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Abstract
1.	 Color variation is one of the most obvious examples of variation in nature, but 

biologically meaningful quantification and interpretation of variation in color and 
complex patterns are challenging. Many current methods for assessing variation in 
color patterns classify color patterns using categorical measures and provide ag-
gregate measures that ignore spatial pattern, or both, losing potentially important 
aspects of color pattern.

2.	 Here, we present Colormesh, a novel method for analyzing complex color pat-
terns that offers unique capabilities. Our approach is based on unsupervised color 
quantification combined with geometric morphometrics to identify regions of pu-
tative spatial homology across samples, from histology sections to whole organ-
isms. Colormesh quantifies color at individual sampling points across the whole 
sample.

3.	 We demonstrate the utility of Colormesh using digital images of Trinidadian guppies 
(Poecilia reticulata), for which the evolution of color has been frequently studied. 
Guppies have repeatedly evolved in response to ecological differences between 
up- and downstream locations in Trinidadian rivers, resulting in extensive parallel 
evolution of many phenotypes. Previous studies have, for example, compared the 
area and quantity of discrete color (e.g., area of orange, number of black spots) be-
tween these up- and downstream locations neglecting spatial placement of these 
areas. Using the Colormesh pipeline, we show that patterns of whole-animal color 
variation do not match expectations suggested by previous work.

4.	 Colormesh can be deployed to address a much wider range of questions about 
color pattern variation than previous approaches. Colormesh is thus especially 
suited for analyses that seek to identify the biologically important aspects of color 
pattern when there are multiple competing hypotheses or even no a priori hy-
potheses at all.
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1  | INTRODUC TION

Measurement of color is used in many fields of study including, for 
example, astronomy (Bessell, 2005; Robinson et al., 2010), medicine 
(Bhargava & Madabhushi, 2016; Limkin et al., 2017), and agriculture 
and food science (Dell'Aquila, 2009; Pathare et al., 2013). In biology, 
ecological, evolutionary, and mechanistic investigations of organis-
mal color have been prominent in the scientific literature since the 
19th century and have provided key insights into many aspects of 
organismal function and evolution, such as the role of coloration 
in thermoregulation, crypsis, aposematism, mimicry, mate choice, 
and speciation (Cott, 1940; Cuthill, 2019; Darwin, 1859; Jennions & 
Petrie, 1997; Mallet & Joron, 1999; Map pes et al., 2005; Mclean & 
Stuart-Fox, 2014). In recent years, color analyses have expanded to 
include more intricate investigations of how both color and patterning 
are produced (e.g., Manukyan et al., 2017; Shawkey & D'Alba, 2017) 
and perceived (e.g., Kelber, 2016; Stoddard et al., 2014), allowing for 
novel questions to be asked about the role of organismal coloration.

Despite the importance of coloration, its complexity and pat-
terning can pose serious challenges to measurement and inter-
pretation. Many different approaches that often rely on human 
perception of color have been used to quantify color patterns and 
how they vary among organisms, populations, and species. Early 
methods of assessing color in biology relied on categorical schemes, 
such as assigning patterns to discrete morphs (Brown & Clegg, 1984; 
Semler, 1971; Tan & Li, 1934). Using photographs, later studies quan-
tified color with measures of total area or percent coverage of dis-
crete categories of color (e.g., “orange,” “blue”), as well as the number 
of particular color pattern elements (e.g., numbers of “spots” of par-
ticular colors) (Houde, 1987; Olsson, 1994; Petrie & Halliday, 1994). 
Although subjective, these relatively low-dimensional measures 
are useful in addressing biological questions such as: Is there co-
variation between female preference and ornamental traits (Ellers 
& Boggs,  2003; Endler & Houde,  1995)? Are some color morphs 
more successful at attracting mates or surviving (Borer et al., 2010; 
Petrie, 1992; Sinervo & Lively, 1996)? Do morphs differ in life-history 
traits (Emaresi et al., 2014; Svensson et al., 2001)? Does morph fre-
quency vary with habitat type (Ahnesjö & Forsman,  2006; Power 
et al., 2005)?

In many studies, human perception was used to determine color 
categories and the boundaries of color pattern elements in order to 
quantify color patterns. Recent technological advancements in dig-
ital imaging and computation have enabled more objective charac-
terization of color. For example, individual pixels in digital images can 
be assigned values in a color space (e.g., red, green, and blue color 
channels in RGB color space), and spectrophotometry can capture 
the entire reflectance spectra of specific locations on an organism. 
In digital image analysis, every pixel can be described by a quanti-
tative value for each color channel. Pixels can then be grouped into 
discrete color categories using clustering or thresholding to per-
form image segmentation. Applications such as ImageJ (Schneider 
et al., 2012), patternize (Van Belleghem et al., 2018), and colordistance 
(Weller & Westneat,  2019) offer different methods for grouping 

pixels of similar color to assess overall patterns (i.e., perform image 
segmentation). These methods allow the user to set range limits 
for RGB values, which then enables automatic color segmentation. 
Alternatively, a user can define the number of color categories in 
which to bin pixels and then use k-means clustering to identify pixel 
groups. The patternize package provides an additional segmentation 
option known as watershed transformation. In watershedding, the 
image is treated like a topographic map where a pixel within a user-
defined region is selected and surrounding pixels are binned with the 
focal pixel if RGB values fall within a specified threshold; when pixels 
fall outside of the threshold, this becomes a border to that color pat-
tern element and a new element is initiated; this process continues 
until the image is entirely segmented.

Image segmentation approaches have been useful in addressing 
many questions. For example, ImageJ has been used for counting 
pixels within a specified color range to identify diseased tissue (Hadi 
et al., 2011; Papadopulos et al., 2007; Schindelin et al., 2015), pat-
ternize was used to compare the similarity of distributions of three 
discrete color categories among species of reef fish (Hemingson 
et  al.,  2019), and colordistance was used to visualize badge color 
differences between two lizard populations (Orton et  al.,  2019). 
In certain applications, the use of digital photography, along with 
computer software to group pixels into categories of color, has de-
creased subjectivity of color classification and increased the accu-
racy and reproducibility of color data collection (e.g., Laurinaviciene 
et al., 2011; Rizzardi et al., 2016). However, because consumer cam-
eras are designed to capture color in a manner that mimics human 
perception, it is important to understand the limitation imposed by 
the human perception of color (Troscianko & Stevens, 2015).

Methods other than segmentation of digital images are neces-
sary if information on whole color pattern variation (simultaneous 
evaluation of chromatic and spatial variation) is required. The pat-
ternize package uses presence or absence of a color at a location to 
assess spatial variation of color categories that are defined in the 
segmentation process. This limits the use of patternize to assessment 
of variation in the spatial distribution of one category of color at a 
time. Therefore, patternize works well for assessing pattern elements 
having clear boundaries and when spatial patterns of discrete colors 
vary, but the color itself does not change. Following color segmenta-
tion, colordistance calculates the distance between the color distri-
butions of two images within a color space (either RGB or CIELAB). 
While colordistance accounts for how much of each color is present 
in an image and how close those colors are in color space, the loca-
tion of these colors within the pattern is lost. In order to evaluate 
whole color pattern variation, measurement of spatially explicit vari-
ation in color is needed, and tools to evaluate color patterns in this 
manner have been lacking.

Although clustering of pixels can be automated, pixel values used 
to determine boundaries between color categories are typically set 
by the user, which introduces a potentially problematic level of human 
subjectivity (Davidoff & Fagot, 2010; Siuda-Krzywicka et al., 2019; 
but see Bergeron & Fuller, 2018), as well as information loss due to 
discretizing continuous color variation. Reflectance spectrometry is 
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an objective measure of color that quantifies the wavelengths and 
intensities of light reflected from a small point sample over a con-
tinuous range of wavelengths (Andersson et al., 1998; Endler, 1990; 
Gomez & Théry, 2007; Zuk & Decruyenaere, 1994). Heterogeneous 
patterns can be sampled by collecting data from multiple sampling 
points in a standardized manner (Cuthill et al., 1999; Endler, 2012; 
Endler & Mielke,  2005). This technique has been used to acquire 
objective color data in many ecological and evolutionary studies, 
often in combination with models of the visual sensitivity of receiv-
ers of the color information, for example, potential predators, mates, 
or pollinators (Cortesi & Cheney,  2010; Dyer et  al.,  2012; Isaac & 
Gregory, 2013; Stoddard & Stevens, 2011). Understanding how a re-
ceiver perceives a visual signal is clearly important for studies of be-
havioral and ecological interactions based on color. The R package, 
pavo2, provides a framework for processing and combing spectral 
and spatial data with visual models (Maia et al., 2019). Because this 
package incorporates analyses such as between-pattern contrasts 
(Endler & Mielke,  2005), adjacency analysis (Endler,  2012), and 
boundary strength analysis (Endler et  al.,  2018) to model percep-
tion of color patterns, a large number of spectrophotometric sample 
points are required when color patterns are complex. However, for 
organisms with complex color patterns, the level of sampling re-
quired to compare color patterns among a large number of individu-
als is not currently feasible using reflectance spectrometry.

Here, we present a new approach for sampling color patterns 
from digital images using Colormesh, a package within the R statis-
tical computing environment (R Core Team, 2019), that is spatially 
explicit, high dimensional, high throughput, and does not rely on 
subjective determination of the number or type of color categories. 
Colormesh is an unsupervised approach that measures multidimen-
sional color data by dense sampling of quantitative color values 
across the entire sample area and therefore does not require clearly 
defined color pattern elements. To accomplish this, our method uses 
Delaunay triangulation to identify homologous sampling points on 
images that were standardized to a consensus shape with geometric 
morphometrics software. With Colormesh, we (a) enable analysis of 
color patterns that are highly variable, spatially complex, and/or lack 
well-organized color pattern elements (e.g., spots or stripes), (b) cap-
ture the continuous, high-dimensional nature of color variation, (c) 
use an unsupervised method to determine points on standard digital 
images from which to sample color values, and (d) allow for flexibility 
in color sampling density and the size of the area sampled.

We demonstrate the utility of Colormesh using digital images 
of Trinidadian guppies (Poecilia reticulata), in which the evolution 
of color is a topic of active study. We photographed male guppies 
from eight natural and three experimental populations (described 
below). Complex color patterns in this species are male limited, 
highly heritable, and highly variable both within and between pop-
ulations (Brooks & Endler, 2001b; Endler, 1995; Gordon et al., 2015; 
Houde, 1997; Hughes et al., 2005; Kemp et al., 2008; Magurran, 2005; 
Winge, 1927). Male guppy coloration has become a model system 
for studies of local adaptation (Gordon et  al., 2015; Houde, 1997; 
Millar et  al.,  2006) and for the maintenance of ecologically 

important variation (Brooks & Endler,  2001a; Evans et  al.,  2008; 
Hughes et al., 1999, 2013; Olendorf et al., 2006; Valvo et al., 2019). 
Guppies have repeatedly evolved in response to different ecological 
conditions above (upstream) and below (downstream) barrier water-
falls in Trinidadian rivers and streams (Endler, 1978; Magurran, 2005), 
and upstream populations are known to be descendants of down-
stream populations within rivers (Alexander et al., 2006; Becher & 
Magurran, 2000; Crispo et al., 2006; Magurran et al., 1992; Shaw 
et al., 1992; Suk & Neff, 2009; Willing et al., 2010). Downstream hab-
itats are often referred to as high predation due to the presence of 
one or more species of large piscivorous fish (Endler, 1980; Reznick 
et al., 1996). In addition, many downstream sites have relatively open 
forest canopy and high primary productivity (Grether et al., 2001). In 
contrast, upstream habitats, typically referred to as low predation, 
generally contain one main, smaller guppy predator, Anablepsoides 
hartii (formerly, Rivulus hartii), that preys on juveniles and small 
adult guppies (Gilliam et al., 1993; Reznick et al., 1996); these low-
predation habitats typically have a relatively closed canopy and low 
primary productivity (Grether et al., 2001; Reznick et al., 2001). This 
repeated ecological transition has led to extensive parallel evolution 
of many phenotypes (Reznick & Endler, 1982; Reznick & Bryga, 1987, 
1996; Reznick,  1989; Reznick, Rodd, et  al.,  1996; Torres Dowdall 
et al., 2012; reviewed in Houde, 1997; Magurran, 2005), including 
male color (Endler, 1978, 1983, 1991).

It has been proposed that these ecological differences between 
down- and upstream sites, including predation intensity, also select 
for differing levels of color polymorphism between populations, 
through processes that generate negative frequency-dependent 
selection (NFDS) (Endler,  1980; Fraser et  al.,  2013; Olendorf 
et al., 2006). In natural populations, males bearing rare color pat-
terns have higher survival than males bearing common patterns, and 
this effect is stronger in low-predation sites than in high-predation 
ones (Olendorf et al., 2006). Anablepsoides hartii, which impose a 
greater predation risk in upstream sites, learn to be a more effec-
tive guppy predator the more it is exposed to a particular male color 
pattern (Fraser et al., 2013). Female guppies also prefer males bear-
ing rare or unfamiliar color patterns (Eakley & Houde, 2004; Graber 
et al., 2015; Hampton et al., 2009; Hughes et al., 2013; Mariette 
et  al.,  2010; Zajitschek & Brooks,  2008; Zajitschek et  al.,  2006), 
and this preference has been documented in both high- and low-
predation sites (Valvo et  al.,  2019). Taken together, these results 
suggest that low-predation sites should exhibit more variation in 
male color patterns, since NFDS by A. hartii should be stronger, and 
sexual selection by female preference is equally strong in the low- 
and high-predation sites. To test this prediction, whole color pat-
tern must be quantified, which to our knowledge has not previously 
been attempted.

Here we use Colormesh to address three questions about color 
variation and evolution in Trinidadian guppies. We first asked if our 
method could successfully classify individual fish by their popula-
tion of origin. We then asked if the direction of color evolution be-
tween up- and downstream populations was consistent across river 
drainages. Finally, we asked if the within-population variance in color 
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differed consistently between up- and downstream populations and 
evaluated the contribution of color at different locations on the fish 
to within-population variation in color.

2  | METHODS

2.1 | Overview

Each section below provides instructions for the preparation, and 
sampling of 2D digital images with the Colormesh package. To sam-
ple color from homologous locations among images, subjects must 
first be processed to a standardized size and shape. Image process-
ing (landmark placement and image transformation to a consensus 
shape) within the Colormesh package is described in brief below. 
Alternatively, image processing may be completed externally using 
other geometric morphometric software (e.g., the R package, 
Morpho (Schlager, 2017), the TPS series software (Rohlf, 2015)) and 
then imported and sampled using the Colormesh sampling pipeline. 
Following image processing, we then describe the Colormesh sam-
pling pipeline that uses Delaunay triangulation as an unsupervised 
method to determine points from which to sample color. Finally, we 
present how we used Colormesh to address evolutionary questions 
relevant to the guppy study system using data extracted with the 
Colormesh package.

Colormesh can be downloaded for free at https://github.com/
J0vid/​Color​mesh. The GitHub site provides instructions for down-
load and a forum for posting questions or issues. Explanatory details 
and example code for using Colormesh to process images (or import 
data obtained through external processing) and color sampling are 
provided on the Readme page of the GitHub site, as well as in a tuto-
rial provided in the Appendix S1.

2.2 | Required input for color sampling

Colormesh requires two CSV files to provide information during 
processing: one having the unique specimen image names and as-
sociated identification information and the other to provide the 
known RGB values of the colors on the standard for the calibra-
tion process. To sample RGB color values from pixels, Colormesh re-
quires two sets of images as input: one set of images that have been 
processed using landmark-based geometric morphometric meth-
ods (either within the Colormesh package or externally) for color 
sampling and the original set of images containing a color standard 
for the image-specific color calibration. Lastly, two arrays contain-
ing landmark coordinate data are required: one of the consensus 
shape and another having the locations to sample the color stand-
ard. Landmark placement and generation of consensus shape im-
ages within Colormesh (described below) will produce the required 
coordinate data arrays; externally generated landmark coordinate 
data are easily imported (examples available in the Appendix S1 and 
on the Github site).

2.2.1 | Image processing (landmarking and image 
transformation)

To generate the required image inputs, digital photography is used 
to capture 2D images of specimens that also include a size scale 
and color standard. Several common image formats (e.g., JPEG, 
PNG, BMP, and TIF), as well as the raw image formats unique to 
Canon, Nikon, and Olympus brand cameras (CR2, NEF, and ORF, 
respectively) are compatible with Colormesh; the magick package 
(Ooms,  2021) is used to read images because of its support for a 
large variety of image formats. Digital images that are to be com-
pared must all have the same pixel dimensions (length × width), and 
image names must be unique and match the image names in the CSV 
file containing the image information. All digital image files must be 
saved in the same folder.

The first step in transforming specimen images to a consensus 
shape is the placement of landmarks on each specimen. To identify 
the scale, location of the color standard, and place landmarks, the 
user invokes the landmark.images function within Colormesh. This 
presents each image to the user and utilizes the user-friendly dig-
itization capabilities provided by the R package geomorph (Adams 
et al., 2020) to generate the array containing the landmark coordi-
nates associated with each specimen image. Following scale setting, 
traditional landmarks are first placed at several specific locations 
on the specimen that can be consistently identified across samples 
(e.g., fin attachment sites in our guppy case study). Semilandmarks 
can also be placed to represent a curve or surface on the speci-
men where locations that are biologically homologous are not eas-
ily identifiable (Bookstein,  1997). The quantity and placement of 
semilandmarks are up to the user and should be varied depending 
on the complexity and level of variation of the specimen's shape 
(Gunz & Mitteroecker,  2013; Watanabe,  2018). To infer a smooth 
curve between traditional landmarks when generating the consen-
sus shape, semilandmarks are slid into place before analysis (Gunz & 
Mitteroecker, 2013).

For the color calibration process, the landmark.images function is 
invoked a second time. This array is generated to provide landmark 
coordinates identifying where each image is to be sampled for cali-
bration (described below); for this array, a scale is not defined since 
color calibration does not use shape analysis.

The last step of image processing is the generation of consensus 
shape images using landmark-based image transformation. The user 
invokes the tps.unwarp function which employs the utilities of two 
R packages: geomorph (Adams & Otárola-Castillo, 2013) and imager 
(Barthelme, 2020) to calculate the consensus specimen shape and 
produce the transformed images, respectively. First, a Generalized 
Procrustes Analysis (GPA) is performed using the landmark coor-
dinate data from each specimen image to compute the consensus 
specimen shape. If semilandmarks are defined, by default they slide 
to minimize bending energy between individuals specimens and the 
consensus shape (Gunz & Mitteroecker, 2013); otherwise, all land-
mark coordinates are treated equally in the GPA that estimates the 
consensus shape. The function generates an array that contains the 

https://github.com/J0vid/Colormesh
https://github.com/J0vid/Colormesh
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landmark coordinates of the computed consensus shape. This con-
sensus shape is then used as the target for transforming each spec-
imen image to the consensus shape using a thin plate spline (TPS) 
image transformation. The resulting transformed images are then 
written to a directory, specified by the user, as lossless, compressed, 
PNG format images.

2.2.2 | Color sampling pipeline

The Colormesh sampling pipeline is based on unsupervised color 
quantification at individual sampling points across the transformed 
photograph of the specimen. Novel to Colormesh is the use of 
Delaunay triangulation, which generates a surface of triangles from 
a finite set of points using three nearest points whose circumcir-
cles do not contain any other points in the set. In computer graph-
ics, Delaunay triangulation is used to represent a large number of 
points within a boundary surface (i.e., a finite set of points) with a 
reduced number of points that function as a concise representa-
tion of the shape (De Berg et al., 2008; Bala & Sekhon, 2011, see 
Aurenhammer, 1991 for use of Delaunay triangulation in geometric 
data structure); Delaunay triangulation has previously been used to 
identify nonlandmarked points used for shape analysis (Márquez 
et al., 2012). With Colormesh, the centroids of the triangles serve as 
the sampling template in that their coordinates identify comparable 
pixels on each transformed specimen image that will be sampled for 
RGB values.

The first step in the color sampling pipeline is the generation of 
the sampling template. The user invokes the tri.surf function within 
Colormesh, which uses two auxiliary R packages (sp (Pebesma & 
Bivand, 2005) and tripack (Renka et al., 2016)) to calculate the sur-
face of sampling points from the landmark coordinate data of the 
consensus shape array. The granularity, or density, of sampling is 
user-controlled by the number of rounds of triangulation that is de-
fined in the function; additional rounds of triangulation beyond the 
first use the centroid coordinates from the previous round of trian-
gulation as the vertices for the subsequent round. Therefore, each 
additional round of triangulation increases the density of sampling 
points (e.g., Figure  2a) and also increases downstream processing 
times. The output of the tri.surf function is the sampling template 
containing the coordinates of the pixel located at the centroid of 
each triangle.

The next step in the color sampling pipeline is sampling RGB val-
ues from a sampling circle that is centered on each pixel identified 
in the sampling template. To sample RGB color values, the user in-
vokes the rgb.measure function. The size of the sampling circle (e.g., 
Figure 2b) is defined in this function allowing the user to control the 
level of pixel averaging for color sampled at a location; in contrast to 
the density of sampling points, the sampling circle size does not in-
fluence downstream processing time. This function uses the imager 
package (Barthelme, 2020) to extract R, G, and B values from pix-
els included in the sampling circle and calculates the mean for each 
color channel. The final output of this function generates a list of 

extracted values for each color channel for each image and provides 
the sampling template coordinates. For visualization, Colormesh pro-
vides several options for plotting the color values extracted from the 
consensus shape images (e.g., Figure 2c, d).

The Colormesh approach is flexible in that it allows user-
controlled sampling density and circle sizes. However, to reduce 
the level of subjectivity, the extracted data may be used to inform 
these decisions. We demonstrate a method using our sample data to 
determine which sampling scheme (sampling density and circle size) 
best differentiates among specimens in the Multivariate classification 
and differentiation among populations section below.

2.2.3 | Color calibration

Providing the known RGB values of the color standard enables 
Colormesh to correct the sampled color values. Calibration is per-
formed by the rgb.calibrate function which calculates an image-
specific color channel correction vector. First, Colormesh reads in 
the array of coordinate data from landmarks placed on the color 
standard in the images. The RGB values are then sampled from the 
pixels contained within a sampling circle centered on the coordinates 
provided by the array. The mean deviation from the known color 
channel values of the standard included in each image is calculated 
and the channel-specific correction is applied to the measured val-
ues for that image.

2.3 | Colormesh applied to the Trinidadian 
guppy system

2.3.1 | Populations sampled

To compare color patterns in a diverse set of populations, we pho-
tographed wild male guppies captured during the dry season in 
May of 2016 and 2017. These fish were collected from six rivers 
belonging to three major drainage systems in the Northern Range 
in Trinidad (see Table  S1 for GPS locations): the Caroni drainage 
(Aripo, El Cedro, and Guanapo Rivers), Northern drainage (Marianne 
and Paria Rivers), and the Oropuche drainage (Turure River). In the 
Aripo, El Cedro, Guanapo, Marianne, and Turure Rivers, we sampled 
males from up- and downstream habitats that are characterized 
by important ecological differences (Endler,  1995; Houde,  1997; 
Magurran, 2005). We also sampled one additional population, the 
Houde Tributary of the Paria River, which is a low-predation site 
and does not have an associated high-predation site (Houde, 1997; 
Magurran,  2005). Of the 11 populations sampled, eight were 
naturally occurring populations and three were experimental 
populations. The experimental populations were the high- and low-
predation populations sampled from the Turure river, where gup-
pies were introduced in 1957 (Becher & Magurran, 2000) and the 
low-predation El Cedro population where guppies were introduced 
in 1987 (Reznick & Bryga, 1987).
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For logistical reasons, males from the Aripo, El Cedro, and Paria 
Rivers, and the low-predation population of the Marianne River 
were collected and photographed in 2016. Males from the Guanapo, 
Turure, and the high-predation population of the Marianne River 
were collected and photographed in 2017. See Appendix Methods 
for details on fish collection and digital photography. We photo-
graphed a total of 485 male fish, 24–57 per population (See Table S1 
for sample sizes).

2.3.2 | Image processing and color sampling

Image processing was performed externally using the TPS Series 
morphometrics software (Rohlf, 2015); details of image processing 
specific to the TPS series software are included in the Appendix: 
Methods. In brief, digital images used in the guppy example analyses 

were taken in the camera's raw image format (.cr2) and converted to 
the .TIF format with an output color space of sRGB in Photoshop CC 
2018. Each digital photograph of a male guppy included a size and 
color standard. After setting the image scale (pixels/cm), a total of 
62 landmarks were placed around the perimeter of each fish. Seven 
traditional landmarks were first placed at the following locations: 
the tip of the snout, anterior and posterior connection points of the 
dorsal fin to the body, dorsal and ventral connection points of the 
caudal fin to the caudal peduncle, posterior and anterior connection 
points of the gonopodium to the body (Figure 1). Fifty-five semilan-
dmarks were placed along the edge of the fish, among the traditional 
landmarks, in a counterclockwise direction (Figure 1). For the color 
calibration process, a landmark was placed on each of the five colors 
in the color standard included in each photograph. Landmark place-
ment on all photographs was performed by K.D.

Populations were initially processed separately to generate 
population-specific consensus shapes. To avoid biasing fish shape 
toward a particular population since the numbers of fish sampled 
for populations varied, an overall-consensus shape was then gener-
ated using the 11 population-specific consensus shapes as inputs. 
Individual images were then transformed to the overall-consensus 
shape and saved as TIF image files, thus providing the consensus-
shaped image set required for the Colormesh sampling pipeline. 
Following external image processing, all required files were read into 
Colormesh and we proceeded with the color sampling pipeline.

Color data were then collected from the processed images using 
12 different sampling schemes (sampling densities of two, three, and 
four Delaunay triangulations, each with sampling circle diameters 
of one, three, five, and nine pixels). Color data were extracted from 
guppy images using the auxiliary package EBImage (Pau et al., 2010), 

F I G U R E  1   An example of an image opened within the tpsDig2 
software that was used to place landmarks on an image. A total of 
62 landmarks are placed in the same order on every image. Seven 
traditional landmarks (white circles) are placed first in locations that 
can be consistently identified on each fish. Between the traditional 
landmarks, 55 semilandmarks (red circles) are placed; the number of 
semilandmarks between each traditional landmark was consistent 
between images and the user placed them approximately equally 
spaced apart between the two traditional landmarks

F I G U R E  2   Panel (a) shows the mesh generated from the user-defined sampling scheme of 2, 3, and 4 rounds of Delaunay triangulation 
(DT). The triangle mesh is used to determine sampling location (red dot at each triangle centroid). The triangle centroids defined by the 
previous round of triangulation were used to generate the subsequent round of triangulation. Panel (b) shows the pixels sampled depending 
on the user-defined sampling circle radius size. Shown are the sampling circles with diameter = 1, 3, 5, and 9 pixels, from left to right. Panel 
(c) shows a plot of the RGB values sampled from an unwarped image (Panel d) at different sampling densities (DTs). Here we only show 
the sampling design where the sampling circle diameter = 1 (only the triangle centroid RGB values were measured). To visualize the color 
sampled at single pixels, the sampled RGB values from each pixel are reproduced as larger circles
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but for future users, EBImage has now been replaced by the imager 
package in the current version of Colormesh. Because the known 
RGB values of the five colors included on the color standard were 
given on a scale of 0–255, values were divided by 255 to match the 
scale of values extracted which range from 0 to 1 (Table S2).

2.3.3 | Multivariate classification and differentiation 
among populations

We used Discriminant Analysis of Principal Components (DAPC) in 
the R package, adegenet (Jombart,  2008) to determine if color pat-
tern was associated with population sampling site. DAPC can also be 
used in a cross-validation framework to determine if data can be used 
to classify observations into predefined categories. We used DAPC 
to determine which of the sampling schemes and pixel sample circle 
sizes (described above) allowed us to best discriminate among popula-
tions. Because DAPC requires the user to specify how many PCs to 
retain, we first used the xvalDapc function in the R package adegenet 
(Jombart,  2008) to assess the proportion of successful assignments 
and root mean squared error (RMSE) for a varying number of retained 
PCs. We specified that 80% of each sample be used for training and 
20% for validation. Cross-validations were performed at nine different 
retention levels of PCs in increments of 50 ranging from 50 to 450. 
We set the number of replicates to be carried out at each PC retention 
(n.rep) = 100. We compared the lowest RMSE and proportion of suc-
cessful placements for each of the 12 sampling schemes to determine 
which sampling scheme would be used for the remaining analyses.

2.3.4 | Direction of evolution within and 
between rivers

We used the guppy Colormesh data to compare the direction of evo-
lutionary divergence between populations with known ancestor-
descendant relationships. This analysis tests the hypothesis that 
color pattern evolution has evolved convergently each time high-
predation guppies have moved upstream to invade low-predation 
habitats. For four of the six rivers that we sampled (Aripo, El Cedro, 
Guanapo, and Turure), the paired high- and low-predation popula-
tions were sampled in the same year. This meant the images had the 
same pixel resolution prior to the image processing described above, 
so the high- and low-predation populations within these four riv-
ers could be compared directly. For this analysis, each fish had R, 
G, and B values measured at 2,462 positions for a color vector of 
length = 7,386 variables.

To produce an average color pattern for a given population, we 
calculated the mean value of each color channel at each sampling 
point. Thus, each population had a mean color vector consisting of 
2,462 values for each color channel. Because low-predation popu-
lations are known to be descendants of high-predation populations 
within each river, the difference between the population mean color 
vectors measures the direction of color evolution within a river. If 

color pattern evolution was similar among rivers, these difference 
vectors should be more similar than that expected by chance. We 
measured the similarity of these vectors by calculating the angle be-
tween the vectors of each pair of rivers. If colors evolved similarly 
in two river drainages, the vectors indicating direction of evolution 
will have a smaller angle between them than random vectors. The 
angle between the vectors can also be expressed as a vector correla-
tion (r), which is mathematically equivalent to Pearson's correlation 
coefficient.

In order to calculate a confidence interval for this estimate of 
the correlation in direction of color evolution between each pairing 
of the four rivers, we first bootstrapped whole-fish color patterns. 
Populations were resampled 1,000 times using the boot function in 
the R boot package (Canty & Ripley, 2019; Davison & Hinkley, 1997). 
Whole fish color patterns were bootstrapped in order to retain the 
associations of RGB values within and among the sampling points. 
For each bootstrap sample, we calculated the population mean 
color pattern as described above. This produced 1,000 bootstrap 
estimates of the population mean color pattern. To generate 1,000 
estimates of the direction of evolution within a river, we subtracted 
the mean vector of the first bootstrap sample in the high-predation 
population from the mean vector of the first bootstrap sample in 
the low-predation population; this was repeated for the remaining 
999 bootstrap samples from the high- and low-predation popula-
tions. We then calculated the vector correlation between each of 
the 1,000 bootstrap estimates of color evolution within the rivers. 
Pairwise comparisons of four rivers generated six distributions of 
correlation coefficients.

To determine whether the correlation between pairs of rivers 
was more similar than expected by chance, we calculated a null 
expectation for the correlation between random vectors. We first 
generated vectors to simulate two rivers where the expected di-
rection of evolution within each river was random. This was done 
using the mvrnorm function in the MASS package in R (Venables & 
Ripley,  2002). We created two matrices, each with 1,000 random 
vectors of dimension  =  7,386, mu  =  0 (vector giving the mean of 
zero for each variable of the matrix), and Sigma defined as the iden-
tity matrix (ones on the diagonal and zeros on the off-diagonal) to 
simulate random direction of evolution estimates. Similar to our 
bootstrap samples, we then paired each vector between the two 
simulated river estimates and calculated the mean correlation be-
tween random vectors. If the estimate of the vector correlations 
for each river comparison was above or below the mean correlation 
between random vectors, we determined the correlation between 
rivers in the direction of color evolution was more correlated than 
expected by chance.

2.3.5 | Phenotypic variance in color between 
predation regimes

We compared phenotypic variation in male coloration between 
high- and low-predation populations using the same data set from 
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the rivers included in our analysis of the direction of color evolu-
tion (Aripo, El Cedro, Guanapo, and Turure). We calculated the trace 
of the variance-covariance matrix to determine the phenotypic 
variance in color for each real population. Our test statistic was the 
trace of the high-predation population minus the trace of the low-
predation population.

We used permutation to test if the phenotypic variation differed 
between high- and low-predation populations within a river. We per-
muted the label of high predation or low predation for each whole-
fish color pattern within a single river using the sample function in 
base R (V3.5.3), created 1,000 permutation samples, and calculated 
the difference between traces. The distribution of these 1,000 
measures of difference in variance was used to represent the null 
distribution.

We were also interested in characterizing the whole-specimen 
spatial pattern of within-population variance in color. To do so, 
we compared the within- and between-population components of 
variance for each color channel at every x, y coordinate in the data 
set. We estimated variance components with restricted maximum-
likelihood using Proc Varcomp of SAS version 9.4 (SAS Institute, Cary, 
NC), with the color value (R, G, or B) at a given x, y position as the 
dependent variable, year as a fixed effect, and population ID as a 
random effect.

3  | RESULTS

3.1 | Multivariate classification and differentiation 
among populations

We first sought to determine a combination of sampling density and 
sampling circle size that would enable us to classify the 11 guppy 
populations with the highest precision. As the number of rounds 
of Delaunay triangulations (DT) increased, the root mean squared 
error (RMSE), averaged over all sampling circle sizes, consistently 
decreased (RMSE averaged across years: 2DT = 0.18, 3DT = 0.15, 
4DT = 0.13; Table S3), and the mean successful assignment of the 
validation set increased slightly (proportion of successful assign-
ment averaged across years: 2DT = 0.87, 3DT = 0.90, 4DT = 0.91; 
Table S3). To visualize the difference in sample density, we repro-
duced an example image by plotting the sampled RGB values at each 
of the three sampling densities (Figure  2c); clearly, the increased 
sampling density improves the representation of the complex guppy 
color pattern to human perception.

To choose the sampling circle diameter for our analyses, we 
again evaluated the cross-validation results (Table S3). At the highest 
sampling density (4DT), classification success was high and nearly 
constant irrespective of sampling circle diameter (range: 0.91–0.93). 
When images were reproduced using color sampled at the four dif-
ferent sampling circle diameters (1, 3, 5, and 9 pixels), there was 
no noticeable difference in image quality that would suggest that 
one of the four sampling circle diameter sizes would best represent 
an image (Figure S1). We therefore decided to use sampling circle 

diameter of 1 (1 pixel sampled, no pixel averaging) because it pro-
duced the lowest RMSE and highest success rate in both years, when 
years were analyzed separately (Table  S3). This sampling scheme 
produced a color vector of length 7,386 (2,462 sampling points by 
three color channels).

Using this sampling scheme, DAPC analysis generated discrimi-
nant functions representing principal components that best differ-
entiated guppy populations. Figure 3 shows the positions of all fish 
in the 11 populations on the first three discriminant function axes. 
Discriminant functions one, two, and three accounted for 45.6%, 
13.6%, and 13.2% of the variation in color patterns, respectively. 
Axis one separated populations predominantly by the year in which 
they were sampled; populations collected in 2016 were clustered 
to the left and did not overlap with the samples collected in 2017. 
Images from 2017 were photographed under slightly different con-
ditions than in 2016 and were clustered to the right in the scatterplot 
(Figure  3a). In contrast, axis two consistently separated high- and 
low-predation populations of the same river, with high-predation 
populations higher (more positive) on axis two than the correspond-
ing low-predation population (Figure 3a). Indeed, even though the 
two Marianne populations were sampled in different years and there 
were slight differences in the resolution of the images, the direction 
of separation along axis two followed this pattern. Axis three also 
consistently separated high- and low-predation population pairs, 
with high-predation populations always placed higher (more posi-
tive) on axis three than their low-predation counterparts (Figure 3b). 
In Figure 3b, which plots axes two and three, it is evident that these 
two axes together consistently differentiate low- and high-predation 
population pairs, with low-predation populations always below and 
to the left (more negative on both axes) of their high-predation 
counterpart.

3.2 | Comparison of direction of evolution 
within and between rivers

The natural replication of the ancestor-descendant relationship be-
tween rivers allows us to determine whether the direction of color 
pattern evolution within rivers is more similar between rivers than 
expected by chance. Figure  4 illustrates the similarity in direction 
of color evolution from the high-predation to the low-predation 
sites for each of the four rivers by showing the pairwise correlation 
between vectors that describe the average color pattern evolution 
within each river. Since we were unable to test this pattern for all four 
rivers at the same time, each pair of rivers (e.g., Aripo vs. El Cedro) 
is represented by a bootstrap distribution that shows the estimate 
of the correlation and the uncertainty in that estimate in the direc-
tion of evolution between rivers (95% Confidence Interval). Of the 
six pairwise comparisons, the El Cedro-Guanapo (observed = 0.331, 
CI  =  0.150–0.381) and the Aripo-Turure (observed  =  0.376, 
CI  =  0.133–0.418) pairs were more correlated than expected by 
chance (mean correlation of random vectors = 0.002; Figure 4). The 
remaining four pairwise comparisons were not more correlated than 



     |  9VALVO et al.

expected by chance: Aripo-El Cedro (observed = 0.105, CI = −0.102 
to 0.280), Aripo-Guanapo (observed  =  0.062, CI  =  −0.070 to 
0.163), El Cedro-Turure (observed = −0.094, CI = −0.259 to 0.132), 
Guanapo-Turure (observed = 0.006, CI = −0.127 to 0.131).

Of the four rivers included in our analysis of direction of color 
evolution, three rivers belonged to the Caroni (Aripo, El Cedro, 
and Guanapo) and one to the Oropuche (Turure) drainage. This al-
lowed us to ask whether correlations in direction of color evolution 
between rivers belonging to different drainages were weaker than 
correlations within drainage. The cross-drainage correlations were 
somewhat more variable than the within-drainage correlations; in-
terestingly, the cross-drainage Aripo-Turure correlation is just as 
strong as the strongest within-drainage correlation (Figure 4).

3.3 | Comparison of phenotypic variance in color 
between predation regimes

We next compared the total phenotypic variation between predation re-
gimes for the four rivers for which both regimes were sampled in the same 
year, using the same data set. Figure 5 shows the results of the permutation 
tests of the difference in variance between high- and low-predation popu-
lations within a river. In two rivers (Aripo and Turure), the low-predation 
population had significantly higher total phenotypic variance (permutation 
p-value <.001 and p = .009, respectively). In the other two rivers (El Cedro 
and Guanapo), the high-predation population had nominally higher total 
phenotypic variance, but these differences were not significant (permuta-
tion p-value = .099 and p = .113, respectively; Figure 5).

F I G U R E  3   Scatter plot from the 
discriminant analysis of principal 
components (DAPC) where population 
membership was predefined (11 
populations). Points represent the 
coordinates of individuals, and 
populations are within inertial ellipses. 
The four letters at the center of 
the inertial ellipses represent the 
population: The first two letters identify 
the river (AR = Aripo, EC = El Cedro, 
GP = Guanapo, MN = Marianne, 
PR = Paria, TU = Turure), followed by two 
letters that identify the predation regime 
(HP = high predation, LP = low predation). 
High- and low-predation populations 
sampled within the same river are 
represented by dark and light versions of 
the same color, respectively. The barplot 
(inset) shows the proportion of variation 
explained by the discriminant analysis 
eigenvalues; dark bars correspond to the 
axes presented in the scatter plot of each 
panel section. Discriminant function axes 
one and two are plotted in panel (a), and 
axes two and three are plotted in panel 
(b). Original images (prior to unwarping) 
of individuals located at the extremes 
of each axis are shown for each panel. 
The color data used for the DAPC were 
collected from photographs unwarped to 
a consensus shape, and red, green, and 
blue (RGB) color channels were sampled 
from 2,462 pixels
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A spatially explicit analysis revealed the positions on the body 
that varied most in color within populations, relative to among-
population variance (Figure  6). For example, a position dorsal to 
the pectoral fin (“shoulder spot”) and several positions in the pos-
terior region of the caudal peduncle were highly variable within 

populations. Conversely, in a region immediately posterior to the 
“shoulder spot,” most variation was distributed among, rather than 
within populations, as indicated by low values in the heat maps in 
Figure 6. Notably, these regions did not differ substantially in overall 
variance, suggesting that these patterns were driven by the distri-
bution of variance within and among populations, and not by differ-
ences in general variability among body regions (Figure S2).

4  | DISCUSSION

Our approach to quantifying variation in color patterns adds to 
the tools available to address questions requiring quantification of 
whole sample/organism color patterns. Our approach has four key 
advantages: it (a) allows the analysis of variation in chromatically and 
spatially complex patterns, (b) avoids loss of information by discre-
tizing color or subjective identification of color elements, (c) allows 
high-throughput analysis by using digital images of whole color pat-
terns, and (d) provides flexibility with respect to sampling density 
and area.

We used this novel method to determine if it could accurately as-
sign fish from 11 populations to the correct population and to evalu-
ate whether the direction of color pattern evolution was consistent 
in four different rivers. We also asked if total phenotypic variation 
differed consistently between up- and downstream populations 
across drainages. Below, we discuss the performance of our ap-
proach on these tasks and compare our conclusions to those arrived 
at using different methods.

4.1 | Multivariate classification and differentiation 
among populations

The guppy example highlights the usefulness of spatially ex-
plicit sampling of whole color patterns performed by Colormesh. 
Regardless of the type of specimen, our approach enables the use 
of color data to examine the granularity of whole-pattern sampling, 
as well as identify regions within the pattern that contribute most 
to among-population differentiation and within-population vari-
ation. Colormesh allows the color of an individual to be character-
ized at different scales by using different numbers of points on the 

F I G U R E  4   Correlations between pairs of rivers comparing the 
direction of evolution in color patterns within rivers from high-
predation sites to low-predation sites. Pairwise river comparisons 
are represented by each box and whisker where river pairs are 
identified on the x axis. Boxes indicate the interquartile range and 
whiskers show the 95% confidence interval of the estimate for 
the correlation between vectors of direction of color evolution. 
Within each boxplot, the median and mean of the distributions 
are represented by the solid line and diamond, respectively. The 
horizontal dashed line represents the mean correlation between 
random vectors. The horizontal dotted line represents the 
mean expected correlation between pairs of rivers within the 
Caroni drainage system. The four rivers included in the pairwise 
comparisons are the Aripo (AR), El Cedro (EC), Guanapo (GP), and 
Turure (TU). AR, EC, and GP belong to the Caroni drainage and TU 
to the Oropuche; within-drainage pairwise comparisons are shaded 
in light gray while between-drainage comparisons are shaded in 
dark gray

F I G U R E  5   Observed (dashed line) 
and permuted (distribution) difference in 
total phenotypic variance (trace) between 
predation regimes where high-predation 
(HP) values were subtracted from low-
predation (LP) values within a river
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body and averaging over different numbers of pixels around each 
point. Variation in the number of semilandmarks would also influ-
ence the density of sampling points since these landmarks are used 
in the initial round of Delaunay triangulation. Therefore, an impor-
tant precursor to analysis is to investigate how varying these pa-
rameters (rounds of triangulation, sampling circle diameter, number 
of semilandmarks) affects the conclusions of any analysis. For our 
guppy samples, increasing sampling density increased our ability to 
differentiate populations, and varying the number of pixels averaged 
around each point made little difference. This is likely because male 
guppy color pattern is complex, with color changing fairly dramati-
cally at small spatial scales. Organisms with less fine-grained pat-
terns might be sufficiently sampled at coarser scales.

The discriminant analysis of principal components (DAPC) using 
our selected sampling scheme (4DT, 1 pixel diameter) separated 
populations largely by sampling year along the first discriminant 
function axis. Camera settings differed between years which likely 
accounts for the variation explained by this axis; however, since dif-
ferent populations were sampled in different years, this axis proba-
bly also captured some population differences in color. Although this 
year effect limited which downstream analyses we could perform, it 
also indicates that this method is sensitive to unsuspected sources 
of variation, which suggests that consistency in the image collection 
process is important.

DAPC also allowed us to identify axes of variation that consis-
tently separated high- and low-predation populations. Differences 
between predation regimes have been reported in previous studies 
assessing color patterns; however, the nature of these reported dif-
ferences has varied. For example, in a study of 112 sites sampled 
from 53 streams located in Trinidad and Venezuela, Endler (1978) re-
ported that males in high-predation natural populations had smaller 
and fewer spots, and less coverage of bright (iridescent) colors. In 
contrast, Millar and Hendry (2012) reported few consistent differ-
ences between high- and low-predation populations across five 
different river systems even though methods of color quantifica-
tion (color categorization and measures of discrete color spots as 
judged by human vision) were similar to those used by Endler (1978). 
Investigations of color evolution across a similar ecological gradient, 
but over short time scales, have also produced varying results. Using 
populations translocated from high-predation to low predation, and 
a combination of spectrometry, digital photography, and visual mod-
eling, Kemp and colleagues reported that color evolved along differ-
ent trajectories in the Aripo and El Cedro river introductions (Kemp 
et al., 2008, 2009). While there were differences in color quantifica-
tion methods in these studies and ours, strong ecological correlates 
of color divergence suggest that these differences between river 
systems are driven primarily by biology, not methodology (Kemp 
et al., 2018; Millar et al., 2006; Millar & Hendry, 2012).

F I G U R E  6   Heat maps showing the 
proportion of variation accounted for 
by differences within each of the 11 
populations in color sampled at each of 
the 2,462 sampling points. Darker colors 
indicate higher proportion of variance 
distributed within, rather than among 
populations. Panel (a) shows the mean of 
the proportion of variation given by the 
red (b), green (c), and blue (d) channels
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4.2 | Direction of color evolution

With our guppy example, we sought to test whether the repeated 
transition from high- to low-predation pressure among rivers re-
sulted in parallel directions of color pattern evolution among several 
rivers. Using the known ancestor-descendant relationship between 
high- and low-predation populations, we calculated correlations in 
direction of multivariate color evolution between rivers. Our results 
were similar to those reported in two previous studies in that we 
found inconsistencies in the direction of color evolution among the 
rivers. In both previous studies, an increase or decrease in quantity 
and size of individual color pattern elements were compared to de-
termine similarity in evolutionary trajectories (Kemp et  al.,  2009; 
Millar & Hendry,  2012). Our approach to sampling color using 
Colormesh compliments these studies by assessing total phenotypic 
variation across the entire fish while avoiding the potential con-
straints imposed by the use of human-determined color categories. 
Three of the four rivers (Aripo, El Cedro, and Guanapo) in our com-
parisons belong to the same drainage system (Caroni), with the El 
Cedro being a tributary of the Guanapo. Comparisons between pairs 
of rivers within the Caroni drainage system showed that the El Cedro 
and Guanapo rivers were more similar in the trajectory of evolution 
than the other pairs of rivers, but the degree of similarity was small 
(vector correlation <0.3).

Between-drainage correlations included comparisons of a sin-
gle river of the Oropuche drainage (Turure) with each of the three 
rivers belonging to the Caroni drainage. These three correlation 
measures were highly variable. We expected the Turure-Guanapo 
and Turure-El Cedro comparisons to show greater correlation in di-
rection of evolution than the Turure-Aprio comparison because the 
low-predation Turure population was originally a guppy-free loca-
tion where guppies from a high-predation population in the Arima 
river (in the Caroni drainage, collected near the confluence with 
the Guanapo river) were introduced by Haskins in 1957 (Magurran 
et al., 1992; Shaw et al., 1992). Genetic evidence indicates the in-
troduced guppies have successfully established themselves all along 
the low- to high-predation reaches of the Turure and have inter-
bred with native Turure populations located downstream (Becher 
& Magurran,  2000; Fitzpatrick et  al.,  2015; Shaw et  al.,  1992). 
Surprisingly, the between-drainage system comparisons found the 
direction of color evolution between the Turure and Aripo was more 
similar to that expected between rivers within the same drainage. 
One possible explanation for this is that, in contrast to the other 
rivers used in this comparison, the large barrier waterfall between 
the low- and high-predation populations within the Turure River has 
prevented the migration of high-predation guppies upstream; the 
fish in this low-predation location are exclusively descendants of the 
transplanted fish (Shaw et al., 1992). This suggests that some aspects 
of the environment, beyond predation regime, and/or stochasticity 
play an important role in the direction of the color evolution when 
considering the overall patterns.

In our study, the consistent pattern of separation between high 
and low-predation populations found in the DAPC suggested that 

the direction of color evolution might be quite similar in different 
rivers. It is important to note that our approach sampled all aspects 
of color data obtained by the digital imaging process. It is possible 
that evolutionary trajectories of some aspect of color are indeed 
more parallel then the overall pattern shows. The completeness 
of our characterization of color patterns allows the user to restrict 
subsequent analyses to subsets of the color pattern hypothesized to 
correspond to more predictable differences among the groups under 
study; methods that only assess limited aspects of color pattern do 
not allow alternative characterizations to be investigated without re-
characterizing the original images. The Colormesh approach enabled 
our analysis of the multivariate direction of evolution providing a 
quantitative measure of degree of similarity or parallelism in inde-
pendent replicates using methods developed for addressing these 
questions and similar questions for other kinds of quantitative traits.

4.3 | Total phenotypic variation

Using the guppy system example, we also evaluated differences in 
total phenotypic variation within and among populations. The pro-
cesses that promote variation in male guppy color patterns have been 
investigated extensively (e.g., Brooks, 2002; Brooks & Endler, 2001; 
Farr, 1977; Houde & Endler, 1990; Hughes et al., 1999, 2013), and 
based on this literature, we predicted that low-predation sites should 
exhibit more phenotype variation than high-predation sites. We did 
find that the low-predation Aripo and Turure populations had signifi-
cantly greater variance in overall color than the high-predation pop-
ulations in those rivers; however, the trend (though not significant) 
was in the opposite direction for the El Cedro and Guanapo popu-
lations. This lack of consistently greater variation in low-predation 
populations suggests that A. hartii does not inflict stronger NFDS on 
guppies in low-predation populations, or that other ecological condi-
tions interact with the NFDS imposed by predators and females to 
determine levels of within-population variance in male color. Future 
investigations should assess density of potential predators and other 
ecological and genetic patterns (e.g., effective population size and 
migration rates) to provide more insight into the determinants of 
variation in this ecologically important trait.

We also identified spatial positions on the body that were char-
acterized by high within-population variation. Given the evidence 
for NFDS, future studies could examine whether spatial positions 
exhibiting high within-population variance are subject to stronger 
selection than regions with lower variance. Such studies could deter-
mine if female-imposed sexual selection (e.g., Valvo et al., 2019) or 
predator-imposed natural selection (e.g., Fraser et al., 2013) is influ-
enced by the spatial distribution of variable color pattern elements.

4.4 | Summary, extensions, and conclusion

The use of Colormesh provides a novel and unsupervised approach to 
the analysis of complex color patterns. In applying this pipeline, we 
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focused on population differences and on patterns associated with 
repeated evolutionary transitions to novel ecological conditions in 
guppies. We emphasize, however, that this method of quantifying 
color, which results in a standard multidimensional representation, 
can be used to address a wide variety of questions for biological 
samples ranging from histology preps to whole organisms and can 
be integrated or combined with other approaches to color and pat-
tern analysis. For example, patterns of correlation in color across 
the body could be assessed by standard methods in spatial statis-
tics (Schabenberger & Gotway,  2005; Wackernagel,  2013). These 
methods can identify regular patterns such as stripes and spots, and 
capture variation in this patterning among individuals, populations, 
or species. Our approach can be easily extended to more than three 
color channels (e.g., UV), to different color spaces (CIELAB, HSV, 
etc.), and to other features such as polarization by adding dimen-
sions to the multivariate trait vector. The continuous representation 
of color could be used for image segmentation or disparity analy-
sis, applying approaches available in patternize and colordistance 
(Van Belleghem et  al.,  2018; Weller & Westneat,  2019). Critically, 
the highly multivariate and spatially explicit data produced by this 
method could be integrated with visual models based on the biology 
of the receivers of visual signals, such as those incorporated in pavo2 
and the QCPA platform (van den Berg et al., 2020; Maia et al., 2019). 
Visual modeling could resolve the apparent contrast between our 
quantitative results (low to moderate parallelism in the evolution 
of color patterns across different river systems), and the results of 
other studies that find that rivers within the same drainage tend to 
exhibit parallel changes (e.g., Kemp et al., 2018). It is possible that 
only some aspects of color pattern are relevant to predation risk 
or attractiveness, while other aspects of color pattern detected by 
Colormesh are not relevant. The representation of color pattern from 
Colormesh could be used in future analyses to test which aspect of 
pattern are in fact relevant to these processes.

Colormesh can also be used for detailed investigation of the in-
heritance of the complex guppy color pattern (see Paris et al., 2021). 
Some of the genes responsible for coloration are located on the sex 
chromosomes with several of these genes being Y-linked (Lindholm 
& Breden,  2002; Winge,  1927). The guppy color pattern is often 
described as being so variable that no two fish look alike; however, 
some aspects of the color pattern are highly heritable (Brooks & 
Endler, 2001b; Hughes et al., 2005) and some appear to be inher-
ited patrilineally (Endler,  1978; Houde,  1997; Winge,  1927). The 
extent to which guppy color patterns are sex-linked (as opposed to 
sex-limited in expression), and how these patterns relate to chro-
mosomal evolution, have been the subject of considerable recent 
interest (Charlesworth,  2018; Gordon et  al.,  2012, 2017; Paris 
et al., 2021; Wright et al., 2017). The methods described here could 
be deployed to determine whether a finite set of color patterns exist 
within a population and to quantify the number of such patterns 
when they exist. For example, rather than using human judgment, 
DAPC (described above) can be used to infer the number of clusters 
of similar color patterns within a population (Jombart et al., 2010). 
Although we focus on the complex color patterns of male guppies 

for our examples, the standardization of specimen images enables 
the Colormesh approach to be useful in investigating the inheritance 
of color patterns for a wide range of taxonomic groups.

Overall, the color sampling method performed by Colormesh is 
a novel approach for analysis of complex color patterns; analyses of 
guppy color patterns highlight the value of the approach. Colormesh 
offers unique capabilities that allow for the analysis of variation in 
color patterns regardless of whether pattern elements are clearly 
defined and complements, rather than replaces, existing methods of 
color pattern analysis.
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