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Abstract

Indirect genetic effects (IGE) occur when an individual’s phenotype is influenced by genetic variation
in conspecifics. Opportunities for IGE are ubiquitous, and, when present, IGE have profound
implications for behavioral, evolutionary, agricultural, and biomedical genetics. Despite their
importance, the empirical study of IGE lags behind the development of theory. In large part, this lag
can be attributed to the fact that measuring IGE, and deconvoluting them from the direct genetic
effects of an individual’s own genotype, is subject to many potential pitfalls. In this Perspective, we
describe current challenges that empiricists across all disciplines will encounter in measuring and
understanding IGE. Using ideas and examples spanning evolutionary, agricultural, and biomedical
genetics, we also describe potential solutions to these challenges, focusing on opportunities
provided by recent advances in genomic, monitoring, and phenotyping technologies. We hope that
this cross-disciplinary assessment will advance the goal of understanding the pervasive effects of
conspecific interactions in biology.
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OXFORD

l. Introduction

That the traits of individuals are affected by both genes and envir-
onment is a truism, but it is less appreciated that an individual’s en-
vironment includes the genes of other individuals. The papers in this
special issue of the Journal of Heredity, and the American Genetic
Association (AGA) Symposium on which it is based, describe many
ways in which consideration of “genes as environment” affects our
understanding of fundamental biological processes. Papers in this
issue consider interactions between competing species (Girardeau
et al., 2022), interactions between mitochondrial and nuclear gen-
omes (Rand et al., 2022), and modifications of the nonsocial envir-
onment by interacting conspecifics (Aguillo et al., 2022), as different
instantiations of “genes as environment.”

Here, we explicitly focus on environmental effects arising from
genes of interacting conspecifics. These effects are known as in-
direct genetic effects (IGE), in contrast with “direct genetic effects”
(DGE) arising from the individual’s own genotype (Moore et al.,
1997; Bijma, 2014). Because all organisms interact with conspecifics
during some part of their life cycle, the opportunities for IGE to
influence Darwinian fitness and phenotypes are ubiquitous. Indeed,
the concept of IGE has been modeled and explored experimentally
by agricultural and evolutionary biologists, ecologists, biomed-
ical geneticists, and social psychologists (Table 1). Several papers
in this Special Issue describe exciting new theoretical and empir-
ical work on IGE (Fitzpatrick and Wade, 2022; McGlothlin et al.,
2022; McGlothlin and Fisher, 2022; Wade, 2022; Walsh et al., 2022).
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Table 1. The vocabulary of indirect genetic effects

Field Term

Key papers

Agricultural Genetics
Behavioral Ecology
Biomedical Genetics

Indirect genetic effect; social genetic effect
Indirect genetic effect; interacting phenotypes
Genetic nurture; dynastic effect; indirect genetic

Ellen et al. (2014)
Bailey et al. (2018)
Young et al. (2019)

effect; social genetic effect; horizontal effect

Evolutionary Biology

Indirect genetic effect; interacting phenotypes;

Wolf et al. (1998)

maternal genetic effect; GxG epistasis

Population and Community Ecology
Social Psychology

Associational effect; neighbor effect
Social niche construction; evocative rGE

Underwood et al. (2014)
Mills and Tropf (2020)

In this Perspective, we provide a brief history of the development of
the IGE concept in different disciplines. We then focus on the many
challenges faced by empiricists seeking to understand the influence
of IGE on phenotypes, and on potential solutions to these challenges.
Our focus is on empirical issues because 1) we ourselves are empiri-
cists and 2) in most arenas, the mathematical development of IGE
theory has outpaced empirical understanding.

A Brief History of IGE

To our knowledge, the concept now known as IGE was first intro-
duced by agricultural biologists who noticed that artificial selection
on heritable traits did not always yield the expected results. For ex-
ample, genotypes of crops that had the highest yield in mixed stands
had the lowest yields in genetically pure stands (Wiebe, 1963).
Notably, Dickerson (1947), Willham (1963), and Griffing (1967) ex-
tended traditional models of quantitative trait variation to include
both the effects of an individual’s own genotype and the effects
of genetic variation in conspecifics. In Dickerson’s and Willham’s
models, the conspecific individuals were mothers, and the effects
they described are now known as maternal genetic effects. Griffing’s
model assumed that genetic variance in an individual’s phenotype
could be affected by genes expressed in unrelated, but interacting,
conspecifics, which he termed “associate effects.” These models did
not specify the phenotypic traits of interacting partners that caused
the associate effects. Instead, the total phenotypic variance in the
focal trait was partitioned into a direct component attributable to an
individual’s own genotype and an indirect component attributable to

«

the genotypes of the individual’s “associates.”

Experimental work by agricultural and model organism
geneticists used these “variance-component” models to explore the
role of maternal genetic effects (reviewed by Cheverud, 1984) and
associate effects (e.g., Wright, 1985; Muir, 1996; Muir, 2005), on
the response to selection. As more general statistical approaches be-
came available (e.g., mixed models that allow empiricists to use in-
formation on multiple types of relatives simultaneously, or “animal
models”; Henderson, 1953), they allowed IGE to be estimated in a
great variety of systems, including free-living populations of plants
and animals (Wilson et al., 2011; Moiron et al., 2020), outbred
populations of laboratory organisms (Baud et al., 2017), and hu-
mans (Xia et al., 2021). These approaches have also been extended
to map the individual loci giving rise to IGE (Mutic and Wolf, 2007;
Bailey and Hoskins, 2014; Ashbrook et al., 2015; Brinker et al.,
2018; Baud et al., 2021).

Beginning late in the 20th century, evolutionary biologists devel-
oped models in which IGE were attributed to specific traits expressed
in interacting partners. The first of these “trait-based” IGE models

(Moore et al., 1997) built upon a maternal-effects framework devel-
oped by Falconer (1965) and Kirkpatrick and Lande (1989). These
models specify the traits in interacting individuals that influence the
focal individual’s phenotype, defining an “interaction coefficient”
Y that quantifies this influence. These models have therefore been
called “interacting phenotype” models. Formally, ¥ is a path coef-
ficient that describes the degree to which trait X in an interacting
conspecific affects trait Y in the focal individual. Critically, the gen-
etic basis of the traits involved are captured in other parameters of
these models, specifically parameters that describe genetic variances
and covariances of the interacting phenotypes. Thus, while the term
“indirect genetic effect” was first used in the context of the trait-
based approach, the parameter most identified with that approach,
W, does not, by itself, capture the genetic effect of partners on the
focal phenotype. Nevertheless, the trait-based theoretical framework
describes important implications of IGE for understanding and
predicting the evolution of phenotypes (Moore et al., 1997; Wolf
et al., 1999; McGlothlin et al., 2010). Given these implications, it is
surprising that empirical applications of these predictive models are
comparatively rare, although examples are accumulating (see Brodie
(2022), McAdam et al. (2022), and Bailey and Desjonquéres (2022)
in this issue for further discussion). We provide more details about
the uses and relationships between variance-component and trait-
based approaches in Box 1.

In the 2000s, human behavioral geneticists used structural equa-
tion models and extended twin designs to investigate the contribu-
tions of assortative mating (nonrandom mate choice) and marital
interactions (influence) to phenotypic variance (Agrawal et al., 2006;
Grant et al., 2007). More recently, structural equation models have
been applied to datasets of unrelated individuals to quantify and
map parental IGE on body weight using effect sizes from genome-
wide association studies (GWAS) of own and offspring phenotypes
(Warrington et al., 2019; Wu et al., 2021). Structural equation
models in human IGE studies primarily model effects arising from
the genotypes of partners, much like variance-component models do,
but in some cases they have been extended to test whether specific
phenotypes of partners mediate the detected IGE (Warrington et al.,
2019), a question that is addressed with trait-based models in other
disciplines.

Finally, in the last few years, human genetics studies have adopted
another approach to study IGE: polygenic scores (also called poly-
genic risk scores). Polygenic scores are constructed by combining
individual genotypes with effect sizes obtained from a previously-
conducted GWAS for a particular trait to predict individual pheno-
types (Wray et al., 2007). For example, To detect parental IGE on
offspring in an Icelandic cohort, Kong et al. (2018) first calculated
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Box 1. Variance-component and trait-based models and other approaches

While both variance-component and trait-based approaches can, in theory, be applied to understanding the genotype—phenotype
relationship across a wide variety of scenarios, different disciplines have preferred one or the other approach. Overall, variance-
component models have been used in many more empirical studies than trait-based models. These differences derive both from the
goals of the studies and from practical considerations.

Agricultural genetics is aimed at stock improvement, a pursuit that often does not require knowing which traits in interacting
partners mediate IGE, making variance-component models sufficient to achieve this goal. For example, the phenotypes that determine
crop competitive ability can be cryptic, but Griffing (1976) was able to conclude that family-based selection could overcome con-
straints on the response to individual selection that occurs when good competitors reduce performance of their neighbors. By contrast,
evolutionary biologists and behavioral ecologists are often interested in traits that mediate interactions between social partners, some
of which are difficult to define without reference to traits in other individuals (e.g., social dominance; Moore et al., 2002; Wilson et al.,
2011), making trait-based approaches better suited in these disciplines.

Practical considerations have favored variance-component models over trait-based models in empirical studies. First, given the
complexity of social interactions, a priori knowledge of mediating mechanisms is often absent, precluding the use of trait-based
models. As variance-component models do not require specifying the traits of partners eliciting IGE, they can be applied to a broader
range of traits (in fact, any trait), provided a pedigree or the genotypes of partners are available; (Bijma, 2014; Baud et al., 2017).
Second, while the interaction coefficient ¥ is straightforwardly estimated as a partial regression coefficient in the absence of feed-
back or with a correction in the presence of feedback when the partner trait is the same as the focal trait (Bijma, 2014), estimating
the matrix of ¥ when multiple phenotypes are interacting with feedback is only possible with repeated measures (Martin and Jaeggi,
2021). In addition, ¥ estimates calculated from observed phenotypes are only valid under the assumptions that all causally interacting
phenotypes have been identified (Bijma, 2014). When repeated measures are available, however, it is possible to account for unmeas-
ured effects to obtain unbiased estimates of ¥ (Martin and Jaeggi, 2021). Finally, estimates of ¥ are usually not sufficient to quantify
IGE and predict the response to selection; genetic variances and covariances of the focal and the interacting phenotype also need to
be estimated (Moore et al., 1997; Martin and Jaeggi, 2021). As an alternative to estimating genetic parameters, however, behavioral
ecologists often deploy the “phenotypic gambit” (see Box 1 in Dingemanse and Araya-Ajoy, 2015). Laboratory experimentalists, on
the other hand, have used inbred strains to ensure ¥ reflects social effects of genetic origin rather than social environmental effects
(Bleakley and Brodie, 2009).

There is increasing work to reconcile the variance-component and trait-based frameworks and to overcome their respective limi-
tations. In particular, McGlothlin and Brodie (2009) showed that the 2 frameworks are mathematically equivalent—assuming all
interacting phenotypes have been identified in the trait-based models—and developed methods to calculate ¥ from variance com-
ponents. To date there have been few, if any, subsequent attempts to apply these techniques, however. The polygenic scores used in
human genetics (Kong et al., 2018) constitute a hybrid approach. They are trait based—in that a specific trait of partners is investi-
gated—but also inherently genetic in that polygenic scores of partners are used instead of their phenotypes. While this approach is
appealing for gaining the benefits of both variance-component and trait-based approaches, we note that the human GWAS used to
calculate polygenic scores typically include tens to hundreds of thousands of individuals, sample sizes that are currently achievable
in very few other species.

parental polygenic scores for educational attainment and other traits
by combining the nontransmitted alleles of parents with effect sizes
from a previous GWAS conducted on 279 000 unrelated individ-
uals, then tested for associations between parental polygenic scores
and offspring traits. This approach highlighted the role of “gen-
etic nurture”—parental IGE mediated by traits genetically correl-
ated with educational attainment. Polygenic scores have since been
used to investigate a wider range of IGE, including between spouses
(e.g., Clarke et al., 2019) and schoolmates (see, e.g., Sotoudeh et al.,
2019). This approach is trait-based—it requires focusing on a spe-
cific trait of parents—but the trait value of parents is predicted from
genomic data instead of being measured directly as in classical trait-
based approaches.

Whatever approach is taken, the importance of IGE is increas-
ingly appreciated across many subfields of genetics, and attempts to
identify and quantify IGE are accelerating. This substantial overlap
across disciplines can easily be overlooked, however, because dif-
ferent disciplines use different language to describe conspecific-
induced components of the phenotype. A cross-disciplinary synthesis
of IGE therefore requires a synthesis of the language used to describe

IGE. In Table 1, we present vocabulary used to describe IGE in dif-
ferent subfields. We do not attempt to provide a comprehensive list
of citations, since the list would be very long. However, we cite a key
primary paper or review for each subfield.

Consequences of IGE (or “So What?")

Across the disciplines listed in Table 1, researchers recognize that
the consequences of genes-as-environment can be profound.
Evolutionary and agricultural biologists have shown that, when
phenotypes are influenced by both DGE and IGE, response to nat-
ural or artificial selection can be either greatly accelerated or highly
constrained, depending on the nature of the interaction (Wolf et al.,
1998; Bijma and Wade, 2008; Peeters et al., 2012). For example,
mussels genetically predisposed to grow quickly are also genetically
predisposed to reduce growth in their conspecific neighbors via food
competition (Brichette et al., 2001). This kind of negative correl-
ation between IGE and DGE, which has also been documented in
other species (Wolf, 2003; Santostefano et al., 2017; Thomson et al.,
2017), can prevent populations from responding to selection, or
cause the response to be opposite in direction to that expected based
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on traditional measures of genetic variance and heritability (Moore
et al., 1997). Conversely, a positive correlation between IGE and
DGE can dramatically accelerate response to selection. For instance,
Peromyscus mice that are genetically liable to be aggressive also in-
duce high levels of aggression in their social partners (Wilson et al.,
2009). Selection favoring increased aggression will therefore increase
the frequency of alleles with DGE for high aggression, which will
also produce a more aggressive social environment via IGE. This
positive feedback between DGE and IGE amplifies the evolutionary
change that is expected based on DGE alone. Indeed, the potential
for this kind of feedback in social interactions has been proposed
to explain the high phenotypic variation and rapid evolution often
observed in behavioral and social traits (Reale et al., 2007; Bailey
et al., 2018).

When, in addition to traits being influenced by DGE and IGE,
the 2 kinds of effects interact (i.e., IGE depend on the genotype of
the focal individual), the resulting interaction has been called “GxG
epistasis” (Wolf, 2000; Jaffe et al., 2020). This DGE x IGE inter-
action is of particular interest to evolutionary geneticists because it
can promote the maintenance of genetic and phenotypic diversity, as
was recently found in color-polymorphic mosquitofish (Culumber
et al., 2018). There, juveniles achieved better body condition when
their own genotype was rare in the social environment, suggesting
that within-genotype competition generates negative frequency-
dependent selection and contributes to the maintenance of poly-
morphism. The examples in this and the previous paragraph, and
many others, illustrate that the evolution of phenotypes cannot be
fully understood or predicted without accounting for IGE.

IGE also have profound effects beyond determining response to
selection and maintenance of genetic variation. Failing to properly
account for IGE can bias estimates of DGE and heritability (Bijma,
2014; Baud et al., 2017; Young et al., 2018). Indeed, IGE can
account for at least part of the “missing heritability” documented
for traits like human height and can influence our understanding
of traits with important societal implications such as educational
attainment (Young, 2019). Similarly, IGE can bias polygenic scores,
which estimate an individual’s genetic propensity for a trait or
disease and which have been used as a tool both to understand the
shared genetic etiology between traits and for precision medicine.
Human geneticists would like to use polygenic scores to reflect
only the causal effects of an individual’s own genes, that is, DGE.
However, familial IGE bias these scores (Kong et al., 2018; Trejo
and Domingue, 2018; Young et al., 2019; Balbona et al., 2021).
The growing awareness of the need to distinguish familial IGE
from DGE in human genetics emphasizes the importance of col-
lecting genomic and phenotypic data within families (Young et al.,
2019).

As recognition of the importance of IGE increases across discip-
lines, empirical challenges to estimating and mapping IGE should
not be ignored. In the remainder of this Perspective, we describe
some of these challenges (Part II), highlight exciting potential so-
lutions (Part III), and conclude with recommendations, drawn
from work in many different disciplines, that will advance empir-
ical understanding of IGE (Part IV). We note, however, that this
is a small subset of the compelling themes that were discussed at
the 2021 AGA President’s Symposium on Genes as Environment,
and that many of these are described in the papers that form this
Special Issue. We also point to an informal compilation of speaker’s
perspectives published on the AGA website (http://blog.theaga.org/
presidential-symposium-contributors-speak-on-the-present-and-
future-of-indirect-genetic-effects/).

Il. Challenges for Empirical Studies of IGE

In this section, we describe what are, in our view, some widespread
challenges to the empirical study of IGE across the disciplines that
use the concept. These challenges mainly involve problems of iden-
tification (e.g., of interacting partners, of changes in partners, or of
interactions over time) and problems of confounding (e.g., arising
from nonrandom group formation, shared environmental effects, re-
latedness, and population structure). We also describe which of these
challenges are general to quantitative genetic analyses, and which
arise specifically in the study of IGE.

Identifying Interacting Partners

To understand how traits are influenced by interactions with con-
specific individuals, it is of course necessary to identify the relevant
partners. While this is straightforward in experimental settings
where groups are formed by the experimenter, it can be quite chal-
lenging in free-living populations. In free-living animals, identifying
interacting partners typically requires time-intensive observations
of social interactions (Altmann, 1974), the ability to easily identify
individuals in a population (either using distinctive natural mark-
ings or by capturing and tagging individuals), and/or the ability to
locate nests/dens or to genotype individuals to assess parentage.
Even in sessile organisms, it is necessary to know which individuals
within populations interact with one another and which do not.
That is, the spatial scale over which relevant interactions occur
is not always obvious (File et al., 2012; Brodie, 2022; McAdam
et al., 2022).

Dealing With Nonrandom Group Formation

Most interactions with conspecifics do not occur at random with
respect to the genotypes, environments, and phenotypes of the
individuals involved. For example, in many species, individuals
interact preferentially with kin, resulting in correlations between
the genotypes, environments, and phenotypes of group members.
Similar correlations can also arise as a result of population struc-
ture, since interactions then occur most frequently genetically-
similar individuals or individuals sharing a similar environment. In
free-living organisms, population structure can arise passively from
migration—selection—drift processes (Wright, 1978) or from genet-
ically based habitat preferences (D’Aguillo et al., 2019). Finally,
correlations between group members can arise when individuals
actively choose their partners based on their own and potential
partners’ phenotypes (e.g., Robinson et al., 2017; Aguillo et al.,
2022; Brodie, 2022).

When groups are not formed at random, IGE can be defined
in 2 alternative ways. IGE are most commonly defined to reflect
the influence of partners after the group is formed, in which case
nonrandom group formation is a confounding factor that needs
to be accounted for. On the other hand, when focal individuals
associate nonrandomly with partners, IGE can be defined to reflect
not only the genetic basis of partner influence but also the role
of partners’ genotypes in nonrandom group formation. This defin-
ition may be appropriate, for example, when the goal is to predict
phenotypic evolution. In that case, nonrandom group formation
will not be considered a confounding factor but rather an integral
part of IGE.

When nonrandom group formation is considered a confounding
factor, the scope of confounding will depend on the underlying pro-
cess. Phenotype-based partner choice, in the absence of other sources
of confounding, will bias IGE studies only when the focal phenotype
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is correlated with the trait(s) of focal individuals. By contrast, inter-
actions with kin and population structure will affect IGE studies
much more broadly because these processes induce a multitude of
correlations between genetic and environmental factors experienced
by focal individuals and their partners.

Detecting nonrandom group formation is not always straightfor-
ward. Whereas the presence of closely related individuals can often
be determined either by tracking the individuals on a pedigree or
from estimating relatedness from genomic data, population struc-
ture can be complex and subtle, and phenotype-based partner choice
is poorly understood. Therefore, even when measures are taken to
account for nonrandom group formation (see Part III), some con-
founding may remain.

Dealing With Unequal Interactions Within a Group

Even in carefully constructed social groups with random group
composition, interactions within a group may vary in quantity
and/or quality, resulting in different partners having different
influences on the focal phenotype. Differences in number and
intensity of interactions between social partners have been re-
ported in IGE experiments on mosquitofish (Kraft et al., 2018)
and fruit flies (Jaffe et al., 2020). When interactions inside the
group vary in quantity and/or quality, IGE can be defined in 2
different ways. The simplest way is to ignore these differences and
model equal IGE from all partners in the group. However, this
approach may hinder our ability to detect IGE, for example if not
all partners have the opportunity to exert their influence, as is the
case in large cattle herds (Bijma, 2014). It may also result in con-
founding, whereby IGE will be interpreted as partner influence
when they actually reflect a role of partner genotypes in having
the opportunity to influence the focal individual. To avoid such
confounding, when information on the quantity and/or quality
of interactions in the group is available, one can condition upon
these differences. It may be particularly useful to distinguish when
profoundly different types of relationships are present within a
group, such as when social hierarchies are present: pairs of sub-
missive individuals may interact in completely different ways to
pairs of dominant-submissive individuals.

Accounting for Confounding From Shared
Environmental Effects, Relatedness, Population
Structure, and Assortative Mating

In addition to sources of confounding factors that are specific to
IGE studies (nonrandom group formation and unequal interactions
within a group), similar sources of confounding that affect DGE
studies can also affect IGE studies. Nonadditive effects generated
when close relatives are (unknowingly) included in the study can
bias estimates of additive DGE (narrow-sense heritability) and IGE
alike. Shared environmental effects, which arise when multiple in-
dividuals experience a similar environment, are problematic when
they affect genetically related individuals, which can happen when
there is population structure (Vilhjalmsson and Nordborg, 2013),
when close relatives are (unknowingly) included in the sample, or
as a result of the experimental design (e.g., different inbred strains
bred in different rooms). Assortative mating can also bias gen-
etic estimates (Kemper et al., 2021). Finally, in GWAS population,
structure and the inclusion of individuals with various degrees of
relatedness can give rise to genetic background effects that can
yield spurious associations if unaccounted for (Vilhjalmsson and
Nordborg, 2013). In Box 2, we illustrate how these confounding

factors, can bias IGE estimates or yield spurious IGE associations if
ignored. For an illustration and the demonstration of the impact of
assortative mating on studies of parental IGE, we refer the reader
to Kong et al. (2018).

Nonadditive Effects across Partners

Most of the empirical data on IGE come from investigations in
which effects of multiple partners are averaged or studies of pairwise
interactions. Group dynamics and the resulting IGE are not always
predictable from dyadic interactions, however. For example, Saltz
(2013) found that dyadic interactions between pairs of genetically
distinct D. melanogaster were influenced by the genotype of a third
individual, and they denoted these effects as “second-order IGE.”
The inability to predict such nonadditive and nontransitive inter-
actions might severely limit our ability to accurately estimate IGE or
predict its evolutionary consequences.

Changes in IGE overTime

As outlined above, our ability to predict evolutionary change is com-
promised if IGE are ignored. However, prediction of evolutionary
change over more than a single generation depends on assumptions
about the constancy of genetic variance components (both direct
and indirect) and of selection gradients, but all these parameters can
themselves evolve (Steppan et al., 2002; Bailey and Desjonquéres
2022, this issue; Chevin and Haller, 2014). Like other components
of genetic variance, IGE variance depends on allele frequencies and
effect sizes and is therefore likely to evolve under selection and vary
across environments. Several empirical studies have reported that ¥
too can evolve (Chenoweth et al., 2010; Rebar et al., 2020), and that
it can vary among populations, both over time in a single population
and with changes in the abiotic environment (Bailey and Zuk, 2012;
Signor et al., 2017a, 2017b).

IGE can also vary within the lifetime of an organism. Even if
interacting groups remain constant, interactions between individ-
uals within the group can vary over time. We can rarely track these
changes, and their consequent effects on phenotypes, through each
social experience an organism encounters during its life. Empirical
studies have generally measured average effects of specific social
environments over relatively long time scales (Peeters et al., 2012).
However, averaging over long time periods can obscure effects that
occur during critical periods of development.

Finally (and obviously), the membership of groups can change
over time, which further complicates the identification and the
phenotyping and/or genotyping of interacting partners. Relatively
few animal studies monitor groups long enough to capture such
changes (but see, e.g., McAdam et al., 2022). Studies of IGE in hu-
mans have a clear advantage here because self-reported social part-
ners can shed light on changes in social groupings over the lifespan.

In this section, we have highlighted challenges that we view as espe-
cially pervasive and/or underappreciated in studies of IGE. In Part III,
we describe solutions to some of these problems that can be provided by
advances in study design, technologies for data collection, and statistical
analysis.

lll. Solutions and Prospects

Advances in study design as well as techniques for data collection
and data analysis will facilitate and improve the analysis of IGE in
the future. Below, we highlight some promising developments in
each area.
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Box 2. Examples of confounding and spurious effects in IGE studies

Here we illustrate several sources of confounding or statistical problems that can arise in IGE studies, using both hypothetical and
documented examples, where available. We note that not all will apply to every study, as sources of confounding depend heavily on
experimental design. We discuss potential solutions to these issues in Part III.

Correlation between focal environment and partner genotype. Consider a case in which parents are the partners and nestlings the
focal individuals, with nestling weight as the focal phenotype (Figure 2.1). The body weight of nestlings sharing a nest could be more
similar than average because they are fed by the same parents or because they are exposed to the same environmental conditions in
the nest (wind, temperature, precipitation, etc.) and these conditions affect the focal phenotype. In this case, parental IGE cannot be
distinguished from common environmental effects experienced by nestlings sharing a nest. Note that such confounding would occur
even with a cross-fostering design in which all individuals are strictly unrelated because nestlings share both a parent and a nest. Also
note that a shared partner is not the only way such confounding can arise: correlations between focal environment and partner geno-
type are also expected to arise when groups consist of closely related individuals (e.g., mouse littermates sharing a cage) or there is
population structure (e.g., humans interacting with individuals living in the same area).

Focals 1-3 in Nest 1

Parent 1 Environment of Nest 1

Focals 4-6 in Nest 2

Environment of Nest 2

Parent 2

Figure 2.1. Example of correlation between focal environment and partner genotype.

Correlation between partner environment and partner genotype. The body weight of nestlings sharing a nest may be more similar
than average because they are fed by the same parents or because their parents are exposed to environmental conditions (e.g., resource
abundance) that affect parental care (Figure 2.2). In that case, parental IGE are confounded with environmental effects experienced by the
parents. Importantly, such confounding can occur even when parental genotypes are not correlated with resource abundance. Consider an
equivalent dataset in which each parent (genotype and environment) was replicated as many times as there are nestlings fed by the parent.
This dataset would contain a correlation between parental genotypes and parental environments. Thus, even though parental genotypes
and environments are, in fact, uncorrelated, confounding occurs. This example illustrates why both the genetic and the nongenetic com-
ponents of indirect effects must be modeled to avoid confounding. We refer the reader to Bijma et al. (2007) for further discussion of this
issue and the mathematical derivation of the nongenetic covariance between group members. In addition to experimental designs involving
shared partners, correlations between partner environment and partner genotype can arise when closely related individuals are among the
partners (whether these closely related individuals are in the same group or not) or there is population structure.

Correlation between direct and social genotypes. In agricultural settings, pigs that share a pen (enclosure) are often more genetic-
ally related than average because of organizational constraints/production techniques (Figure 2.3). As a result, their phenotypes can
be more similar than average due to more similar DGE or due to more similar IGE from penmates (Bergsma et al., 2008). Similarly, in
human genetics, greater concordance of monozygotic (MZ) twins compared to dizygotic (DZ) twins can be due, among other reasons,
to more similar DGE in MZ twins compared to DZ twins or to more similar IGE from the other twin in MZ twins compared to DZ
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Box 2. Continued

e ¥ 4

Parent 1

Nest 2

Figure 2.2. Example of correlation between partner environment and partner genotype.

Pen 1 Pen 2

Figure 2.3. Example of correlation between direct and social genotypes.

twins. Finally, similar confounding could arise from population structure or from phenotype-based partner choice (see section on
Nonrandom group formation).

Shared environmental effects in the presence of a positive correlation between DGE and IGE. Consider the growth of neighboring
plants. Neighbors could be more similar than average because they are exposed to the same environmental conditions (shade) or be-
cause of a positive correlation between DGE and IGE whereby trait-increasing alleles of one plant help neighboring plants grow (e.g.,
ethylene-mediated cooperative effects discussed in Mutic and Wolf 2007) (Figure 2.4).

Background IGE in IGE mapping studies. In addition to spurious associations that can arise from confouding environmental
effects, spurious associations in GWAS of IGE can arise from confounding by other, causal loci in the genome of partners (Figure 2.5),
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Figure 2.4. Example of shared environmental effects in the presence of a positive correlation between DGE and IGE.
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Figure 2.5. Theoretical illustration of a spurious association arising from the genoytpic correlation with a causal locus in an IGE mapping study.

similarly to how genetic background effects can give rise to spurious associations in GWAS of DGE (Vilhjdlmsson and Nordborg,
2013). Background genetic effects are always present, but stronger in the presence of population structure or when the sample con-

tains closely related individuals.

Larger sampling variance of the correlation between direct and social genotypes leading to anticonservative P-values in IGE map-
ping studies. In IGE mapping studies, when each individual in the study serves as both a focal individual and a partner, and DGE
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Box 2. Continued

this is true even when all individuals are strictly unrelated.

exist, P-values will not be calibrated under the null hypothesis of no IGE, resulting in anticonservative P-values unless local DGE are
accounted for in the null model. This issue arises because the sampling variance of the correlation between direct and social genotypes
in the case where each individual is both focal individual and partner is larger than naive expectation (i.e., random binomial draws, as
would be the case if each individual was either focal individual or partner) (Figure 2.6, modified from Baud et al., 2021). Importantly,

Focal and partner
Focal or partner

Frequency
()] [es]

H
1

2

individual and social partner.

0+ T T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Pearson correlation between direct and social genotypes

Figure 2.6. Greater sampling variance of the correlation between direct and social genotypes when each individual in the sample is used as both focal

Study Design

1. Manipulating the Social Environment

Given the large scope for confounding described above, experiments
aiming to manipulate the social environment have had and should
continue to play a role in characterizing IGE. For example, when
species exhibit discrete phenotypes that are suspected to generate
IGE, manipulating the ratio of morphs in the social environment can
demonstrate the existence of IGE and illuminate its importance in
nature. This approach has been used to study IGE generated by the
GP-9 polymorphism in fire ants (Keller and Ross, 1998; Ross and
Keller, 2002) and body-color polymorphism in eastern mosquitofish
(Culumber et al., 2018; Kraft et al., 2018). When candidate genes for
producing IGE are known, wild type and knock-out or knock-down
strains can be compared with validate the candidates and quantify
potential effects (Ferrero et al., 2013; Ribeiro et al., 2020). In the past,
this kind of validation experiment has been limited to model systems
with well-developed genetic resources. However, new genome-editing
techniques should make this approach feasible in many non-model
species (Huang et al., 2016; Mendoza and Trinh, 2018).

When the genetic variants and traits that produce IGE are un-
known, the social genetic environment cannot be purposefully ma-
nipulated in the same way, but variation in social partners can still
be experimentally controlled. For example, IGE can be identified by
contrasting the social effects of different inbred strains when these
are available (Bleakley and Brodie, 2009; Ferrero et al., 2013; Liu
et al., 2017; Jaffe et al., 2020). If interest lies in IGE that poten-
tially occur in nature, as in evolutionary biology, we note that this
kind of controlled experiment can mainly reveal the potential for
such effects. However, many species do not naturally inbreed, and
inbred strains even if derived from natural populations, can be un-
representative of natural genotypes and their interactions because

of inbreeding depression. In laboratory studies, this problem can be
alleviated by making use of F1 crosses between inbred strains de-
rived from nature (e.g., Saltz et al., 2012) or using later generations
of intercrosses between wild-derived strains (Walsh et al., 2022).
These populations more closely reflect the allele and genotype fre-
quencies and the associated phenotypic variation, found in their
natural source populations. Of course, environmental conditions
can also differ dramatically between laboratory and natural popula-
tions. Field manipulations of individuals that naturally form discrete
groups provide promising material for illuminating IGE in nature;
manipulations of social groups in nature have been conducted of
forked fungus beetles, for example, which form discrete groups on
bracket fungi (Brodie, 2022) and in guppies, which inhabit discrete
pools in rivers (Hughes et al., 2013). To date, however these manipu-
lations have been based on phenotypic, but not genetic differences
among individuals.

For organisms in which social groups are difficult or impossible to
manipulate, video or audio playback, dummies, or robots can be used
to manipulate social interactions in species that respond in natural-
istic ways to these stimuli. This kind of manipulation has been used
extensively in behavioral ecology (Naik et al., 2020, and references
therein), but has been rare in the IGE literature (but see Bailey and
Zuk, 2012 for an example). The increasing sophistication of tech-
nologies like robotics and artificial intelligence should make this ap-
proach increasingly feasible in many systems (Landgraf et al., 2021).

2. Randomizing the Social Environment

When the genotypes of partners cannot be partitioned into mean-
ingful groups—typically when an outbred or recombinant inbred
population is studied and the focus is on IGE aggregated across
the genome rather than IGE at a single locus—the social environ-
ment can still be randomized with respect to specific confounding
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factors. For example, when studying IGE from cagemates in out-
bred laboratory rodents, it is possible to use a single offspring per
parental pair or to spread the offspring of a pair across cages to
avoid confounding of IGE by parental/litter effects. Furthermore,
as the animals do not choose their cages but rather are assigned
to specific cages by the experimenter, partner choice cannot be in-
volved in any detected association between focal phenotype and
partner genotype. To study parental IGE, and more precisely the
influence of parents on offspring and vice versa, cross-fostering
experiments are possible in some species and the “natural ex-
periment” created by adoption has been used in humans. Cross-
fostering removes the passive correlation existing between
parental and offspring genotypes, such that associations between
parents and offspring can be interpreted as influence. Cross-
fostering has been used in laboratory mice to gain insights into
maternal, offspring and sibling IGE in early life (Ashbrook et al.,
2015,2017). Cross-fostering has been used a great deal in studies
of free-living birds (e.g., Verhulst and Nilsson, 2008), but not, to
our knowledge, to investigate IGE. In humans, adoption studies
have provided evidence of parental genetic effects on educational
attainment (Cheesman et al., 2020).

3. Longitudinal Studies With Repeated Measures

Whereas manipulating and randomizing the social environment
helps avoid confounding, longitudinal studies with repeated meas-
ures provide the ability to account for many confounding factors.
In the example illustrated in Figure 2.1 (Box 2), confounding be-
tween rearing environmental effects (nest) and parental IGE could be
accounted for if multiple broods/litters reared in different environ-
ments were included for each parent, and rearing environment was
modeled explicitly. Repeated measures will be particularly valuable
to disentangle nonrandom group formation from partner influence,
as one can model the evolution of focal and partner phenotypes over
time to look specifically for partner influence (Martin and Jaeggi,
2021).

Data Collection

IGE studies always require the ability to measure interactions
between individuals (e.g., defining social groups or measuring
the distance between plants), the focal phenotypes, and either
the genotypes or relatedness of social partners or the trait(s) of
partners thought to be mediating the IGE. Note that, in some
cases, the focal phenotype and the trait of partners mediating
IGE are the same, but here we consider the general case where
the focal phenotype and the trait of partners mediating IGE are
different.

1. Automatic Scoring of Interactions
Recent advances in technologies for tracking animal movements as
well as machine learning approaches and social network theory are
poised to allow behavioral ecologists and animal breeders to study
interactions at unprecedented scales, facilitating the identification of
interacting partners over time and automating the scoring of behav-
ioral interactions (Smith and Pinter-Wollman, 2021). These techno-
logical advances may make it feasible to increase sample sizes and
therefore the power to detect IGE, and to characterize variation in
behavioral interactions within a group.

Social encounters can be detected directly using proximity log-
gers that record instances when 2 tagged individuals come within
a certain distance. Alternatively, they can be inferred indirectly

from data on the movements and spatiotemporal locations of ani-
mals (e.g., data from VHF radio telemetry tags, GPS loggers, RFID
tags, and Bluetooth and GPS technology; reviewed in Krause et al.,
2013; see also Stopczynski et al., 2013 and Sandeepa et al., 2020).
Another common approach for both detecting social interactions
and quantifying how individuals interact is to analyze video record-
ings. Machine learning approaches now enable automated analysis
of social interactions from video recordings of both barcoded indi-
viduals (e.g., Gernat et al., 2018) and unmarked individuals (Guzhva
et al., 2016; Arac et al., 2019; Foris et al., 2019; Romero-Ferrero
et al., 2019). A powerful approach for tracking individual behavior
and quantifying social interactions is to combine video analysis and
RFID technology (e.g., Weissbrod et al., 2013; Ellen et al., 2019) or
lightweight backpack-mounted barcodes (e.g., Alarcén-Nieto et al.,
2018). Finally, our ability to study social interactions has greatly ad-
vanced with the development of social network analysis methods
(Wey et al., 2008; Farine and Whitehead, 2015; Finn et al., 2019).

2. High-Throughput Phenotyping (Many Animals and Many
Phenotypes for Each Animal)

Technological advances that permit high-throughput phenotyping
will help overcome several limitations of current IGE studies, and
new data analytic techniques can alleviate the multiple testing
problem associated with analyzing many different phenotypes (see
the Data analysis section). First, large sample sizes are required to
estimate the correlation between DGE and IGE, which can shed
light on the collaborative or competitive nature of IGE and the role
of “spread” in IGE (Baud et al., 2021). Large samples are also re-
quired to leverage the equivalence between trait-based and variance-
component models (McGlothlin and Brodie, 2009), and to identify
individual genetic loci underlying IGE, especially when DGE and
IGE are confounded (Baud et al., 2021). Second, characterizing
the phenome of focal individuals permits detecting IGE on pheno-
types that were not previously known or suspected to be affected by
IGE (Baud et al., 2017; Xia et al., 2021), while characterizing the
phenome of interacting partners will point to the types of traits of
partners mediating IGE (e.g., behavioral, immune-related, or meta-
bolic traits), thereby helping to uncover unexpected mechanisms
underlying IGE.

Phenotyping large samples can be achieved using various mo-
dalities and technologies (Tardieu et al., 2017; Brito et al., 2020;
Canario et al., 2020). One of the most widely used strategies is video-
recording followed by computer-aided image analysis, which have
been used to infer gait and grooming behavior in mouse (Geuther
et al., 2021; Sheppard et al., 2021), aging and lifespan in C. elegans
(Stroustrup et al., 2013), and body conformation in cattle (Nye
et al., 2020; Long et al., 2020). Imaging technologies have also been
used for high-throughput phenotyping in plants (Fahlgren et al.,
2015; Rahaman et al., 2015). Other widely used automatic, high-
throughput, phenotyping strategies involve wearing specialized gear
coupled with specialized detection apparatuses (e.g., RFID tags are
used by automated milking robots to measure milk production by
individual cows, wrist bands and watches are used to track heart rate
and sleep and humans). In humans, additional strategies are avail-
able in the form of electronic health records, which in some cases are
connected to individual genomic data, and questionnaires connected
to individual genomic data (e.g., 23andMe). In addition to charac-
terizing entire organisms, biological samples can provide rich pheno-
typic data for phenomics. For example, biochemical, hematological,
and immunological analyses can provide a broad representation of
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the physiology of an organism, and -omics analyses can shed light on
the function of a particular tissue.

3. Dense Genotyping Using Next-Generation Sequencing

The ability to obtain dense genotyping data for all focal individuals
and their partners can greatly advance our understanding of IGEs.
Genomic data can help identify relationships among individuals,
characterize population structure, and shed light on potential mech-
anisms underlying IGE via GWAS approaches. Next-generation
sequencing technologies (Metzker, 2010; Levy and Myers, 2016)
provide many options for high-throughput single-nucleotide poly-
morphism discovery and genotyping, both with or without an ex-
isting reference genome (though de novo genome assembly is now
possible in most organisms; see Rice and Green, 2019 for a review
of current advancements in genome assembly methods). Genotyping
methods using next-generation sequencing and their applications
have been nicely summarized elsewhere (Ekblom and Galindo, 2011;
Nielsen et al., 2011; da Fonseca et al., 2016). Furthermore, geno-
type imputation is an efficient method for generating high density
genotypes for many individuals from a mix of high density genotype
data for a subset of individuals and low-density genotype data (e.g.,
from shallow whole genome resequencing) for the rest of the sample
(Li et al., 2009), or from low-density genotype for all individuals,
provided that a high-quality reference panel exists. All genotype im-
putation approaches rely on identifying shared haplotypes between
individuals: between related individuals on a pedigree, between a
sample of unrelated individuals and individuals in a large reference
panel, or between unrelated individuals. Different genotype imput-
ation methods are reviewed in Li et al. (2009); Marchini and Howie
(2010); Das et al. (2018); Ullah et al. (2019).

Data Analysis

1. Improved Statistical Models to Account for Confounding
Confounding cannot always be avoided experimentally, in which
case confounding factors need to be accounted for in the statis-
tical models used for parameter estimation and statistical infer-
ence. Much of the confounding described in Part II and Box 2
can be accounted for using the appropriate random effects. In
particular, jointly modeling DGE and IGE in variance-component
models prevents bias due to DGE and any environmental effect
covarying with DGE, which is particularly important when groups
consist of related individuals or there is population structure. In
the absence of a random DGE term in the model, IGE estimates
would be biased. In statistical inference (when testing whether the
IGE variance component is different from 0), confounding is det-
rimental whether it is accounted for or not: confounding results
in anticonservative P-values if unaccounted for, and conservative
P-values if accounted for (by including a random DGE term in the
null model).

Modeling the nongenetic component of indirect effects is also
key to avoiding biased estimates of IGE. Indeed, nongenetic indirect
effects contribute to phenotypic covariance when focal individuals
share one or more partner(s) (see Figure 2.2 in Box 2) and when
direct and indirect nongenetic effects are correlated (e.g., if a mouse
were dropped on the ground while being transferred to a different
cage, the stress levels of the mouse would increase and the mouse
could communicate its stress to its cage mates). Part or all of this
nongenetic covariance may be captured by IGE if nongenetic indirect
effects are not modeled explicitly, resulting in biased estimates of
IGE. We refer the reader to (Bijma et al., 2007) for further discussion

of this issue and the mathematical derivation of the nongenetic co-
variance between group members.

Additional random effects can be included to account for
common environmental effects shared by all group mates (e.g.,
pen effects as in Bijma et al., 2007) or by subsets of partners (e.g.,
littermates). When repeated measures have been collected in longi-
tudinal studies, sophisticated statistical models exist that provide an
even better handle on confounding factors and permit the charac-
terization of feedback between interacting individuals, effectively
distinguishing between nonrandom group formation and influence
(Martin and Jaeggi, 2021).

Finally, in IGE mapping studies, in addition to including ap-
propriate random effects as detailed above, an IGE random term
should be used in the null and alternative models to avoid spurious
associations arising when the social partners of the focal individ-
uals include related individuals (whether they are in the same group
or not) or when there is population structure. Background IGE
and environmental effects correlated with partner genotypes could
yield spurious IGE associations (following the same reasoning as
discussed by Vilhjdlmsson and Nordborg, 2013 for DGE studies).
Note that this correction will not be perfect if background effects are
oligogenic rather than polygenic or if shared environmental effects
do not vary linearly with the degree of genetic similarity between
interacting partners. Furthermore, a fixed effect needs to be included
in the null and alternative models to account for local DGE when
the genotypes of focal individuals and partners are correlated due
to relatedness or population structure and in study designs in which
each individual serves as both a focal individual and social partner
(Figure 2.6 in Box 2).

2. Statistical Models to Leverage High-Throughput Data

When multiple phenotypes have been collected on focal individ-
uals to study a biological function of interest, they can be ana-
lyzed independently using univariate models, analyzed jointly using
multivariate analyses, or analyzed using dimensionality reduction
techniques. Univariate analyses, which are the most widely used,
can estimate IGE parameters with moderate sample sizes but pay
a high penalty in statistical inference (hypothesis testing) when
many phenotypes are studied because of the need to account for
multiple testing. Multivariate analyses can be carried out with mod-
erate sample sizes and reduce the multiple testing burden, but only
if strong assumptions are made regarding the model parameters,
typically by assuming genetic effects are uniform across phenotypes.
Relaxing these assumptions implies estimating and/or testing a larger
number of parameters, which requires much larger sample sizes and
leads to a multiple testing issue. Bivariate variance-component IGE
models have been developed (Peeters et al., 2012) that can be used
to probe pairs of focal phenotypes. Finally, dimensionality reduc-
tion techniques, such as structural equation modeling or generalized
network modeling, provide a tractable way to deal with high dimen-
sional phenotype data (Araya-Ajoy and Dingemanse, 2014; Martin
and Jaeggi, 2021).

3. Molecular Genetics Approaches to Dissect the Mechanisms

of IGE

Molecular genetics is increasingly contributing to dissecting the
mechanisms of IGE, more specifically identifying the traits of part-
ners mediating IGE. First, methods such as the GWAS, can identify
individual genomic loci giving rise to IGE, which in some cases
permits identifying putatively causal IGE genes and traits of social
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partners influencing the phenotype of interest (e.g., Mutic and Wolf,
2007; Bailey and Hoskins, 2014; Baud et al., 2021). For example,
in a GWAS of IGE arising between laboratory mice sharing a cage,
Baud et al. (2021) identified Epha4 as a gene giving rise to IGE on
stress-coping strategy and wound healing. This finding, together
with reported patterns of expression and documented functions of
Epha4 in the body, led to the formulation of specific hypotheses
about the traits of cage mates mediating IGE. It also permitted
the development of a simplified experimental paradigm comparing
focal individuals co-housed with either Epha4 knock-out or wild-
type littermates, which will help further dissect the mechanisms of
IGE experimentally.

Second, when estimates of DGE effect sizes already exist for a
given trait (i.e., a well-powered GWAS of DGE for that trait has al-
ready been performed) and partners in the study sample have been
genotyped, one can use polygenic scores that predict trait values
of partners to study IGE (e.g., Kong et al., 2018; Sotoudeh et al.,
2019). This approach is very valuable as it permits leveraging GWAS
of DGE to maximize power in IGE studies. However, one should
bear in mind that that GWAS effect sizes can be biased by uncor-
rected population structure and assortative mating (Mathieson and
McVean, 2012; Berg et al., 2019; Sohail et al., 2019) as well as by fa-
milial IGE experienced by GWAS participants (Trejo and Domingue,
2018). Hence, results need to be interpreted with care.

Finally, Mendelian randomization is an approach first developed
in genetic epidemiology that uses genetic variants to assess causal re-
lationships among traits (Davey Smith and Ebrahim, 2003) and that
has been used to evaluate the causal effect of partner traits on focal
phenotype in humans (e.g., Warrington et al., 2019). Mendelian ran-
domization makes numerous assumptions, however, which need to
be evaluated rigorously before reaching conclusions (e.g., population
structure and assortative mating; Hartwig et al., 2018; Brumpton
et al., 2020).

IV. Conclusions

Empirical investigation of IGE, and their relationship to DGE, are
poised to answer fundamental questions in ecology and evolu-
tionary biology, agricultural biology, and biomedical genetics. To
realize this potential, however, substantial challenges need to be
addressed. Large sample sizes are necessary to estimate and map
IGE, which may be difficult to achieve in studies of free-living
(nonhuman) organisms and which increases the risk of confounding
from uncontrolled experimental factors. Automatic tracking and
phenotyping, together with high-throughput genotyping, can help to
increase sample size and collect repeated measures in these studies.
Nevertheless, it is worth thinking carefully about the kinds of organ-
isms where one can acquire genetic and phenomic data, along with
detailed information on social interactions, in thousands of individ-
uals. Plants and other non-motile organisms have been underutilized
in the study of IGE, but species with prolonged non-motile life stages
and short life cycles could be especially suitable for these investiga-
tions. Developmental and longitudinal studies could also be easier
in such species. Expanding the range of taxa used could address a
major gap: compared with biomedical genetics, other fields have not
generated as many data sets useful for mapping genetic variants that
cause IGE. Although differences in research budgets and in the avail-
ability of community-wide genetic resources are a major contributor
to this gap, another factor might be an underappreciation of the in-
sight provided by these approaches.

High-throughput phenotyping is likely to be challenging in all
disciplines. Community-based resources, such as genetic reference
panels, have been usefully deployed by mouse, fly, and Arabadopsis
quantitative geneticists, and similar panels could be produced for
other species. Prime species for the development of reference panels
will be those that reproduce asexually (many plants, animals, and
microbes) or naturally inbreed. However, outbred populations can
also be used as reference populations since alleles are still repli-
cated across outbred individuals. Community resources also reduce
the costs and logistical challenges associated with genotyping or
sequencing large numbers of individuals or strains.

Finally, a general recommendation is to engage in more cross-
talk across disciplines. For example, sources of confounding have
been more extensively discussed in the human genetics literature,
but these concerns are equally relevant in agricultural and evolu-
tionary studies (see, e.g., Bailey and Desjonqueres, 2022). In con-
trast, human geneticists could take inspiration from the use of
automated tracking and phenotyping in agricultural and evolu-
tionary biology, although, of course, informed consent and other
ethical considerations need to be addressed. We hope the integra-
tion of principles and approaches described in this perspective can
facilitate such crosstalk.
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