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Abstract

Indirect genetic effects (IGE) occur when an individual’s phenotype is influenced by genetic variation 
in conspecifics. Opportunities for IGE are ubiquitous, and, when present, IGE have profound 
implications for behavioral, evolutionary, agricultural, and biomedical genetics. Despite their 
importance, the empirical study of IGE lags behind the development of theory. In large part, this lag 
can be attributed to the fact that measuring IGE, and deconvoluting them from the direct genetic 
effects of an individual’s own genotype, is subject to many potential pitfalls. In this Perspective, we 
describe current challenges that empiricists across all disciplines will encounter in measuring and 
understanding IGE. Using ideas and examples spanning evolutionary, agricultural, and biomedical 
genetics, we also describe potential solutions to these challenges, focusing on opportunities 
provided by recent advances in genomic, monitoring, and phenotyping technologies. We hope that 
this cross-disciplinary assessment will advance the goal of understanding the pervasive effects of 
conspecific interactions in biology.
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I.  Introduction

That the traits of individuals are affected by both genes and envir-
onment is a truism, but it is less appreciated that an individual’s en-
vironment includes the genes of other individuals. The papers in this 
special issue of the Journal of Heredity, and the American Genetic 
Association (AGA) Symposium on which it is based, describe many 
ways in which consideration of “genes as environment” affects our 
understanding of fundamental biological processes. Papers in this 
issue consider interactions between competing species (Girardeau 
et al., 2022), interactions between mitochondrial and nuclear gen-
omes (Rand et al., 2022), and modifications of the nonsocial envir-
onment by interacting conspecifics (Aguillo et al., 2022), as different 
instantiations of “genes as environment.”

Here, we explicitly focus on environmental effects arising from 
genes of interacting conspecifics. These effects are known as in-
direct genetic effects (IGE), in contrast with “direct genetic effects” 
(DGE) arising from the individual’s own genotype (Moore et  al., 
1997; Bijma, 2014). Because all organisms interact with conspecifics 
during some part of their life cycle, the opportunities for IGE to 
influence Darwinian fitness and phenotypes are ubiquitous. Indeed, 
the concept of IGE has been modeled and explored experimentally 
by agricultural and evolutionary biologists, ecologists, biomed-
ical geneticists, and social psychologists (Table 1). Several papers 
in this Special Issue describe exciting new theoretical and empir-
ical work on IGE (Fitzpatrick and Wade, 2022; McGlothlin et al., 
2022; McGlothlin and Fisher, 2022; Wade, 2022; Walsh et al., 2022). 
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In this Perspective, we provide a brief history of the development of 
the IGE concept in different disciplines. We then focus on the many 
challenges faced by empiricists seeking to understand the influence 
of IGE on phenotypes, and on potential solutions to these challenges. 
Our focus is on empirical issues because 1) we ourselves are empiri-
cists and 2) in most arenas, the mathematical development of IGE 
theory has outpaced empirical understanding.

A Brief History of IGE
To our knowledge, the concept now known as IGE was first intro-
duced by agricultural biologists who noticed that artificial selection 
on heritable traits did not always yield the expected results. For ex-
ample, genotypes of crops that had the highest yield in mixed stands 
had the lowest yields in genetically pure stands (Wiebe, 1963). 
Notably, Dickerson (1947), Willham (1963), and Griffing (1967) ex-
tended traditional models of quantitative trait variation to include 
both the effects of an individual’s own genotype and the effects 
of genetic variation in conspecifics. In Dickerson’s and Willham’s 
models, the conspecific individuals were mothers, and the effects 
they described are now known as maternal genetic effects. Griffing’s 
model assumed that genetic variance in an individual’s phenotype 
could be affected by genes expressed in unrelated, but interacting, 
conspecifics, which he termed “associate effects.” These models did 
not specify the phenotypic traits of interacting partners that caused 
the associate effects. Instead, the total phenotypic variance in the 
focal trait was partitioned into a direct component attributable to an 
individual’s own genotype and an indirect component attributable to 
the genotypes of the individual’s “associates.”

Experimental work by agricultural and model organism 
geneticists used these “variance-component” models to explore the 
role of maternal genetic effects (reviewed by Cheverud, 1984) and 
associate effects (e.g., Wright, 1985; Muir, 1996; Muir, 2005), on 
the response to selection. As more general statistical approaches be-
came available (e.g., mixed models that allow empiricists to use in-
formation on multiple types of relatives simultaneously, or “animal 
models”; Henderson, 1953), they allowed IGE to be estimated in a 
great variety of systems, including free-living populations of plants 
and animals (Wilson et  al., 2011; Moiron et  al., 2020), outbred 
populations of laboratory organisms (Baud et  al., 2017), and hu-
mans (Xia et al., 2021). These approaches have also been extended 
to map the individual loci giving rise to IGE (Mutic and Wolf, 2007; 
Bailey and Hoskins, 2014; Ashbrook et al., 2015; Brinker et  al., 
2018; Baud et al., 2021).

Beginning late in the 20th century, evolutionary biologists devel-
oped models in which IGE were attributed to specific traits expressed 
in interacting partners. The first of these “trait-based” IGE models 

(Moore et al., 1997) built upon a maternal-effects framework devel-
oped by Falconer (1965) and Kirkpatrick and Lande (1989). These 
models specify the traits in interacting individuals that influence the 
focal individual’s phenotype, defining an “interaction coefficient” 
Ψ that quantifies this influence. These models have therefore been 
called “interacting phenotype” models. Formally, Ψ is a path coef-
ficient that describes the degree to which trait X in an interacting 
conspecific affects trait Y in the focal individual. Critically, the gen-
etic basis of the traits involved are captured in other parameters of 
these models, specifically parameters that describe genetic variances 
and covariances of the interacting phenotypes. Thus, while the term 
“indirect genetic effect” was first used in the context of the trait-
based approach, the parameter most identified with that approach, 
Ψ, does not, by itself, capture the genetic effect of partners on the 
focal phenotype. Nevertheless, the trait-based theoretical framework 
describes important implications of IGE for understanding and 
predicting the evolution of phenotypes (Moore et  al., 1997; Wolf 
et al., 1999; McGlothlin et al., 2010). Given these implications, it is 
surprising that empirical applications of these predictive models are 
comparatively rare, although examples are accumulating (see Brodie 
(2022), McAdam et al. (2022), and Bailey and Desjonquères (2022) 
in this issue for further discussion). We provide more details about 
the uses and relationships between variance-component and trait-
based approaches in Box 1.

In the 2000s, human behavioral geneticists used structural equa-
tion models and extended twin designs to investigate the contribu-
tions of assortative mating (nonrandom mate choice) and marital 
interactions (influence) to phenotypic variance (Agrawal et al., 2006; 
Grant et al., 2007). More recently, structural equation models have 
been applied to datasets of unrelated individuals to quantify and 
map parental IGE on body weight using effect sizes from genome-
wide association studies (GWAS) of own and offspring phenotypes 
(Warrington et  al., 2019; Wu et  al., 2021). Structural equation 
models in human IGE studies primarily model effects arising from 
the genotypes of partners, much like variance-component models do, 
but in some cases they have been extended to test whether specific 
phenotypes of partners mediate the detected IGE (Warrington et al., 
2019), a question that is addressed with trait-based models in other 
disciplines.

Finally, in the last few years, human genetics studies have adopted 
another approach to study IGE: polygenic scores (also called poly-
genic risk scores). Polygenic scores are constructed by combining 
individual genotypes with effect sizes obtained from a previously-
conducted GWAS for a particular trait to predict individual pheno-
types (Wray et al., 2007). For example, To detect parental IGE on 
offspring in an Icelandic cohort, Kong et al. (2018) first calculated 

Table 1.  The vocabulary of indirect genetic effects

Field Term Key papers

Agricultural Genetics Indirect genetic effect; social genetic effect Ellen et al. (2014)
Behavioral Ecology Indirect genetic effect; interacting phenotypes Bailey et al. (2018)
Biomedical Genetics Genetic nurture; dynastic effect; indirect genetic 

effect; social genetic effect; horizontal effect
Young et al. (2019)

Evolutionary Biology Indirect genetic effect; interacting phenotypes; 
maternal genetic effect; GxG epistasis

Wolf et al. (1998)

Population and Community Ecology Associational effect; neighbor effect Underwood et al. (2014)
Social Psychology Social niche construction; evocative rGE Mills and Tropf (2020)
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parental polygenic scores for educational attainment and other traits 
by combining the nontransmitted alleles of parents with effect sizes 
from a previous GWAS conducted on 279  000 unrelated individ-
uals, then tested for associations between parental polygenic scores 
and offspring traits. This approach highlighted the role of “gen-
etic nurture”—parental IGE mediated by traits genetically correl-
ated with educational attainment. Polygenic scores have since been 
used to investigate a wider range of IGE, including between spouses 
(e.g., Clarke et al., 2019) and schoolmates (see, e.g., Sotoudeh et al., 
2019). This approach is trait-based—it requires focusing on a spe-
cific trait of parents—but the trait value of parents is predicted from 
genomic data instead of being measured directly as in classical trait-
based approaches.

Whatever approach is taken, the importance of IGE is increas-
ingly appreciated across many subfields of genetics, and attempts to 
identify and quantify IGE are accelerating. This substantial overlap 
across disciplines can easily be overlooked, however, because dif-
ferent disciplines use different language to describe conspecific-
induced components of the phenotype. A cross-disciplinary synthesis 
of IGE therefore requires a synthesis of the language used to describe 

IGE. In Table 1, we present vocabulary used to describe IGE in dif-
ferent subfields. We do not attempt to provide a comprehensive list 
of citations, since the list would be very long. However, we cite a key 
primary paper or review for each subfield.

Consequences of IGE (or “So What?”)
Across the disciplines listed in Table 1, researchers recognize that 
the consequences of genes-as-environment can be profound. 
Evolutionary and agricultural biologists have shown that, when 
phenotypes are influenced by both DGE and IGE, response to nat-
ural or artificial selection can be either greatly accelerated or highly 
constrained, depending on the nature of the interaction (Wolf et al., 
1998; Bijma and Wade, 2008; Peeters et  al., 2012). For example, 
mussels genetically predisposed to grow quickly are also genetically 
predisposed to reduce growth in their conspecific neighbors via food 
competition (Brichette et  al., 2001). This kind of negative correl-
ation between IGE and DGE, which has also been documented in 
other species (Wolf, 2003; Santostefano et al., 2017; Thomson et al., 
2017), can prevent populations from responding to selection, or 
cause the response to be opposite in direction to that expected based 

Box 1. Variance-component and trait-based models and other approaches

While both variance-component and trait-based approaches can, in theory, be applied to understanding the genotype–phenotype 
relationship across a wide variety of scenarios, different disciplines have preferred one or the other approach. Overall, variance-
component models have been used in many more empirical studies than trait-based models. These differences derive both from the 
goals of the studies and from practical considerations.

Agricultural genetics is aimed at stock improvement, a pursuit that often does not require knowing which traits in interacting 
partners mediate IGE, making variance-component models sufficient to achieve this goal. For example, the phenotypes that determine 
crop competitive ability can be cryptic, but Griffing (1976) was able to conclude that family-based selection could overcome con-
straints on the response to individual selection that occurs when good competitors reduce performance of their neighbors. By contrast, 
evolutionary biologists and behavioral ecologists are often interested in traits that mediate interactions between social partners, some 
of which are difficult to define without reference to traits in other individuals (e.g., social dominance; Moore et al., 2002; Wilson et al., 
2011), making trait-based approaches better suited in these disciplines.

Practical considerations have favored variance-component models over trait-based models in empirical studies. First, given the 
complexity of social interactions, a priori knowledge of mediating mechanisms is often absent, precluding the use of trait-based 
models. As variance-component models do not require specifying the traits of partners eliciting IGE, they can be applied to a broader 
range of traits (in fact, any trait), provided a pedigree or the genotypes of partners are available; (Bijma, 2014; Baud et al., 2017). 
Second, while the interaction coefficient Ψ is straightforwardly estimated as a partial regression coefficient in the absence of feed-
back or with a correction in the presence of feedback when the partner trait is the same as the focal trait (Bijma, 2014), estimating 
the matrix of Ψ when multiple phenotypes are interacting with feedback is only possible with repeated measures (Martin and Jaeggi, 
2021). In addition, Ψ estimates calculated from observed phenotypes are only valid under the assumptions that all causally interacting 
phenotypes have been identified (Bijma, 2014). When repeated measures are available, however, it is possible to account for unmeas-
ured effects to obtain unbiased estimates of Ψ (Martin and Jaeggi, 2021). Finally, estimates of Ψ are usually not sufficient to quantify 
IGE and predict the response to selection; genetic variances and covariances of the focal and the interacting phenotype also need to 
be estimated (Moore et al., 1997; Martin and Jaeggi, 2021). As an alternative to estimating genetic parameters, however, behavioral 
ecologists often deploy the “phenotypic gambit” (see Box 1 in Dingemanse and Araya-Ajoy, 2015). Laboratory experimentalists, on 
the other hand, have used inbred strains to ensure Ψ reflects social effects of genetic origin rather than social environmental effects 
(Bleakley and Brodie, 2009).

There is increasing work to reconcile the variance-component and trait-based frameworks and to overcome their respective limi-
tations. In particular, McGlothlin and Brodie (2009) showed that the 2 frameworks are mathematically equivalent—assuming all 
interacting phenotypes have been identified in the trait-based models—and developed methods to calculate Ψ from variance com-
ponents. To date there have been few, if any, subsequent attempts to apply these techniques, however. The polygenic scores used in 
human genetics (Kong et al., 2018) constitute a hybrid approach. They are trait based—in that a specific trait of partners is investi-
gated—but also inherently genetic in that polygenic scores of partners are used instead of their phenotypes. While this approach is 
appealing for gaining the benefits of both variance-component and trait-based approaches, we note that the human GWAS used to 
calculate polygenic scores typically include tens to hundreds of thousands of individuals, sample sizes that are currently achievable 
in very few other species.
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on traditional measures of genetic variance and heritability (Moore 
et  al., 1997). Conversely, a positive correlation between IGE and 
DGE can dramatically accelerate response to selection. For instance, 
Peromyscus mice that are genetically liable to be aggressive also in-
duce high levels of aggression in their social partners (Wilson et al., 
2009). Selection favoring increased aggression will therefore increase 
the frequency of alleles with DGE for high aggression, which will 
also produce a more aggressive social environment via IGE. This 
positive feedback between DGE and IGE amplifies the evolutionary 
change that is expected based on DGE alone. Indeed, the potential 
for this kind of feedback in social interactions has been proposed 
to explain the high phenotypic variation and rapid evolution often 
observed in behavioral and social traits (Reale et al., 2007; Bailey 
et al., 2018).

When, in addition to traits being influenced by DGE and IGE, 
the 2 kinds of effects interact (i.e., IGE depend on the genotype of 
the focal individual), the resulting interaction has been called “GxG 
epistasis” (Wolf, 2000; Jaffe et  al., 2020). This DGE x IGE inter-
action is of particular interest to evolutionary geneticists because it 
can promote the maintenance of genetic and phenotypic diversity, as 
was recently found in color-polymorphic mosquitofish (Culumber 
et al., 2018). There, juveniles achieved better body condition when 
their own genotype was rare in the social environment, suggesting 
that within-genotype competition generates negative frequency-
dependent selection and contributes to the maintenance of poly-
morphism. The examples in this and the previous paragraph, and 
many others, illustrate that the evolution of phenotypes cannot be 
fully understood or predicted without accounting for IGE.

IGE also have profound effects beyond determining response to 
selection and maintenance of genetic variation. Failing to properly 
account for IGE can bias estimates of DGE and heritability (Bijma, 
2014; Baud et  al., 2017; Young et  al., 2018). Indeed, IGE can 
account for at least part of the “missing heritability” documented 
for traits like human height and can influence our understanding 
of traits with important societal implications such as educational 
attainment (Young, 2019). Similarly, IGE can bias polygenic scores, 
which estimate an individual’s genetic propensity for a trait or 
disease and which have been used as a tool both to understand the 
shared genetic etiology between traits and for precision medicine. 
Human geneticists would like to use polygenic scores to reflect 
only the causal effects of an individual’s own genes, that is, DGE. 
However, familial IGE bias these scores (Kong et al., 2018; Trejo 
and Domingue, 2018; Young et  al., 2019; Balbona et  al., 2021). 
The growing awareness of the need to distinguish familial IGE 
from DGE in human genetics emphasizes the importance of col-
lecting genomic and phenotypic data within families (Young et al., 
2019).

 As recognition of the importance of IGE increases across discip-
lines, empirical challenges to estimating and mapping IGE should 
not be ignored. In the remainder of this Perspective, we describe 
some of these challenges (Part II), highlight exciting potential so-
lutions (Part III), and conclude with recommendations, drawn 
from work in many different disciplines, that will advance empir-
ical understanding of IGE (Part IV). We note, however, that this 
is a small subset of the compelling themes that were discussed at 
the 2021 AGA President’s Symposium on Genes as Environment, 
and that many of these are described in the papers that form this 
Special Issue. We also point to an informal compilation of speaker’s 
perspectives published on the AGA website (http://blog.theaga.org/
presidential-symposium-contributors-speak-on-the-present-and-
future-of-indirect-genetic-effects/).

II.  Challenges for Empirical Studies of IGE

In this section, we describe what are, in our view, some widespread 
challenges to the empirical study of IGE across the disciplines that 
use the concept. These challenges mainly involve problems of iden-
tification (e.g., of interacting partners, of changes in partners, or of 
interactions over time) and problems of confounding (e.g., arising 
from nonrandom group formation, shared environmental effects, re-
latedness, and population structure). We also describe which of these 
challenges are general to quantitative genetic analyses, and which 
arise specifically in the study of IGE.

Identifying Interacting Partners
To understand how traits are influenced by interactions with con-
specific individuals, it is of course necessary to identify the relevant 
partners. While this is straightforward in experimental settings 
where groups are formed by the experimenter, it can be quite chal-
lenging in free-living populations. In free-living animals, identifying 
interacting partners typically requires time-intensive observations 
of social interactions (Altmann, 1974), the ability to easily identify 
individuals in a population (either using distinctive natural mark-
ings or by capturing and tagging individuals), and/or the ability to 
locate nests/dens or to genotype individuals to assess parentage. 
Even in sessile organisms, it is necessary to know which individuals 
within populations interact with one another and which do not. 
That is, the spatial scale over which relevant interactions occur 
is not always obvious (File et  al., 2012; Brodie, 2022; McAdam 
et al., 2022).

Dealing With Nonrandom Group Formation
Most interactions with conspecifics do not occur at random with 
respect to the genotypes, environments, and phenotypes of the 
individuals involved. For example, in many species, individuals 
interact preferentially with kin, resulting in correlations between 
the genotypes, environments, and phenotypes of group members. 
Similar correlations can also arise as a result of population struc-
ture, since interactions then occur most frequently genetically-
similar individuals or individuals sharing a similar environment. In 
free-living organisms, population structure can arise passively from 
migration–selection–drift processes (Wright, 1978) or from genet-
ically based habitat preferences (D’Aguillo et  al., 2019). Finally, 
correlations between group members can arise when individuals 
actively choose their partners based on their own and potential 
partners’ phenotypes (e.g., Robinson et  al., 2017; Aguillo et  al., 
2022; Brodie, 2022).

When groups are not formed at random, IGE can be defined 
in 2 alternative ways. IGE are most commonly defined to reflect 
the influence of partners after the group is formed, in which case 
nonrandom group formation is a confounding factor that needs 
to be accounted for. On the other hand, when focal individuals 
associate nonrandomly with partners, IGE can be defined to reflect 
not only the genetic basis of partner influence but also the role 
of partners’ genotypes in nonrandom group formation. This defin-
ition may be appropriate, for example, when the goal is to predict 
phenotypic evolution. In that case, nonrandom group formation 
will not be considered a confounding factor but rather an integral 
part of IGE.

When nonrandom group formation is considered a confounding 
factor, the scope of confounding will depend on the underlying pro-
cess. Phenotype-based partner choice, in the absence of other sources 
of confounding, will bias IGE studies only when the focal phenotype 
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is correlated with the trait(s) of focal individuals. By contrast, inter-
actions with kin and population structure will affect IGE studies 
much more broadly because these processes induce a multitude of 
correlations between genetic and environmental factors experienced 
by focal individuals and their partners.

Detecting nonrandom group formation is not always straightfor-
ward. Whereas the presence of closely related individuals can often 
be determined either by tracking the individuals on a pedigree or 
from estimating relatedness from genomic data, population struc-
ture can be complex and subtle, and phenotype-based partner choice 
is poorly understood. Therefore, even when measures are taken to 
account for nonrandom group formation (see Part III), some con-
founding may remain.

Dealing With Unequal Interactions Within a Group
Even in carefully constructed social groups with random group 
composition, interactions within a group may vary in quantity 
and/or quality, resulting in different partners having different 
influences on the focal phenotype. Differences in number and 
intensity of interactions between social partners have been re-
ported in IGE experiments on mosquitofish (Kraft et  al., 2018) 
and fruit flies (Jaffe et  al., 2020). When interactions inside the 
group vary in quantity and/or quality, IGE can be defined in 2 
different ways. The simplest way is to ignore these differences and 
model equal IGE from all partners in the group. However, this 
approach may hinder our ability to detect IGE, for example if not 
all partners have the opportunity to exert their influence, as is the 
case in large cattle herds (Bijma, 2014). It may also result in con-
founding, whereby IGE will be interpreted as partner influence 
when they actually reflect a role of partner genotypes in having 
the opportunity to influence the focal individual. To avoid such 
confounding, when information on the quantity and/or quality 
of interactions in the group is available, one can condition upon 
these differences. It may be particularly useful to distinguish when 
profoundly different types of relationships are present within a 
group, such as when social hierarchies are present: pairs of sub-
missive individuals may interact in completely different ways to 
pairs of dominant-submissive individuals.

Accounting for Confounding From Shared 
Environmental Effects, Relatedness, Population 
Structure, and Assortative Mating
In addition to sources of confounding factors that are specific to 
IGE studies (nonrandom group formation and unequal interactions 
within a group), similar sources of confounding that affect DGE 
studies can also affect IGE studies. Nonadditive effects generated 
when close relatives are (unknowingly) included in the study can 
bias estimates of additive DGE (narrow-sense heritability) and IGE 
alike. Shared environmental effects, which arise when multiple in-
dividuals experience a similar environment, are problematic when 
they affect genetically related individuals, which can happen when 
there is population structure (Vilhjálmsson and Nordborg, 2013), 
when close relatives are (unknowingly) included in the sample, or 
as a result of the experimental design (e.g., different inbred strains 
bred in different rooms). Assortative mating can also bias gen-
etic estimates (Kemper et al., 2021). Finally, in GWAS population, 
structure and the inclusion of individuals with various degrees of 
relatedness can give rise to genetic background effects that can 
yield spurious associations if unaccounted for (Vilhjálmsson and 
Nordborg, 2013). In Box 2, we illustrate how these confounding 

factors, can bias IGE estimates or yield spurious IGE associations if 
ignored. For an illustration and the demonstration of the impact of 
assortative mating on studies of parental IGE, we refer the reader 
to Kong et al. (2018).

Nonadditive Effects across Partners
Most of the empirical data on IGE come from investigations in 
which effects of multiple partners are averaged or studies of pairwise 
interactions. Group dynamics and the resulting IGE are not always 
predictable from dyadic interactions, however. For example, Saltz 
(2013) found that dyadic interactions between pairs of genetically 
distinct D. melanogaster were influenced by the genotype of a third 
individual, and they denoted these effects as “second-order IGE.” 
The inability to predict such nonadditive and nontransitive inter-
actions might severely limit our ability to accurately estimate IGE or 
predict its evolutionary consequences.

Changes in IGE over Time
As outlined above, our ability to predict evolutionary change is com-
promised if IGE are ignored. However, prediction of evolutionary 
change over more than a single generation depends on assumptions 
about the constancy of genetic variance components (both direct 
and indirect) and of selection gradients, but all these parameters can 
themselves evolve (Steppan et  al., 2002; Bailey and Desjonquères 
2022, this issue; Chevin and Haller, 2014). Like other components 
of genetic variance, IGE variance depends on allele frequencies and 
effect sizes and is therefore likely to evolve under selection and vary 
across environments. Several empirical studies have reported that Ψ 
too can evolve (Chenoweth et al., 2010; Rebar et al., 2020), and that 
it can vary among populations, both over time in a single population 
and with changes in the abiotic environment (Bailey and Zuk, 2012; 
Signor et al., 2017a, 2017b).

IGE can also vary within the lifetime of an organism. Even if 
interacting groups remain constant, interactions between individ-
uals within the group can vary over time. We can rarely track these 
changes, and their consequent effects on phenotypes, through each 
social experience an organism encounters during its life. Empirical 
studies have generally measured average effects of specific social 
environments over relatively long time scales (Peeters et al., 2012). 
However, averaging over long time periods can obscure effects that 
occur during critical periods of development.

Finally (and obviously), the membership of groups can change 
over time, which further complicates the identification and the 
phenotyping and/or genotyping of interacting partners. Relatively 
few animal studies monitor groups long enough to capture such 
changes (but see, e.g., McAdam et al., 2022). Studies of IGE in hu-
mans have a clear advantage here because self-reported social part-
ners can shed light on changes in social groupings over the lifespan.

In this section, we have highlighted challenges that we view as espe-
cially pervasive and/or underappreciated in studies of IGE. In Part III, 
we describe solutions to some of these problems that can be provided by 
advances in study design, technologies for data collection, and statistical 
analysis.

III. Solutions and Prospects

Advances in study design as well as techniques for data collection 
and data analysis will facilitate and improve the analysis of IGE in 
the future. Below, we highlight some promising developments in 
each area.
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Box 2.  Examples of confounding and spurious effects in IGE studies

Here we illustrate several sources of confounding or statistical problems that can arise in IGE studies, using both hypothetical and 
documented examples, where available. We note that not all will apply to every study, as sources of confounding depend heavily on 
experimental design. We discuss potential solutions to these issues in Part III.

Correlation between focal environment and partner genotype. Consider a case in which parents are the partners and nestlings the 
focal individuals, with nestling weight as the focal phenotype (Figure 2.1). The body weight of nestlings sharing a nest could be more 
similar than average because they are fed by the same parents or because they are exposed to the same environmental conditions in 
the nest (wind, temperature, precipitation, etc.) and these conditions affect the focal phenotype. In this case, parental IGE cannot be 
distinguished from common environmental effects experienced by nestlings sharing a nest. Note that such confounding would occur 
even with a cross-fostering design in which all individuals are strictly unrelated because nestlings share both a parent and a nest. Also 
note that a shared partner is not the only way such confounding can arise: correlations between focal environment and partner geno-
type are also expected to arise when groups consist of closely related individuals (e.g., mouse littermates sharing a cage) or there is 
population structure (e.g., humans interacting with individuals living in the same area).

Correlation between partner environment and partner genotype. The body weight of nestlings sharing a nest may be more similar 
than average because they are fed by the same parents or because their parents are exposed to environmental conditions (e.g., resource 
abundance) that affect parental care (Figure 2.2). In that case, parental IGE are confounded with environmental effects experienced by the 
parents. Importantly, such confounding can occur even when parental genotypes are not correlated with resource abundance. Consider an 
equivalent dataset in which each parent (genotype and environment) was replicated as many times as there are nestlings fed by the parent. 
This dataset would contain a correlation between parental genotypes and parental environments. Thus, even though parental genotypes 
and environments are, in fact, uncorrelated, confounding occurs. This example illustrates why both the genetic and the nongenetic com-
ponents of indirect effects must be modeled to avoid confounding. We refer the reader to Bijma et al. (2007) for further discussion of this 
issue and the mathematical derivation of the nongenetic covariance between group members. In addition to experimental designs involving 
shared partners, correlations between partner environment and partner genotype can arise when closely related individuals are among the 
partners (whether these closely related individuals are in the same group or not) or there is population structure.

Correlation between direct and social genotypes. In agricultural settings, pigs that share a pen (enclosure) are often more genetic-
ally related than average because of organizational constraints/production techniques (Figure 2.3). As a result, their phenotypes can 
be more similar than average due to more similar DGE or due to more similar IGE from penmates (Bergsma et al., 2008). Similarly, in 
human genetics, greater concordance of monozygotic (MZ) twins compared to dizygotic (DZ) twins can be due, among other reasons, 
to more similar DGE in MZ twins compared to DZ twins or to more similar IGE from the other twin in MZ twins compared to DZ 

Figure 2.1.  Example of correlation between focal environment and partner genotype.
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twins. Finally, similar confounding could arise from population structure or from phenotype-based partner choice (see section on 
Nonrandom group formation).

Shared environmental effects in the presence of a positive correlation between DGE and IGE. Consider the growth of neighboring 
plants. Neighbors could be more similar than average because they are exposed to the same environmental conditions (shade) or be-
cause of a positive correlation between DGE and IGE whereby trait-increasing alleles of one plant help neighboring plants grow (e.g., 
ethylene-mediated cooperative effects discussed in Mutic and Wolf 2007) (Figure 2.4).

Background IGE in IGE mapping studies. In addition to spurious associations that can arise from confouding environmental 
effects, spurious associations in GWAS of IGE can arise from confounding by other, causal loci in the genome of partners (Figure 2.5), 

Figure 2.2.  Example of correlation between partner environment and partner genotype.

Figure 2.3.  Example of correlation between direct and social genotypes.

Box 2.  Continued
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similarly to how genetic background effects can give rise to spurious associations in GWAS of DGE (Vilhjálmsson and Nordborg, 
2013). Background genetic effects are always present, but stronger in the presence of population structure or when the sample con-
tains closely related individuals.

Larger sampling variance of the correlation between direct and social genotypes leading to anticonservative P-values in IGE map-
ping studies. In IGE mapping studies, when each individual in the study serves as both a focal individual and a partner, and DGE 

Figure 2.4.  Example of shared environmental effects in the presence of a positive correlation between DGE and IGE.

Figure 2.5.  Theoretical illustration of a spurious association arising from the genoytpic correlation with a causal locus in an IGE mapping study.

Box 2.  Continued

8� Journal of Heredity, 2022, Vol. 113, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/article/113/1/1/6395191 by Florida State U
niversity user on 24 February 2022



Study Design

1.  Manipulating the Social Environment
Given the large scope for confounding described above, experiments 
aiming to manipulate the social environment have had and should 
continue to play a role in characterizing IGE. For example, when 
species exhibit discrete phenotypes that are suspected to generate 
IGE, manipulating the ratio of morphs in the social environment can 
demonstrate the existence of IGE and illuminate its importance in 
nature. This approach has been used to study IGE generated by the 
GP-9 polymorphism in fire ants (Keller and Ross, 1998; Ross and 
Keller, 2002) and body-color polymorphism in eastern mosquitofish 
(Culumber et al., 2018; Kraft et al., 2018). When candidate genes for 
producing IGE are known, wild type and knock-out or knock-down 
strains can be compared with validate the candidates and quantify 
potential effects (Ferrero et al., 2013; Ribeiro et al., 2020). In the past, 
this kind of validation experiment has been limited to model systems 
with well-developed genetic resources. However, new genome-editing 
techniques should make this approach feasible in many non-model 
species (Huang et al., 2016; Mendoza and Trinh, 2018).

When the genetic variants and traits that produce IGE are un-
known, the social genetic environment cannot be purposefully ma-
nipulated in the same way, but variation in social partners can still 
be experimentally controlled. For example, IGE can be identified by 
contrasting the social effects of different inbred strains when these 
are available (Bleakley and Brodie, 2009; Ferrero et al., 2013; Liu 
et  al., 2017; Jaffe et  al., 2020). If interest lies in IGE that poten-
tially occur in nature, as in evolutionary biology, we note that this 
kind of controlled experiment can mainly reveal the potential for 
such effects. However, many species do not naturally inbreed, and 
inbred strains even if derived from natural populations, can be un-
representative of natural genotypes and their interactions because 

of inbreeding depression. In laboratory studies, this problem can be 
alleviated by making use of F1 crosses between inbred strains de-
rived from nature (e.g., Saltz et al., 2012) or using later generations 
of intercrosses between wild-derived strains (Walsh et  al., 2022). 
These populations more closely reflect the allele and genotype fre-
quencies and the associated phenotypic variation, found in their 
natural source populations. Of course, environmental conditions 
can also differ dramatically between laboratory and natural popula-
tions. Field manipulations of individuals that naturally form discrete 
groups provide promising material for illuminating IGE in nature; 
manipulations of social groups in nature have been conducted of 
forked fungus beetles, for example, which form discrete groups on 
bracket fungi (Brodie, 2022) and in guppies, which inhabit discrete 
pools in rivers (Hughes et al., 2013). To date, however these manipu-
lations have been based on phenotypic, but not genetic differences 
among individuals.

For organisms in which social groups are difficult or impossible to 
manipulate, video or audio playback, dummies, or robots can be used 
to manipulate social interactions in species that respond in natural-
istic ways to these stimuli. This kind of manipulation has been used 
extensively in behavioral ecology (Naik et al., 2020, and references 
therein), but has been rare in the IGE literature (but see Bailey and 
Zuk, 2012 for an example). The increasing sophistication of tech-
nologies like robotics and artificial intelligence should make this ap-
proach increasingly feasible in many systems (Landgraf et al., 2021).

2.  Randomizing the Social Environment
When the genotypes of partners cannot be partitioned into mean-
ingful groups—typically when an outbred or recombinant inbred 
population is studied and the focus is on IGE aggregated across 
the genome rather than IGE at a single locus—the social environ-
ment can still be randomized with respect to specific confounding 

exist, P-values will not be calibrated under the null hypothesis of no IGE, resulting in anticonservative P-values unless local DGE are 
accounted for in the null model. This issue arises because the sampling variance of the correlation between direct and social genotypes 
in the case where each individual is both focal individual and partner is larger than naive expectation (i.e., random binomial draws, as 
would be the case if each individual was either focal individual or partner) (Figure 2.6, modified from Baud et al., 2021). Importantly, 
this is true even when all individuals are strictly unrelated.

Figure 2.6.  Greater sampling variance of the correlation between direct and social genotypes when each individual in the sample is used as both focal 
individual and social partner.

Box 2.  Continued
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factors. For example, when studying IGE from cagemates in out-
bred laboratory rodents, it is possible to use a single offspring per 
parental pair or to spread the offspring of a pair across cages to 
avoid confounding of IGE by parental/litter effects. Furthermore, 
as the animals do not choose their cages but rather are assigned 
to specific cages by the experimenter, partner choice cannot be in-
volved in any detected association between focal phenotype and 
partner genotype. To study parental IGE, and more precisely the 
influence of parents on offspring and vice versa, cross-fostering 
experiments are possible in some species and the “natural ex-
periment” created by adoption has been used in humans. Cross-
fostering removes the passive correlation existing between 
parental and offspring genotypes, such that associations between 
parents and offspring can be interpreted as influence. Cross-
fostering has been used in laboratory mice to gain insights into 
maternal, offspring and sibling IGE in early life (Ashbrook et al., 
2015, 2017). Cross-fostering has been used a great deal in studies 
of free-living birds (e.g., Verhulst and Nilsson, 2008), but not, to 
our knowledge, to investigate IGE. In humans, adoption studies 
have provided evidence of parental genetic effects on educational 
attainment (Cheesman et al., 2020).

3.  Longitudinal Studies With Repeated Measures
Whereas manipulating and randomizing the social environment 
helps avoid confounding, longitudinal studies with repeated meas-
ures provide the ability to account for many confounding factors. 
In the example illustrated in Figure 2.1 (Box 2), confounding be-
tween rearing environmental effects (nest) and parental IGE could be 
accounted for if multiple broods/litters reared in different environ-
ments were included for each parent, and rearing environment was 
modeled explicitly. Repeated measures will be particularly valuable 
to disentangle nonrandom group formation from partner influence, 
as one can model the evolution of focal and partner phenotypes over 
time to look specifically for partner influence (Martin and Jaeggi, 
2021).

Data Collection
IGE studies always require the ability to measure interactions 
between individuals (e.g., defining social groups or measuring 
the distance between plants), the focal phenotypes, and either 
the genotypes or relatedness of social partners or the trait(s) of 
partners thought to be mediating the IGE. Note that, in some 
cases, the focal  phenotype and the trait of partners mediating 
IGE are the same, but here we consider the general case where 
the focal phenotype and the trait of partners mediating IGE are 
different.

1.  Automatic Scoring of Interactions
Recent advances in technologies for tracking animal movements as 
well as machine learning approaches and social network theory are 
poised to allow behavioral ecologists and animal breeders to study 
interactions at unprecedented scales, facilitating the identification of 
interacting partners over time and automating the scoring of behav-
ioral interactions (Smith and Pinter-Wollman, 2021). These techno-
logical advances may make it feasible to increase sample sizes and 
therefore the power to detect IGE, and to characterize variation in 
behavioral interactions within a group.

Social encounters can be detected directly using proximity log-
gers that record instances when 2 tagged individuals come within 
a certain distance. Alternatively, they can be inferred indirectly 

from data on the movements and spatiotemporal locations of ani-
mals (e.g., data from VHF radio telemetry tags, GPS loggers, RFID 
tags, and Bluetooth and GPS technology; reviewed in Krause et al., 
2013; see also Stopczynski et al., 2013 and Sandeepa et al., 2020). 
Another common approach for both detecting social interactions 
and quantifying how individuals interact is to analyze video record-
ings. Machine learning approaches now enable automated analysis 
of social interactions from video recordings of both barcoded indi-
viduals (e.g., Gernat et al., 2018) and unmarked individuals (Guzhva 
et al., 2016; Arac et al., 2019; Foris et al., 2019; Romero-Ferrero 
et al., 2019). A powerful approach for tracking individual behavior 
and quantifying social interactions is to combine video analysis and 
RFID technology (e.g., Weissbrod et al., 2013; Ellen et al., 2019) or 
lightweight backpack-mounted barcodes (e.g., Alarcón‐Nieto et al., 
2018). Finally, our ability to study social interactions has greatly ad-
vanced with the development of social network analysis methods 
(Wey et al., 2008; Farine and Whitehead, 2015; Finn et al., 2019).

2.  High-Throughput Phenotyping (Many Animals and Many 
Phenotypes for Each Animal)
Technological advances that permit high-throughput phenotyping 
will help overcome several limitations of current IGE studies, and 
new data analytic techniques can alleviate the multiple testing 
problem associated with analyzing many different phenotypes (see 
the Data analysis section). First, large sample sizes are required to 
estimate the correlation between DGE and IGE, which can shed 
light on the collaborative or competitive nature of IGE and the role 
of “spread” in IGE (Baud et al., 2021). Large samples are also re-
quired to leverage the equivalence between trait-based and variance-
component models (McGlothlin and Brodie, 2009), and to identify 
individual genetic loci underlying IGE, especially when DGE and 
IGE are confounded (Baud et  al., 2021). Second, characterizing 
the phenome of focal individuals permits detecting IGE on pheno-
types that were not previously known or suspected to be affected by 
IGE (Baud et al., 2017; Xia et al., 2021), while characterizing the 
phenome of interacting partners will point to the types of traits of 
partners mediating IGE (e.g., behavioral, immune-related, or meta-
bolic traits), thereby helping to uncover unexpected mechanisms 
underlying IGE.

Phenotyping large samples can be achieved using various mo-
dalities and technologies (Tardieu et  al., 2017; Brito et  al., 2020; 
Canario et al., 2020). One of the most widely used strategies is video-
recording followed by computer-aided image analysis, which have 
been used to infer gait and grooming behavior in mouse (Geuther 
et al., 2021; Sheppard et al., 2021), aging and lifespan in C. elegans 
(Stroustrup et  al., 2013), and body conformation in cattle (Nye 
et al., 2020; Long et al., 2020). Imaging technologies have also been 
used for high-throughput phenotyping in plants (Fahlgren et  al., 
2015; Rahaman et al., 2015). Other widely used automatic, high-
throughput, phenotyping strategies involve wearing specialized gear 
coupled with specialized detection apparatuses (e.g., RFID tags are 
used by automated milking robots to measure milk production by 
individual cows, wrist bands and watches are used to track heart rate 
and sleep and humans). In humans, additional strategies are avail-
able in the form of electronic health records, which in some cases are 
connected to individual genomic data, and questionnaires connected 
to individual genomic data (e.g., 23andMe). In addition to charac-
terizing entire organisms, biological samples can provide rich pheno-
typic data for phenomics. For example, biochemical, hematological, 
and immunological analyses can provide a broad representation of 
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the physiology of an organism, and -omics analyses can shed light on 
the function of a particular tissue.

3.  Dense Genotyping Using Next-Generation Sequencing
The ability to obtain dense genotyping data for all focal individuals 
and their partners can greatly advance our understanding of IGEs. 
Genomic data can help identify relationships among individuals, 
characterize population structure, and shed light on potential mech-
anisms underlying IGE via GWAS approaches. Next-generation 
sequencing technologies (Metzker, 2010; Levy and Myers, 2016) 
provide many options for high-throughput single-nucleotide poly-
morphism discovery and genotyping, both with or without an ex-
isting reference genome (though de novo genome assembly is now 
possible in most organisms; see Rice and Green, 2019 for a review 
of current advancements in genome assembly methods). Genotyping 
methods using next-generation sequencing and their applications 
have been nicely summarized elsewhere (Ekblom and Galindo, 2011; 
Nielsen et al., 2011; da Fonseca et al., 2016). Furthermore, geno-
type imputation is an efficient method for generating high density 
genotypes for many individuals from a mix of high density genotype 
data for a subset of individuals and low-density genotype data (e.g., 
from shallow whole genome resequencing) for the rest of the sample 
(Li et al., 2009), or from low-density genotype for all individuals, 
provided that a high-quality reference panel exists. All genotype im-
putation approaches rely on identifying shared haplotypes between 
individuals: between related individuals on a pedigree, between a 
sample of unrelated individuals and individuals in a large reference 
panel, or between unrelated individuals. Different genotype imput-
ation methods are reviewed in Li et al. (2009); Marchini and Howie 
(2010); Das et al. (2018); Ullah et al. (2019).

Data Analysis
1.  Improved Statistical Models to Account for Confounding
Confounding cannot always be avoided experimentally, in which 
case confounding factors need to be accounted for in the statis-
tical models used for parameter estimation and statistical infer-
ence. Much of the confounding described in Part II and Box 2 
can be accounted for using the appropriate random effects. In 
particular, jointly modeling DGE and IGE in variance-component 
models prevents bias due to DGE and any environmental effect 
covarying with DGE, which is particularly important when groups 
consist of related individuals or there is population structure. In 
the absence of a random DGE term in the model, IGE estimates 
would be biased. In statistical inference (when testing whether the 
IGE variance component is different from 0), confounding is det-
rimental whether it is accounted for or not: confounding results 
in anticonservative P-values if unaccounted for, and conservative 
P-values if accounted for (by including a random DGE term in the 
null model).

Modeling the nongenetic component of indirect effects is also 
key to avoiding biased estimates of IGE. Indeed, nongenetic indirect 
effects contribute to phenotypic covariance when focal individuals 
share one or more partner(s) (see Figure 2.2 in Box 2) and when 
direct and indirect nongenetic effects are correlated (e.g., if a mouse 
were dropped on the ground while being transferred to a different 
cage, the stress levels of the mouse would increase and the mouse 
could communicate its stress to its cage mates). Part or all of this 
nongenetic covariance may be captured by IGE if nongenetic indirect 
effects are not modeled explicitly, resulting in biased estimates of 
IGE. We refer the reader to (Bijma et al., 2007) for further discussion 

of this issue and the mathematical derivation of the nongenetic co-
variance between group members.

Additional random effects can be included to account for 
common environmental effects shared by all group mates (e.g., 
pen effects as in Bijma et al., 2007) or by subsets of partners (e.g., 
littermates). When repeated measures have been collected in longi-
tudinal studies, sophisticated statistical models exist that provide an 
even better handle on confounding factors and permit the charac-
terization of feedback between interacting individuals, effectively 
distinguishing between nonrandom group formation and influence 
(Martin and Jaeggi, 2021).

Finally, in IGE mapping studies, in addition to including ap-
propriate random effects as detailed above, an IGE random term 
should be used in the null and alternative models to avoid spurious 
associations arising when the social partners of the focal individ-
uals include related individuals (whether they are in the same group 
or not) or when there is population structure. Background IGE 
and environmental effects correlated with partner genotypes could 
yield spurious IGE associations (following the same reasoning as 
discussed by Vilhjálmsson and Nordborg, 2013 for DGE studies). 
Note that this correction will not be perfect if background effects are 
oligogenic rather than polygenic or if shared environmental effects 
do not vary linearly with the degree of genetic similarity between 
interacting partners. Furthermore, a fixed effect needs to be included 
in the null and alternative models to account for local DGE when 
the genotypes of focal individuals and partners are correlated due 
to relatedness or population structure and in study designs in which 
each individual serves as both a focal individual and social partner 
(Figure 2.6 in Box 2).

2.  Statistical Models to Leverage High-Throughput Data
When multiple phenotypes have been collected on focal individ-
uals to study a biological function of interest, they can be ana-
lyzed independently using univariate models, analyzed jointly using 
multivariate analyses, or analyzed using dimensionality reduction 
techniques. Univariate analyses, which are the most widely used, 
can estimate IGE parameters with moderate sample sizes but pay 
a high penalty in statistical inference (hypothesis testing) when 
many phenotypes are studied because of the need to account for 
multiple testing. Multivariate analyses can be carried out with mod-
erate sample sizes and reduce the multiple testing burden, but only 
if strong assumptions are made regarding the model parameters, 
typically by assuming genetic effects are uniform across phenotypes. 
Relaxing these assumptions implies estimating and/or testing a larger 
number of parameters, which requires much larger sample sizes and 
leads to a multiple testing issue. Bivariate variance-component IGE 
models have been developed (Peeters et al., 2012) that can be used 
to probe pairs of focal  phenotypes. Finally, dimensionality reduc-
tion techniques, such as structural equation modeling or generalized 
network modeling, provide a tractable way to deal with high dimen-
sional phenotype data (Araya-Ajoy and Dingemanse, 2014; Martin 
and Jaeggi, 2021).

3.  Molecular Genetics Approaches to Dissect the Mechanisms 
of IGE
Molecular genetics is increasingly contributing to dissecting the 
mechanisms of IGE, more specifically identifying the traits of part-
ners mediating IGE. First, methods such as the GWAS, can identify 
individual genomic loci giving rise to IGE, which in some cases 
permits identifying putatively causal IGE genes and traits of social 
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partners influencing the phenotype of interest (e.g., Mutic and Wolf, 
2007; Bailey and Hoskins, 2014; Baud et al., 2021). For example, 
in a GWAS of IGE arising between laboratory mice sharing a cage, 
Baud et al. (2021) identified Epha4 as a gene giving rise to IGE on 
stress-coping strategy and wound healing. This finding, together 
with reported patterns of expression and documented functions of 
Epha4 in the body, led to the formulation of specific hypotheses 
about the traits of cage mates mediating IGE. It also permitted 
the development of a simplified experimental paradigm comparing 
focal individuals co-housed with either Epha4 knock-out or wild-
type littermates, which will help further dissect the mechanisms of 
IGE experimentally.

Second, when estimates of DGE effect sizes already exist for a 
given trait (i.e., a well-powered GWAS of DGE for that trait has al-
ready been performed) and partners in the study sample have been 
genotyped, one can use polygenic scores that predict trait values 
of partners to study IGE (e.g., Kong et al., 2018; Sotoudeh et al., 
2019). This approach is very valuable as it permits leveraging GWAS 
of DGE to maximize power in IGE studies. However, one should 
bear in mind that that GWAS effect sizes can be biased by uncor-
rected population structure and assortative mating (Mathieson and 
McVean, 2012; Berg et al., 2019; Sohail et al., 2019) as well as by fa-
milial IGE experienced by GWAS participants (Trejo and Domingue, 
2018). Hence, results need to be interpreted with care.

Finally, Mendelian randomization is an approach first developed 
in genetic epidemiology that uses genetic variants to assess causal re-
lationships among traits (Davey Smith and Ebrahim, 2003) and that 
has been used to evaluate the causal effect of partner traits on focal 
phenotype in humans (e.g., Warrington et al., 2019). Mendelian ran-
domization makes numerous assumptions, however, which need to 
be evaluated rigorously before reaching conclusions (e.g., population 
structure and assortative mating; Hartwig et  al., 2018; Brumpton 
et al., 2020).

IV.  Conclusions

Empirical investigation of IGE, and their relationship to DGE, are 
poised to answer fundamental questions in ecology and evolu-
tionary biology, agricultural biology, and biomedical genetics. To 
realize this potential, however, substantial challenges need to be 
addressed. Large sample sizes are necessary to estimate and map 
IGE, which may be difficult to achieve in studies of free-living 
(nonhuman) organisms and which increases the risk of confounding 
from uncontrolled experimental factors. Automatic tracking and 
phenotyping, together with high-throughput genotyping, can help to 
increase sample size and collect repeated measures in these studies. 
Nevertheless, it is worth thinking carefully about the kinds of organ-
isms where one can acquire genetic and phenomic data, along with 
detailed information on social interactions, in thousands of individ-
uals. Plants and other non-motile organisms have been underutilized 
in the study of IGE, but species with prolonged non-motile life stages 
and short life cycles could be especially suitable for these investiga-
tions. Developmental and longitudinal studies could also be easier 
in such species. Expanding the range of taxa used could address a 
major gap: compared with biomedical genetics, other fields have not 
generated as many data sets useful for mapping genetic variants that 
cause IGE. Although differences in research budgets and in the avail-
ability of community-wide genetic resources are a major contributor 
to this gap, another factor might be an underappreciation of the in-
sight provided by these approaches. 

High-throughput phenotyping is likely to be challenging in all 
disciplines. Community-based resources, such as genetic reference 
panels, have been usefully deployed by mouse, fly, and Arabadopsis 
quantitative geneticists, and similar panels could be produced for 
other species. Prime species for the development of reference panels 
will be those that reproduce asexually (many plants, animals, and 
microbes) or naturally inbreed. However, outbred populations can 
also be used as reference populations since alleles are still repli-
cated across outbred individuals. Community resources also reduce 
the costs and logistical challenges associated with genotyping or 
sequencing large numbers of individuals or strains.

Finally, a general recommendation is to engage in more cross-
talk across disciplines. For example, sources of confounding have 
been more extensively discussed in the human genetics literature, 
but these concerns are equally relevant in agricultural and evolu-
tionary studies (see, e.g., Bailey and Desjonquères, 2022). In con-
trast, human geneticists could take inspiration from the use of 
automated tracking and phenotyping in agricultural and evolu-
tionary biology, although, of course, informed consent and other 
ethical considerations need to be addressed. We hope the integra-
tion of principles and approaches described in this perspective can 
facilitate such crosstalk.
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