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Abstract

Motivation: Single-cell RNA sequencing (scRNAseq) technologies allow for measurements of gene expression at a
single-cell resolution. This provides researchers with a tremendous advantage for detecting heterogeneity, delineat-
ing cellular maps or identifying rare subpopulations. However, a critical complication remains: the low number of
single-cell observations due to limitations by rarity of subpopulation, tissue degradation or cost. This absence of suf-
ficient data may cause inaccuracy or irreproducibility of downstream analysis. In this work, we present Automated
Cell-Type-informed Introspective Variational Autoencoder (ACTIVA): a novel framework for generating realistic syn-
thetic data using a single-stream adversarial variational autoencoder conditioned with cell-type information. Within
a single framework, ACTIVA can enlarge existing datasets and generate specific subpopulations on demand, as
opposed to two separate models [such as single-cell GAN (scGAN) and conditional scGAN (cscGAN)]. Data gener-
ation and augmentation with ACTIVA can enhance scRNAseq pipelines and analysis, such as benchmarking new
algorithms, studying the accuracy of classifiers and detecting marker genes. ACTIVA will facilitate analysis of
smaller datasets, potentially reducing the number of patients and animals necessary in initial studies.

Results: We train and evaluate models on multiple public scRNAseq datasets. In comparison to GAN-based models
(scGAN and cscGAN), we demonstrate that ACTIVA generates cells that are more realistic and harder for classifiers
to identify as synthetic which also have better pair-wise correlation between genes. Data augmentation with ACTIVA
significantly improves classification of rare subtypes (more than 45% improvement compared with not augmenting
and 4% better than cscGAN) all while reducing run-time by an order of magnitude in comparison to both models.
Availability and implementation: The codes and datasets are hosted on Zenodo (https://doi.org/10.5281/zenodo.
5879639). Tutorials are available at https://github.com/SindiLab/ACTIVA.

Contact: ssindi@ucmerced.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Traditional sequencing methods are limited to measuring the average
signal in a group of cells, which potentially mask heterogeneity and
rare populations (Tang et al., 2019). Single-cell RNA sequencing
(scRNAseq) technologies allow for the amplification and extraction
of small RNA quantities, which enable sequencing at a single-cell level
(Tang et al., 2009). The single-cell resolution thus enhances our
understanding of complex biological systems. For example, in the

immune system scRNAseq has been used to discover new immune cell
populations, targets and relationships, which have been used to pro-
pose new treatments (Tang ez al., 2019).

While the number of tools for analyzing scRNAseq data
increases, one limiting factor remains: low number of cells, poten-
tially related to financial, ethical, or patient availability (Marouf
et al., 2020). Large well-funded projects have generated the Human
Cell Atlas (Regev et al., 2017) and the Mouse Cell Atlas (Han et al.,
2018) which characterized cell populations in organs and tissues in
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their respective species. Although a tremendous amount of
scRNAseq data is available from such projects, they are limited to a
broad overview of the cell populations in these tissues and organs.
The Atlases overlook sub-populations of cells which tend to be
smaller, rarer and important players in normal and dysregulated
states. As Button et al. (2013) note, small numbers of observations
reduce the reproducibility and robustness of experimental results.
This is especially important for benchmarking new tools for
scRNAseq data, as the number of features (genes) in each cell often
exceeds the number of samples.

Given limitations on scRNAseq data availability and the import-
ance of adequate sample sizes, in silico data generation and augmen-
tation offers a fast, reliable and cheap solution. Synthetic data
augmentation is a standard practice in fields of machine learning
such as text and image classification (Shorten and Khoshgoftaar,
2019). Traditional data augmentation techniques, geometric trans-
formations or noise injection, are being replaced by more recently
developed generative models, variational autoencoder (VAE)
(Kingma and Welling, 2013) and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014), for augmenting complex bio-
logical datasets. However, GANs and VAEs remain less explored
for data augmentation in genomics and transcriptomics. We provide
a brief overview of GANs and VAEs in Section 2 and in
Supplementary Material.

There are many statistical frameworks for generating in-silico
scRNAseq data (Assefa er al., 2020; Benidt and Nettleton, 2015;
Frazee et al., 2015; Gerard, 2020; Zhang et al., 2019), but recently
Marouf et al. (2020) introduced the first deep generative models
(GAN-based) for scRNAseq data generation and augmentation
[called single-cell GAN (scGAN) and conditional scGAN
(cscGAN)], and demonstrated that they outperform other state-of-
the-art models. While scGAN augments the entire population by
creating ‘holistic’ cells, cscGAN is conditioned to generate cells from
specific subpopulations.

In this work, we extend and generalize their approach using an
introspective VAE for data augmentation. The motivation and ap-
plication of our generative model is closely related to Marouf
et al.’s, with a focus on improving training time, stability and gener-
ation quality using only one framework. We compare our proposed
model, Automated Cell-Type-informed Introspective Variational
Autoencoder (ACTIVA), with scGAN and cscGAN and show how it
can be leveraged to augment rare populations, improving classifica-
tion and downstream analysis. In contrast to these previously pub-
lished GANs, our novel cell-type conditioned introspective VAE
model allows us to generate either ‘holistic’ or specific cellular sub-
populations in a single framework.

In Section 2, we provide an overview of GANs (both generally
and in the context of scRNAseq data) and VAEs. In Section 3, we
detail ACTIVA, our proposed conditional introspective VAE. In
Section 4, we describe our training data and associated processing
steps. In Section 5, we compare ACTIVA with competing meth-
0ds—scGAN and cscGAN. We demonstrate that augmenting rare
cell populations with ACTIVA improves classification over GANs
while providing a more computationally tractable framework, mir-
roring both scGAN and cscGAN, in a single model. In comparison
with scGAN and cscGAN, ACTIVA generates cells that are harder
for classifiers to identify as synthetic [i.e. having Areas Under the
Curve (AUC) closer to 0.5], with better pair-wise correlation be-
tween genes. ACTIVA generated cells allow for improved classifica-
tion of rare subtypes (more than 4% improvement over cscGAN) all
while reducing run-time by an order of magnitude in comparison to
both models. Finally, in Section 6, we review our approach, findings
and limitations.

2 Background

2.1 Generative adversarial networks

GANs (Goodfellow et al., 2014) are capable of generating realistic
synthetic data, and have been successfully applied to a wide range of
machine learning tasks (Dziugaite et al., 2015) and bioinformatics

(Liu et al., 2019). GANs consist of a generator network (G) and a
discriminator network (D) that train adversarially, which enables
them to produce high-quality fake samples. During training, D
learns the difference between real and synthetic samples, while G
produces fake data to ‘fool’ D. More specifically, G produces a dis-
tribution of generated samples Pg, given an input z ~ P, with P,
being a random noise distribution. The objective of GANG is to learn
Py, ideally finding a close approximation to the real data distribu-
tion P,, so that Py ~ P,. To learn the approximation to P,, GANs
play a ‘min-max game’ of mingmaxpE,.p, log[D(x)]+
E..p, log[1 — D(G(z))], where both players (G and D) attempt to
maximize their own payoff. This adversarial training is critical in
GANSs’ ability to generate realistic samples. Compared with other
generative models, GANs’ main advantages are (i) the ability to pro-
duce any type of probability density, (ii) no prior assumptions for
training the generator network, and (iii) no restrictions on the size of
the latent space.

Despite these advantages, GANs are notoriously hard to train
since it is highly non-trivial for G and D to achieve Nash equilib-
rium (Wang et al., 2019). Another disadvantage of GANs are van-
ishing gradients where an optimal D cannot provide enough
information for G to learn and make progress, as shown by
Arjovsky and Bottou (2017). Another issue with GANs is ‘mode col-
lapse’, that is, when G has learned to map several noise vectors z to
the same output that D classifies as real data. In this scenario, G is
over-optimized, and the generated samples lack diversity. Although
some variations of GANs have been proposed to alleviate vanishing
gradients and mode collapse [e.g. Wasserstein-GANs (WGANS)
(Arjovsky et al., 2017) and Unrolled-GANs (Metz et al., 2016)], the
convergence of GAN still remains a major problem.

2.2 Single-cell GANs

scGAN and cscGAN are the state-of-the-art deep learning models
for generating and augmenting scRNAseq data. Marouf et al.
(2020) train scGAN to generate single-cell data from all populations
and cscGAN to produce cluster-specific samples, with the underly-
ing model in both being a WGAN. For scGAN, the objective is to
minimize Wasserstein distance between real cells distribution, P, ,
and generated data, Py:

W(P,,P,) = inf Eyullx—v], 1
(P, g) ;'El'[l(rll’,,Pg) (x,y) ||X YH (1)

where x and y denote random variables, II(P,, Pg) is the set of all
joint probability distributions y(x,y) with marginals P, and P,.
Intuitively, Wasserstein distance is the cost of optimally transporting
‘masses’ from x to y such that P, is transformed to P, (Arjovsky
et al., 2017). However, since the infimum in Equation (1) is highly
intractable, Arjovsky et al. (2017) use Kantorovich-Rubinstein dual-
ity to find an equivalent formulation of Wasserstein distance with
better properties:

W(Pﬁ Pg) = sup IEX~P,f(X) - Ex~ng(X)>
[IFl <1

where the set of 1-Lipschitz functions is denoted by ||f]|, < 1, with
the solution being a universal approximator (potentially a fully con-
nected neural network) to approximate f. This function is approxi-
mated by D, which we denote as f;. Similarly, f, denotes the
function approximated by the generator. Using these notations, we
arrive at the adversarial objective function of WGANSs (used in
scGAN):

min max Ey.p fq(x) — Ey. f4(x),
fo s a(x) fupfa(x)

where P,, denotes a multivariate noise distribution.

Although WGANS can alleviate the vanishing gradient issue, the
majority of GANSs’ training instabilities can still occur, making
WGANS less flexible and transferable between different datasets or
domain-specific tasks. CscGAN uses a projection-based condition-
ing (Miyato and Koyama, 2018) which adds an inner product of
class labels (cell types) at the discriminator’s output. Based on

220z ABIN 01 UO Josn Juapisaid 8y} Jo 80O - Aleiqr [enbiq eluwopieD Aq £G6LEGO/YE L Z/8/8E/Q10IME/SOIEULIOJUIONG/ W00 dNO"DIWSPEdE//:SARY Wolj papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac095#supplementary-data

2196

A.A.Heydari et al.

instruction given by the authors in the implementation, scGAN and
¢scGAN must be trained separately; however, our model learns to
generate specific cell populations (cell-types) or collective cell clus-
ters with one training.

2.3 Variational autoencoders

VAEs (Kingma and Welling, 2013) are generative models that joint-
ly learn deep latent-variable and inference models. Specifically,
VAEs are autoencoders that use variational inference to reconstruct
the original data, having the ability to generate new data that is
‘similar’ to those already in a dataset x. VAEs assume that observed
data and latent representation are jointly distributed as
Py(x,z) = Py(x|z)P(z). In deep learning, the log-likelihood Py(x|z) is
modeled through non-linear transformations, thus making the pos-

Py(x[2)Pp(2)

Py intractable. Due

terior probability distribution, Py(z|x) =
to the intractability of maximizing the expected log-likelihood of
observed data over 0, E,[log [ Py(x,2)dz], the goal is to instead
maximize the evidence lower bound (ELBO):

P P
Eo,u ) {log <H§C:))(z()z)>} < log Py(x),

ELBO(0.)

where Q,(x)(2) is an auxiliary variational distribution (with parame-
ters 7(x)) that tries to approximate the true posterior Py(z|x).

The main issue with VAEs arises when the training procedure
falls into the trivial local optimum of the ELBO objective; that is,
when the variational posterior and the true posterior closely match
the prior (or collapse to the prior). This phenomenon often causes
issues with data generation since the generative model ignores a sub-
set of latent variables that may have meaningful latent features for
inputs (He et al., 2019). In our experiments, we did not encounter
posterior collapse. However, in our package, we provide an option
for modifying objective function weights adaptively using SoftAdapt
(Heydari et al., 2019). VAEs have also been criticized for generating
samples that adhere to an average of the data points, as opposed to
sharp samples that GANs produce because of adversarial training.
This issue has often been addressed by defining an adversarial train-
ing between the encoder and the decoder, as done in introspective
VAE:s (IntroVAEs) (Huang et al., 2018) which we use in our frame-
work [Here, we follow Huang et al. (2018) and categorize
IntroVAEs as a type of VAE.]. IntroVAEs have been used mostly in
computer vision, which have performed comparably to their GAN
counterparts, in applications such as synthetic image generation
(Huang et al., 2018) and single-image super-resolution (Heydari and
Mehmood, 2020). We describe the formulations of IntroVAEs in
Section 3.

VAESs’ natural ability to produce both a generative and an infer-
ence model presents them as an ideal candidate for generation and
augmentation of omics data. In this work, we demonstrate the abil-
ity of our deep VAE-based model for producing realistic in silico
scRNAseq data. Our model, ACTIVA, performs comparably to the
state-of-the-art GAN models, scGAN and cscGAN, and trains sig-
nificantly faster and maintains stability. Moreover, ACTIVA learns
to generate specific cell-types and holistic population data in one
training (unlike scGAN and cscGAN that train separately). On the
same datasets and in the same environment, our model trains at least
six times faster than scGAN. Moreover, ACTIVA can produce 100K
samples in less than 2 s on a single NVIDIA Tesla V100, and 87s on
a common research laptop. ACTIVA provides researchers with a
fast, flexible and reliable deep learning model for augmenting and
enlarging existing datasets, improving downstream analyses robust-
ness and reproducibility.

3 Methods and approach

Our proposed model, ACTIVA, consists of three main networks,
with a self-evaluating VAE as its core and a cell-type classifier as its

conditioner. In this section, we formulate the objective functions of
our model and describe the training procedure.

3.1 Encoder network
The ACTIVA encoder network, Enc, serves two purposes: (i) map-
ping (encoding) scRNAseq data into an approximate posterior to
match the assumed prior, and (ii) acting as a discriminator, judging
the quality of the generated samples against training data.
Therefore, Enc’s objective function is designed to train as an adver-
sary of the generator network, resulting in realistic data generation.
To approximate the prior distribution, KL divergence is used as a
regularization term (denoted as Lrgg) which regularizes the encoder
by forcing the approximate posterior, Qg4(z|x), to match the prior,
P(z) (following notation from Section 1). We assume a center iso-
tropic multivariate Gaussian prior, since it can be reparameterized
in a differentiable way into arbitrary multivariate Gaussian random
variables, thus simplifying the inference process (Lopez et al., 2018).
Although Py(x|z) can be parameterized in many ways, we choose an
isotropic multivariate Gaussian for simplicity. However, choosing a
scRNAseq-specific counts distribution as the conditional likelihood
(e.g. zero-inflated binomials) may lead to some improvements in the
generation process (Lopez et al., 2018).

The posterior probability is Qg(z|x) = N (z; i, 6%), where u and
o are the mean and standard deviation, respectively, computed from
the outputs of Enc. As in traditional VAEs, z is sampled from
N(0,1) which will be used as an input to the generator network (de-
coder in VAEs). Due to the stochasticity of z, gradient-based back-
propagation becomes difficult, but using the reparameterization
trick in Kingma and Welling (2013) makes this operation tractable.
That is, define 2 = p+ ¢ ® € with € ~ N(0, ) which passes the sto-
chasticity of z onto e. Now given N cells and a latent vector in a D-
dimensional space (i.e. z€RP), we can compute the KL
regularization:

LN D
Lrec = 3.2 3 (1 +log(rrl-2/~) +,uf/- - ai) (2)

i

Similar to traditional VAEs, the encoder network aims at mini-
mizing the difference between reconstructed and training cells (real
data). We denote the expected negative reconstruction error as Lag,
defined as:

Lag = Egx [log Po(x]z)]. (3)

Following Huang er al. (2018), we choose the reconstruction
loss Lag to be the mean squared error between the training cells and
reconstructed cells (more details in Supplementary Material SA.3).

As the last part of the network, we introduce a cell-type loss
component that encourages x, to have the same cell type as x. That
is, given a classifying network C, we want to ensure that the identi-
fied type of reconstructed sample C(x,) = ¢, is the same as real cell
C(x) = t; we denote this as L shown in Equation (6). The explicit
formulation and the classifying network are described in Section
3.3. During the development of ACTIVA, Zheng et al. (2020) intro-
duced a similar conditioning of IntroVAE framework for image syn-
thesis, which provided significant improvements in generating new
images. Given our model’s objectives, the loss function for Enc,
LEn:, must encode training data and self-evaluate newly generated
cells from the generator network Gen:

Line = Lreg(2) + o1 2, o 11— Lrec(zs)]t

+o (LAE(x7x,) + Ler(t, t.,)), )
where subscripts 7 and g denote reconstructed and generated cells
from Gen, respectively. Note that, reconstructed cells x, correspond
directly to training data x, but generated cells x, are newly produced
cells. In Equation (4), []" = max(0,-), and #m € R* determines our
network’s adversarial training, as described in Section 3.4.
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3.2 Generator network

Generator network, Gen, aims at learning two tasks. First, Gen
must learn a mapping of encoded training data, z € R, from the
posterior, Q,(z]x), back to the original feature space, RM. In the
ideal mapping, reconstructed samples x, would match training data
x perfectly. To encourage learning of this objective, we minimize the
mean squared error between x and x,, as shown in Equation (3), and
force cell-types of reconstructed samples to match with original
cells, as shown in Equation (6). The second task of Gen is to gener-
ate realistic new samples from a random noise vector z, € RP ~
P(z) (sampled from the prior P(z)) that ‘fool’ the encoder network
Enc. That is, after producing new synthetic samples x,, we calculate
Enc(x,) = z4 to judge the quality of generated cells. Given these two
objectives, the generator’s objective function is defined as

Loon =Y Liec (Enc(x)) +oa(La(x.x,) + Ler(t. ). (5)

s=r.g

3.3 Automated cell-type conditioning

Minimizing L, alone does not enforce our model to generate more
cells from the rare populations, and for this reason, we introduce a
cell-type matching objective. The goal of this objective is to encour-
age the generator to generate cells that are classified as the same
type as the input data. More explicitly, the loss component Lcr will
penalize the network if reconstructed cell-types are different from
the training data. Given a trained classifier C(-), we can express this
objective as

1 , 1 )
LCTZQZH%DHF ZEZHC(x) = Clxr) |- (6)
i=1 i=1

For ACTIVA’s conditioning, we use an automated cell-type iden-
tification introduced by Ma and Pellegrini (2020). This network,
called ACTINN, uses all genes to capture features, and focuses on
the signals associated with cell variance. We chose ACTINN be-
cause of its accurate classification and efficiency in training com-
pared to other existing models (Abdelaal et al., 2019); we provide
an overview of ACTINN in Supplementary Material SH.1. Our
model is also flexible to use any classifier as a conditioner, as long as
an explicit loss could be computed between the predicted labels and
the true labels (This is true for most classifiers.). With ACTINN as
the classifier, ¢ and ¢, are logits (output layer) for x and x, , respect-
ively. Our implementation of ACTINN is available as a stand-alone
package at https://github.com/SindiLab/ACTINN-PyTorch.

3.4 Adversarial training

The generator produces two types of synthetic cells: reconstructed
cells x, from x and newly generated cells x, from a noise vector.
While both the Enc and Gen attempt to minimize Lo and Lcr, the
encoder tries to minimize Lreg(z) and maximize Lre(z.g) to be
greater than or equal to 7. However, the generator tries to minimize
LreG(2rg) to minimize its objective function. This is the min-max
game played by Enc and Gen. Note that, choosing 7 is an important
step for the network’s adversarial training; we describe the strategies
for the choice of 7 in Supplementary Material SG.

4 Datasets and preprocessing

We use the pipeline provided by Marouf et al. (2020) to pre-process
the data. First, we removed genes that were expressed in less than 3
cells and cells that expressed less than 10 genes. Next, cells were
normalized by total unique molecular identifiers (UMI) counts and
scaled to 20 000 reads per cell. Then, we selected a ‘test set’ (ap-
proximately 10% of each dataset). Testing samples were randomly
chosen considering cell ratios in each cluster (‘balanced split’). Links
to raw and pre-processed datasets are available via the link provided
in abstract. We describe the post-processing steps in Supplementary
Material SB. Similar to Marouf et al. (2020), we use the following
datasets:

68K PBMC: To compare our results with the current state-of-
the-art deep learning model, scGAN/cscGAN, we trained and eval-
uated our model on a dataset containing 68 579 peripheral blood
mononuclear cells (PBMCs) from a healthy donor (68K PBMC)
(Zheng et al., 2017). 68K PBMC is an ideal dataset for evaluating
generative models due to the distinct cell populations, data complex-
ity and size (Marouf et al., 2020). After pre-processing, the data
contained 17 789 genes. We then performed a balanced split on this
data, which resulted in 6991 testing and 61 588 training cells.

Brain Small: This dataset contains 20,000 random samples (out
of approximately 1.3 million cells) from the cortex, hippocampus
and the subventricular zone of two embryonic day 18 mice.
Compared to 68K PBMC, this dataset has fewer cells, and it varies
in complexity and organism. After pre-processing, the data con-
tained 17 970 genes, which we then balanced split to 1997 test cells
and 18 003 training cells.

NeuroCOVID: This dataset (Heming et al., 2021) contains
scRNAseq data of immune cells from the cerebrospinal fluid (CSF)
of Neuro-COVID patients and patients with non-inflammatory and
autoimmune neurological diseases or with viral encephalitis. Our
pre-processing resulted in data of dimensions 85 414 cells x 22 824
genes, which we split to testing and training subsets as mentioned
above.

5 Results

Assessing generative model quality is notoriously difficult and still
remains an open research area (Lucic et al., 2018; Theis et al.,
2016). Here, we apply some qualitative and quantitative metrics for
evaluating synthetic scRNAseq, as used in Marouf et al. (2020). For
qualitative metrics, we compare the manifold of generated and real
cells using UMAP. For quantitative metrics, we train a classifier to
distinguish between real and synthetic cells. To study ACTIVA’s
performance, we compare our results to Marouf et al. alone since
their models outperform other state-of-the-art generative models
such as Splatter (Zappia et al., 2017) and SUGAR (Lindenbaum
et al., 2018). Training and inference time comparisons are shown in
Supplementary Material. As we show, ACTIVA generates cells that
better resemble the real data, and it outperforms competing methods
on improving classification of rare cell populations with data aug-
mentation. ACTIVA is one model that can be served as an alterna-
tive to both scGAN and cscGAN, and it trains much faster than
both GAN-based models (and it only needs one training).

Table 1. Average training time with sample SD (in seconds), of five iterations for the generative models

Brain small

68K PBMC

ACTIVA scGAN cscGAN

ACTIVA scGAN cscGAN

Average 8074.91+1359 142238.10=705.18 145855.98 =335.71

(~2.2h) (~39.5h) (~40.5h)

26 025.95 £127.68 164 839.14 = 503.73 176 014.49 = 192.82
(~7.2h) (~45.7h) (~48.9h)

Note: ACTIVA (which has the capabilities of scGAN and cscGAN combined) trains much faster than both scGAN and cscGAN. Individual run-times for each

iteration are provided in Supplementary Material SD.
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Fig. 1. Overview of our deep generative model, ACTIVA and its training flow. Our model consists of three networks: (i) an encoder that also acts as a discriminator (denoted
by Enc), (ii) a decoder which is used as the generative network for producing new synthetic data (denoted by Gen), and (iii) an automated cell-type classification network
[denoted by ACTINN as in Ma and Pellegrini (2020)]. ACTIVA is a single-stream adversarial (Introspective) Conditional VAE without the need for a training schedule (unlike
most GANS). Due to this, our model has the training stability and efficiency of VAEs while producing realistic samples comparable to GANs. We describe each component of

our model and the objective functions in Section 3.

UMAP 2

Brain Small [Test Set) SEGAN

.

LT AT

UMAP 2

Fig. 3. ACTIVA generates high-quality cells that resemble both the cluster and gene expressions present in the training data. Top row: UMAP plot of ACTIVA generated cells
compared with test set and scGAN generated cells, colored by clusters for 68K PBMC (A) and Brain Small (B). Bottom row: same UMAP plots as top row, colored by selected
marker gene expressions. (C) corresponds the log expression for CD79A marker gene (for 68K PBMC) and (D) illustrates the same for Hmgb2 (for Brain Small). ACTIVA’s
cell-type conditioning encourages to generate more cells per cluster rather than lose clusters, meaning that ACTIVA will generate more cells from the rare populations (e.g.

cluster 7 of PBMC and cluster 6 of Brain Small).

5.1 ACTIVA trains faster than GAN-based models

To measure the efficiency of ACTIVA in comparison to the state-of-
the-art GAN-based models (scGAN and cscGAN), we trained all
three models in the exact same computational environment on a sin-
gle GPU for each dataset (we describe the hardware used in
Supplementary Material SC). Note that since scGAN and cscGAN
train separately, we repeated this process five times to account for
any variability, and then computed the average training time and
standard deviation. As shown in Table 1, ACTIVA trains orders of
magnitude faster for both datasets (approximately 17 times faster
on Brain Small and 6 times faster on 68K PBMC and NeuroCOVID)
and only needs one training to produce cells from all populations
(scGAN’s aim) and specific cell populations (cscGAN’s purpose)
(Fig. 1).

5.2 ACTIVA generates realistic cells

To qualitatively evaluate the generated cells, we analyzed the 2D
UMARP representation of the test set (real data) and i silico gener-
ated cells (same size as the test set). We found that the distribution
and clusters match closely between ACTIVA generated cells and real

cells (Fig. 3A and B and Supplementary Fig. S13). We also analyzed
t-SNE embeddings of the real cells and synthetic cells generated by
ACTIVA, which showed similar results. These qualitative assess-
ments demonstrated that ACTIVA learns the underlying manifold of
real data, the main goal of generative models. A key feature of
ACTIVA is the cell-type conditioning which encourages the network
to produce cells from all clusters. This means that generating cells
with ACTIVA results in gaining cells within clusters rather than los-
ing clusters. Due to this design choice, ACTIVA can generate more
cells from the rare populations than scGAN, as shown in Figure 3A
and B. ACTIVA’s flexible framework allows for adjusting the
strength of the cell-type conditioning (which is a parameter in our
model) for the cases where the exact data representation is more
desirable.

Next, we quantitatively assessed the quality of the generated
cells by training a random forest (RF) classifier [same as in Marouf
et al. (2020)] to distinguish between real and generated cells. The
goal here is to determine how ‘realistic’ ACTIVA generated cells are
compared with real cells. Ideally, the classifier will not differentiate
between the synthetic and real cells, thus resulting in a receiver oper-
ating characteristic (ROC) curve that is the same as randomly
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Fig. 2. Classifying synthetic data (ACTIVA and scGAN) from real data (test set) for Brain Small (left plot) and 68K PBMC (right plot). The metrics are reported using a random
forest classifier (detailed in Section 5.2) with fivefold cross-validation (marked by pastel colors in each plot). An area under the curve (AUC) of 0.5 (chance) is the ideal scenario

(red dash line), and an AUC closer to this value is better.

guessing (0.5 AUC). The RF classifier consists of 1000 trees with the
Gini impurity criterion and the square root of the number of genes
as the maximum number of features used. Maximum depth is set to
either all leaves containing less than two samples or until all leaves
are pure. We generated cells using ACTIVA and scGAN and per-
formed a fivefold cross-validation on synthetic and real cells (test).
ACTIVA performs better than scGAN with AUC scores closer to 0.5
for both datasets (Fig. 2). For Brain Small test set, the mean
ACTIVA AUC is 0.62 *= 0.02 compared with scGAN’s 0.74 = 0.01.
For 68K PBMC, the mean AUC is 0.68 +0.01 for ACTIVA and
0.73 £ 0.01 for scGAN.

5.3 ACTIVA generates similar gene expression profiles
To generate cells that represent all clusters, the marker gene distri-
bution in the generated data should roughly match the gene distribu-
tion in real cells. We used UMAP representations of ACTIVA,
scGAN and the test set, and colored them based on the expression
levels of marker genes. Figure 3C and D shows examples of log-gene
expression for marker genes from each datasets (additional exam-
ples in Supplementary Material SJ). In our qualitative assessment,
ACTIVA generated cells following the real gene expression closely.
For a quantitative assessment, we calculated the Pearson correlation
of top five differentially expressed genes from each cluster for both
ACTIVA generated cells and real data. As shown in Figure 4, the
pairwise correlation of genes from the ACTIVA generated cells
closely match those from the real data for both datasets. To quantify
the overall gene-gene correlation for synthetic data, we define the
following metric: given a correlation matrix of generated samples, G
and a correlation matrix of the real data (test set), R, we compute
the 1-norm of the difference in correlations to measure the discrep-
ancy between the correlations.

CD(G,R) = &“?é‘n; |Gij — Ryl (7)

We refer to this metric as Correlation Discrepancy (CD) for sim-
plicity. (In the ideal case, CD(G, R) = 0, therefore values closer to
zero indicate better performance.) Our calculations show that for
68K PBMC, ACTIVA has a CD score of 1.5816, as opposed to
scGAN’s 2.2037, and for Brain Small ACTIVA outperforms scGAN
with a CD score of 4.6852 compared with 5.5937. These values fur-
ther quantify that generated cells from ACTIVA better preserve the
gene—gene correlation present in the real data.

In addition, we plotted marker gene distribution in all cells
against real cells. Supplementary Figure S12 illustrates the distribu-
tion of five marker genes from cluster 1 (LTB, LDHB, RPL11,
RPL32, RPL13) and cluster 2 (CCLS5, NKG7, GZMA, CST7,
CTSW). We also investigated known marker genes for specific cell
populations, such as for B-cells in PBMC data, finding that ACTIVA
generated cells expressed these markers (CD79A, CD19 and
MS4A1) in the appropriate clusters (Fig. 3C and other figures not
shown here) similar to real data. Following Marouf et al., we calcu-
lated the maximum mean discrepancy (MMD) between the real data

Table 2. MMD values for ACTIVA, scGAN and positive control
(training set) compared with the test set

Brain small 68K PBMC

Training set ACTIVA scGAN Training set ACTIVA scGAN

MMD  0.0619 0.7715 0.9686  0.0539 0.7952  0.9047

Note: ACTIVA outperforms the scGAN for both datasets, since it has a
lower MMD score.

distribution and the generated ones using ACTIVA and scGAN.
Simply stated, MMD is a distance metric based on embedding prob-
abilities in a reproducing kernel Hilbert space (Gretton et al., 2012),
and since MMD is a distance metric, a lower value of MMD be-
tween two distributions indicates the distribution are closer to one
another. For consistency, we chose the same kernels as Marouf et al.
and calculated MMD on the first 50 principal components. As
shown in Table 2, ACTIVA had a lower MMD score than scGAN,
demonstrating an improvement in the quality of the generated cells
compared to scGAN.

Based on qualitative and quantitative evaluations of our model,
we conclude that ACTIVA has learned the underlying marker gene
distribution of real data, as desired. However, we suspect that
assuming a different prior in model formulation (e.g. Zero-Inflated
Negative Binomial) could further improve our model’s learning of
real data.

5.4 ACTIVA generates specific cell-types on demand
Since we minimize a cell-type identification loss in the training ob-
jective, ACTIVA is encouraged to produce cells that are classified
correctly. Therefore, the accuracy of the generated cell-types
depends on the classifier selected. In Supplementary Tables S6 and
S7, we show that ACTIVA’s classifier accurately distinguishes rare
cell-types, achieving an F1 score of 0.89 when trained with only 1%
sub-population in the training cells. ACTIVA generates specific cell-
types from the manifold it has learned, which then filters through
the identifier network to produce specific sub-populations. To quan-
tify the quality of the generated samples, we trained an RF classifier
(as in Section 5.2) to distinguish between generated and real sub-
populations in the data. Figure 5 illustrates ACTIVA’s performance
against cscGAN for the Brain Small dataset, with ACTIVA achiev-
ing better AUC scores. Similar results were obtained for 68K PBMC
sub-populations, although the AUC gap between cscGAN and
ACTIVA were narrower.

5.5 ACTIVA improves classification of rare cells

A main goal of designing generative models is to augment sparse
datasets with additional data that can improve downstream analy-
ses. Given the performance of our model and conditioner, we
hypothesized that classifying rare cells in a dataset can be improved
through augmentation with ACTIVA, i.e. using synthetic rare cells
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Fig. 4. Correlation of top five differentially expressed genes in each cluster for 68K PBMC (A) and Brain Small (B). Lower triangular of matrices indicate correlation of gener-
ated data, and upper triangular show correlation of real data (same in both plots in panels A and B). For 68K PBMC (A), we investigated pairwise correlation for a total of 55
genes and for Brain Small (B), we calculated the Pearson correlation for 40 genes. In the ideal case, the correlation plots should be symmetric, and the Correlation Discrepancy
(CD), defined in Equation (7), should be zero. The gene correlations in ACTIVA match the real data more closely than scGAN, as shown in the figures and the CD score com-
puted; ACTIVA has a CD score of 1.5816 and 4.6852 for 68K PBMC and Brain Small, respectively, compared with scGAN’s 2.2037 and 5.5937.
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Fig. 5. RF classifier distinguishes two real sub-populations from synthetic data for Brain Small. ACTIVA outperforms cscGAN in producing realistic samples on this dataset,

since the ROC curve is closer to chance (red dashed line).

Not Augmented (Training Only) . Augmented with ACTIVA m Augmanted with cscGAN

1.0 g .

i g g

v 06 :.
11
.|

50% 10% 5% 1% 0.5%
Downsampled Data

Fig. 6. Augmentation with ACTIVA improves classification of rare populations.
Mean F1 scores of RF classifier for training data (with no augmentation), shown in
blue, and training data with augmentation, shown in red and purple. Error bars in-
dicate the range for five different random seeds for sub-sampling cluster 2 cells.

alongside real data. We next directly compared against cscGAN to
demonstrate the feasibility of augmenting rare population to im-
prove classification. We utilized the data-augmentation experiment
presented by Marouf et al. (2020). That is, we chose the cells in clus-
ter 2 of 68K PBMC, and downsampled those cells to 10%, 5%, 1%
and 0.5% of the actual cluster size, while keeping the populations
fixed. The workflow of the downsampling and exact sizes is shown
in Supplementary Figure S8. We then trained ACTIVA on the down-
sampled subsets, and generated 1500 synthetic cluster 2 cells to aug-
ment the data (Marouf et al. generated 5000 cells). After that, we
used an RF classifier to identify cluster 2 cells versus all other cells.
This classification was done on (i) downsampled cells without aug-
mentation and (ii) downsampled cells with ACTIVA augmentation.

F1 scores are measured on a held-out test set (10% of the total real
cluster 2 cells), shown in Figure 6. The classifier is identical to the
one described in Section 5.2 with the addition of accounting cluster-
size imbalance, as it was done by Marouf ef al., since RF classifiers
are sensitive to unbalanced classes (Zadrozny et al., 2003). Most
notably, our results show an improvement of 0.4526 in F1 score
(from 0.4736 to 0.9262) when augmenting 0.5% of real cells, and
an improvement of 0.2568 (from 0.6829 to 0.9397) on the 1% data-
set. ACTIVA also outperforms augmentation with cscGAN for the
rarest case, since cscGAN achieves an F1 score of 0.8774 as opposed
to ACTIVA’s 0.9262. These results indicate a promising and power-
ful application of ACTIVA in rare cell-type identification and
classification.

6 Conclusions and discussion

In this manuscript, we propose a deep generative model for generat-
ing realistic scRNAseq data. Our model, ACTIVA, consists of an
automatic cell-type identification network, coupled with IntroVAE
that aims to learn the distribution of the original data and the exist-
ing sub-populations. Due to the architectural choices and single-
stream training, ACTIVA trains orders of magnitude faster than the
state-of-the-art GAN-based model, and produces samples that are
comparably in quality. ACTIVA can be easily trained on different
datasets to either enlarge the entire dataset (generate samples from
all clusters) or augment specific rare populations.

ACTIVA can generate hundreds of thousands of cells in only a
few seconds (on a GPU), which enables benchmarking of new
scRNAseq tools” accuracy and scalability. We showed that, for these
datasets, using ACTIVA for augmenting rare populations improves
downstream classification by more than 40% in the rarest case of
real cells used (0.5% of the training samples). We believe that
ACTIVA learns the underlying higher-dimensional manifold of the
scRNAseq data, even where there are few cells available. The delib-
erate architectural choices of ACTIVA provide insights as to why
this learning occurs. As Marouf et al. (2020) also noted, the fully
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connected layers of our three networks share information learned
from all other populations. In fact, the only cluster-specific parame-
ters are the ones learned in the batch normalization layer. This is
also shown with the accuracy of the conditioner network when
trained on rare populations. However, if the type-identifying net-
work does not classify sub-populations accurately, this can directly
affect the performance of the generator and inference model due to
the conditioning. We keep this fact in mind and therefore allow for
the flexibility of adding any classifier to our existing architecture.
Given our architecture, we hypothesize that the conditioner network
could be used directly as the encoder, or its learned parameters
could be transferred to the encoder network, which we plan to ex-
plore in the future.

Lopez et al. (2018) demonstrate that the latent manifold of
VAEs can also be useful for analyses such as clustering or denoising.
Deep investigation of the learned manifold of ACTIVA can further
improve the interpretability of our model, or yield new research
questions to explore. We also hypothesize that assuming a different
prior such as a Zero Inflated Negative Binomial or a Poisson distri-
bution could further improve the quality of generated data. Our
experiments show that ACTIVA learns to generate high-quality sam-
ples on complex datasets from different species. ACTIVA potentially
reduces the need for human and animal sample sizes and sequencing
depth in studies, saving costs and time, and improving robustness of
scRNAseq research with smaller datasets. Furthermore, ACTIVA
would benefit studies where large or diverse patient sample sizes are
not available, such rare and emerging disease.
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