculates symmetry eigenvalues and IRs of the wave functions 
at high-symmetry points in reciprocal space for any band structure computed by means of Density Functional Theory (DFT). Currently,
IrRep can interface directly with 3 widely used plane-wave DFT codes: the Vienna Ab initio Simulation Package (VASP) [36], Abinit [37]
and Quantum Espresso (QE) [38]. IrRep can also read input files in Wannier90 (W90) [39] format (.win, .eig, UNK), prepared by interfaces 
like pw2wannier90. This allows IrRep to be used with any code that has a W90 interface, such as SIESTA [40]. Furthermore, it has been 
structured in a user friendly format allowing the implementation of routines to interface with any other plane-wave based code.

Although similar codes exist for VASP [41] (vasp2trace, used to calculate the topological bands in [21,24,42] materials database) and 
QE [43], IrRep is the only code that does not restrict the user to a single DFT program. Moreover, our code follows the same notation 
as the popular Bilbao Crystallographic Server (BCS) [44] to identify the IRs, which avoids confusion coming from the lack of an official 
standard notation, especially for spin-orbit coupled systems. Tables of IRs are encapsulated within the code package, so that IrRep can 
determine IRs without extra input from the user. The output is written in a form that is compatible with the CheckTopologicalMat tool of 
the BCS [21]. As additional functionality, IrRep can separate bands by eigenvalues of certain symmetry operator and calculates the Z2
and Z4 topological indices of time-reversal symmetric band structures [4]. The code evolved from the routines written for Ref. [45] to 
determine the eigenvalues of screw rotations. At a testing level, the code was used in Refs. [28,46–49] for topological quantum chemistry 
analysis, and in Refs. [50,51] to analyze the dipole selection rules for optical matrix elements.

In section 2 we will introduce the basic concepts of Group Theory underlying the operation of IrRep. In section 3 we will present the 
workflow of the code. Finally, section 4 will be devoted to several examples, illustrating the capabilities of IrRep code for the analysis of 
symmetry and topology.

2. Symmetry properties of bands: irreducible representations

In this section we give a brief overview of the application of group theory to electronic Bloch states. However, only the minimal 
information necessary to introduce the notation and explain the functionality of the code is provided. More details may be found in 
classic textbooks such as [3,52].

The group G of symmetry operations that leave a crystal invariant is called the space group of the crystal. In particular, G contains all 
translations by vectors of the Bravais lattice. The (infinite) group of all translations is generated by 3 primitive basis vectors of the lattice, 
and forms the (normal) translation subgroup T of the space group G . This allows us to write the coset decomposition of G with respect 
to T ,

G = T + g1T + g2T + ... + gN T , (1)

where g1, g2, ..., gN are called the coset representatives of the decomposition. Notice that the set of coset representatives is finite and non-
unique (two coset representatives differing by a translation characterize the same coset). The number N of cosets in the decomposition 
Eq. (1) is equal to the order of the point group G = G/T (though the set of coset representatives themselves need not be a point group for 
non-symmorphic lattices). Using this decomposition, any space group can be expressed in terms of the coset representatives and lattice 
vectors of the Bravais lattice.

The symmetries of the space group have a well-defined action on the Hilbert space of electronic states in the crystal. We denote by 
Ug the representation of a certain symmetry operation g ∈ G on the Hilbert space. Since every g ∈ G is a symmetry of the crystal, each 
representation matrix Ug commutes with the Hamiltonian matrix H , i.e., [Ug , H] = 0. Note that H is block diagonal in reciprocal space 
and each block H(k) can be put in correspondence to a vector k belonging to the first Brillouin zone (BZ). Although the whole matrix H
2
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commutes with Ug , for a general g ∈ G , a block H(k) may not commute, but rather must be linearly related to H(gk), i.e. the operation g
transforms k into another reciprocal vector gk. If we use Wigner-Seitz notation g = {R | v} for the space group operations, then gk = Rk. 
The set of g ∈ G that leave k invariant (up to a reciprocal lattice vector G) is called the little group Gk of k.

Note that the coset decomposition of Eq. (1) can also be applied to the little group Gk:

Gk = T + gk1T + gk2T + ... + gkMT , (2)

where M ≤ N since Gk ≤ G . The coset representatives gki can all be chosen to be point group elements only if Gk is a symmorphic space 
group. For example, a group containing screw rotations or glide reflections does not contain its point group as a subgroup. In any case, 
the rotational parts Ri of the representatives gki = {Ri | v i} do form a point group Gk , called little co-group of k. While the little group Gk

is infinite, since it contains all translations, the little co-group Gk is finite.
Consider a set {|�1k >, |�2k >, ..., |�Dk >} of eigenstates of H(k), closed under the action of Gk . When a symmetry operation g ∈ Gk

acts on |�nk >, the state undergoes a linear transformation

g|�ik >=
D∑
j=1

K ji(g)|� jk > . (3)

The matrices K (g) in Eq. (3) form the representation K of Gk defined in the invariant space spanned by {|�nk >}D . It is said that K is an 
IR, if this space cannot be written as a direct sum of smaller non-trivial invariant subspaces. Every representation is characterized by the 
set of traces χK (g) = T rK (g), known as the character of the representation.

In general, the closed set {|�nk >}D contains eigenstates transforming under more than one IR of Gk , meaning that the whole repre-
sentation K is reducible and can be decomposed as a combination of these IRs

K = ⊕αm
k
αKα, (4)

where Kα is the αth IR of Gk . Its multiplicity mk
α can be computed by means of the following expression, often referred to as the magic 

formula [53,54]

mk
α = 1

‖Gk‖
∑

g∈{gki }
χ∗

K (g)χα(g), (5)

with {gki } denoting the set of coset representatives in the decomposition of Gk , and ‖Gk‖ the number of symmetry operations in the 
little cogroup Gk = Gk/T . χα and χK indicate the characters corresponding to the IR Kα and the representation K to be decomposed, 
respectively. IrRep uses this formula to determine the IRs of the eigenstates of H(k) at high-symmetry points in the BZ.

3. Implementation in IrRep code

In this section, we present the workflow of the IrRep code and describe its main functionalities and the particularities of the interface 
to each DFT software.

3.1. Reading DFT data and input parameters

To keep the interaction with the user simple, IrRep reads as much needed information as possible from the DFT code’s output files. 
Only parameters determining the user-defined task should be given in the command line (CLI) in the format

irrep -<keyword1>=<value1> -<keyword2>=<value2> ...

Alternatively, parameters may be set in YAML or JSON format in an input file passed to IrRep via the parameter config, as we show in 
the following lines:

irrep -config=input_filename.yml

Descriptions of all parameters and their default values can be found in Table 1 and they can be listed in the CLI by running IrRep’s help 
interface:

irrep --help

Depending on the DFT code used to calculate wave functions, a different interface should be chosen to parse the corresponding DFT 
output files (see Table 2). The interfaces are selected with the keyword code; currently, it includes interfaces to VASP [36], Abinit [37] and 
QE [38]. It can also read the input files for W90 [39], which allows IrRep to be used with any of the multiple codes that support the 
Wannier90 interface.

While most of the keywords are self-explanatory, the meaning of the keywords refUC and shiftUC requires some elaboration. The 
tables of IRs are written for the conventional unit cell corresponding to the space group, i.e. the cell whose lattice vectors are parallel 
to the symmetry directions of the lattice. However, the DFT calculation may be done in any primitive cell. Let {a1, a2, a3} denote the 
3
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Table 1
Principal keywords to fix running options with IrRep and their function. If no value is set for param-
eters that are None by default, they and the functions corresponding to them will be ignored. Boolean 
parameters work as flags (for example, spinor is set to True by passing -spinor to the command
irrep in the CLI).

Keyword Function Default

code Name of the DFT code; vasp,
espresso, abinit, wannier90

vasp

fWAV VASP input file with wave functions WAVECAR

fPOS VASP input file with the crystal 
structure

POSCAR

fWFK Abinit input file with wave functions Mandatory if code=abinit
prefix Variable prefix in QE calculation or

seedname in W90
Mandatory if
code=espresso or
code=wannier90

IBstart First band to be considered 0, first band in DFT
IBend Last band to be considered Last band in DFT calculation
spinor Whether wave functions are spinors 

or not
False (mandatory for vasp)

Ecut Plane wave cutoff to be applied (in 
eV). Usually, a value around 50 eV 
yields accurate results

Cutoff used for the DFT 
calculation

kpoints Indices of k-points at which IRs must 
be computed

All k-points

kpnames Labels of k-points at which IRs must 
be computed

None, not needed to calculate 
the traces but mandatory to 
assign IRs to them

refUC Transformation of basis vectors with 
respect to standard setting

Calculated automatically

shiftUC Shift of origin with respect to 
standard setting

Calculated automatically

onlysym Stop after finding symmetries False

isymsep Index of symmetries to separate 
eigenstates

None

ZAK Calculate ZAK phases False

WCC Calculate wannier charge centers False

plotbands Write files for gnuplot with all 
symmetry eigenvalues

False

plotFile File where bands for plotting will be 
written

None

EF Fermi energy to shift energy levels 0.0 eV
degenThresh Threshold to decide whether bands 

are degenerate
10−4 eV

groupKramers Group wave functions in pairs of 
Kramers

True

symmetries Indices of symmetries to be printed All symmetries

suffix Suffix to name files for band plotting tognuplot

config Path of .yml or .json file with 
input parameters

None, read input parameters 
from CLI

Table 2
Files read by IrRep depending on the chosen interface.

interface -code= files

VASP vasp POSCAR and WAVECAR

Abinit abinit *_WFK

QE espresso *.save/data_file_schema.xml
and *.save/wfc*.dat

Wannier90 wannier90 *.win, *.eig, UNK*

basis vectors of the cell adopted for the calculation and {c1, c2, c3} those of the conventional setting, refUC is the 3 × 3 matrix M that 
expresses the relation between them, according to the following expression

(c1, c2, c3)
T = M(a1,a2,a3)

T . (6)

Similarly, shiftUC describes the shift of the origin with respect to the origin of the conventional unit cell. Note that shiftUC and
refUC are relevant only to determine the names of IRs in the notation of BCS. The characters can be computed with any choice of unit 
4
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Fig. 1. The two choices considered for the unit cell of the C-centered monoclinic structure. Conventional (primitive) basis vectors are indicated in black (blue). The conventional 
unit cell is marked by solid black lines, while the primitive cell is dashed blue. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

cell. In order to illustrate the use of these keywords, we work out the example of the C-centered monoclinic structure. Let the relation 
between the conventional basis vectors and the primitive ones used in the DFT calculation be the following, as illustrated in Fig. 1

c1 = a1 + a2,

c2 = −a1 + a2,

c3 = a3.

Also, assume that the two origins are related by the shift 0.3 a3. Then, the keywords refUC and shiftUC should be used with arguments

-refUC=1,1,0,-1,1,0,0,0,1 -shiftUC=0,0,0.3

When IrRep is run without specifying the values for refUC and shiftUC, these parameters will be calculated automatically and 
printed together with vectors {a1,a2,a3} and {c1, c2, c3}. When a basis transformation is applied, symmetry operations will be printed in 
both bases. For instance, the following lines illustrate the operations (only identity and inversion) printed by the code in the example of 
the C-centered crystal:

Space group C2/m (# 12) has 4 symmetry operations

### 1

rotation : | 1 0 0 | rotation : | 1 0 0 |
| 0 1 0 | (refUC) | 0 1 0 |
| 0 0 1 | | 0 0 1 |

translation : [ 0.0000 0.0000 0.0000 ]
translation (refUC) : [ 0.0000 0.0000 0.0000 ]

axis: [0. 0. 1.] ; angle = 0 , inversion : False

### 2

rotation : | 0 -1 0 | rotation : | -1 0 0 |
| -1 0 0 | (refUC) | 0 1 0 |
| 0 0 -1 | | 0 0 -1 |

translation : [ 0.0000 0.0000 0.4000 ]
translation (refUC) : [ 0.0000 0.0000 0.0000 ]

axis: [0. 1. 0.] ; angle = 1 pi, inversion : False

Once keywords are provided, the class BandStructure reads the basic information from the output files of the DFT code, such as 
the plane-wave cutoff, number of bands, etc. In essence, the lattice vectors, positions of atoms and the energies and wavefunctions of 
electronic states are read in this way (see Sec. 3.3 for details). These parameters are found in the files listed in Table 2.

When the information is read, it is stored in an object of class BandStructure which is independent of the ab initio code used. Thus, 
if an interface to a new ab initio code is needed, one has to simply implement another constructor for the BandStructure class.

3.2. Determination of the space group

Next, basis vectors and atomic positions are passed to the library spglib [55], whose routine get_spacegroup gives the name and 
number of the space group, while get_symmetry returns the coset representatives of the space group’s decomposition with respect to 
the translation group (see Sec. 2 for details). At this point, if the flag onlysym in Table 1 was set, IrRep prints the crystal structure and 
aforementioned coset representatives and then stops. Note that this utility can be useful for VASP even before running the DFT calculation 
to make sure that the configuration described in POSCAR really matches the assumed space group.
5
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3.3. Reading wave functions

In VASP, Abinit and QE, eigenstates |�nk > of H(k) are expanded in a basis of plane waves |k + G >:

∣∣�nk >=
∑
G

Cnk (G)
∣∣k + G >, (7)

where the sum runs over all the reciprocal lattice vectors G whose energy is smaller than a cutoff, i.e. h̄2(k + G)2/2me < Ecut. The cutoff 
coincides with the value indicated by the user if Ecut in Table 1 was set; otherwise, it will be the cutoff used in the DFT calculation. 
After testing the code with different systems, we have noticed that usually a value Ecut ∼ 50 eV yields accurate results, since the most 
dominant coefficients in Eq. (7) correspond to short G . After the application of the cutoff, the eigenstates |�nk > are normalized.

If the DFT calculation ran with PAW pseudopotentials [56–58], the expansion Eq. (7) gives the smooth pseudo-wavefunctions |�̃nk >, 
which are related to the all-electron wavefunctions |�nk > by a linear transformation |�nk >= T |�̃nk >. Note that |�̃nk > and |�nk >

transform under symmetry operations in the same way. Hence for simplicity we work with the pseudo-wavefunctions.
In the Wannier90 input files (UNK*) the wavefunctions are written on a real-space grid. In that case we perform a fast-Fourier transform 

(FFT) to obtain the coefficients Cnk(G) of Eq. (7).

3.4. Calculation of traces

For each k, symmetry operations g of its little group are picked one by one and expectation values < �nk |g|�nk > are calculated. 
Note that since the transformation properties of plane waves under translations are trivial, we need only iterate through the coset repre-
sentatives gki . The calculation of the traces depends on whether the DFT calculations were performed on scalar or spinor wavefunctions. 
Let us consider a g = {R | v} ∈ Gk and show the calculation in both cases:
• scalar wavefunctions:

< �nk |g|�nk >=
∑
GG ′

C∗
nk

(
G ′)Cnk (G) < k + G ′ |{R | v}|k + G > . (8)

From the transformation property of plane-waves,

g|k + G >= e−i(Rk+RG)·v |Rk + RG >, (9)

together with their orthogonality property,

< k′ + G ′|k + G >= δG ′,k−k′+G , (10)

it follows that Eq. (8) is reduced to:

< �nk |g|�nk >=
∑
G

C∗
nk(Rk − k + RG)Cnk(G)e−i(Rk+RG)·v . (11)

• for spinor wavefunctions |�nk >= (|�↑
nk > |�↓

nk >)T the matrix element reads:

< �nk |g|�nk >=
∑
σσ ′

Sσσ ′ (g) < �σ
nk|g|�σ ′

nk >, (12)

where brackets < �σ
nk|g|�σ ′

nk > are computed by means of Eq. (11) and S(g) is an SU(2) matrix corresponding to g .
After this calculation, IrRep adds the expectation values of degenerate eigenstates. Each of these sums is the trace χ(g) of a matrix 

K (g) belonging to the representation K defined in the subspace of degenerate eigenstates. These traces might be of interest by themselves, 
but can also be further used to identify the IRs.

3.5. Identification of irreducible representations

The characters χα of every IR Kα of Gk were obtained from the BCS [53] and are provided with the IrRep module. For each subspace 
of degenerate eigenstates, the magic formula (5) is applied, yielding the multiplicity mk

α of IR Kα in the subspace of degenerate states. 
Notice that this procedure detects accidental degeneracies, which happen when eigenstates transforming under different IRs have the 
same energy.

At this point, the IR of each set of eigenstates is printed, together with the character of the IR. If traces of symmetry operations in the 
conventional cell differ from those in the cell used for the DFT calculation, they will be printed in both unit cells. Furthermore, IrRep
also writes a file trace.txt, which can be passed directly to the program CheckTopologicalMat of BCS [44], in order to get information 
about (physical) elementary band representations and symmetry-based indicators [13,19–21] to diagnose the band topology.

By default, the procedure is performed for all the bands calculated by the DFT code. Nevertheless, the user can set values for IBstart
and IBend in order to consider only bands in the range [IBstart,IBend]. This can be used to noticeably shorten the calculation 
time. Moreover, for the selected set of bands, the smallest direct and indirect gaps with respect to higher bands will be printed. For 
centrosymmetric crystals, the number of inversion-eigenvalue inversions (band inversions) and the Z2 index [6,59] will also be printed. 
In Sec. 4.1, we show an example of the output generated by IrRep where all these features are represented.
6
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Fig. 2. Crystal structure of CuBi2O4. (a) Unit cell, with Cu, Bi and O atoms in green, blue and red, respectively. (b) BZ and irreducible BZ (red), with high-symmetry points. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.6. Separation by symmetry eigenvalues

When writing the IRs, IrRep can separate the states by their eigenvalues with respect to a certain symmetry operation, if the index of 
that symmetry was given as isymsep (Table 1). Moreover, wave functions can be grouped by Kramers pairs, via the key groupKramers. 
The energies will also be written in a file, which can be used to plot bands. This data will be useful if the DFT calculation was done for an 
ordered set of k-points following a certain path in the BZ. Bands with different symmetry eigenvalues will be written in different files. The 
purpose of this feature is to respect the separation in the plot of bands, which is useful to study the role of symmetries in the protection 
of band crossings [45].

IrRep also contains routines to calculate the Zak phase and Wannier charge centers of a given set of bands (see keys ZAK and WCC in 
Table 1). Note that these functionalities work stably only for calculations employing norm-conserving pseudopotentials, and Ecut should 
not be specified in the command line (thus the DFT cutoff will be used). With the PAW method, due to the lack of consideration of the 
all-electron wavefunction, the results for symmetry separation and ZAK phase may be unreliable.

3.7. Writing the output

Finally, IrRep will return its output to the user. The output will be written in the CLI, from which it can be captured in plain 
text format. The output will also be printed in a JSON format file called irrep-output.json from which it can be easily parsed by 
downstream codes.

4. Example materials

In this section, we present the application of IrRep to two material examples, with different symmetries and topology, and analyzed 
by different DFT codes. With these examples, we cover the main functionalities of the code and also the subtlety related to the transfor-
mation between primitive and conventional basis. Input files to run the DFT calculations and input files that may be used to set IrRep’s 
parameters for these examples can be found in the Github repository of the code [60].

4.1. Irreducible representations in CuBi2O4

First, we show the application of IrRep to CuBi2O4. In the paramagnetic phase, this material crystallizes in a tetragonal structure 
characterized by the non-symmorphic space group P4/ncc (No. 130) [61,62]. Its crystal structure and BZ are shown in Fig. 2.

Fig. 3. Band structure of CuBi2O4 (a) without SOC included. Inset: bands in line �, connecting � to X, separated according to their eigenvalue of symmetry {mx | 1/2, 0, 1/2}
in the little group; solid (dashed) corresponds to eigenvalue −1 (+1). (b) Band structure of CuBi2O4 with SOC included. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

An interesting aspect of CuBi2O4 is found in reciprocal space: the little group of point A= (1/2, 1/2, 1/2), in the corner of the BZ, has 
only one (double-valued) IR with dimension 8. Its unusually large dimension makes it promising for the realization of high-degeneracy 
7
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Table 3
IRs at high-symmetry points of the partially filled set of bands of CuBi2O4. In the second (third) row, 
IRs of the calculation without (with) SOC included are listed.

� X M Z R A

�+
4 ⊕ �+

2 ⊕ �−
4 ⊕ �−

2 X2 ⊕ X1 M4 ⊕M3 2Z1 R1R2 A3A4

2�6 ⊕ 2�8 2X3X4 2M5 2Z5Z7 R4R4 ⊕ R3R3 A5A5

unconventional fermions [63,64]. Also due to the fact that the number of electrons in the unit cell is not a multiple of 8, this IR forces 
CuBi2O4 to be a filling-enforced semimetal.

We have calculated the band structure of CuBi2O4 with Abinit, both treating spin trivially (scalar calculation) and including spin-orbit 
corrections (spinor calculation). A plane-wave cutoff of 500 eV and cold smearing [65] were used in the calculation. The BZ was sampled 
with a grid of 5 × 5 × 7. Lattice parameters and atomic positions were taken from the Topological Quantum Chemistry database of 
materials [21]. The exchange-correlation term was approximated through General Gradient Approximation, in the Perdew Burke Ernzerhof 
[66] parametrization and PAW pseudopotentials were taken from Pseudo Dojo database [67]. Computed band structures can be seen in 
Fig. 3. Output files of IrRep are available in the examples folder of IrRep’s official Github repository [60].

In the rest of the analysis, we focus on the partially-filled isolated set of bands cut by the Fermi level. IRs of the wave functions at 
high-symmetry points can be calculated by running the following lines (case with SOC):

irrep -code=abinit -kpnames=GM,X,M,Z,R,A
-Ecut=50 -fWFK=CuBi2O4-spinor_WFK
-IBstart=289 -IBend=296 -EF=0

IRs obtained in this way are written in Table 3. The following lines illustrate part of the output for the point R = (0, 1/2, 1/2). Even 
though the little group of R contains many coset representatives, only two of them (represented by indices 1 and 6) are shown here for 
brevity.

k-point 5 :[0. 0.5 0.5]
number of states = 8

Energy | degeneracy | irreps | sym. operations
| | | 1 6

7.1820 | 4 | -R4(2.0) | 4.0000+0.0000j 0.0000+0.0006j
7.2232 | 4 | -R3(2.0) | 4.0000+0.0000j -0.0000+0.0002j

inversion is # 9
number of inversions-odd Kramers pairs : 2
Gap with upper bands : 2.02

Interesting information about the bands and even about the chemistry of the system can be extracted from the knowledge of IRs. 
This set of IRs is consistent with an elementary band representation [13] induced from Wannier functions sitting in Wyckoff position 
4c: (B ↑ G)4c in the case without SOC, (1E2 2E2 ↑ G)4c with SOC, in the notation of Ref. [13]. According to the framework of band 
representations [68,69], which explains how bands in reciprocal space inherit their symmetry properties from orbitals in real space, the 
Wannier functions that induce these bands transform as a combination of dx2−y2 and dxy orbitals.

At every point k belonging to the line � that connects � to X, the little group contains the glide symmetry gx = {mx | 1/2, 0, 1/2}. This 
means that for k ∈ �, wave functions of bands are also eigenstates of gx , so that we can distinguish them by their eigenvalue under this 
symmetry. As we mentioned, IrRep can extract this eigenvalue, by running the option isymsep=14, which corresponds to gx:

irrep -code=abinit -Ecut=100
-fWFK=CuBi2O4-scalar_WFK -IBstart=145 -IBend=148
-isymsep=14

The index corresponding to gx can be derived beforehand by running the option onlysym. The result is shown in the inset of Fig. 3(a), 
where bands with eigenvalue −1 (+1) of gx are indicated in solid (dashed). This calculation tells us that the crossings between dashed and 
solid bands are protected by gx and thus cannot be gapped out without breaking this symmetry. Such criteria can be used to systematically 
study symmetry protected band crossings [45].

4.2. Bismuth: high order topological insulator

In this example, we will present the calculation of Z2 and Z4 indices with IrRep. For that, we will work with a particularly interesting 
and well-known material: bismuth.

In the presence of only time-reversal symmetry (TRS), an insulator can belong to either the trivial or the topological phase. The 
system cannot undergo a transition from one phase to the other if the gap is not closed or TRS is not broken in the process. In this 
spirit, the topology of the system can be characterized by a Z2 invariant [4,70,59], which is −1 (+1) in the topological (trivial) phase. 
With inversion, the Z2 invariant can be calculated by multiplying the inversion eigenvalues of Kramers pairs of occupied bands at all 
time-reversal invariant momenta (TRIM) [6]. In the topological case, we say that the system has a band-inversion.
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Fig. 4. a) Crystal structure of Bi in space group R3m. Black lines delimit the conventional unit cell, whose basis vectors are {ci}i=1,2,3, while blue lines delimit the primitive 
unit cell used in the DFT calculation. b) Brillouin Zone corresponding to the primitive cell and TRIM (one from each star of k-points). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 5. Band structure of Bi in space group R3m. Since blue and red bands do not touch, we will ignore the electron-hole pockets and speak of occupied (blue) and 
unoccupied (red) bands. (a) Inversion eigenvalues at TRIM are indicated in green. (b) Bands along C3z-invariant line 	, which connects T to �; solid and dashed bands have 
C3z eigenvalues -1 and exp(±iπ/3), respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Crystal symmetries may enrich the topology of time-reversal invariant insulators, giving access to new phases, some of which can not 
be detected by the Z2 index. This is the case for bismuth in space group R3m: the Z2 index has value +1, which means that the ground 
state corresponding to the occupied bands in Bi is a trivial insulator as per its Z2 index, according to the discussion above. However, in 
Ref. [27] it was shown that the ground state belongs to a higher-order topological phase, characterized by a Z4 index equal to 2. Here, 
we will reproduce with IrRep this analysis.

We have used VASP to perform ab initio calculations of Bi in the primitive unit cell. All calculations include spin-orbit corrections. A 
cutoff of 520 eV was set for the plane-wave basis, together with a Gaussian smearing. The BZ was sampled with a grid of 7 × 7 × 7
k-points. We used PBE prescription as an approximation for the exchange-correlation term and PAW pseudopotentials [66]. The calculated 
bands are shown in Fig. 5(a). In Fig. 5(b), we show the bands separated by eigenvalues of C3z using IrRep’s option isymsep.

Space group R3m (No. 166) belongs to the rhombohedral family, in which conventional and primitive unit cells do not match, as 
can be seen in Fig. 4(a). Consequently, IrRep will need the transformation to the conventional cell. Even though we could let the code 
calculate refUC and shiftUC automatically, we will set them manually to illustrate them on a practical example. Since the origin of 
both, primitive and conventional cells is located in the same point, there is no need to specify shiftUC. Equation (6) takes the following 
form:

(c1, c2, c3)
T =

⎛
⎝

1 −1 0
0 1 −1
1 1 1

⎞
⎠ (a1,a2,a3)

T ,

so -refUC=1,−1,0,0,1,−1,1,1,1. In the following lines, which have been taken from the output of IrRep available among the 
examples in IrRep’s Github repository [60], we show how IrRep prints the matrix of symmetry operations, in particular for the 3-fold 
rotation, in the settings before and after applying the transformation of the unit cell:
9
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Table 4
IRs at TRIM for the last 6 occupied bands in Bi, calculated with IrRep. In each k-point, IRs are written 
from left to right in ascending energy order, e.g., T6T7 is higher in energy than T8.
T � F L

T9 ⊕ T8 ⊕ T6T7 2�8 ⊕ �4�5 F3F4 ⊕ F5F6 ⊕ F5F6 L5L6 ⊕ L3L4 ⊕ L5L6

### 2

rotation : | 0 0 1 | rotation : | 0 -1 0 |
| 1 0 0 | (refUC) | 1 -1 0 |
| 0 1 0 | | 0 0 1 |

spinor rot. : | 0.500-0.866j -0.000-0.000j |
| 0.000-0.000j 0.500+0.866j |

spinor rot. (refUC) : | 0.500-0.866j -0.000-0.000j |
| 0.000-0.000j 0.500+0.866j |

translation : [ 0.0000 0.0000 0.0000 ]
translation (refUC) : [ 0.0000 0.0000 0.0000 ]

axis: [0. 0. 1.] ; angle = 2/3 pi, inversion : False

To make sure that the transformation is correct, one has to check whether matrices and translation vectors after the change of basis 
match with those in the table file of the corresponding space group. Alternatively, they can be compared to matrices and translations in 
the GENPOS application of the BCS [71]. The next step is to calculate the IRs of occupied bands (Table 4). For that, we call IrRep with 
the keywords written in the following lines:

irrep -spinor -code=vasp -kpnames=T,GM,F,L -Ecut=50
-refUC=1,-1,0,0,1,-1,1,1,1 -EF=5.2156 -IBstart=5 -IBend=10

With the knowledge of the IRs and their inversion eigenvalues [see Fig. 5(a)], we conclude that the total number of (Kramers pairs of) −1 
inversion eigenvalues in the occupied bands is even, thus the Z2 index z2 = +1. However, there are two band inversions between � and 
T that the Z2 invariant cannot detect. Indeed, this double band inversion leads to the Z4 invariant z4 = 2, since the number of Kramers 
pairs of −1 inversion eigenvalues is equal to 2 mod 4. This means that Bi is a higher-order topological insulator (HOTI) [27]. The value of 
the Z4 index and number of −1 inversion eigenvalues are, by default, calculated and printed by IrRep; in the following lines, we show 
the way in which they are printed by the code, together with information about the direct and general gaps1:

Number of inversions-odd Kramers pairs IN THE LISTED KPOINTS : 6 Z4= 2
Minimal direct gap : 0.08857033154551353 eV
Indirect gap : -0.1886089499035215 eV

5. Conclusion

IrRep is a Python code for the calculation of irreducible representations of DFT calculated bands at high-symmetry points. It is a 
powerful tool for the detection and classification of topological sets of bands and materials, applicable with calculations performed both 
with or without SOC and using unit cells that might be non-conventional. Its structure keeps the implementation of interfaces to plane-
wave DFT codes simple; currently, it is compatible with VASP, Abinit, Quantum Espresso and any code that has an interface to Wannier90 
(which covers most of the popular DFT codes). Additionally, routines for separating bands based on an eigenvalue of certain symmetry 
operation are included. IrRep can be freely downloaded from https://github .com /stepan -tsirkin /irrep and/or installed with pip and its 
official webpage can be found in http://irrep .dipc .org/; the repository also contains examples, including the analysis of CuBi2O4 that we 
have presented in this work to illustrate the utility of the code.

Software availability

All software used and developed in this article (except VASP) is open-source and available for free. IrRep is available via pip [72]
and GitHub [60]. It also has an official webpage [73]. External libraries used in IrRep include spglib [55], NumPy [74], SciPy [75],
lazy-property [76], Click [77], monty [78] and ruamel.yaml [79]. VASP is commercial software available from the developers 
for a fee [80]. Other codes are available at [81] (Wannier90), [82] (QuantumEspresso) and [83] (Abinit). Figures of crystal structures were 
generated with VESTA [84]. Band structures were plotted with BEplot [85], which uses Matplotlib [86]. Inkscape vector graphics editor 
[87] was used in most figures.

1 Here the gap refers only to the high-symmetry points included in the calculation. The real gap may be smaller (and even may close) at some arbitrary point away from 
high-symmetry points.
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