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The development of host-microbe interactions between legumes and their cognate rhizobia 
requires localization of the bacteria to productive sites of initiation on the plant roots. This 
end is achieved by the motility apparatus that propels the bacterium and the chemotaxis 
system that guides it. Motility and chemotaxis aid rhizobia in their competitiveness for 
space, resources, and nodulation opportunities. Here, we examine studies on chemotaxis 
of three major model rhizobia, namely Sinorhizobium meliloti, Rhizobium leguminosarum, 
and Bradyrhizobium japonicum, cataloging their range of attractant molecules and 
correlating this in the context of root and seed exudate compositions. Current research 
areas will be summarized, gaps in knowledge discussed, and future directions described.

Keywords: bacterial survival, flagellar motility, plant-host exudate, plant-microbe signaling, rhizosphere, 
symbiosis

INTRODUCTION

The endosymbiosis between leguminous plants and rhizobia benefits both parties whereby the 
bacteria, sheltered and supplied nutrients from the plant, fix nitrogen into ammonia for their 
host. Several rhizobium-legume combinations have stood out as the model systems for this 
symbiosis, namely Sinorhizobium (Ensifer) meliloti – Medicago truncatula, Bradyrhizobium japonicum 
– Glycine max, and Rhizobium leguminosarum, the latter able to nodulate clovers, pea, common 
bean, or others depending on the biovar. These organisms have been used to build our knowledge 
on the genetics, biochemistry, development, and ecology of the many facets of this interaction. 
The initiation step of the symbiosis occurs at the tips of young root hairs, which curl and 
pinch in on a population of rhizobia, allowing access inside the plant cells. Prior to this, the 
rhizobia must localize themselves to the root hairs and outcomplete other bacteria for this 
niche (Ames et  al., 1980; Ames and Bergman, 1981; Pinochet et  al., 1993). This is achieved 
with chemotaxis and motility, the phenomenon by which bacteria move up a gradient of 
attractant or down a gradient of repellent. Attractant and repellent signals are many and diverse, 
as bacteria can respond to carbon sources, heavy metals, osmolytes, pH, light, and temperature 
(Tso and Adler, 1974; Hazelbauer, 1975; Croxen et  al., 2006; Jekely, 2009; Paulick et  al., 2017; 
Webb et  al., 2017a). The typical mechanism of chemotactic sensing starts with transmembrane 
sensor proteins called methyl-accepting chemotaxis proteins (MCPs or receptors), which sense 
multiple and highly different signals such as single molecules, chemical classes, and physical 
stimuli (Paulick et  al., 2017). MCP-ligand binding modulates the autokinase activity of the 
internal chemotaxis protein CheA. Phosphorylated CheA transfers its phosphoryl group to the 
response regulator CheY, which interacts with the flagellar motor to affect a change in its 
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TABLE 1  |  A catalog of the attractants identified in quantitative chemotaxis assays.

Species Strain Attractants found Weak/not attracants References

Sinorhizobium meliloti MVII-1 All amino acids Sugars Götz et al. (1982)

Ve 26
Some amino acids such as aspartate, 
lysine; gluconate

Hydrophobic amino acids; 
sugars Burg et al. (1982)

RCR2011 (SU47) Luteolin Caetanoanollés et al. (1988)∗

L5.30
Certain amino acids; sugars, especially 
sucrose Glutamine; xylose Malek (1989)

2011 4',7-Dihydroxyflavone; 
4',7-dihydroxyflavanone; 
4,4'-dihydroxy-2'-methoxychalcone; 
luteolin Dharmatilake and Bauer (1992)∗

RU11/001

Non-acidic amino acids; 
monocarboxylates; quaternary 
ammonium compounds

Aspartate, glutamate; butyrate, 
formate; flavonoids

Webb et al. (2017a,b), Compton 
et al. (2018, 2020)

Rhizobium leguminosarum 
biovar. Phaseoli RP8002

Raffinose, sucrose, xylose; apigenin, 
luteolin, p-hydroxybenzoic acid, 
3,4-dihydroxybenzoic acid

Glucose, maltose; vanillyl 
alcohol; naringenin Aguilar et al. (1988)

WU163
L-arabinose, cellobiose, D-glucose, 
D-ribose, D-xylose Sucrose; trehalose Bowra and Dilworth (1981)

Rhizobium leguminosarum 
biovar. Viciae N5

Amino acids; organic acids; sugars 
such as arabinose, maltose, glucose, 
xylose Fucose, sucrose, trehalose Gaworzewska and Carlile, 1982

8,401

Small amino acids; sucrose, mannitol, 
maltose; succinate; apigenin, 
naringenin, kaempferol

Galactose, ribose; propionate; 
hesperitin Armitage et al., 1988

Bradyrhizobium japonicum 110spc4 Hydroxycinnamic acids; succinate

Coniferyl alcohol, chlorogenic 
acid, coumestrol, daidzein, 
genistein Kape et al., 1991

USDA 110 Aspartate, glutamate; organic acids

Non-acidic amino acids; citrate; 
daidzein, genistein, luteolin; 
sugars Barbour et al. (1991)

10 K
Alanine, glutamate, phenylalanine, 
threonine; arabinose, mannitol; citrate

Other amino acids; organic 
acids; sugars Chuiko et al., 2002

LP 3008 Aspartate, glycine, lysine; mannitol Althabegoiti et al. (2008)

Note that information may conflict between reports. ∗Results are disputed. See Compton et al. (2020).

rotation. This two-component system thus controls the movement 
of the bacterium toward an attractant or away from a 
repellent by sensing increasing or decreasing ligand binding 
(Parkinson et  al., 2015; Salah Ud-Din and Roujeinikova, 2017).

To study chemotaxis, numerous assays have been used to 
quantify bacterial behavior, but Adler’s capillary assay remains 
the gold standard (Adler, 1966, 1973). In short, the method 
involves filling glass capillaries with a putative attractant solution 
and placing the capillary into a suspension of bacteria. During 
incubation, the attractant solution forms a gradient which the 
bacteria follow inside the capillary. The result is typically measured 
with colony counts of the capillary contents. A reference capillary 
containing only buffer is included to account for diffusion of 
cells, acting as an internal negative control. Chemotaxis values 
are either reported by subtracting reference counts from test 
counts or as a coefficient with test counts being divided by 
the reference. Unfortunately, variations in growth conditions, 
technical procedures, and bacterial strains make comparing 
studies between lab groups difficult. For example, one study 
might define a few thousand cells above background as significant, 
while another might require >105 cells as a significant response 
(Aguilar et  al., 1988; Barbour et  al., 1991; Kape et  al., 1991; 
Meier et  al., 2007; Webb et  al., 2014).

Here, we  review studies that used the capillary assay to 
derive information about the attractants of B. japonicum, 
R. leguminosarum, and S. meliloti (Table  1). Other methods 
such as swim plates are available, but do not offer comparable 
resolution and so will be  excluded (Sampedro et  al., 2015). 
A discussion will focus on chemical classes that have been 
tested for chemotaxis and their prevalence in plant exudates.

ATTRACTANTS CLASSES OF MODEL 
RHIZOBIA

When comparing results from different behavioral chemotaxis 
assays, one should bear in mind that attractant profiles of 
different species and strains will vary. Growth conditions (such 
as variations in media, temperature, aeration, and growth 
phase) can cause variances in receptor expression, altering 
the sensory capability of the bacterium (Lopez-Farfan et  al., 
2017). In addition, the literature is biased because some 
compounds have been tested more frequently than others and 
not to the same extent in different rhizobial species. However, 
it is naive to expect every source to standardize the array of 
compounds tested since most studies have a focus on a 
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particular compound or component of plant exudates. As it 
stands, comparative analyses are restricted.

Amino Acids
One of the most frequently tested compounds is amino acids 
because they are ubiquitous in exudates (Moe, 2013). Rhizobium 
leguminosarum biovar viciae is similarly attracted to all amino 
acids; only glutamate and proline stand out as stronger attractants 
(Gaworzewska and Carlile, 1982; Armitage et  al., 1988). In 
contrast, B. japonicum was weakly attracted to non-acidic amino 
acids, while aspartate and glutamate were potent attractants 
(Barbour et  al., 1991; Chuiko et  al., 2002; Althabegoiti et  al., 
2008). S. meliloti senses all amino acids as attractants. Two 
groups presented aspartate or leucine as the strongest (Burg 
et  al., 1982; Götz et  al., 1982, respectively). However, these 
findings are in contrast with more recent reports that 
described the molecular mechanism for amino acid sensing, 
showing that arginine, phenylalanine, proline, and 
tryptophan are the strongest attractants of this class (Webb 
et  al., 2017b). The chemoreceptor McpU directly binds all 
amino acids except for glutamate and aspartate, which do 
not serve as chemoattractants for S. meliloti RU11/001 
(Webb et al., 2014, 2017b). The chemical nature of the R-group 

appears to be  important for the bias of different bacterial 
species toward acidic or non-acidic amino acids.

Carboxylates
Carboxylates, also referred to as organic acids, are carbon 
sources commonly found in plant exudates, the rhizosphere, 
and bulk soil. Citrate, malate, and succinate are attractants 
for R. leguminosarum, but are generally weaker than the amino 
acids (Gaworzewska and Carlile, 1982; Armitage et  al., 1988). 
In B. japonicum, malonate and succinate elicit a strong attractant 
response, equivalent to aspartate and glutamate. In addition, 
other 4-carbon carboxylates are also attractants, although citrate 
is not (Barbour et  al., 1991; Kape et  al., 1991). Sinorhizobium 
meliloti has a dedicated 2–3 carbon monocarboxylate sensor, 
McpV, and a sensor for small dicarboxylates, McpT (Baaziz 
et  al., in review; Compton et  al., 2018). The mono- and 
di-carboxylates are weak attractants compared to the amino 
acids (Webb et  al., 2014).

Flavonoids
Flavonoids belong to a plant-borne compound group that are 
of interest because they induce the expression of symbiotic 
genes in their cognate rhizobia (Abdel-Lateif et  al., 2012). 

FIGURE 1  |  Model of chemotaxis function in the initiation of rhizobium-legume symbiosis. (A) Root and seed exudates diffuse and create chemical trails. Gradients 
of soluble exudates (red) travel furthest and act as chemoattractants. Hydrophobic exudate components (yellow) stay closer to the source. (B) Specific exuded 
compounds are detected by bacterial methyl-accepting chemotaxis proteins (MCPs), the dedicated sensors of attractants. Signaling between the chemosensory 
system and the motor guides the bacterium toward the attractant source. (C) Perception of plant flavonoids by rhizobial NodD initiates transcription of genes 
involved in infecting the proper host. Figure created with BioRender.
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Although apigenin and luteolin do not induce nod gene expression 
in R. leguminosarum, they are attractants in this organism. In 
contrast, naringenin is a nod gene inducer but not an attractant 
(Aguilar et al., 1988). Two reports on B. japonicum chemotaxis 
showed that all flavonoids tested have no attractant function 
(Barbour et  al., 1991; Kape et  al., 1991). Studies of S. meliloti 
chemotaxis reported that the nod gene inducers dihydroxyflavone 
and luteolin are attractants, but that responses were very low. 
The studies did not test any other compounds for comparison 
and, therefore, lack context (Caetanoanollés et  al., 1988; 
Dharmatilake and Bauer, 1992). The conclusion that flavonoids 
are attractants was not replicated and recently disputed (Compton 
et al., 2020). Taken together, the evidence for flavonoid chemotaxis 
as a general phenomenon in rhizobia is debatable.

Phenolics
The phenolics comprise a class of compounds that include 
phenylpropanoid derivatives of aromatic acids, which are common 
plant metabolites and precursors to flavonoids. Bradyrhizobium 
japonicum senses several phenylpropanoid acids and coniferyl 
alcohol as attractants, but not chlorogenic acid (Kape et  al., 
1991). Benzoic alcohols are attractants for R. leguminosarum 
with acetosyringone being one of the strongest attractants 
reported, while umbelliferone and vanillyl alcohol are weak 
to moderate attractants (Aguilar et  al., 1988).

Saccharides
Saccharides or sugars and their subclasses such as sugar alcohols 
and sugar acids are some of the most readily available carbon 
sources (Geddes and Oresnik, 2014). Common energy sources 
like gluconate and glucose as well as structural components 
of pectins such as arabinose and xylose are logical candidates 
to serve as attractants for rhizobia. Multiple reports investigated 
the taxis of R. leguminosarum to sugars, but these gave conflicting 
results. Glucose, maltose, ribose, and sucrose were reported 
as attractants in certain studies, but the evidence in other 
references suggests that they are not (Bowra and Dilworth, 
1981; Gaworzewska and Carlile, 1982; Aguilar et  al., 1988; 
Armitage et  al., 1988). However, arabinose and xylose were 
identified as attractants in all studies, although they were not 
necessarily the strongest chemoattractants (Bowra and Dilworth, 
1981; Gaworzewska and Carlile, 1982; Aguilar et  al., 1988). 
Information on B. japonicum and S. meliloti taxis to sugars is 
sparse. Mannitol, a sugar alcohol, is the only member of this 
class that was presented as an attractant for B. japonicum, 
while common sugars such as arabinose and glucose do not 
appear to serve as attractants (Barbour et  al., 1991; Chuiko 
et al., 2002). In S. meliloti, gluconate and sucrose were reported 
to be  the best attractants among the sugars over arabinose, 
fructose, and glucose (Malek, 1989). Currently, it is difficult 
to make conclusions on the prevalence of sugars as 
chemoattractants in rhizobia. Most compounds were only tested 
in a single study and at one concentration (Table  1). Sugars 
are a large, complex class because of the numerous structural 
and stereoisomers, which further complicates analysis. Currently, 
there is too little information to make a clear statement about 
the role of sugars as attractants.

PREFERRED ATTRACTANTS FOR 
RHIZOBIA

A prominent aim in chemotaxis research is identifying dominant 
or preferred attractants for a given organism because it is 
indicative of its role in the ecosystem. The clearest body of 
information available for this conclusion comes from work done 
on S. meliloti strain RU11/001. All studies examining different 
classes of chemoattractants included comparative experiments 
with the chemoattractant proline and used similar techniques – thus 
creating a standard for comparison. This body of work allows 
the conclusion that amino acids are of similar attractant strength 
to quaternary ammonium compounds (QACs) such as betaines 
or choline (another class of attractants that was only recently 
recognized), and 5- to 10-fold stronger attractants than carboxylates 
(Webb et  al., 2014, 2017a,b; Compton et  al., 2018).

Work on the chemosensing of B. japonicum, albeit from a 
single study, revealed that glutamate, malonate, and succinate 
are the most potent attractants. It is noteworthy that glutamate 
was used as a nitrogen source in the growth medium, raising 
the possibility that chemotaxis responses are inducible in this 
organism (Barbour et  al., 1991).

Acetosyringone is the strongest attractant reported for R. 
leguminosarum, followed by the flavonoids apigenin and luteolin. 
The evidence for rhizobial chemotaxis to flavonoids is strongest 
in R. leguminosarum, even though the bacterium only appears 
to be  attracted to non-nod gene inducing flavonoid species 
(Aguilar et al., 1988). Arabinose and xylose are not the strongest 
attractants but have been consistently reported to attract multiple 
strains of R. leguminosarum (Bowra and Dilworth, 1981; 
Gaworzewska and Carlile, 1982; Aguilar et  al., 1988).

WHERE ARE ATTRACTANTS FOUND?

Seed Exudates
The compounds released from germinating seeds are a great source 
of attractants for rhizobia, readily available for study, and consistent 
between samples. When seeds are formed, the seed coat is 
impregnated with numerous chemicals from the mother plant 
(Radchuk and Borisjuk, 2014). Upon imbibition, these chemicals 
are leeched out as an exudate into the surrounding medium 
forming what is called the spermosphere (Nelson, 2004). Amino 
acids and carboxylates are some of the most sampled constituents 
of seed exudates and these compounds have the clearest link to 
known bacterial chemosensory systems (Götz et  al., 1982; Rozan 
et  al., 2001; Kuo et  al., 2004; Kamilova et  al., 2006; Lambers 
et  al., 2013; Webb et  al., 2016). However, there is great chemical 
diversity in exudates that include QACs such as betaines, saccharides, 
fatty acids, phenolics, and alcohols (Silva et al., 2013; Schiltz et al., 
2015; Webb et  al., 2017a; Mildaziene et  al., 2020; Zuluaga et  al., 
2020). The gradients these chemicals form serve to recruit 
microorganisms to the surface of the nascent plant.

Root Exudates
Exudates from roots share the chemical diversity of seed 
exudates, but their specific composition will vary according 
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to biotic and abiotic factors and the state of the plant. Changes 
in exudate profiles are strongly driven by environmental factors 
(Herz et  al., 2018; Dietz et  al., 2019). Conditions lacking 
mineral nutrients induce the release of organic acids to solubilize 
phosphorus and chelate iron (Shen et  al., 2005; Preece and 
Penuelas, 2020; Vives-Peris et  al., 2020). Young or immature 
plants tend to release more sugars, while the exudates of older 
plants are biased toward amino acids and phenolics (Chaparro 
et al., 2013). In another example, a biocontrol organism induces 
the release of a plant metabolite that is toxic to a pathogen, 
but not to the biocontrol agent (Wang et  al., 2019). In fact, 
and at the risk of overgeneralizing, it appears that nearly any 
environmental or physiological perturbation influences the 
composition or quantity of root exudates (Canarini et  al., 
2019; Vives-Peris et al., 2020). It would follow that chemotactic 
recruitment of soil bacteria is, in many cases, a byproduct 
of plant activity. In support of this, the saprotrophic soil 
bacterium Pseudomonas putida possesses a chemoreceptor that 
preferentially senses citrate-magnesium complex compared to 
free citrate, possibly sourced from efforts of a plant to acquire 
magnesium or other chelated cations (Martin-Mora et  al., 
2016). However, plants are not indifferent to their rhizosphere 
neighbors. Recruitment of soil symbionts is a definite priority 
for plants because of the benefits their microbiota provide. 
Furthermore, stressed plants release additional carbon 
compounds to recruit symbionts and other beneficial bacteria 
in times of need (Ames and Bergman, 1981; Gulash et  al., 
1984; Badri and Vivanco, 2009; Canarini et  al., 2019; 
O’Neal et  al., 2020; Vives-Peris et  al., 2020).

Other Attractant Sources
The vast majority of research focuses on rhizobial activities 
in the rhizosphere and nodule (Poole et  al., 2018). Few studies 
examine rhizobial survival in the bulk soil. This is nonetheless 
an important topic, because effective inoculants and symbionts 
must persist in the soil to infect the next generation of hosts 
(Pinochet et  al., 1993; Hirsch and Spokes, 1994; Da and Deng, 
2003). In the absence of hosts, rhizobia can subsist on soil 
organic carbon, an amalgam containing energy and nutrient 
sources from detritus and decaying matter, which take the 
form of aromatics, alkyl compounds, carboxylates, and 
nitrogenous molecules such as proteins (Beyer et  al., 1995; 
Chiu et  al., 2002; Spielvogel et  al., 2004). Rhizobia are adapted 
to saprophytic lifestyles, and chemotaxis to the carbon and 
nitrogen sources available is critical to survival in the bulk 
soil (Kennedy and Lawless, 1985; Turnbull et  al., 2001; 
diCenzo et  al., 2016; Poole et  al., 2018).

Attractant signals need not be  chemical compounds. 
Chemoreceptors can sense oxygen gradients or the cellular 
redox state as an indicator of the surrounding milieu, a strategy 
termed energy taxis. In the nitrogen fixing Azospirilum brasilense, 
metabolism mediates and is necessary for chemotaxis to 
attractants. This behavior is also critical to the colonization 
of host plants (Alexandre et  al., 2000; Greer-Phillips et  al., 
2004). Utilizing a generalized strategy such as energy taxis 
allows a bacterium to seek areas suitable to its needs, regardless 
of the identity of the attractant source.

CONCLUSION AND FUTURE 
DIRECTIONS

Chemotaxis is a major survival strategy for bacteria and greatly 
aids in seeking hosts (Raina et  al., 2019). The rhizobia sense 
a wide array of chemical cues that are concomitantly found 
in the exudates of respective host plants but differ in their 
physiological role (Figure 1). Many of these attractants are 
primary metabolites and do not signify the identity of the 
source plant. A single chemical that is specific to a host would 
be  difficult to pinpoint. Among semi polar metabolites, very 
few compounds are exclusively found in a particular plant 
species (Dietz et  al., 2019). At best, specific metabolites might 
be  characteristic of a genus or family (Rosenthal and Nkomo, 
2000; Kidd et  al., 2018). Rhizobia, therefore, have numerous 
chemoreceptors that may detect any of the thousands of 
compounds found in plant exudates, although in some cases, 
only a few chemoreceptors have any impact on host colonization 
(Feng et  al., 2019). As each rhizobial species or strain analyzed 
seems to have different preferred attractants, the question remains 
how these preferences are formed. Since chemotactic preferences 
must be shaped by selection, perhaps each rhizobium specializes 
in obtaining particular types of nutrients. In effect, this is akin 
to a broad survival strategy that expands upon the phenomenon 
of catabolite repression, where a specific carbon source takes 
priority in the organism’s metabolism (Georgi and Ettinger, 
1941; Bruckner and Titgemeyer, 2002; Iyer et  al., 2016).

Every species or strain of rhizobia harbors numerous 
chemoreceptors that bestow perception of a particular signal. 
The number of MCPs per rhizobium varies greatly from less 
than 10  in Sinorhizobium and Ensifer spp. to over 30  in 
R. leguminosarum and B. japonicum isolates (for more information 
on chemoreceptor distributions, see Scharf et al., 2016). Currently, 
only four MCPs in S. meliloti have been assigned functions 
(Baaziz et  al., in review; Webb et  al., 2014, 2017b; Compton 
et  al., 2018). The remainder of our knowledge on rhizobial 
chemotaxis is limited to dated behavioral studies. A complete 
understanding of rhizobium chemotaxis is an important goal 
for the following reasons: (1) total knowledge of a rhizobium’s 
chemotaxis system permits the modeling of its behavior in 
the environment and the prediction of its performance in 
host nodulation based on its exudate composition (Edgington 
and Tindall, 2018); (2) inoculant strains can be  optimized to 
more efficiently nodulate crops, outcompete symbiotically 
inefficient native strains, and better survive in the soil, which 
increases the longevity of their application; and (3) 
chemoreceptors are often conserved among plant and animal 
pathogens, making information on MCPs translational to 
numerous fields (Brewster et  al., 2016; Compton et  al., 2018).

The way forward is, therefore, to increase the output of 
studies on MCP function that address the following goals: (1) 
identification of attractant classes and their relative strengths; 
(2) determination of sensors responsible for detecting attractants 
and the molecular mechanism of sensing; and (3) evaluation 
of the purpose of attractants in the survival or symbiosis of 
rhizobia. These aims can be  easily initiated by revisiting 
known attractants and identifying their respective sensors. 
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Two approaches are effective in characterizing MCP-ligand 
relationships. The first approach involves defining an attractant 
class and identifying a corresponding sensor, as exemplified 
by McpX in S. meliloti and the QACs (Webb et  al., 2017a). 
The second approach identifies the ligand profile of an MCP 
using high-throughput screens followed by behavioral assays 
(McKellar et al., 2015). These pursuits will eventually illuminate 
each rhizobium’s attractome, the total range of compounds 
sensed through its chemotaxis systems. These findings will 
be  a great boon to the economical, technical, and ecological 
challenges facing modern agriculture.
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