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The persistent current in small isolated rings enclosing magnetic flux is the current circulating in
equilibrium in the absence of an external excitation. While initially studied in superconducting and normal
metals, recently, atomic persistent currents have been generated in ultracold gases spurring a new wave of
theoretical investigations. Nevertheless, our understanding of the persistent currents in interacting systems
is far from complete, especially at finite temperatures. Here we consider the fermionic one-dimensional
Hubbard model and show that in the strong-interacting limit, the current can change its flux period and sign
(diamagnetic or paramagnetic) as a function of temperature, features that cannot be explained within the
single-particle or Luttinger liquid techniques. Also, the magnitude of the current can counterintuitively
increase with temperature, in addition to presenting different rates of decay depending on the polarization
of the system. Our work highlights the properties of the strongly interacting multicomponent systems that
are missed by conventional approximation techniques, but can be important for the interpretation of

experiments on persistent currents in ultracold gases.
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Introduction.—The existence of a persistent current (PC)
in small metallic rings threaded by magnetic flux ¢ at low
temperatures has been theoretically predicted since the
early days of quantum mechanics [1] and superconductivity
[2-5]. Following the publication of Ref. [6], PCs were the
focus of intense theoretical investigations, and were exper-
imentally confirmed in both individual and ensembles of
metal rings [7-12]. Resurgent interest in the field is due to
the generation of atomic PCs in ultracold gases of single-
component bosons [13,14], spinor bosons [15], and very
recently of spinfull fermions [16].

The PC is a paradigmatic example of quantum coherence
in mesoscopic systems and its magnitude is given by
I(¢p) = —0F(¢)/0¢ with F(¢) = —kpTIn Z(¢) the free
energy and Z(¢) the canonical partition function [17,18].
Gauge invariance implies periodicity, (¢ + ¢o) = I(¢).
with ¢ the flux quantum ¢y = h/e (h is Planck’s constant
and e the charge of the electron) and from time invariance
we have I(—¢) = —I(¢). In addition to the amplitude of
the current, defined by Iy, = maxse(.q,/2) [[(#)], and
periodicity, we are interested in the sign of the magnetic
response: diamagnetic or paramagnetic. A system is dia-
magnetic (paramagnetic) if F(¢) has a local minimum
(maximum) at ¢p = 0. While there is a large body of work,
mainly focused on free electrons with disorder, our under-
standing of PCs in interacting systems, especially its
temperature dependence, is far from complete. Using a
variational approach, Leggett conjectured [19] that the
ground-state energy of N polarized interacting fermions
is diamagnetic for odd N and paramagnetic for even N.
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This conjecture was proved and extended to the case of
small temperatures using Luttinger liquid (LL) methods
[20]. At small temperatures and within the LL regime, the
amplitude of the current decreases exponentially with
temperature, but the periodicity and sign of the current
remain unchanged. For interacting fermions with spin
[N|(Ny) electrons have spin-down (-up)] a general result
valid at arbitrary temperature [21] is that F(0) < F(¢/¢y)
for N|  both odd, and F(1/2) < F(¢/¢,) for N » both
even. This result does not preclude periodicities smaller
than ¢, or changes in the sign of the current with
temperature, as we will show below.

The Hubbard model in a magnetic field—We consider a
system of N electrons of which N have spin-down on a
ring lattice with L sites and repulsive interactions. The ring
is threaded by an Aharonov-Bohm flux ¢. The system is
described by the Hubbard Hamiltonian [22-25]

L
—1 U
H:_tz {Z(e leAc;H,gcjﬁ%—H.c.)—TnMnM , (1)
=11

with n;, = Cj',ac .o the number of electrons of spin ¢ =
{J.1} atsite j. In Eq. (1), A = 2z¢/(L¢hy) is the vector
potential of the magnetic flux, ¢ is the electron hopping
integral, and U > 0 quantifies the strength of the repulsive
interaction. In the following, we will measure the energies
in units of ¢ and set # = 1 and ¢ = 1. The Hamiltonian (1)

is exactly solvable with the Bethe ansatz equations (BAEs)
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24]: kL =2zl + 25/ o — S, Ol(sink; — 2,) /ul,

SN 0](2 = sink;)/u] = 2], + S5t 6(2, — 4g)/ (2)]
where u=U/4t, j=1,...N, a=1,...N|, 0(x)=
2arctan(x), and I; = N /2 (mod 1), i.e., I; is integer or
half-integer depending on whether N is even or odd, and
similarly, J, = (N —N| 4 1)/2 (mod 1). The energy and
momentum of a state are E= -2 Z?’:l cosk; and
P = [3"%, k;] mod 2. To find the PC we need to solve

the BAEs for the ground state (at 7 = 0) or for all the
relevant excited states (at 7 > 0). We look first at some
limiting cases.

The U = 0 case.—Because the particles are noninteract-
ing, it is sufficient to consider spinless fermions. For
fermions with spin, the PC is then given simply by the
sum of the contributions from the two spin directions [26].
The momenta of M spinless fermions in the ring are
k; =2x(j + ¢/¢o)/L, with j integer. This implies that at
¢ = 0, the ground-state is degenerate for even M, but not
for odd M, i.e., the PC depends on the parity of the number
of particles. In terms of the “Fermi vector” kp(M)=
aM/L and the Fermi velocity vp(M) = 2sinkp(M),
the PC of spinless fermions is [27]: Ipp(M,¢) =
—{[1o(M))/(sinx/L)} sin{[(2x)/L)(¢/ )} for M odd,
and Iy (M.p) ={[1o(M)]/ (sinz/ L) bsin{ (x/L) 1~ 2/ ])/
¢o) }sgng for M even with I4(M) = evy(M)/L. Therefore,
the PC for electrons with spin is I(¢p) = Ipp(N . )+
Irp(Ny. ). When N 4 are both odd, I(¢) is diamagnetic;
when N 4 are both even, it is paramagnetic.

The U = oo case.—In this “impenetrable” limit [28—31]
the BAEs for the k;’s become k% =2x(l;+ ¢/po+

Zgi Jo/N)/L, which are equivalent to the result for
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FIG. 1.

spinless fermions in a ring threaded by a magnetic flux

¢y + Egil Jo/N. In the ground state, ;s fill an inte-
rval between [;, and [, resulting in the energy
E = =2{[sin(zN/L)]/[sin(z/L)]} cos {[(27)/L][(¢/ o)+
(1/N) Yoty Jo+ D]} where D = (I + Ingx)/2. This
formula is valid for densities n = N/L < 1 (at half-filling,
n =1, the sine factor in E gives 0). The energy is mini-
mized by choosing the set {Ja}gil such that Zgil Jo==p
for (p—1/2)/N<¢/po+D < (p+1/2)/N. This implies
that the PC for the not fully polarized impenetrable system
at zero temperature is (i) periodic with a period of 1/N of
the flux quantum [this remains valid in the case of SU(k)
fermions with « > 2 as shown in a recent study [31]],
(i1) diamagnetic, and (iii) does not present parity effects
[29,30]—see also Fig. 1. Note that for fully spin-polarized
electrons, N| = 0, the system is effectively noninteracting
even for large U, and PC is described by the same
expressions as for U = 0, e.g., has the period of one flux
quantum. This abrupt change of the flux period (from 1 to
1/N) between the polarized electrons and a system with
even one flipped spin can be understood in terms of the
change of the rotation period of the electron system in real
space [32]. For polarized electrons, the rotation period is
1/N of the full rotation, while a spin flip changes this
period to a full rotation.

First correction—For u large but finite, the charge
momenta with accuracy 1/u are [25,30,33] k; = kj" +
Akj/u with Ak; = E; YN | [sink$ —sink?]/L, where
E, = -2 Egi1 1/[N(A2 + 1)] is the energy per lattice site
of an antiferromagnetic XXX Heisenberg spin chain

with spin rapidities {Aa}gil satisfying the BAE:s:
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Dependence of the ground-state energy (left columns; normalized by ) and current [right columns; in units of

Io(N|) +Io(N4)] on the magnetic flux and strength of the interaction for N = 8, N| =4 and N = 10, N, = 5. From top row to
bottom the coupling strength is U = 5000, 50, 5.5, 1, O and the density is the same in both cases n = 0.1.
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NO(A,) = 21] o + 5", 0l(Ag — Ay)/2).  The

energy
with the same 1/u accuracy is E = E* + [(2E,)/
(Lu)][N Y70, sin®k — (320 sink®)?]  with  E® =

—22 1 COSkS. Note that the energy depends on ¢ via
k$°. Thus, in the strong-coupling limit, the spin degrees of
freedom are described by an antiferromagnetic Heisenberg
spin chain with the coupling constant ~N | /(Lu), while the
charge degrees of freedom are similar to free fermions. This
regime, in which the energies of the charge and spin sectors
satisty Ecparge > Epin, 18 called the spin-incoherent regime
[34-40]. It is particular to multicomponent systems, and
presents universal properties which are different from the
LL case. For the Hubbard model, the lowest energy states in
this regime are obtained [30] by considering the same
distribution of /;’s as in the infinite repulsion case and
finding the states of the Heisenberg chain with the lowest
energy for a given momentum ¢ =2z > M | J /N, which
are the des-Cloizeaux-Pearson excitations [41].

The dependence of the ground-state energy and current
on the strength of interaction at zero temperature is shown
in Fig. | for “balanced” systems with N = 8 and N = 10.
At very strong coupling (U = 5000) the current is dia-
magnetic and has other characteristic features of the
impenetrable case: 1/N periodicity and no parity effects.
For weaker interaction, the contribution of the spin sector
becomes more pronounced, as manifested by the raising of
the N parabolas. We can see that for U = 50 and U = 5.5,
while the PC is still diamagnetic, the periodicity changes to
1/2. At very weak interaction, the periodicity becomes 1,
and for U = 0, one obtains a paramagnetic (diamagnetic)
current for N 4 even (odd). Therefore, the strength of the
interaction has a strong influence on the zero-temperature
PC, changing its periodicity, amplitude, and even the sign
(paramagnetic or diamagnetic). Also, the 1/2 periodicity
seen in Fig. 1 at strong and intermediary coupling (U = 50
and U = 5.5) is a particular case of the additional N| /N
periodicity characterizing the PC of the strongly interacting
Hubbard model first discovered in Ref. [42] for N| < N.
Figure 1 provides a proof of this additional N /N perio-
dicity in the microscopic regime of small N. From the point
of view of the real-space rotations, this periodicity can be
viewed as a manifestation of the antiferromagnetic order,
which for the balanced electron system makes the rotation
period 1/N | of the full rotation, i.e., two times the period
1/N for spinless electrons.

In the mesoscopic regime (N,L > 1), and at zero
temperature, the calculation of the persistent current is
equivalent to the calculation of the finite size corrections to
the energy due to the change of the boundary conditions
from periodic to twisted [30]. For any value of U and
n < 1, and assuming that the /;’s and J,’s are consecutive
numbers, the corrections to the ground-state energy due to
the magnetic flux are [30,43,44]

AE(p) = 2’2 s [z (D Z’) +Z,.D, r
0
270 ¢ 2
i [z (D ¢0) +2,.D, } Q)

where Z..,Z.;,Z,.,Z,, are the matrix elements of the
dressed charge matrix (see Supplemental Material [45]),

v, s are the velocities of the charge and spin excitations, and

D, and D, satisfy the constraints I, — I, +1 =N,
Imax +Imin = 2D07 Jmax _Jmin +1= Nl’ and Jmax+
Jmin = 2D

When U > 1 we have Z,, ~ 1, Z,,~0, Z,, ~N /N,
and Z,, is given by a simple integral equation [47,48]. In
the same limit the charge and spin velocities behave like
v, ~2sinzn, vy~ 1/U, which means that in the first
approximation we can neglect the second term of Eq. (2)

20, ¢ N, 2
D. — . 3

o) el o
When N /N =1/m with m =2,3,..., this expression
shows that the current has a N /N periodicity. When
N /N is not very close to 1/m, the situation is more
complicated (see Supplemental Material [45]).

Persistent current at finite temperature.—Computing
thermodynamics of the Hubbard model, even in the
thermodynamic limit, is a very difficult task, and it is
sensible to assume that computing the 1/L corrections is
outside the reach of analytical methods. In the strong
coupling limit, however, one can take advantage of the fact
that the energy of the spin sector is much smaller than the
energy of the charge sector, which allows for direct
computation of the canonical partition function at low
temperatures by summing over all the spin eigenstates and
only some of the charge excitations. For a dilute system
(n < 0.1) the relevant temperature scales are Ty = 7°n>
for the charge degrees of freedom and T, = z°n3/U for
the spin degrees of freedom. For temperatures 7 < Tr
the partition function can be computed as Z(¢) =

Zrelevant sets Zall sets J CXp{—E({kj}, ¢)/T} and giVCS the
PC. This approach requires the knowledge of the all C],%

AE(¢) =

states of the Heisenberg spin chain with N sites and N
spins down, which can be found in Refs. [49-51]. Using
this method we were able to investigate the PC for all
systems with N < 10,N¢ <N/2,and T < 0.06T . While
below we focus on dilute systems, we note that our results
remain valid for all densities 0 < n < 1, if U/n > 1 (see
Supplemental Material [45]).

The dependence of the PC on temperature in the strongly
interacting Hubbard model is very complex with the
polarization of the system playing an important role. For
a system with N = 8 and N = 2, Fig. 2 shows that while
at very low temperatures the current is diamagnetic with
period 1/8, at higher temperatures the periodicity changes
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FIG. 2. Dependence of the free energy (left columns in units of #) and current [right columns normalized by Io(N | ) + Io(N4)] on the
magnetic flux and temperature for N =8,N; =2 and N = 10, N| = 2. From top row to bottom the temperatures are T/T; =
1.01;48.1;582 for N =8 and T/T, = 1.01;48.1;455 for N = 10. The density and interaction strength are n = 0.01 and U = 100.

to 1/4. At even higher temperatures the current becomes
paramagnetic with period 1. The evolution of the current
with increasing temperature for a system with N = 10 and
N, =2 is similar (but note the paramagnetic current at
intermediate temperatures): diamagnetic with period 1/10,
paramagnetic with period 1/5, and paramagnetic with
period 1. Therefore, we see the following pattern: in the
ground state, the current is diamagnetic with periodicity
1/N, and is followed at higher temperatures by the current
with N | /N periodicity whose sign is the same as the one at
zero temperature, which can be derived from Eq. (2). At
very high temperatures, the current should have the same
characteristics as for free fermions with spin, i.e., for both
N 4 even, paramagnetic with period 1. This general pattern
can be understood by noting that an increase in temperature
is qualitatively similar to the decrease in U, and therefore
the evolution of the current with 7 mimics the evolution of
the current at 7 = 0, when interaction decreases. For
instance, the doubling of the current period from 1/N to
N /N in Fig. 2 can again be related to the change of the
rotation symmetry of the electron system in real space,
from full rotation at low temperatures, to half of the rotation
at the intermediate temperatures, when the two spin-down
electrons become located symmetrically in the system.
Qualitatively, the amplitude of the PC is reduced
exponentially with increasing temperature. The quantitative
temperature dependence of the amplitude is plotted in
Fig. 3 for systems with N = 6 and N = 10, and shows that
there are different rates of decay associated with the
different ranges of the system parameters: Luttinger liquid,
spin incoherent, and almost free. The fastest rate of decay is
in the LL regime; in the spin-incoherent regime, the rate of
decay depends strongly on the polarization of the system. A
very interesting feature which can be seen in Fig. 3 is the
presence of an interval of temperature in which the
amplitude is increasing with T for N ;=3 and
N, 4 =5. This counterintuitive feature is present at the

transition between the LL and the spin-incoherent regime
and is due to the fact that the tail of the momentum
distribution gets strongly suppressed as the temperature
increases (for a similar phenomenon in spinless fermionic
systems with nontrivial geometry or dissipation see
Refs. [52,53]). This momentum reconstruction was first
noticed in the case of the Gaudin-Yang model (obtained in
the dilute limit of the Hubbard model) in Ref. [54]. In
details, the PC is on the order of that produced by an
electron at the Fermi level, I = evy/L. At finite temper-
ature, the occupation probabilities of levels close in energy
to the Fermi level, and producing positive and negative
contributions to the current, are not very different, leading
to suppression of the current associated with the broad-
ening of the momentum distribution. At the LL-spin-
incoherent transition, however, the fraction of particles
with higher momenta decreases, resulting in a softer rate of
decay for some polarizations, or even increase in the
magnitude of the PC.
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10°
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— Ny =2 10 \ — N =2
—— Ny =1 — N, =3
1072 \ B
S e — Ny =5
E 107! 1073
=
5 1074
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FIG. 3. Temperature dependence of the amplitudes [normalized

by Iy(N,) + Io(N4)] for N = 6 and N = 10. Note that for N =
6,N, =3 and N = 10, N, = 5 there is an interval in which the
amplitude is increasing with temperature. For all cases n = 0.01
and U = 100.
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We expect that the temperature dependent periodicity
and the different rates of decay of the PC to be general
features of strongly interacting fermionic systems with spin-
independent interactions. The reason is that such systems
(integrable and nonintegrable) present both the LL and spin-
incoherent regimes, as it can be seen more explicitly in the
“Wigner-molecule” regime of the charged fermions.

Conclusions.—In summary, we calculated the persistent
current in the strongly repulsive Hubbard model at finite
temperatures from the Bethe ansatz equations. The current
shows several notable characteristics, including the temper-
ature-dependent period and the counterintuitive temper-
ature dependence of the amplitude. To the best of our
knowledge, this is the first example of a temperature-
dependent period of the persistent current, despite a large
number of previous studies of temperature-dependent PCs
in many different models. It is quite unexpected, since the
period is a fundamental quantum property of the system
which should be statistics independent. An interesting
future development would be an extension of our results
to any value of temperature by the alternative (but con-
siderably more computationally expensive) method of
exact diagonalization and finding similar transport regimes
in other, possibly nonintegrable, models of strongly inter-
acting particles. We believe also that our findings will have
considerable implications for the interpretation of experi-
ments on persistent currents of multicomponent systems
that can be generated and investigated in the present-day
atomtronics circuits [55-62].
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