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This paper presents a numerical method to study the pulsing behavior of soft corals.
Evidence indicates that the pulsing behavior of soft corals in the family Xeniidae facilitates
photosynthesis of their symbiotic algae. One way to investigate this complex behavior
is through mathematical modeling and numerical simulations. The immersed boundary
method is used to model the interaction of the tentacles with the surrounding fluid. The flow
is then coupled with a photosynthesis model. The photosynthesis is modeled by advecting
and diffusing oxygen, the byproduct of photosynthesis, where the coral tentacles act as
a moving source of the oxygen. This study develops a methodology for solving a partial
differential equation with boundary conditions on a moving immersed elastic boundary.
In this study, the Reynolds and Péclet numbers are varied in the simulations to gain an
understanding of how these parameters affect the mixing and photosynthesis. The mixing is
quantified using both the fluid flow and oxygen concentration dynamics. The results show
that for the biologically relevant Péclet number, the fluid dynamics significantly affect the
photosynthesis and that the biologically relevant Reynolds number is advantageous for
mixing and photosynthesis.

DOI: 10.1103/PhysRevFluids.7.033102

I. INTRODUCTION

The mechanics of moving organisms, including flight and swimming, has been of interest to
the scientific community for many years [1-5]. The knowledge gained from studying the motion
of organisms has often been applied to engineering challenges. The mechanics of insect flight has
been studied to understand lift [6] and improve the efficiency of drone flight [7]. Numerical and
experimental studies of aquatic animal locomotion have led to insights in renewable energy [8],
designing underwater and above-water vehicles [9], and swimming efficiency [10,11]. The ability
to study these dynamics analytically and experimentally is limited due to these system’s complexity.
Computational simulations can be used to gain further insight into various properties of the system
[2]. The studies mentioned above have focused on mechanics relating to locomotion. This paper
will focus on the computational simulations of pulsing soft corals in the family Xeniidae which are
sessile. Their pulsing motion mixes the surrounding fluid rather than for transportation.

This mixing in the fluid due to coral pulsing can facilitate waste removal and carbon dioxide
access for the symbiotic photosynthetic algae, providing the coral with additional energy. There are
numerous examples in which the interaction of organisms, fluid flow, and chemical concentrations
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play a role in ecological systems. The role of fluid flow has been investigated in different types
of feeding and nutrient access [12—15]. Chemosensing is important in marine life. For example,
crabs sniff by using their olfactory antennules to capture odorants from surrounding fluid to extract
information from their environment [16—18]. Chemotaxis processes and chemoattractants have also
been studied in bacteria [19-21], phytoplankton [22], sperm, and spawning [23-26]. The dynamics
of the dissolved gases that are the reactants and byproducts of the symbiotic algae photosynthesis
coupled with the fluid flow of the pulsing coral are investigated in this paper. Photosynthesis is
a process where plants and other organisms obtain energy through sunlight and gases rather than
consuming other organisms. In photosynthesis, sunlight, carbon dioxide, and water are converted
through metabolic processes into the energy source, glucose, and the byproduct oxygen.

The interaction of fluid flow and dissolved gases involved in photosynthesis is also more broadly
a topic of interest. Fluid mixing is necessary for efficient photobioreactors to cultivate microalgae,
which can be used as a biofuel [27]. Fluid flow and transport of oxygen and carbon dioxide have
been found to be important for photosynthesis of benthic marine autotrophs [28]. In particular,
the effects of fluid flow on photosynthesis and mass transfer around stony corals have been well
studied [29-31]. In this work, the interactions between the pulsing flow and the photosynthesis of
the symbiotic algae on the tentacles of the soft corals in the family Xeniidae are modeled.

Soft corals are known to be more resistant to ocean acidification than stony corals, which make
up the structure of coral reefs [32]. As climate change progresses, understanding the ecological
dynamics of coral reefs is vital. This work seeks to bring insight into the energy source for these
soft corals. The purpose of the pulsing motion was thought to help with food capture. However,
they are rarely found with food in their gastric cavities [33,34]. These soft corals are one of the only
known sessile animals who move with such an energetically expensive behavior [35]. Experimental
studies have shown increased photosynthesis in the symbiotic algae of soft corals that are pulsing
compared to stationary corals. It is believed that the coral’s main source of energy is through
this symbiotic relationship rather than through filter-feeding. During photosynthesis, chemical
energy is synthesized from carbon dioxide with oxygen as a byproduct. These experimental studies
have suggested that photosynthesis is an oxygen-limited process. The study found that artificially
heightened oxygen levels in the fluid tank resulted in less photosynthesis by the symbiotic algae
[35]. Numerical studies simulating the flow around pulsing soft corals [36,37] focus on analyzing
this flow. This is the first study to examine the interaction of fluid flow around the pulsing corals
with the photosynthesis of the symbiotic algae.

To capture the characteristics of the fluid flow in varying regimes, the Reynolds number, the ratio
of inertial to viscous forces, and the Péclet number, the ratio of advection to diffusion, are used.
By varying the Reynolds and Péclet numbers in the simulations, the role of fluid inertia in response
to the coral pulsing and the diffusivity of the oxygen is studied and quantified. In other studies
and applications, varying the Reynolds number has given insight into the behavior of fluid flow
at different length scales, velocities, and fluid viscosities [38—41] and varying the Péclet number
has given insight into the dynamics of chemical concentrations being advected at different speeds,
different length scales, and differing diffusivities [17,42—46]. In this paper, we vary the Reynolds and
Péclet numbers to understand how these dimensionless parameters affect the mixing due to the fluid
dynamics around the pulsing soft coral and the resulting photosynthesis of their symbiotic algae.
The size and pulsing frequency of the corals modify these parameters. By varying the Reynolds and
Péclet numbers independently, we explore the relative importance of different parameter regimes
and why the corals may have evolved to their current state and behaviors.

This paper will present a model and numerical method to study the pulsing behavior of a coral
polyp and the photosynthesis of the symbiotic algae. This work has two components, the first is
modeling the polyp movement and the resulting fluid flow, which is modeled using the immersed
boundary method [47]. The second is coupling the fluid flow with the production of oxygen around
the pulsing polyp, which will be modeled using the advection-diffusion equation coupled with the
fluid-structure interaction. The immersed boundary method is a front-tracking method that has been
used to model other biomechanical problems. In particular, it has been used extensively to model
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TABLE I. Physical parameters of the soft coral Xeniidae.

Parameter Description Value Units
L Tentacle length 0.4070 cm
y Pulsation frequency 0.5286 s7!

v Kinematic fluid viscosity 0.01 cm?s™!
D Diffusion coefficient 2 x1073 cm?s™!
Re Reynolds number 8.756

elastic-body fluid interactions in physiology [48—52] and aquatic animal locomotion [53,54]. To
model photosynthesis, we represent dissolved oxygen as a concentration in the fluid governed by the
advection-diffusion equation. As the tentacles move through the fluid, they produce oxygen. Thus,
modeling a moving boundary as a source of a chemical concentration is an important component of
this work. We present a numerical method to address this challenge.

In the following, the mathematical models are presented in Sec. II, the numerical methods and
their validation are discussed in Sec. III, and the results are presented in Sec. IV. This is followed
by the discussion and conclusions of the results in Sec. V.

II. MATHEMATICAL MODELS

The first component in this work is to model the fluid-structure interaction of the pulsing
tentacles of the coral polyp. The immersed boundary (IB) method is used to model this moving
elastic body, the coral polyp, and the resulting fluid flow [48]. The IB method allows for the flow
to be solved computationally on a uniform Cartesian grid around complex, moving, immersed
elastic boundaries that are described using Lagrangian coordinates. This allows for straightforward
computations without needing complex moving body-fitted grids. The IB method has been well
studied numerically, [55-59], extended [60—63], and analyzed [64,65].

The fluid flow is modeled on a two-dimensional rectangular domain, x = (x1, x;) € Q. The flow
velocity, u(x, t) = (u;, up), and pressure, p(x, t), are solved using the Navier-Stokes equations for
an incompressible, viscous fluid in a periodic channel initially at rest,

ou

1
= Bvi Vp=—V?2 , 1
oy Ty VutVp=o- u+tf (1)

V.u=0. 2)

The velocity has homogeneous Dirichlet boundary conditions at the top and bottom of the domain
and periodic boundary conditions at the sides of the domain. The periodic boundary condition
accounts for the fact that these corals live in colonies. The homogeneous Dirichlet boundary
conditions are a simplifying modeling choice. The domain is chosen to be large enough so that the
boundary conditions do not affect the flow dynamics around the coral. The dimensionless Reynolds

number is defined as Re = LZT”, where L is the characteristic length, y is the characteristic frequency,
and v is the kinematic viscosity. In this study, the characteristic length is the length of a coral polyp
tentacle and the characteristic frequency is the frequency of the coral pulsation. These values are
provided in Table I. The force per area, f(x,t), is the force of the tentacles on the fluid which
couples the fluid flow to the immersed boundary.

Two additional interaction equations couple the elastic boundary, the coral tentacles, and the
fluid. The force defined on the fluid, f(x, 7), is extrapolated from the force of the boundary on the
fluid, F (s, t), which is defined on theiagrangian boundary,

¢
fx. 1) = / F(s,1)d[x — X(s,1))ds. 3)
- 0
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FIG. 1. This figure shows the 2D model corals at (a) 10%, (b) 30%, (c) 50%, and (d) 80% through a pulse.

Further, the velocity of the immersed boundary is interpolated from the velocity of the surrounding
fluid,

%—)f(s, 1) =U(s,t) =ulX(s,1)] = / u(x, 1)8[x — X (s, 7)]dx. “4)
Q

In these equations, the boundary position is given by X (s, ¢) as a function of the arclength s defined
from O to £ and x is the position in the fluid.

The force of the boundary on the fluid is used to prescribe the motion of the pulsing coral. Tether
points are used to prescribe this motion. They do not interact with the fluid; instead, they move in a
defined way to give the desired pulsing behavior. Then, the force is computed as

F(s,t) = xr[Xy(s,1) = X (s, )] + kalUz (s, 1) = Uls, 1)] ®)

for the position of the tether points, X ;- (s, t), spring constant, k7, velocity of the tether points, U ;,
and damping coefficient «; [63].

The tether point positions, X (s, t), determine how the corals pulse in the numerical simulations.
These positions are determined from experimental data [36]. The experimental data was collected
assuming the motion of all eight tentacles is identical and each tentacle moves radially. To model
the coral movement in two dimensions, two tentacles are included, and it is assumed that the
motion of each tentacle is a reflection of the other; see Fig. 1. Figure 1(a) shows the closing phase,
Figs. f1(b) and 1(c) show the opening phase, and Fig. 1(d) shows the resting phase. More details of
this prescribed kinematic motion are provided in Appendix A.

The main goal of this paper is to model photosynthesis coupled to the fluid-structure interaction
of a pulsing coral polyp. To model the photosynthesis of the symbiotic algae on the coral tentacle, we
consider the coral tentacles as a source of oxygen and a sink of carbon dioxide. In this formulation
only the byproduct of photosynthesis, oxygen, is tracked since it is assumed that this process is
oxygen-limited [35].

The concentration dynamics of oxygen are modeled using the advection-diffusion equation with
an extra source term, coupled to the immersed boundary equations, Eqgs. (1)-(5),

¢ +u-Ve= vac—i—/f(s,t)S[)_c—X(s,t)]dg. (6)
Pe r

Here, c(x, 1) is the oxygen concentration and u(x, t) is the fluid velocity solved for in Egs. (1)
and (2). The concentration has no-flux boundary conditions at the top and bottom of the domain
and periodic boundary conditions at the sides of the domain. The dimensionless Péclet number is
defined as Pe = LZT”, where the characteristic length L, frequency y, and diffusion coefficient D are
given in Table I. The last term in Eq. (6) models the tentacle as a source of oxygen, where f(s, )
is the photosynthesis model chosen. This immersed boundary delta function approach is based on
the modeling by Chen and Lai for surfactants that are adsorbed and desorbed from a bulk fluid
to an interface [66]. This approach has also been used as point sources of concentration to model
bioconvection of motile bacteria [67] and cell aggregation relating to constructing biofilms [21]. It is
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IB Method
Move the boundary a half step Egs. (9)-(10) PhOtOS}’nthGSiS Model
Compute the force on the boundary Eq. (11) Evaluate the photosynthesis model
Spread the force on the boundary to the fluid Eq. (12) Solve advetion-diffusion eq. a half step Egs. (23)-(25)
Solve Navier-Stokes egs. a half step Eqs. (13)-(16) Evaluate the photosynthesis model at half time step
Move the boundary a full step Egs. (17)-(18) Solve advetion-diffusion eq. a full step Egs. (26)-(28)
Solve Navier-Stokes eqs. a full step Egs. (19)-(22)

FIG. 2. Schematic of the numerical time-stepping scheme for the coupled immersed boundary (IB) method
and photosynthesis model.

a natural approach to coupling advection and diffusion of a quantity with a fluid-structure interaction
when using the immersed boundary method.
We choose an oxygen-limited model for photosynthesis,

Fs, 1) =«k[1—C(s,1)], (7)

where
C(s, 1) = f c(x, 1)8[x — X(s,1)]dx. (3)
Q

Equation (8) is the oxygen concentration that has been interpolated to the location of the tentacles.
It gives a measure of how much oxygen is present locally around the tentacles. « is the desorption
rate of the oxygen from the tentacles to the fluid. The amount of photosynthesis that occurs and the
amount of oxygen byproduct produced is dependent only on the amount of oxygen present locally.
Since this model does not depend on carbon dioxide there is no need to model and track the carbon
dioxide concentration. Throughout this paper, we refer to this model as the oxygen-limited model.

We also consider another model for the purpose of analyzing and validating the methodology.
The constant model assumes f(s, ) = k, where a constant amount of oxygen is produced at all
times. For both models, there is no initial concentration present in the domain. We also considered
a model with no sources or sinks f (s, 1) = 0 and with an initial condition of a Gaussian function
defined along the tentacles. The dynamics for this system were found to not capture the photosyn-
thesis dynamics and are omitted from this work. The modeling introduced by Eq. (6) is necessary
to capture the photosynthesis dynamics coupled to the pulsing motion and fluid flow.

III. NUMERICAL METHODS

We solve the coupled equations presented in the previous section using numerical methods.
First, the numerical discretization of the IB method for the fluid flow is discussed, and then
the discretization of the advection-diffusion equation for the oxygen concentration dynamics is
presented. The time stepping for the entire system is outlined in Fig. 2.

There are three components in discretizing the IB method: discretizing the Navier-Stokes equa-
tions, the immersed boundary, and the interaction equations which provide the coupling between the
two. A projection method is used to solve the Navier-Stokes equations, Eqgs. (1) and (2). Projection
methods, first developed by Chorin [68], are a standard finite difference approach to solving the
Navier-Stokes equations. In this work, the rotational form of the incremental pressure-correction
method developed by Timmermans et al. is used [69]. The rotational form avoids prescribing
artificial numerical boundary conditions for the pressure. In a periodic channel, this method has
been shown to be second-order convergent for the velocity and pressure [70] and has been used
with other immersed boundary problems [71,72].
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The fluid grid is discretized on a marker and cell grid [73] with a mesh width 4 and time step At.
Standard centered finite differences are used for the discrete gradient, V, and discrete Laplacian,
V2, operators. The immersed boundary is discretized with N points separated by As ~ g which is a
necessary numerical constraint [47]. The position of the kth point at time ¢", on the boundary curve
representing the coral tentacles is denoted X} and the position of the kth tether point at the same
time is similarly denoted X ;.

Choosing a method to compute the force, f, is nontrivial [74] since the force is dependent on the
tentacle location. We choose to handle it explicitly and solve the fully coupled system by taking two
half time steps. In the first step, the velocity at times ¢ and #"~'/? and the pressure and boundary
position at time ¢” are used to advance the solution to the system to time #"+!/2.

First, the velocity U" on the boundary X" is evaluated using the trapezoidal rule and a regularized
delta function, & to discretize Eq. (4),

Ui =) ulion(X3 —x)h, ©)
ij

where the ij subscripts denote the Cartesian grid points on the fluid grid. The boundary is then
advanced a half time step using forward Euler,

,, At
)_{k+1/2 =X+ TQZ (10)
The force, F"+/2 is computed on this boundary, X" 2, using Eq. (5),
X 2y n1/2
EZ+1/2 =Ky (}_(TZJrl/Z _ )_(Z‘FI/Z) + (—Tk At—Tk _ QZ) , (11)
and then spread to the fluid grid to evaluate f° nt) , using the trapezoidal rule for Eq. (3),
N-1 As
nt1/2 _ n+1/2 n+1/2 n+1/2 n+1/2
£ =Y [T o (T - x) + ERL (T - x)] = (12)
k=1

Then, the Navier-Stokes equations, Eqgs. (1) and (2), are solved at time 172 for fluid velocity
w2 and pressure p"+% using the force f" nt, First, a second-order backwards difference formula is

used to advance Eq. (1) a half time step for an intermediate velocity field i#"*'/? at time 1"*!/2 using

the velocities, ¥ and "~'/? at times ¢" and t"~!/2, respectively, and the pressure at time ¢", p",

1
A_t(32i1+1/2 _ 42}’! +Zn_l/2) + 2(2}1 . Vh)ﬂn _ (En—l/Z . Vh)zn—l/z

1
_ _V}%ﬁn+l/2+vhpn :fn+l/2‘ (13)
Re =
Using the intermediate velocity, i"*1/2, a Poisson equation is then solved for the auxiliary function
wn+1/2
3
V]%wrrFI/Z — A_tvh .EiH»l/z’ (14)

with mixed homogeneous Neumann (on the top and bottom of the rectangular domain) and periodic
(on the sides of the rectangular domain) boundary conditions. Finally, the auxiliary function, "*1/2,
is used to update the pressure and velocity at time ¢"+1/2,

1
pn+1/2 ,‘//J’hLl/Z pn evh . En+1/2’ (15)
1
Zn+l/2 27!"1‘1/2 §Atvhwn+l/2, (16)

which enforces the incompressibility condition, Eq. (2).
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In the second step the velocity at times "7/ and ¢”, and pressure and boundary position at time
t"+1/2_ evaluated in the first step, are used to advance the solution of the coupled system to time "+
using similar methodology as in the first step. The boundary velocity U’ "+3 on the boundary X' AERT
computed using the trapezoidal rule, similar to Eq. (9), using the velocity solved for in the previous

1
step, u""2,

Zu”*zah X\~ (17)

The boundary is then advanced a full time step using this velocity,
Kn+1 :)_(n + AthJr%. (18)

Finally, the Navier-Stokes equations, Egs. (1) and (2), are solved at time #"*! for fluid velocity u"*!

n+1

1
and pressure p' using the force f"2 using the same method as in the first step,

(3~n+l 4le+1/2 +Zn) + 2(E"+]/2 . Vh)ﬂn+]/2 _ (En . Vh)ﬂn

1

_ —V;%ﬁn-'_l + Vhpn+1/2 — fVH’l/Z’ (19)

Re =

3
VZ n+1 - __V,. ~f’H—l7 20
hw At h U (20)
+1 — wn-kl +pn+l/2 _ ivh 'E’l+la (21)

Re

1

EVl+] — El’l“rl _ §Atvh,(lff’l+l (22)

Note once again, we have introduced an auxiliary function ¥"*! to enforce the incompressibility
condition.

An analytic delta function would not capture the interaction of the fluid grid and the boundary
in Egs. (9), (12), and (17) because the immersed boundary Lagrangian points do not perfectly align
with the Cartesian fluid grid. Therefore, a regularized delta function is used at x = (xy, x,), defined
as &p(x) = 8;,(x1)8x(x2), where &, is a smooth continuous function with bounded support in the form
Sp(x) = %qb(%). In this work ¢ (x) is defined as

1(L4cos (%)) x| <2h,

otherwise.

P(x) =

Further details for this choice of ¢(x) are discussed in Peskin [47].

Once the fluid-structure interaction equations are solved, we use the fluid velocity and coral
tentacle locations to solve for the oxygen concentration. Strang splitting is used to solve the
advection-diffusion equation, Eq. (6) [75]. By using Strang splitting, the advection and diffusion
operators are split so that each may be solved using different numerical methods. The forcing term
in the advection-diffusion equation involves the concentration dynamics defined on the boundary
and therefore solving implicitly would be challenging. A similar approach as used to discretize the
IB method is used.

The solution is advanced a half time step to find the concentration solution ¢ using ¢" to
compute fk" using either the oxygen-limited model, Eq. (7), or the constant model. In the oxygen-
limited model, the trapezoidal rule is used to discretize Eq. (8) to evaluate C}. First, we take a quarter
step and solve the advection equation using an explicit upwinding method,

=" — %(c}” +u3e"). (23)

n+1/2
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TABLE II. Convergence results for the velocity field. The error and order of convergence is presented in
both the L, and L., norms for both components of the velocity field, u; and u,.

h At lNugp—upplls Order uy,—usplls Order flup,—uplle Order jlus,—usplle  Order

0.0300 2.50 x 1078 342 x 107! — 489x107! — 1.72x 10° —  1.04x 10° —
0.0150 1.25x107% 1.63 x 107! 1.06 193 x 107" 134 1.20x 10° 052 6.11x 107" 1.06
0.0075 6.25x 1077 8.09 x 1072 1.01 847 x 1072 1.19 9.38x 107! 035 3.44x 107! 1.01

The discrete derivatives, ¢, and ¢y, are determined using a third order weighted essentially nonoscil-
latory (WENO) scheme developed by Lui et al. [76]. Then, a half time step of Crank-Nicolson, an
implicit method, is used to solve the diffusion equation with the source term kept explicit,

o — o*

N
1 n n
o = o VT )+ > Ren(X; — x;) As. 24)

k=1
Then, another quarter time step of the advection equation is used to compute ¢"*!/2,
At
Cn+1/2 = C** — T(ungx** + MnCT}**). (25)

In the second step, ¢"1/2 is used to find fk” +1/2 which is then used to advance the concentration
solution a full time step in a similar manner as in the previous step to find ¢"*!,

At
=" - 7(”’{6‘}’1 + Mgiyn), (26)
=t 2, Frev2s, (xi12
— = —V (€ +c* )+; (X" = x;5) A, 27)
At
I = o — 7(” G+ ugc“y**). (28)

We have advanced the coupled system one time step, solving for the velocity, pressure, and
oxygen concentration. We continue to solve over multiple time steps until we reach the desired final
time.

A. Convergence studies

To validate the methodology, a convergence study was conducted for a pulsing coral up to final
time 0.4, 40% through a pulse on a 3 x 3 domain. The grid sizes used for the fluid grid are 4 = 0.03,
0.015, 0.0075, and 0.00375. The number of points to discretize a tentacle is given by N = [2/h].
The spring constant in Eq. (5) is dependent on the number of immersed boundary points, defined
as ky = L3 L, N? and the damping coefficient in Eq. (5) is dependent on the spring constant, k; =

Ca+/kt [63]. For stability, the time step At is dependent on the spring constant, At = ﬁ [63]. Cr,
Cy, and C, are constants that need to be empirically chosen. C; = 100 is chosen to be as large as
necessary, and C; = 1/ 106.4057 is chosen to be as small as necessary. C; = 5 is chosen to provide
damping to the springs for stability. The error at mesh width 4, for a quantity Qy, is approximated as
On — Ony2-

The cgnvergence results for the velocity field are shown in Table II. We would expect above first
order in the L, norm and first order in the L, norm for an idealized case assuming Stokes flow and
a closed immersed boundary [65,77]. In this work we are using the Navier-Stokes equations on an
open immersed boundary. In prescribing the motion of the coral tentacles, there is a large initial
acceleration to allow for accuracy of the coral motion. This yields large initial errors in the tether
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FIG. 3. Error magnitude at time ¢ = 0.4 with & = 0.0075 for (a) u; and (b) ¢ where Pe = 400.

points and thus in the fluid, particularly for a coarse mesh, which is seen in the convergence study.
The magnitude of the error for u; is shown in Fig. 3 (a). One can see that the L, error is at the tips
of the tentacles. However, it is clear that as the grid is refined the method is converging on a solution
at approximately the expected order.

A corresponding convergence study was conducted for the concentration dynamics coupled to
the flow up to final time 0.4. The velocity fields and boundary positions from the previous study
are used so the concentration is solved using the same grid sizes used for the fluid flow, 1 = 0.03,
0.015, 0.0075, and 0.00375. The time step, At = %, is significantly larger than for the velocity
solution. The smaller time step used for the IB simulations was necessary for the stability of the
velocity fields due to the large spring constant, but is not necessary for computing the concentration
dynamics. The time step chosen satisfies the CFL condition of the advection equation.

The error and the norms are computed as in the velocity convergence study. The convergence
study results for the concentration with Pe = 1 and Pe = 400 are shown in Table III. As the Péclet
number increases, the solutions have sharper gradients at the tentacles which slightly degrades the
order of convergence observed. The magnitude of the error for ¢ and Pe = 400 is shown in Fig. 3(b).
One can see that the large error is around the tentacles. However, we observe that the solution is
converging to first order.

To understand what grid sizes need to be used for the simulations, we also need to consider the

relative error. In Table IV, the relative error, %, for a quantity O, approximated with spatial

grid & in the L, and Ly, norm are shown for Re = 8 and Pe = 1 and 400. The relative L, error of
the velocities are small, 5% or less at the two finest meshes. The relative Lo, error is decreasing, but
still relatively large for the horizontal velocity. However, this error is localized around the tentacles.
In the simulations shown in Sec. IV, the spatial grid chosen for the velocity simulations is the
intermediate spatial grid 2 = 0.015 and a time step of Az = 2.666 x 107%. We chose a time step

TABLE III. Convergence results for the concentration field solved using the oxygen-limited source term.
The error and order of convergence is presented in both the L, and L., norms for Pe = 1 and Pe = 400.

Pe=1 Pe = 400
h At llew—caplly  Order  igy—cpplle Order  iey—cyplls Order  Jiy—cyplle Order
0.0300 1.25x10™ 630x10* — 1.07x107% — 262x102 — 987x102 —

0.0150 6.25 x 107 3.34x107* 092 7.76 x 107* 046 1.39x 1072 0.92 6.19 x 1072 0.67
0.0075 3.12x 1075 6.65x 107> 233 232x107* 1.74 726x 107> 0.94 4.54x 1072 045
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TABLE IV. Relative error for the fluid velocity with Re = 8 and concentration dynamics with Pe = 1
and Pe = 400 using the L, and L, norms. The time steps used to compute the velocity and concentration
simulations are Ar = h/12000 and At = h/240, respectively.

Re =8 Pe=1 Pe =400 Re =8 Pe=1 Pe =400

h lluy =1 py21l2 lluap—uzpyalla llep—cpyalla llcp—cpyalla Huy =z lloo lluz =3 /3 llo0 llep—¢pyalloo llcp—=¢palloo
TTuy Tl IZYALE MlepTln Mleplln IZVAES) IZTAES) llep oo IS
0.0300 0.099 0.075 0.016 0.227 0.429 0.145 0.032 0.312
0.0150 0.050 0.032 0.009 0.113 0.307 0.089 0.023 0.163
0.0075 0.026 0.014 0.002 0.059 0.253 0.051 0.007 0.107

approximately double that of the time step in the convergence study, as most of the error is due to
the spatial discretization and this choice does not significantly modify the results. This allowed for
shorter wall-clock times for the simulations.

The relative errors for the concentration are also presented in Table IV. The L, and L, errors with
Pe = 1 are always less than 4%. As discussed above, the concentration dynamics have much sharper
gradients near the tentacles as the Péclet number increases. So the relative L, error for Pe = 400
has much larger values for coarse grids but less than 6% for the finest mesh. The relative L, error
similarly has large values for the coarse grids but decreases for the finest mesh. In this case, it is clear
that we need to use the finest mesh for the larger Péclet numbers, so the finest mesh, 7 = 0.0075,
with a time step of At = 5.3203 x 10~* was chosen for all the concentration simulations. Again,
a larger time was chosen for the simulations since the majority of the error is due to the spatial
discretizations. This time step is small enough to achieve less than 5% mass loss. To couple the
fluid grid with a coarser mesh to the finer concentration grid, the velocity was interpolated onto the
finer mesh using a second-order method.

IV. RESULTS

Numerical simulations and analysis were conducted to study the interplay of the photosynthesis
of the symbiotic algae and the fluid flow created by the pulsing soft corals. Fluid flow results are
provided in Sec. IV A and analysis of the fluid mixing is provided in Sec. IV B. The periodic steady-
state velocity simulations are used to quantify the mixing using a dynamical systems approach. The
results of the simulations of the pulsing coral coupled with the photosynthesis model are provided
in Sec. IV C. The dynamics are analyzed to understand the role of the mixing in the photosynthesis.

A. Velocity simulations

Here, we present simulations of the fluid flow of the pulsing coral. In these simulations, the
Reynolds number is varied, Re = 1, 4, 8, 12, and 16, around the biologically relevant Reynolds
number, Re & 8. The simulations are run on a 3.75x 9 domain. These simulations are run until they
reach a quasi-steady-state and are time periodic. For Re = 1, 4, and 8, steady state was achieved by
nine pulses and for Re = 12 and 16, steady state was achieved by 24 pulses. A series of snapshots
of the velocity field during the ninth pulse for the Re = 8 simulation is shown in Fig. 4.

Average horizontal and vertical velocities on vertical and horizontal lines, respectively, for Re =
1, 8, and 16 at varying distances from the pulsing coral are presented in Fig. 5. Results of the
last three pulses of each simulation are presented, denoted by the shading. The vertical dashed
black lines indicate the change of phase during each pulse. The first dotted black line in each pulse
indicates the transition from closing to opening and the second line indicates the transition from
opening to resting. These results show that the flow has reached a periodic steady state. Re = 4 and
12, not presented, have also reached a periodic steady state. These time-periodic solutions will be
analyzed below.

033102-10



NUMERICAL METHOD FOR MODELING PHOTOSYNTHESIS ...

@] ™| @] @] oo
4 4 4 4 50
3 ; 3 5] ]
. oW o % i OREE 5 o sy SR ol ol cn | BCRE 0
2| AP R | 2| BT R | 2| G EEE | 2| GRS S
P I B R ’__Itl_\ . R . N . . e
1, T \1‘~f,z~\ 1| W N . 1 -50
OYE | D
ol\/n \\) 0] =2 - o] s 0] TR
10 1 10 1 ;10 1 100 1 -100

FIG. 4. The fluid flow of a pulsing soft coral at Re = 8§ at (a) 10%, (b) 30%, (c) 50%, and (d) 80% of a
pulse. The color map shows the vorticity and the vectors give the velocity field in the simulation. Note that these
panels only present a subset of the full domain. See Supplemental Material [78] for a video of this simulation.

We observe more reversible flow, as expected, for the lower Reynolds numbers. In Figs. 5(b)—
5(d), the blue solid line presents the average vertical velocity directly above the coral. There is
less back flow for Re = 8 and 16 than for Re = 1 since these cases have more inertia in the flow.
In Fig. 5(b) at Re = 1, the average vertical velocity two tentacle lengths above the top of the
coral (red dashed line) is small in magnitude and slightly oscillates between positive and negative,
mirroring the behavior directly above the coral. In Figs. 5(c) and 5(d) at Re = 8 and 16, the red
dashed line remains positive and as the Reynolds number increases, the magnitude of the positive
average velocity increases. Re = 16 is the only case in which the average vertical velocity four
tentacle lengths above the top of the coral (yellow dotted line) is noticeably greater than zero. This
shows that for Re = 8 and 16 there is a continuous upward flow away from the coral, and that as
the Reynolds number increases, the magnitude of this upward flow increases. The contributions of
the upward flow to the transport of oxygen away from the coral tentacles is discussed below in
Sec. IV C.

The effect of the velocity boundary conditions on the flow results were also examined by
conducting a study of varying domain sizes [79]. We varied both the length and width of the domain
for the Re = 1 and Re = 16 cases with a coarser spatial resolution and made sure that the results
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FIG. 5. Average velocities along lines at varying distances from the pulsing coral during the last three
pulses of the simulations for (b, ) Re =1, (c, f) Re = 8, and (d, g) Re = 16. (b—d) The average vertical
velocities on the horizontal lines shown in panel (a). (e-g) The average horizontal velocities on the vertical
lines shown in panel (a). The different colors and line styles correspond to the lines shown in panel (a).
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FIG. 6. Analysis of Poincaré maps for (a) Re = 1, (b) Re =4, (c) Re = 8, (d) Re = 12, and (e) Re = 16.
Half of the domain is presented. The stable manifold (red) and unstable manifold (blue) are plotted as well
as the location of the tentacle (black). The interior regions, capture lobes, and escapes lobe are denoted with
different colors.

presented in Fig. 5 were similar as the domain size increased. We chose the domain size such that
the consecutive average velocities along the horizontal and vertical lines shown in Fig. 5(a) were
not qualitatively different. The quantitative details can be found in Santiago’s thesis [79].

B. Mixing analysis

Next, we quantify how the fluid flow contributes to transport away from the coral tentacles as we
vary the Reynolds number. Flow trajectories are used to build a Poincaré map. This is a commonly
used tool in dynamical systems to characterize the transport and mixing dynamics of fluid flow [80].

A Poincaré map tracks the location of the flow trajectories after one period. In this work, the
trajectory locations are tracked at the beginning of every pulse. The trajectories are integrated using
a second-order Runge-Kutta scheme, and the velocity is interpolated using a second-order interpo-
lation scheme, commonly used in the IB method [47]. Stable and unstable invariant manifolds of the
Poincaré map are computed; details of this analysis are provided in Appendix B. These manifolds
define an interior and exterior region in phase space. The transport and mixing between these regions
are controlled by capture and escape lobes, areas between the stable and unstable manifolds. The
fluid can only pass between these regions by being mapped into or out of these lobes. The invariant
manifolds and lobes of the Poincaré map provide a deeper understanding of how fluid is transported
during one pulse [80].

In Fig. 6, the stable and unstable manifolds for Re = 1, 4, 8, 12, and 16 are presented. One half of
the domain is plotted as the dynamics are symmetric across the y-axis. We have denoted the interior
region in light and dark green and the exterior region in yellow and white. We are interested in how
much fluid is leaving and entering the green region near the coral. The area of the capture lobe (dark
green) is the amount of fluid that has entered the interior region (dark green and light green) from
the exterior region (white and yellow) during one pulse. The area of the escape lobe (yellow) is
the amount of fluid that has escaped from the interior region. Since the fluid is incompressible, the
capture and escape lobes have approximately (due to numerical error) the same area. To quantify
the amount of fluid replenished in the interior region over one pulse, we compute

area of capture lobe

% of the fluid entering interior region = x 100.

area of interior region
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TABLE V. Area of interior regions, capture lobes, and percent of fluid entering the interior region.

Reynolds Area of Area of % of the fluid entering
number interior region capture lobe interior region

1 0.5485 0.0085 1.55

4 0.3790 0.1671 44.09

8 0.3581 0.2515 70.23

12 0.3648 0.2895 79.34

16 0.3816 0.3127 81.95

The results for all Reynolds numbers simulated are presented in Table V. As the Reynolds number
increases the percentage of the fluid entering the interior region increases, indicating more mixing,
due to the increased inertia in the flow. Note that for Re = 12 and 16, there is an overlap in the
capture and escape lobes. These areas are omitted in the calculation, as we are only interested in the
amount of fluid that has escaped and not re-entered the interior region.

C. Photosynthesis simulations

The photosynthesis of the symbiotic algae is modeled using an advection-diffusion equation for
the byproduct oxygen. Since the pulsing coral flow has reached a quasi-steady-state and has
become time periodic, the last pulse is coupled to the oxygen concentration dynamics. A more
refined grid than used in the velocity simulations is needed to resolve the oxygen concentration
dynamics near the tentacles. The velocity field during the final pulse for each Reynolds number is
interpolated from a 250 x 600 grid onto a 500 x 1200 grid. The concentration is simulated for ten
pulses, with no initial concentration in the domain. The Péclet number is varied in the concentration
simulations coupled to each flow field. The Péclet numbers simulated are Pe = 1, 10, 100, 200, and
400 for both the constant and oxygen-limited photosynthesis models, for a total of 50 simulations.
In Fig. 7, snapshots of the velocity field and oxygen concentration for the oxygen-limited model
for Re = 8 and Pe = 100 are presented during the final pulse. Comparing these results to Fig. 4, it
is clear that the vortices in the fluid flow trap the concentration and play an important role in the
concentration dynamics.

In Fig. 8, the concentration dynamics for Pe = 100 at the end of the tenth pulse for varying
Reynolds numbers and the two photosynthesis models are shown. For smaller Reynolds numbers,
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FIG. 7. The concentration dynamics of the oxygen-limited model with Re = 8 and Pe = 100 at (a) 10%,
(b) 30%, (c) 50%, and (d) 80% through the tenth pulse. The vectors give the velocity field and the color map
shows the oxygen concentration. Note that this panel only shows a subset of the domain. See Supplemental
Material at Ref. [78] for a video of this simulation.
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FIG. 8. The concentration dynamics at the end of ten pulses for Re =1, 4, 8, 12, and 16 (from left to
right) for Pe = 100. The color map shows the oxygen concentration for each photosynthesis model, (a—e) the
constant model and (f—j) the oxygen-limited model. The vectors give the velocity field at the final time. Note
that each panel only shows a subset of the domain.

the vortices do not develop and the oxygen stays in the vicinity of the coral throughout the
simulation, while for larger Reynolds numbers the concentration is transported away from the coral
tentacles. In these cases, the concentration is trapped in the vortices that are then pushed away
from the coral. The two photosynthesis models shown here are the constant [Figs. 8(a)-8(e)] and
oxygen-limited model [Figs. 8(f)-8(j)]. Since the constant model is not limited there is more oxygen
present in the domain and a larger build up around the tentacles.

The interesting qualitative results observed above resulted in us conducting a more quantitative
analysis of the concentration dynamics to understand the interplay between the Reynolds and Péclet
numbers [79]. Here, we have presented the results for the oxygen-limited photosynthesis model; the
relevant results for the constant model are similar and are omitted in this work. We computed several
different quantities in each simulation: the maximum concentration to analyze the dynamics of the
oxygen around the tentacles, the evaluation of the source term to quantify how much oxygen is
being produced in each parameter regime, the variance in the oxygen concentration as a measure of
mixing, and the transport across horizontal lines at varying heights to quantify how well the oxygen
is transported away in different parameter regimes.

The maximum concentration is a metric of how much oxygen concentration builds up around the
tentacles and thus indicates how well oxygen is transported away from the tentacles, less oxygen
around the tentacles allows for more photosynthesis. The maximum concentration in the domain
over time is presented in Figs. 9(a) and 9(b) for the oxygen-limited model. In Fig. 9(a) the Reynolds
number is fixed at Re = 8 and the Péclet number is varied and in Fig. 9(b) the Péclet number is
fixed at Pe = 100 and the Reynolds number is varied. The evaluation of the source term,

S(¢)=/K(1—C)5[)_C—)_((S,t)]d§,
r

presented in Figs. 9(c) and 9(d), is proportional to the amount of photosynthesis occurring by the
symbiotic algae in this model. This quantity allows us to study which parameters lead to more
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FIG. 9. The maximum concentration in the domain in the oxygen-limited model for (a) Re = 8 and varying
Péclet numbers and (b) Pe = 100 and varying Reynolds numbers. Evaluation of the source term over time in
the oxygen-limited model for (c) Re = 8 and varying Péclet numbers and (d) Pe = 100 and varying Reynolds
numbers.

photosynthesis. Figure 9(c) presents the evaluation of the source term for Re = 8 and varying Péclet
number and Fig. 9(d) presents the evaluation of the source term for Pe = 100 and varying Reynolds
number for the oxygen-limited model.

In Fig. 9(a), as the Péclet number increases, the maximum concentration does too. This trend is
consistent in time. Since a smaller Péclet number indicates a more diffusive driven flow, the oxygen
is diffusing away from the tentacles more quickly. For a larger Péclet number, a larger accumulation
of oxygen is entrained in the fluid around the tentacles. In Fig. 9(c) as the Péclet number increases,
the amount of oxygen produced decreases since there is an accumulation of the concentration around
the tentacle, as seen in Fig. 9(a), inhibiting the production of more oxygen. The oscillations of the
evaluation of the source term for larger Péclet numbers are also consistent with the oscillations of
the maximum concentration in Fig. 9(a), showing that the flow field is contributing more to the
dynamics in the large Péclet number regime.

In Fig. 9(b), as the Reynolds number increases, the maximum concentration decreases. For a
larger Reynolds number, with more inertia in the flow, more concentration is transported away from
the coral tentacles. The maximum concentration fluctuates more in time for larger Reynolds num-
bers due to the periodic pulsing. Furthermore, the difference between the maximum concentrations
are more pronounced in Fig. 9(a), indicating that the variations in the Péclet number contribute more
significantly to the transport of oxygen away from the tentacle. In Fig. 9(d) as the Reynolds number
increases, more oxygen is produced as the inertia in the fluid advects the oxygen away from the
tentacles, as seen in Fig. 9(b), allowing more photosynthesis to occur.

Both quantities are reaching a quasi-steady-state in time. The maximum concentration during
the final pulse is given in Fig. 10(a) and the source term is integrated in time over the tenth pulse
in Fig. 10(b) for Re = 1, 4, 8, 12, and 16 and Pe = 1, 10, 100, 200, and 400. The trends shown in
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FIG. 10. (a) Maximum concentration, (b) total oxygen produced, and (c) temporal average of the adjusted
concentration variance during the tenth pulse for varying Péclet and Reynolds numbers for the oxygen-limited
model.
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Fig. 9 over time are reflected in Fig. 10 for varying Reynolds and Péclet numbers for both quantities.
One can observe that in the higher Péclet number regime, there is a benefit to increasing Reynolds
number, but the benefit is not uniform. In the higher Péclet number regime, there is much more
variability between Re = 1, 4, and 8, compared to Re = 8, 12, and 16, which indicates that Re = 8
is advantageous for mixing in the high Péclet number regime. The benefit from Re = 1 to 4 and
Re = 4 to 8 is considerable, but there seems to be less benefit between Re = 8 and 12 and Re = 12
and 16. These larger Reynolds numbers require more energy to be expended. See discussion below.
Since Re = 8§ and Pe = 400 are closer to the biologically relevant parameters, these results suggest
that the corals operate in a desirable mixing regime without expending extra energy.
In Fig 10, we also present the concentration variance,

mm»=J/k@o—«vme
Q

a measure of how mixed the system is [81]. To be able to compare between models with varying
parameters and different amounts of oxygen present in the domain the adjusted variance is used,

c(x n 2
adj var(c) = / ) > dx. 29)

Ideal mixing would be when the oxygen is mixed into the domain from the tentacle to a steady
state instantaneously, c(x, t) = (c(¢)) and adj var(c) = 0. The adjusted variance of the concentration
gives a measure of how far away the solution is from this ideal mixing which takes the role of oxygen
diffusion into account, unlike the analysis of the fluid flow conducted above.

The temporal average of the concentration variance during the final pulse for all Reynolds
and Péclet numbers is given in Fig. 10(c). Smaller Péclet numbers have lower values of variance
suggesting that diffusion is a more ideal mixer compared to advection. For larger Péclet numbers,
larger Reynolds numbers have smaller values of variance. This is consistent with the previous results
that indicated more mixing with larger Reynolds numbers. We see similar average adjusted variance
for Re = §, 12, and 16, and larger variance for Re = 1 and 4 in the high Péclet number regime.
This indicates that the biologically relevant parameters are also advantageous for mixing in addition
to photosynthesis. These results are intuitive, Figs. 10(a) and 10(b) showed that for small Péclet
numbers less oxygen builds up around the tentacles resulting in more oxygen production and in
the high Péclet number limit, larger Reynolds number simulations have less oxygen around the
tentacles and more oxygen production. This shows that the adjusted variance metric captures the
mixing trends through the lens of photosynthesis and oxygen production.

Another useful way of analyzing the photosynthesis dynamics is quantifying how far away the
oxygen is transported from the coral. This metric will take into account the role of the fluid flow
away from the corals, which is relevant to understanding coral colony dynamics. The previous
results presented focused on the dynamics closer to the coral polyps, which are more relevant for
individual polyps.

We consider a box B in the domain that spans the width of the domain, starts at y = y, and ends
at the top of the domain. Then, the amount of oxygen in that box at time ¢ is

t 1875
cg(Vo, 1) = f / c(x, Yo, 1 U2 (x, Yo, t') dxdt’,
0 J-1875
considering the boundary conditions and since there is no initial oxygen in B. The limits —1.875 and
1.875 are because we are integrating over the width of the domain. This is also the total net amount
of oxygen that has passed through the line y = yy by time ¢. To compare between simulations, the
percentage of oxygen in B of the total oxygen in the domain at time ¢ is computed as

CB(y07 t)

——— x 100.
Joc. ndx

%CB(y07 t) =
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FIG. 11. Total percentage of oxygen in B at the end of the final pulse when (a) y, = 1, (b) y, = 2, and
(¢) y, = 4 for varying Péclet and Reynolds numbers for the oxygen-limited model.

The long-term behavior of transport of oxygen away from the tentacles is shown in Fig. 11. The
total percentage of oxygen in the box at the final time is shown for y, =1, 2, and 4 for all
Reynolds and Péclet numbers. It is clear that as the Reynolds number increases, the transport away
from the coral increases. The large Péclet number regime is more advective driven and is more
influenced by the upward flow than smaller Péclet numbers, which diffuse quickly away from the
coral tentacles but are not transported upward. The transport upward rather than diffusive driven
radial transport could be advantageous for coral colonies as there could be less recirculation of
oxygen-rich water by neighboring polyps. In Fig. 11(a) for y, = 1, we can see more variability
between Re = 1 and 4, and much less variability between Re = 4, 8, 12, and 16, indicating that
Re = 4 is advantageous for transporting oxygen a short distance. Similarly, Fig. 11(b) shows that
Re = 8 is advantageous for transporting up to a coral tentacle length away and Fig. 11(c) shows
Re =16 is advantageous for transporting oxygen up to three coral tentacle lengths away. From the
previous analysis, we know that Re = 8 is advantageous for mixing and more photosynthesis, so this
indicates that transporting oxygen a tentacle length away is enough to facilitate the photosynthesis
and prevent fluid recirculation by neighboring polyps.

In this section, we have shown results of the pulsing coral fluid flow coupled tothe photosynthesis
model. The mixing due to the flow was examined for varying Reynolds numbers in Sec. IV B. The
photosynthesis model was quantitatively analyzed for varying Reynolds and Péclet numbers by
observing the maximum oxygen concentration, the evaluation of the oxygen-limited source term,
the adjusted variance of the oxygen concentration, and the transport of oxygen away from the coral
tentacles.

We have studied the dynamics as we kept the Reynolds number fixed and varied the Péclet
number and vice versa. When both numbers are simultaneously varied this is equivalent to varying
the Schmidt number Sc =7, the ratio of fluid viscosity to diffusivity. We have chosen to focus on
the Reynolds and Péclet numbers as the resulting trends were more clear. By analyzing these results,
we have found advantageous parameter regimes for mixing, photosynthesis, and oxygen transport.

We now investigate the energy expended by the coral in different Reynolds number regimes. The
nondimensional energy at time ¢" is computed using

N
K
=TS (- xp )
k=1

This is the energy functional corresponding to the tether points not accounting for the spring
damping present in Eq. (5). The damping in Eq. (5) was included to provide numerical stability
rather than for physical modeling and therefore is omitted in the energy study here. Furthermore,
the damping forces are small in magnitude compared to the tether forces, so they do not affect the
energy significantly.
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FIG. 12. (a) Nondimensional average variance, (b) dimensional average variance, and (c) percentage of
fluid entering the interior region as a function of the total dimensional energy expended during the final pulse
for Pe = 400. The corresponding colors and shapes give the corresponding Reynolds number. The text boxes
give the magnitude of the corresponding rate of change.

Using the dimensional energies allows a better understanding of the role of the Reynolds number
in the energy expended by the coral. To dimensionalize the energy we define &7 = k7 pL> f2,
where L is the tentacle length, f is the pulsing frequency, and p is the fluid density. We also
dimensionalize the tentacles positions as X = XL and tether point positions as X. r = X ;L. Thus
the dimensionalized energy at time ¢" is

~ N
By (1% - £,
k=1

N
Krp L’;f § n n 2
2 Z(”)ikl‘_)irkl‘”z) :
k=1
We considered the total energy expended in the final pulse,

10
Total energy = / Edt,
9

computed using the trapezoidal rule.

In Figs. 12(a) and 12(b) we show the average adjusted variance of the oxygen concentration
in the domain and in Fig. 12(c) the percentage of fluid leaving the interior region in the final
pulse from Table V as a function of the dimensionalized total energy expended for Pe = 400.
Figure 12(a) shows the temporal average variance, Eq. (29), over the final pulse in dimensionless

form, (adj var(c)) = fgm adj var(c)dt. Figure 12(b) shows the temporal average variance over the

c(x,1)

o 1)2dxL2dt. The corresponding

Reynolds numbers for the energies computed are denoted, and the magnitude of the rate of change
is given. We see that with increasing Reynolds number, the energy is increasing uniformly, but the
benefit is not. One can observe that the magnitude of the rate of change decreases with increasing
energy. In particular, one can observe a benefit from Re = 1 and 4 and from Re = 4 and 8, with
very little benefit after Re = 8.

Figure 13 ties together the fluid flow mixing analysis and oxygen concentration results. The
oxygen concentration after ten pulses for Pe = 100 and 400 and varying Reynolds numbers are
shown overlaid with the corresponding stable and unstable manifolds of the fluid flow. The higher
Péclet number regime shows better agreement between the Poincaré map manifolds and the oxygen
dynamics, as expected. For Re = 1, most of the oxygen stays within the interior region and is not
transported away. For the larger Reynolds numbers, the oxygen moves out of the interior region,
into the escape lobe (which corresponds to the vortices in the flow), and into other subsequent lobes
in the domain. The effect of diffusion and the source term on these dynamics can be observed. In
these results the Péclet number is constant in Figs. 13(a)-13(e) and Figs. 13(f)-13(j). However,
if the Péclet number had been defined using the maximum flow velocity, rather than the pulsing

final pulse in dimensional form,(adj var;(c)) = lf ;o\/ fQ(
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FIG. 13. Oxygen concentration for the oxygen-limited photosynthesis model at the end of ten pulses for
(a—e) Pe = 100 (f—j) Pe = 400 for varying Reynolds numbers, (a, f) Re = 1, (b, g) Re =4, (c, h) Re = 8§, (d,
i) Re = 12, and (e, j) Re = 16, overlaid with the corresponding stable (dashed) and unstable (solid) manifolds.
Half of the domain is presented.

frequency, then Figs. 13(a) and 13(f) would have a smaller Péclet number than Figs. 13(e) and 13(j).
In these dynamics, Figs. 13(a) and 13(f) are clearly more diffusive, and therefore the manifolds do
not give as much information as in Figs. 13(e) and 13(j). The algae produces oxygen on both sides
of the tentacle. The oxygen produced from the underside of the tentacle is not in the interior region,
so the oxygen dynamics can only partially be explained by the Poincaré map lobes. This shows
that it is necessary to model the concentration dynamics to understand how the mixing facilities
the photosynthesis of the symbiotic algae. However, both techniques provide useful and relevant
information into the mixing dynamics of the pulsing soft corals and the photosynthesis of their
symbiotic algae.

V. DISCUSSION AND CONCLUSIONS

In this work a new mathematical model and numerical method is developed to study the fluid
flow of a pulsing soft coral coupled with the photosynthesis of symbiotic algae. The fluid flow of the
pulsing soft corals was solved for using the immersed boundary method and the photosynthesis was
modeled by solving an advection-diffusion equation for oxygen, the byproduct of photosynthesis.
Included in the advection-diffusion equation is a source term on the moving tentacles to model the
production of oxygen by the symbiotic algae. The mixing due to fluid flow was analyzed using
a dynamical systems approach by applying lobe dynamics theory. The photosynthesis and mixing
dynamics were quantitatively analyzed using the maximum oxygen concentration, the evaluation of
the oxygen-limited source term, the adjusted variance of the oxygen concentration, and the transport
of oxygen away from the coral tentacles for varying Reynolds and Péclet numbers. The novelty of
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this work was including a photosynthesis model coupled with a fluid-structure interaction. This
required the development of a numerical method to solve a partial differential equation with a
boundary condition on a moving immersed elastic boundary.

In the analysis of the fluid flow, the larger Reynolds numbers produced more mixing, as expected.
The benefit from larger Reynolds number lessens right around the biologically relevant Reynolds
number, which is determined by the kinematics of the pulsing coral. We found that the energy
expended in the higher Reynolds number regimes increased uniformly but the mixing benefit did
not. The other primary numerical study on soft coral flow dynamics around a single coral polyp
used Lagrangian Coherent Structures and Finite Time Lyapunov exponents to examine mixing [36].
Similar methodology was presented on PIV flow fields to study the feeding habits of jellyfish [15].
These methods are useful for qualitative analysis for regions of high or low mixing in unsteady
flow. The methodology presented in this paper instead is able to give quantitative results for varying
Reynolds numbers. This allows for a more objective interpretation of the mixing benefit due to the
flow by giving a metric of how much mixing is occurring, rather than just where the mixing is
occurring.

The metrics used to analyze the photosynthesis dynamics showed increased mixing and more
oxygen production for smaller Péclet numbers. In this regime the oxygen concentration diffuses
away from the tentacles and allows for more mixing and less buildup of oxygen concentration
around the tentacles. These results were similar for all simulated Reynolds numbers. However, the
biologically relevant Péclet number for dissolved oxygen in water is large, O(100)-0(1000). In this
regime the fluid flow plays a significant role. Smaller Reynolds numbers resulted in less mixing and
photosynthesis due to the reversible flow, while the increased inertia of the larger Reynolds number
allowed for more mixing and more photosynthesis. This benefit of larger Reynolds number was not
uniform, after Re = § the benefit was considerably less. This indicates that the biologically relevant
Reynolds number, Re & 8, is advantageous for mixing and photosynthesis in a larger Péclet regime,
suggesting that these corals are expending the minimal energy required to gain the most benefit. The
energy expended after Re = 8§ increased linearly, but we can observe the benefit diminishing. We
expect these corals to respond to evolutionary pressure to either obtain a specific body size range
or pulse with a frequency that gives advantageous mixing. Note that increasing size or frequency
increases the Péclet number, decreasing mixing and photosynthesis, and increases the Reynolds
number, increasing mixing and photosynthesis, so the right balance must be found taking the energy
expended into account.

The role of fluid flow and diffusion in capture mechanisms of appendages, such as feeding or
olfaction, has been well studied [16-18,82,83]. It is widely accepted that although the appendages
bring the materials close to the desired location, the actual capture is dominated by the diffusion
dynamics [82]. This work focuses on expelling a photosynthetic byproduct because it is unlikely
that the corals’ main energy source is from filter-feeding, a capturing process [35]. We can expect
these dynamics to be similar, where diffusion dominates the dynamics near the tentacle. After the
diffusion has transported the oxygen a short distance away from the tentacle, the fluid can transport
the oxygen farther away from the coral. Instead in Fig. 13, we observe that the fluid dynamics do
affect the concentration close to the tentacles. As the Reynolds number increases, the width of the
oxygen buildup around the tentacle decreases. The increased inertia in the fluid flow is removing
oxygen by thinning the width of the accumulated oxygen around the tentacle. Thus both advective
and diffusive forces can be significant in the dynamics close to appendages.

The next step of this work is to apply this methodology in three dimensions. We expect the
trends and intuition developed by this two-dimensional study to be present in the three-dimensional
results. However, we already know that the fluid flow has characteristics that cannot be captured
in two dimensions [36]. These methods will be implemented in the software library IBAMR
[60]. The computational expense of the simulations presented here resulted in limitations in the
parameter studies. To run simulations with larger Reynolds numbers, larger domains are needed
and simulations would have to be run for longer times to reach a periodic steady state. Larger Péclet
numbers would have required a more refined mesh to resolve the solution close to the tentacles.
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IBAMR has support for parallelization and adaptive meshes allowing for the ability to sample a
larger parameter space.

Once this methodology is implemented in three dimensions, many different experimental studies
can be done with numerical studies to validate and elucidate some other research questions. Kremien
et al. looked at the role of pulsing in photosynthesis and photorespiration in varying ambient oxygen
levels and light intensity [35]. Dye visualization around live or model corals could be used to observe
how the fluid is swept away from the coral tentacles with corresponding numerical studies. Both
methods can be used to cross-validate the results. In laboratory settings, these corals are known to
filter feed [84]. Quantitative experiments could be used to investigate the benefit of filter-feeding
and whether the coral kinematics change to enhance feeding efficiency. An interesting experiment
could also be changing the light irradiance or artificially heightening or lowering the carbon dioxide
levels around live corals and observing and quantifying any change in the pulsing behavior as it is
known that photosynthesis rates vary in coral reef organisms with light irradiance [85].

Another avenue to be explored is the role of background flow on the corals. The coral colonies
are located in areas with significant background flow, and understanding how the intensity of the
background flow affects the local and colony dynamics is nontrivial. The flow over pulsing colonies
is up to an order of magnitude more turbulent than nonpulsing colonies [35]. Our work can be
extended to investigate the effect of various background flows on the photosynthesis of a nonpulsing
polyp. Additionally, one could introduce turbulence in the background flow to understand how much
turbulence is needed to achieve the same effect as the pulsing.

Further, the methods and analysis provided here can be used in industrial and engineering
applications where a pumping, pulsing, or stirring mechanism is used to facilitate mixing. They
can also be used to analyze photosynthesis and mass transfer in other biological systems.
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APPENDIX A: KINEMATIC MOTION OF CORAL

The kinematic motion of the corals mentioned in Sec. Il is discussed here. Experimental video of
pulsing soft coral was used to find the motion of the coral tentacles [36]. Six points were tracked on
one tentacle at every frame of five different coral polyps for five pulses. At each frame, polynomials
were fit using the position of the six points. Then, the coefficients of these polynomials were
nondimensionalized and averaged over the different polyps and pulses. Finally, time-dependent
polynomials were fit to these coefficients. The position of the tether points are then given by

Xr(s,1) = C3(2)s’ + Ca(t)s> + C1(t)s + Co(2), (A1)
Yr(s,t) = D3(t)s’ + Da(t)s* + Di(t)s + Do(t), (A2)
with the time-dependent coefficients C;(t) and D;(¢) for the data a;; and b; given by
Ci(t) = byt* + byit® + byt* + byt + by, (A3)
Dj(t) = agt* + azit® + axt® + ayt + ag;. (A4)

To model the coral movement in two-dimensions, two tentacles are included and it is assumed
that the motion of each tentacle is a reflection of the other, as shown in Fig. 1 in the main text.
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FIG. 14. Example of coefficient C3(¢) from experimental data (blue) and the smoothed fit used in the
modeling (red).

In the collected experimental data the coefficients have slight discontinuities in the coral motion
and furthermore prescribe an initial velocity inconsistent to the assumption that the fluid is initially
at rest. To remedy these issues an equally spaced sample of each coefficient was taken, and then
a curve was fit through the sample using clamped splines, enforcing continuity and a zero initial
velocity to get consistent initial conditions, as shown in Fig. 14 for one coefficient.

APPENDIX B: POINCARE MAP MANIFOLDS

The method to compute the manifolds of the Poincaré maps introduced in Sec. IV B is discussed
here. To find the stable manifold, a fixed point on the separatrix (x = 0) was computed and a thin
horizontal line of points were initialized at the fixed point. The points were mapped backwards in
time to compute the stable manifold using second-order Runge Kutta and a second-order interpola-
tion scheme used in the immersed boundary method [47]. The tentacles are known to generate the
unstable manifold. Points were initialized along the tentacle. The points were mapped forward in
time to compute the unstable manifold. In computing both the stable and unstable manifold for each
Reynolds number simulation, the number of points initialized and the number of iterations forwards
or backwards in time were adjusted empirically.
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