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We expand upon the notion of equivariant log concavity, and make equivariant log concavity conjectures for
Orlik—Solomon algebras of matroids, Cordovil algebras of oriented matroids, and Orlik—Terao algebras of hyperplane
arrangements. In the case of the Coxeter arrangement for the Lie algebra sl,,, we exploit the theory of representation
stability to give computer assisted proofs of these conjectures in low degree.

1 Introduction

For any positive integer n and any topological space X, let Conf(n, X) be the space of ordered configurations of n
distinct points in X. This space is equipped with an action of the symmetric group &,,, which acts by permuting
the points. If G is a group acting on X, then the action of &,, descends to an action on Conf(n, X)/G.

Our main objects of study will be the following finite dimensional graded representations of &,,:

o A, := H*(Conf(n,C); Q). This is also known as the Orlik-Solomon algebra of the braid matroid.

e B, := H*(Conf(n,C)/C*;Q), where C* acts on C by multiplication. This is also known as the reduced
Orlik—Solomon algebra of the braid matroid.

e (, := H**(Conf(n,R3); Q).* This is also known as the Cordovil algebra of the oriented braid matroid.

e D, := H*(Conf(n, SUsy)/SUs;Q), where SUs, acts on itself by left translation.

Remark 1.1. Identifying R® with the complement of the identity in SU, induces a homeomorphism
Conf(n — 1,R3) = Conf(n, SUy)/SUs, which is equivariant with respect to the action of the group &,,_; C &,,.
It follows that the restriction of D,, to &,,_; is isomorphic to C,,_1. O]

Remark 1.2. For any d > 2, the cohomology of Conf(n, R?) vanishes in all degrees that are not multiples of
d — 1, and we have G,-equivariant algebra isomorphisms

A, if dis even

H*D*(Conf(n, R); Q) =
(Confn B D=0 ¢ it dis oad.

Thus we would not gain anything new by considering configuration spaces in Euclidean spaces of higher

dimension. This is due originally to Cohen [CLM76]; see [dS01, Corollary 5.6] for a more modern treatment. [

There is one more graded representation that we will consider, whose definition is more technical. Let X,
denote the complex affine hypertoric variety associated with the root system of the Lie algebra sl,,; see [MPY17,
Section 3.1] for an explicit description. The variety X,, comes equipped with an action of the symmetric group
G, and we consider the induced action on intersection cohomology:

o M, := IH?**(X,;Q). This can also be described as the quotient of the Orlik-Terao algebra of the s,
Coxeter arrangement by its canonical linear system of parameters.
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*This cohomology ring vanishes in odd degree, so we set C?, equal to the cohomology in degree 2i. We do the same in the definitions
of D,, and M,, below.
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Remark 1.3. For a more concrete perspective, we give explicit presentations of the rings A,,, B, C,, D,, and
M, in the appendix. O

The following conjecture appeared in [MPY17, Conjecture 2.10].

Conjecture 1.4. For all n, there exists an isomorphism of graded &,,-representations D,, = M,,. O
In this paper, we prove that Conjecture 1.4 holds in low degree.

Theorem 1.5. For all i < 7 and all n, there is an isomorphism of &,,-representations Df = M. O

Let V be a graded representation of a finite group I'. We say that V is strongly equivariantly log concave
in degree m if, for all i < j <k <l with j+k=i+1=m, V' ® V! is isomorphic to a subrepresentation of
V7 @ VE. This may be rewritten as the following sequence of inclusions:

ym/2 g ym/2 if m is even
0 m 1 m—1 2 m—2
VieVmcV eV cVieV C'”C{V(m_l)m@‘/(m“)ﬂ £ m s odd,

We say that V is strongly equivariantly log concave if it is strongly equivariantly log concave in all degrees.

Conjecture 1.6. For all n, the graded &,,-representations A,,, By, C,, D,,, and M,, are all strongly equivariantly
log concave. O

The conjecture for A,, first appeared in [GPY17, Conjecture 5.3]. In this paper, we prove that Conjecture
1.6 holds in low degree.

Theorem 1.7. For all n, the graded &,,-representations A,,, B,, C,, and D, are all strongly equivariantly
log concave in degrees < 14. The graded &,,-representation M,, is strongly equivariantly log concave in degrees
<8. O

Remark 1.8. Conjecture 1.6 generalizes to equivariant log concavity statements about matroids, oriented
matroids, and hyperplane arrangements with symmetries, as we explain in Section 2. If we consider the trivial
symmetry group, all of these statements boil down to the log concavity results of Adiprasito-Huh—Katz for
(reduced) characteristic polynomials of matroids [AHK18] and Ardila—Denham—Huh for h-polynomials of broken-
circuit complexes [ADH]. Conjecture 1.6 is what you get by considering the case of the matroid, oriented matroid,
or hyperplane arrangement associated with the roots of the Lie algebra sl,,, which are acted on by the symmetric
group S,,. O

Our approach to Theorem 1.5 is to use the theory of representation stability, due to Church—Ellenberg—Farb
[CEF15]. Loosely speaking, if V;, is a representation of &,, for all n, there is a notion of what it means for the
sequence V to stabilize at d. If this happens, then for every n > d, V,, ;1 can be computed algorithmically from
V,. We show that D' and M?® each stabilize at 3i, which means that we can prove Theorem 1.5 by checking
that D,, & M, for all n < 21. This type of argument is in some sense the primary motivation for the concept
of representation stability, though we are unaware of another situation in which the theory has been applied in
such a direct way to prove that two infinite sequences of representations of symmetric groups are isomorphic.

Our approach to Theorem 1.7 is similar, but with an additional subtlety. For this theorem, we need to
understand when stability occurs, not just for the sequences B* and D?, but also for the sequences B’ ® B* and
D’ ® D¥. (We show that the statements about A, C, and M follow from the statements about B and D.) This
requires a general statement about the stability range for the tensor product of two stable sequences (Theorem
3.3), the proof of which relies on a powerful result about Kronecker coefficients [BOR11] that has not previously
been incorporated into the literature on representation stability.

Ultimately, both theorems are proved by using representation stability to reduce to a finite number of cases
that can be checked on a computer. We perform these checks using the software package SageMath [Sag21].

2 Equivariant log concavity

Recall that a sequence of non-negative integers ag, ay, . . . is called log concave if a? > a;_1a;41 for all i, and it is
called log concave with no internal zeros if there does not exist ¢ < j < k such that a; = 0 and a; # 0 # ay.
This latter condition is equivalent to the statement that, whenever ¢ < j <k <[ and j+ k =1+, we have

TIf T is the trivial group, this is equivalent to the statement that the sequence of dimensions of the graded pieces of V is log concave
with no internal zeros.
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a;a; < ajar. The notion of log concavity with no internal zeros has the advantage that it is preserved under
convolution. That is, if ag,a1,... and bg, b1, ... are both log concave with no internal zeros, then the same is
true for cg, cq, ..., where ¢ = agbr + a1bp_1 + - - - + apbp.

Let V be a graded representation of a finite group I'. We say that V is weakly equivariantly log
concave if, for all i, V7! ® Vi*! is isomorphic to a subrepresentation of V:® V?. We say that V is
strongly equivariantly log concave if, whenever i < j <k <l and j+k=1i+1, V'® V! is isomorphic to
a subrepresentation of V7 @ V¥, If T' is trivial, weak equivariant log concavity is equivalent to log concavity of
the sequence of dimensions, and strong equivariant log concavity is equivalent to log concavity with no internal
zeros of the sequence of dimensions. However, this is not the case when I' is nontrivial, as the following example
illustrates.

Example 2.1. Let I' = S5, let 7 denote the trivial representation of I', and let o denote the sign representation.
Define
T® o3 ifi=0or3
Vi= 1929092 ifi=1or2

0 otherwise.

Then V is weakly equivariantly log concave and has no internal zeros, but V° @ V3 =2 7910 ¢ 56 is not
isomorphic to a subrepresentation of V! ® V2 = 798 @ 698 50 V is not strongly equivariantly log concave. [

Example 2.2. Let V be as in Example 2.1, and let W be the graded representation with W% = W' = 7 and
Wt =0 for all i > 1. Then both V and W are weakly equivariantly log concave with no internal zeros, but
V @ W fails to satisfy the weak equivariant log concavity condition when i = 2. Hence the property of weak
equivariant log concavity with no internal zeros is not preserved under tensor product. O

The claim that strong equivariant log concavity is the “correct notion” in the equivariant setting is justified
by the following proposition, whose proof was communicated to us by David Speyer.

Proposition 2.3. If V and W are strongly equivariantly log concave representations of I', then so is V @ W.
More generally, if V' and W are both strongly equivariantly log concave in degrees < m (as defined in the
introduction), then so is V@ W. O

Proof. Let i < j <k <[ be given with j + k = ¢ + 1. We have

VewyeoVeWw) = Pvrew rovigwh
p,q
— @ Vit g Wise @ vh-ite g i
p.q

where the second line is obtained from the first by applying the affine transformation that takes (p,q) to
(j =14+ ¢,k — i+ p). Similarly, we have

VoW) e (Vew) Prvrewrevigw

D,q
@ Vi—lHa @ k=1 g YR—ite o 1yiP,

p,q

Working in the ring of virtual representations of I', consider the sum of the first two lines minus the sum of the
last two lines in the previous two sentences. We get

2((V®W)j QVeWk—(VeWw) e (V®W)l)

= D> VPeW/ P VigWh 14y VIt g Wit g Vi g e

P.q P.q
_ Z VPQWi P Vi W1 — Z Vi—lta g k=1 g yk—itp g i—p
p.q p,q

- ¥ (vp QVI_ Vit g V’H“’) ® (WH’ R WH 1 _Wi-1g WH’).

p,q
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By strong equivariant log concavity of V, VP ® V4 — VIi=i+4 @ VF=i+P is the class of an honest representation
if p > 7 — [+ ¢, and otherwise it is minus the class of an honest representation. Similarly, by strong equivariant
log concavity of W, W/=P @ W*=¢ — W!=9 @ WP is the class of an honest representation if j —p <[ — ¢, and
otherwise it is minus the class of an honest representation. Since p > j — [ + ¢ if and only if j —p <1 — ¢, the
tensor product

(Vp RVI— Vi—lta ® Vk—i+P) ® (Wj—P ® Wk—a _ Wyi-qa ® Wi—p)

is always equal to the class of an honest representation.
In general, any class in the virtual representation ring of I' that is equal to half the class of an honest
representation is itself the class of an honest representation. Thus

VoW oVeaW) —VeoWw) e (VeWw)

is the class of an honest representation, which is equivalent to the statement that (V @ W)' @ (V @ W)! is
isomorphic to a subrepresentation of (V @ W)/ @ (V @ W)k,

Finally, we need to check that, if j +k = m, then we only need to assume that V and W are strongly
equivariantly log concave in degrees < m. When we used strong equivariant log concavity of W, we used it
in degree m —p — ¢ < m. When we used strong equivariant log concavity of V, we used it in degree p + ¢q. If
p+ q > m, then we have either p > j or ¢ > k, and we also have either p >4 or ¢ > [. This implies that the
factor Wi—P @ Wk=9 — W!=9 @ Wi~P is equal to zero, and we can therefore ignore that term of the sum. n

Remark 2.4. The definition of strong equivariant log concavity can be generalized by replacing the virtual
representation ring of a finite group with any partially ordered ring. More precisely, there should be a subset
of “non-negative elements” (analogous to honest representations) that includes 0 and is closed under addition
and multiplication, and we define a sequence ag,ai,... to be strongly log concave if, whenever we have
1 <j<k<lwithj+k=1+1 ajar — a;a; is non-negative. Proposition 2.3 generalizes to say that, if our ring
has the added property that x is non-negative whenever 2x is non-negative, then the convolution of strongly log
concave sequences is again strongly log concave. O

We now make a number of conjectures that generalize Conjecture 1.6. Let M be a matroid of positive
rank, and let I be a group acting on the ground set of M preserving the collection of independent sets. The
Orlik—Solomon algebra A(M) is defined as a quotient of the exterior algebra with generators indexed by the
ground set of the matroid [0S80], and the reduced Orlik—Solomon algebra B(M) is the subalgebra of A(M)
generated by differences of the generators.

Conjecture 2.5. The Orlik—Solomon algebra A(M) and the reduced Orlik—Solomon algebra B(M) are strongly
equivariantly log concave I'-representations. O

Remark 2.6. When M is the braid matroid of rank n — 1, A(M) is isomorphic to A, and B(M) is isomorphic
to By. More generally, if M is the matroid associated with a finite set of hyperplanes in a complex vector space,
then A(M) is isomorphic to the cohomology ring of the complement of the hyperplanes and B(M) is isomorphic
to the cohomology ring of the projectivized complement [OS80]. O

Remark 2.7. We always have a canonical isomorphism [Yuz01, Proposition 2.18]
A(M) = B(M) ® &t], (1)

where Eg[t] is the exterior algebra on the single variable ¢. Hence strong equivariant log concavity of B(M)
implies strong equivariant log concavity of A(M) by Proposition 2.3. O

Remark 2.8. The dimensions of the graded pieces of A(M) and B(M) are the coefficients of the characteristic
polynomial and the reduced characteristic polynomial of M, respectively. Thus, when I' is the trivial group,
Conjecture 2.5 specializes to the main theorem of Adiprasito-Huh-Katz [AHK18, Theorem 9.9]. O

Remark 2.9. The conjecture that A(M) is strongly equivariantly log concave originally appeared in [GPY17,
Conjecture 5.3 and Remark 5.8], where it was proved for uniform matroids with T’ equal to the full group of
permutations of the ground set [GPY17, Proposition 5.7 and Remark 5.8]. The argument there can easily be
adapted to prove strong equivariant log concavity of B(M) for uniform matroids as well. O

Let M be an oriented matroid, and let I" be a group acting on the ground set of M preserving the collection
of signed circuits. The Cordovil algebra C (M) is defined as a quotient of the polynomial ring with generators
indexed by the elements of the ground set of M [Cor02].
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Conjecture 2.10. The Cordovil algebra C'(M) is a strongly equivariantly log concave I-representation. [

Remark 2.11. When M is the oriented braid matroid of rank n — 1, the Cordovil algebra C' (M) is isomorphic
to Cy,. More generally, if M is the oriented matroid associated with a finite set A of hyperplanes in a real vector
space V, then C'(M) is isomorphic to the cohomology of the space

VeR*\ | | HoR?,
HeA

with degrees halved; see [dS01, Corollary 5.6] or [Mos17, Example 5.8]. O

Remark 2.12. As with the Orlik—Solomon algebra, the dimensions of the graded pieces of the Cordovil algebra
are the coefficients of the characteristic polynomial of the underlying matroid [Cor02, Corollary 2.8]. This means
that, in the case where I' is the trivial group, Conjecture 2.10 follows from [AHK18]. O

Let A be a finite set of hyperplanes in a vector space V', equipped with a linear action of I" that preserves
the hyperplanes. The Orlik—Terao algebra OT(A) is defined as the subalgebra of rational functions on V'
generated by the reciprocals of the linear functions that vanish on the hyperplanes. This algebra is Cohen—
Macaulay, and it comes equipped with a canonical linear system of parameters [PS06, Proposition 7]. We denote
by M(A) the quotient of OT(A) by this linear system of parameters. The Artinian Orlik—Terao algebra
AOT'(A) is defined as the quotient of OT'(.A) by the squares of the generators.

Conjecture 2.13. The algebras M(A) and AOT(A) are strongly equivariantly log concave I-representations.
O

Remark 2.14. When A is the Coxeter arrangement associated with sl,,, M (A) = M,,. More generally, when V is
a vector space over the rational numbers, OT'(A) is isomorphic to the torus equivariant intersection cohomology
of the hypertoric variety associated with A, and M (A) is isomorphic to the ordinary intersection cohomology
(both with degrees halved) [BP09, Corollary 4.5]. We note that intersection cohomology does not usually come
equipped with a ring structure; the fact that it does in this case is a special feature of hypertoric varieties. [

Remark 2.15. Suppose that V' is a vector space over the real numbers and M is the oriented matroid associated
with A. The Artinian Orlik—Terao algebra AOT(A) and the Cordovil algebra C (M) are typically not isomorphic
as rings, but they are isomorphic as graded representations of I'.* If in addition A is unimodular, meaning that
the hyperplanes have rational slope with respect to some lattice and the subgroup generated by any subset
of the primitive normal vectors is saturated in that lattice, then there is a canonical graded ring isomorphism
AOT(A) =2 C(M). The Coxeter arrangement associated with s[,, has this property, thus its Artinian Orlik—Terao
algebra is isomorphic to C,,. O

Remark 2.16. As with the Orlik—Solomon algebra and the Cordovil algebra, the dimensions of the graded
pieces of the Artinian Orlik—Terao algebra are the coefficients of the characteristic polynomial of the associated
matroid. On the other hand, the dimensions of the graded pieces of M (.A) are the coefficients of the h-polynomial
of the broken circuit complex of the associated matroid [PS06, Proposition 7], which is known to form a log
concave sequence with no internal zeros by [ADH, Theorem 1.4]. Thus Conjecture 2.13 holds when I is trivial. [

3 Representation stability

Let C be a category. We will refer to a functor from C to Vecg as a C-module. The three main categories that
we will discuss are the category FB of finite sets with bijections, the category FI of finite sets with injections, and
the category FI of finite sets with partially defined injections. Given an FB-module P and a natural number
n, we obtain a representation P, := P([n]) of the symmetric group &,,, and P is determined up to isomorphism
by the collection {P, | n € N}.

Given a partition A, we write V) to denote the corresponding irreducible representation of &|y|. Given an
integer n > || + A1, we write

An] = (=M, A, N)

for the partition of n obtained from A by adding a new first part of size n — |A|. For any d, let
Ag = {)\ ‘ ‘)\| + A < d}

fWe thank Matt Douglass, G6tz Pfeiffer, Vic Reiner, and Gerhard Rohrle for informing us of this fact and outlining the proof.
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Given an FB-module P and a positive integer d, we say that P stabilizes at d if there exists a collection of
natural numbers {ry | A € Ay} such that, for all n > d, there is an isomorphism of 6”—1vepresentzautions§

~ or
e @i
AEA4

If an FB-module P stabilizes at d for some d, then we will say that P is stable. The following two lemmas are
straightforward.

Lemma 3.1. Suppose that P and @ are FB-modules. If any two of the modules P, @), and P ® @ stabilize at
d, so does the third. O

Lemma 3.2. Suppose that P and @ are FB-modules and that P and @ both stabilize at d.

1. If P, 2 Q, for all n < d, then P = Q.
2. If P, is isomorphic to a subrepresentation of (),, for all n < d, then P is isomorphic to a submodule of Q).

O

The following theorem, which is proved using slightly different language in [BOR11, Theorem 1.2], is not
at all straightforward.

Theorem 3.3. Suppose that P and @) are FB-modules such that P stabilizes at d and @ stabilizes at e. Then
P ® Q stabilizes at d + e. O

Proof. Write {r\ | A € Aq} and {s, | p € A.} for the multiplicities associated with P and Q. For all n >
max{d, e}, we have

POQn=Pa®Qu= @ Vit o Vi = @ (Vaw ® Viw) ™ -

AEAg A€Ag
HEAe HEAe

By [BORI11, Theorem 1.2], the FB-module that sends n to Vi) @ V) for n > max{|A| + A1, [p| + p1} and

to 0 otherwise stabilizes at |A| + A1 + |p| + p1 < d + e. Since this is true for all A € A; and p € A, the result
follows. u

There is a unique FI-module P(\) such that, for any FI-module @, we have

HomFI—mod(P()‘)ﬂ Q) - HomS‘M—mod(V)\a QM\)

An FI-module is called free if it is isomorphic to a direct sum of FI-modules of the form P(A). An FI-module
is called finitely generated if it is isomorphic to a quotient of a free FI-module with finitely many summands.

Remark 3.4. The central observation of Church—Ellenberg—Farb is that an FB-module stabilizes if and only
if the FB-module structure admits an extension to a finitely generated FI-module structure [CEF15, Theorem
1.13]. Since tensor products of finitely generated FI-modules are again finitely generated [CEF15, Proposition
2.3.6], this observation immediately implies that the tensor product of two stable FB-modules is again stable.
However, the statement that the point at which stabilization occurs is weakly sub-additive under tensor product
(Theorem 3.3) is not at all clear from the representation stability literature, and relies instead on the work
of Briand-Orellana—Rosas. This result is sharper, for example, than the one that one obtains from [KM18,
Proposition 2.23]. O

Remark 3.5. Theorem 3.3 is particularly interesting when P and @) are restrictions to FB of free FI-modules.
For all n < |)A|, we have
~ Sy ~
PNy 2 Indg)y g (Vo) = D Vi
HEAN

where Ay = {u | \i > p; > Niq1 for all i}, and S,,_ || acts trivially on V). Since |u| < [A] and py < Ay for all
€ Ay, with equality when p = A, this implies that P()) stabilizes sharply at |A| + Aq.

Church—Ellenberg—Farb prove that tensor products of free modules are free, and we can therefore write
[CEF15, Equation (17)]

P(\) @ P(p) = @ Pv)®%n.

§This terminology does not imply sharpness. Any FB-module that stabilizes at d also stabilizes at e for all e > d.
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Theorem 3.3 implies that
V| +v1 < AL+ A+ g + 1 (2)

whenever dY,, # 0.
When [A| = |u[ = [v|, dY, is the Kronecker coefficient that measures the multiplicity of V,, in Vy\ ® V,,, and
Equation (2) is trivial. When [A| + |u| = |v], df, is the Littlewood-Richardson coefficient that measures the

vl
IALXS) ]

skew tableaux. For general A, u, and v, we believe that Equation (2) was not previously known. O

multiplicity of V,, in Indg (VA X VM), and Equation (2) follows from the interpretation of d¥ . In terms of

Example 3.6. Let A® and C* be the FB-modules that take n to A and C?, respectively. Hersh and Reiner

[HR17, Theorem 1.1] prove that A’ stabilizes at 3i + 1 and C* stabilizes at 3i. Both extend to free FI-modules,
so this is equivalent to the statement that, for each summand P(\) of A (respectively C?), |A| + Ay is less than
or equal to 3i + 1 (respectively 31). O

Example 3.7. Let B’ be the FB-module that take n to Bj. Equation (1) says that A, = B, @ &glt], and
therefore A~ B* @ B*~!. Thus B’ stabilizes at 3i + 1 by an inductive argument involving Lemma 3.1 and
Example 3.6. O

Example 3.8. Let W, := W% @ W}, where, W0 = Vin) is the 1-dimensional trivial representation of &,
and W}l = Vin—1,1] is the standard representation. There exists an isomorphism of graded &,-representations
[MPY17, Proposition 2.5]

Cn =D, W,. (3)
Let D' be the FB-module that takes n to D!, and let W' be the FB-module that takes n to W} = Vin—1,1]-

Equation (3) gives C* = D' @ (D*~! @ W1). Note that W! stabilizes at 2, thus D? stabilizes at 3i by an inductive
argument involving Lemma 3.1, Theorem 3.3, and Example 3.6. [

The following proposition follows from the deep result [CEF15, Theorem 4.1.5], which provides an
equivalence between the category of FI#-modules and the category of FB-modules.

Proposition 3.9. Suppose that P is an FI#-module that stabilizes at d. Then any FI*-submodule or FI7-
quotient module of P also stabilizes at d. O

Proof. By [CEF15, Theorem 4.1.5], any FI#-module is free as an FI-module. Since P stabilizes at d, this means
that we have a collection of natural numbers {ry | A € A4} and an isomorphism

P P P

AEAg

Furthermore, the result [CEF15, Theorem 4.1.5] implies that any FI#-submodule or FI#-quotient module of P

is isomorphic to
@ rov
AEA,

for some collection of multiplicities {s) | A € Ag} with sy < ry for all A € A4. In particular, such a submodule
or quotient module stabilizes at d. u

Example 3.10. Let T}, = Q[z1,...,2,] be the polynomial ring in n variables, and let 7% be the FB-module
that takes n to 7. The FB-module structure on T% extends canonically to an FI#-module structure, where a
partially defined inclusion ¢ from [m] to [n] sends z; to z,;) if (i) is defined and to 0 otherwise. The module
T* is the free module associated with the partition [1], and therefore stabilizes at 2. Since 7% is an F I#—quotient
module of the tensor power (T1)®!, Theorem 3.3 and Proposition 3.9 together imply that T¢ stabilizes at 2i. [

Example 3.11. Let R, = Q[z1,...,2,]/(z1 + -+ + 2,), and let R’ be the FB-module that takes n to Rf.
Consider the polynomial ring Q[¢] with trivial S,-action, along with the S,-equivariant isomorphism T, =
R, ® Q[t] that sends z; to z; ® 1 + 1 ® ¢. This isomorphism shows that

T'= P R (4)

0<j<i

We claim that R? stabilizes at 2i. Indeed, if we assume that it holds for all j < 4, then it holds for ¢ by Lemma
3.1, Example 3.10, and Equation (4). O
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Example 3.12. Let OT,, be the Orlik—Terao algebra of the Coxeter arrangement associated with sl,. By
definition, this is the subalgebra of rational functions in the variables yi,...,y, generated by the functions
Tjp = ﬁ This ring admits a grading with degz;x = 1, and we let OT" be the FB-module that takes n to
OT}. One can see from the explicit presentation in Theorem A.5 that the FB-module structure on OT" extends
canonically to an FI#-module structure, where a partially defined inclusion ¢ from [m] to [n] sends zj to
To()ok) I ©(j) and (k) are both defined and to 0 otherwise. Remark 2.15 tells us that OT" = C'', which
stabilizes at 3 by Example 3.6. Since OT" is an FI”-quotient module of the tensor power (OT1)®% Theorem 3.3
and Proposition 3.9 together imply that OT? stabilizes at 3i. O

Example 3.13. Let M® be the FB-module that takes n to M. There exists an isomorphism of graded &,,-
representations [MPY17, Section 2.1]
OT, = R, ® M,, (5)

and therefore
OT" = @ R @ M.
k=i

Thus M? stabilizes at 37 by an inductive argument involving Lemma 3.1, Theorem 3.3, and Examples 3.11 and
3.12. O

Remark 3.14. The isomorphisms in Equations (3) and (5) are not canonical, nor are they isomorphisms of
algebras. Indeed, each one is proved by constructing a spectral sequence that degenerates because all cohomology
groups involved vanish in odd degrees. O

Remark 3.15. The FB-modules R and M*® do not extend canonically to FI-modules (rather, they extend
canonically to FI°’-modules). On the other hand, Remark 3.4 along with Examples 3.11 and 3.13 together
imply that both R® and M do admit (perhaps noncanonical) extensions to FI-modules. In the case of R, this
can be seen by identifying R,, with the subalgebra of T}, generated by the elements z; — z. In the case of M?,
it can be regarded as evidence for Conjecture 1.4. O

Remark 3.16. Conjecture 1.6 says that, foralli < j < k <[ with j + k =i+, A’ ® Al is isomorphic to a sub-
FB-module of A7 ® A*, or equivalently a quotient FB-module, since the category of FB-modules is semisimple.
A much stronger conjecture would be that A° ® Al is isomorphic to a quotient FI-module of A7 @ AF. This is
indeed true when 7 = 0, as the multiplication map

AT @ AR ATTR =2 A0 g AdtE

is surjective. However, the fact that we know of no natural map from A’ @ A* to A’ ® A" when i > 0 leads us
to doubt that this stronger conjecture holds. The same remark applies with A replaced by B, C, or D, or by M
in the category of FI°P-modules. O

4 Proofs

In this section, we describe our computer assisted proofs of Theorems 1.5 and 1.7. For computational
purposes, one can explicitly obtain A% and C¢ using [HR17, Equations (25) and (26), Theorem 2.7, and
Section 2.7], and then obtain B! and D using Equations (1) and (3). Our calculations of the representation
M, rely on the recursive formula [MPY17, Theorem 3.2], which is derived using a canonical stratification
of the hypertoric variety X,. This calculation is much more computationally intensive than the ones
used to compute A,, B,, C,, and D,, which is why the statement of Theorem 1.7 is weaker for M,
than for the other four graded representations. The computer code used in this paper can be found at
https://github.com/jacobmatherne/ELCandRS.

Proof of Theorem 1.5. By Lemma 3.2(1), Example 3.8, and Example 3.13, it is sufficient to check that
D, &£ M, for all n < 21. We have performed these checks using SageMath. u

Remark 4.1. In fact, we checked Conjecture 1.4 for all n < 22. Thus the first unknown statement of Conjecture
1.4 is that DS§, is isomorphic to M$;. Conjecture 1.4 had previously only been checked for all n < 10 [MPY17,
Remark 2.11]. O
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Proof of Theorem 1.7. We begin with B,,. We need to show that, for all i < j < k<[l withj+k=i+1=
m < 14, B! ® Bl is isomorphic to a subrepresentation of B} ® BX. By Theorem 3.3 and Example 3.7, both
B'® B' and B ® B* stabilize at 3m + 2. Thus, by Lemma 3.2(2), it is sufficient to check that B! ® B, is
isomorphic to a subrepresentation of BJ ® BY for all n < 3m + 2. The situation for D,, is identical, except this
time Example 3.8 tells us that stabilization occurs at 3m rather than 3m + 2. We have performed these checks
for B,, and D,, using SageMath.

The statement for A, follows from the statement for B, using Equation (1) and Proposition 2.3. The
statement for C,, follows from the statement for D,, using Equation (3) and Proposition 2.3.

Finally, the statement for M,, nearly follows from the statement for D,, using Theorem 1.5. The one part
that does not follow is the assertion that M2 @ M? is isomorphic to a subrepresentation of M} ® M, since we
do not know that M2 is isomorphic to DS. However, M,, is generated in degree 1 by Theorem A.6, hence we
have a surjection

M} o MT — M8 = Mo MS.

This tells us that M? ® Mg is isomorphic to a quotient of M} ® M/, and therefore also a subrepresentation by

semisimplicity of the category of representations of &,,. u

Remark 4.2. By Theorem 1.7, the weak equivariant log concavity statement that A%~ ® AT is isomorphic
to a subrepresentation of A! ® A? holds for all i < 7, and similarly for B,,, C,,, and D,,. Combining this result
with Theorem 1.5, the statement that M*~! @ M*! is isomorphic to a subrepresentation of M* ® M holds for
all i <6. O
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A Appendix: Presentations

In this section, we give explicit presentations of each of the rings that we consider in this paper. Most of the
results in this appendix are well known, with the exception of Theorem A.4. Theorem A.4 can be deduced from
the proof of [ER19, Theorem 3], but we include a proof here for completeness.

We begin with the ring A,,, which was first computed by Arnol’d [Arn69].

Theorem A.1l. There exists an isomorphism A, = Eg[zi;]/Z2, where Eglz;;] is the exterior algebra with
generators x;; for all distinct 4, j € [n] and Z is the ideal generated by the following families of relations:

o x;; — x;; for all 7, j distinct
® T;i%jk + TjpTrs + T for all 4, j, k distinct.

The group &,, acts by permuting the indices. O

The isomorphism inverse to that of Equation (1) sends t to ), 25 Tijs thus Theorem A.1 has the following
corollary.

Corollary A.2. There exists an &,-equivariant isomorphism B,, & Eglz;;]/Z2, where

o)

The ring C,, was first computed by Cohen [CLMT76]; see alternatively [dS01, Corollary 5.6].

Theorem A.3. There exists an isomorphism C, = Q[z;;]/ZS, where Q[xz;;] is the polynomial ring with
generators z;; for all distinct 4, j € [n] and Z¢ is the ideal generated by the following families of relations:

o 1;; + x; for all 4, j distinct
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e z3; for all 4,7 distinct
® X%k + TjpTr + Ty, for all 4, j, k distinct.

The group &,, acts by permuting the indices. O
We next give two equivariant presentations for D,,, neither of which has appeared before.

Theorem A.4. There exists an isomorphism D,, = Q[h;;]/ZE, where Q[hi;x] is the polynomial ring with
generators h;j;j, for distinct triples i, j, k € [n] and TD is the ideal generated by the following families of relations:

® N + hjir and hyj, + hig; for all 7, §, k distinct
. hijk — hijl + hik — hjkl for all 4, j, k, [ distinct
o Nz for all 4,7, k distinct.

There also exists an isomorphism D,, & Q[z;;]/J,P, where Q[z;;] is the polynomial ring with generators x;; for
all distinct 4, j € [n] and JP is the ideal generated by the following families of relations:

o z;; +x; for all 4,5 distinct
° Zj# x;; for all ¢
o (z;; +xjk + x1;)? for all i, j, k distinct.

In both cases, the group G,, acts by permuting the indices. O

Proof. The space Conf(n,U;)/U; is a disjoint union of contractible subspaces indexed by cyclic orderings of
the set [n]. For i, 7, k € [n] distinct, consider the cyclic Heaviside function h;j; that takes the value 1 on
those components where ¢, j, and k appear in a counterclockwise order, and 0 on those components where they
appear in a clockwise order. These functions generate the ring of locally constant functions on Conf(n,U;)/U;
and satisfy the following families of relations:

° hijk + hjik =1= hijk: + hikj for all 4, j, k distinct
® Niji — hiji + higg — hjry = 0 for all 4, j, k, [ distinct
o N = hijy, for all 4, j, k distinct.

We consider the filtration of the ring of locally constant functions on Conf(n,U;)/U; for which the p*® filtered
piece is the space of functions that can be expressed as polynomials of degree at most p in the cyclic Heaviside
functions. Using the fact that Conf(n,U;)/U; is homeomorphic to the fixed point set of the action of U; on
Conf(n,SUs)/SUs by right translation, one can show that the graded ring D,, is &,-equivariantly isomorphic
to the associated graded of the ring of locally constant functions on Conf(n,U;)/U; with respect to the cyclic
Heaviside filtration [MPY17, Remark 2.9]. Passing to the associated graded turns the relations above into the
generators of ZP and we obtain an &,-equivariant surjective map

Q[hijr]/ZP — D,.

To see that it is an isomorphism, we break symmetry and make use of the isomorphism D,, = C,,_; of Remark
1.1 by reducing the problem to checking that the composition

Q[hijk]/I’y? — Dn — Cn—l

is an isomorphism.

The first and second families of generators of ZP imply that the degree 1 part of Q[h;jx]/Z2 is spanned
by the generators {hi;, | i # j € [n — 1]}, subject to the relations h;j, + hji, = 0. The map from Q[h;;i]/ZP
to Cp—1 sends hyjn to x5, so we need to show that the third family of generators of D corresponds to the
second and third families of generators of IE . Indeed, hfjn is sent to xfj, and when 4,5,k € [n — 1], hfjk is sent
to 2(zi;x ik + TjkTri + Thi%ij) plus elements of the ideal generated by the first two families of generators of I,? .

Finally, consider the &,,-equivariant maps

¢ : Qlhijx] = Qlziz]Y : Qlzis] — Qlhiji]

given by

1
O(hiji) = x5 + xji + Tpip () = - k;-} R
27‘7
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It is a simple calculation to check that (ZP) C JP and ¢(JP) C I, so these maps descend to maps
¢ Qhisi) /T = Qlass) /T %« Qlais)/ Ty — Qlhigil /7

To see that they are mutually inverse, we note that

J)O@(hijk) = Z hsz+ Z h]kq‘i’* Z Ry

p¢{w} q«’yé{J k} T«’;f{k i}
1 1
= H(hijk; + Pjki + hgig) + - Z (hiji + hjrr + huir)
1¢{i,5,k}
= 7hz]k + Z hz_]k
li{l 3.k}
= hijkv
and
— 1
@ o p(ws;) - D (@i + w + k)
ke{i,g}
1 1 1
= LD maty D wkto ) o
k¢ {i,j} k¢ {i,j} k¢ {i,j}
_onz2 1 o1
= L i 8 (et 20
Tij-
This completes the proof. u

The following presentation of OT,, appears in [MPY17, Section 2.1], where it is proved using [PS06, Theorem
4] and [ST09, Proposition 2.7].

Theorem A.5. There exists an isomorphism OT,, & Q[z;;]/Z¢7, where Q[z;;] is the polynomial ring with
generators z;; for all distinct 4, j € [n] and Z97 is the ideal generated by the following families of relations:

® ;; +xj for all i, 7 distinct
® TijTik + TjkTri + Tpixqj for all 4, j, k distinct.

The group G,, acts by permuting the indices. O

As in Example 3.11, let R, = Q|z1,...,2n]/{(z1 + -+ + 2,), with its natural grading and action of &,,. We
have an &,-equivariant homomorphism ¢, : R, — OT,, given by ¢(z;) = Zj 4 Tij, which makes OT,, into a
graded R,-module. The following theorem says that the ring M,, is isomorphic to the quotient of OT,, by the
ideal generated by the elements ¢(z;) [MPY17, Section 2.1].

Theorem A.6. There exists an G,,-equivariant isomorphism M,, & Q[xz;;]/ZM, where Q[z;;] is the polynomial
ring with generators x;; for all distinct , j € [n] and

IV =T0" + (p(z) | i € [n]).
0

Remark A.7. Theorem A.6 is proved by using [BP09, Corollary 4.5] to identify OT;, with the torus equivariant
intersection cohomology of the hypertoric variety X,,, and R,, with the torus equivariant cohomology of a point.
Because everything is concentrated in even degrees, the ordinary intersection cohomology is obtained from
the equivariant intersection cohomology by killing the action of the positive degree classes in the equivariant
cohomology of a point. O

Remark A.8. Looking at Theorems A.3 and A.5, we see that C), is isomorphic to the Artinian Orlik—Terao
algebra of the Coxeter arrangement associated with sl,,, as predicted by Remark 2.15. Geometrically, this reflects
the fact that the locus of X,, on which the torus acts freely has quotient space homeomorphic to Conf(n, R3),
and the map from OT,, to C, may be identified with the restriction map in torus equivariant intersection
cohomology. O
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Remark A.9. Consider the quotient of the polynomial ring Q[z;;,t] by the ideal generated by the following
families of relations:

e x;; + x;; for all 7, j distinct
J Zj# x;; for all ¢
o (ij +ajn +xpi)? — t(ad; + 2%y +af,) for all i, j, k distinct.

If we specialize at t = 0, we obtain the algebra D,, by Theorem A.4. If we specialize at t = 1, we obtain the
algebra M,, by Theorem A.6. It is tempting to guess that this ring is free as a module over Q[t], which would
imply Conjecture 1.4. However, computer calculations reveal that this is not the case. The dimension of a generic
specialization is smaller than those of the specializations at ¢t = 0 or ¢ = 1, both of which are equal to (n — 1)!
[MPY17, Remarks 2.1 and 2.4]. O
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