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Abstract—Detecting stress from wearable sensor data enables
those struggling with unhealthy stress coping mechanisms to
better manage their stress. Previous studies have investigated how
mechanisms for detecting stress from sensor data can be
optimized, comparing alternative algorithms and approaches to
find the best possible outcome. One strategy to make these
mechanisms more accessible is to reduce the number of sensors
that wearable devices must support. Reducing the number of
sensors will enable wearable devices to be a smaller size, require
less battery, and last longer, making use of these wearable devices
more accessible. To progress towards this more convenient stress
detection mechanism, we investigate how learning algorithms
perform on singular modalities and compare the outcome with
results from multiple modalities. We found that singular
modalities performed comparably or better than combined
modalities on two stress-detection datasets, suggesting that there
is promise for detecting stress with fewer sensor requirements.
From the four modalities we tested, acceleration, blood volume
pulse, and electrodermal activity, we saw acceleration and
electrodermal activity to stand out in a few cases, but all modalities
showed potential. Our results are acquired from testing with
random holdout and leave-one-subject-out validation, using
several machine learning techniques. Our results can inspire work
on optimizing stress detection with singular modalities to make the
benefits of these detection mechanisms more convenient.
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I. INTRODUCTION

In many individuals, stress can lead to unhealthy behaviors
as they attempt to relieve that stress. Many individuals resort to
harmful substances like alcohol to alleviate their stress. By
finding better ways to recognize stress, we hope to improve the
mechanisms by which we can lead individuals to healthier
responses to their stress.

While it is feasible for a stress recognition system to
yield high performance when multiple sensor modalities are
available, [1], [2], this approach is often computationally
expensive. Prioritizing and reducing the sensor modalities we
use can reduce the necessary computational power of our
recognition devices. Reducing the computational requirement
can enable smaller devices that require less power to perform
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stress recognition. These smaller devices can be made less costly
and can operate longer on a single charge, making them more
appealing to the consumer. By investigating the performance of
fewer modalities, we can find methods to effectively recognize
stress with lighter data storage and computational power
requirements. We anticipate that the results we find will lead to
stress-recognizing devices that are cheaper and more accessible
to those who could benefit from them.

II. RELATED WORK

Stress is a problem that exists in the lives of all people. As a
result, researchers have investigated how well we can detect that
stress in order to prevent it or advise individuals on how to deal
with it. In one such study, Kyriakou et al. [3] used a rule-based
mechanism with weights and critical values, based on
electrodermal activity (galvanic skin response) and skin
temperature, to detect stress. In this study, an aural stimulus was
used to stimulate a stress response. These researchers found
promising results toward detecting stress with rules that monitor
electrodermal activity or skin temperature changes. In a similar
study, Sagbas et al. [1] performed stress detection analysis based
on smartphone keyboard typing behavior. They created an app
that collected accelerometer, gyroscope, and touchscreen
interaction data while users typed on their phone screens. This
group then compared the results of supervised learning
algorithms, including a decision tree, a Bayesian network, and a
nearest-neighbor algorithm, to investigate how stress can be
detected with smartphone sensors. While these studies examined
different datasets, both found promising results detecting stress.

In our paper, we will perform analysis using the
Wearable Stress and Affect Detection (WESAD) and the
Alcohol and Drug Abuse Research Program (ADARP) datasets.
The WESAD dataset has become very common within the realm
of stress detection, as it contains public wearable sensor data in
a simulated stress environment. Several previous works
performed similar machine learning-based analyses on the
WESAD dataset, with a goal of finding an optimal means of
detecting stress. The purpose of the study by Bobade et al. [2]
was to algorithmically identify the best-performing machine
learning algorithm for these data among seven choices: random
forest, decision tree, AdaBoost, kNN, linear discriminant
analysis, SVM, and a deep network. They observed that the
multi-layer neural network performed best on these data. In
many of these stress detection investigations, researchers have



focused on electrodermal activity (EDA), or galvanic skin
response (GSR), as an indicator or stress. Aqajari et al. focused
on automatically and manually extracting features from the
electrodermal activity data that yielded optimal predictive
performance [4]. A similar study from Hsieh et al. [5] focused
on how novel features could be extracted from electrodermal
activity to optimize machine learning results.

Alongside the stress detection issue is the class
imbalance issue, where the data are not uniformly distributed
among classes. As humans are not stressed for a large portion of
their daily lives, stress datasets collected outside of a lab have a
high chance of being imbalanced. One study considered both
data from inside and outside a lab to compare how stress could
be detected in these disparate conditions [6]. In our own analysis
of real-world data, we found that performance was poor when
no steps were taken to address the class imbalance, so we had to
address this issue. Recent work investigated various methods of
mitigating imbalance in data, and created novel improvements
to common strategies like undersampling and oversampling [7],

(81, [9].

Like these prior works, we investigate the issue of
automated stress detection from wearable sensor data. Unlike
many of these studies, which focus on trying to find the best
ways to detect stress from wearable data, we focus on the
performance of detecting stress with fewer modalities. Because
the data classes are imbalanced, we compare some of the well-
known methods to resolve this issue as well. Our goal is to make
stress detection more accessible and thus investigate how well
we can detect stress with fewer sensor requirements and
computational cost.

III. DATASETS

Our study analyzed stress detection based on two datasets,
WESAD and Alcohol and Drug Abuse Research Program
(ADARP). The WESAD dataset [10] was gathered in a lab
setting. Subjects were put in several different situations to
prompt them into stressful states. These situations were
intermixed with other scripted behaviors. The ADARP data was
collected from individuals suffering from alcohol use disorder
outside of a lab setting, where stress was recorded on an
Empatica E4 wearable band by the subject logging when they
felt stress throughout the day (by tapping the push button on E4).

The WESAD dataset was gathered for the purpose of
improving stress classification. Data were gathered from a total
of 17 subjects. The subjects were graduate students at the
institution of the researchers who created the data. Each subject
was equipped with several sensors placed on the chest as well as
on Empatica E4 wearable devices. The sensors from two of these
subjects malfunctioned and were unusable, so only 15 of the
subjects’ data are available. From these 15 subjects, the data
from both the chest and wearable device sensors are available,
but our testing focused only on the data from the wearable
device sensors. The wearable device sensor modalities included
accelerometer, electrodermal activity, blood volume pulse, and
temperature. The subjects were put through several different

conditions: baseline, amusement, stress, and meditation.
Baseline data were gathered for 20 minutes after the sensors
were equipped and subjects were sitting or standing at tables
with magazines provided for neutral reading to induce a neutral
state. The amusement label data were gathered while subjects
watched several funny videos. Stress conditions were created
through the Trier Social Stress Test [11], consisting of a public
speaking task and a mental arithmetic task. These tests were
performed in front of a three-person panel of human-recourse
specialists. The students were told to make a good impression
on the panel to boost their career options (later the subjects were
informed that the panel members were actually just researchers).
The meditation condition was created by putting the subjects
through a guided meditation. The meditation condition was
initiated after both the amusement and stress conditions to calm
the subjects. In our testing, we utilized the meditation, baseline,
and stress conditions, to create stressed and non-stressed classes
for training the learning algorithms. We used this dataset to
evaluate whether single modalities would have comparable
performance to multiple modalities using several different
learning algorithms.

The ADARP dataset [12] was collected with the goal
of investigating the relationships between sensor data and self-
reported stress. Data were gathered from 11 subjects, 10 of
whom were female. The subjects were adults seeking help at a
facility for mental health. Inclusion criteria were that subjects
must be age 18-65 years and have self-reported consuming four
or more standard drinks (drinks containing roughly 14 grams of
pure alcohol) in a single day 5 or more times in the previous 60
days. Data were gathered from three sources: a daily diary of
self-reported emotions, cravings, and stress (four times a day),
sensor data from Empatica E4 wearable devices, and structured
daily interviews for qualitative evaluation of alcohol use. This
study produced data from the same four sensor modalities
included in the WESAD dataset. We used these data in addition
to the WESAD data to determine if single modalities could
perform comparably to a combination of multiple modalities.
Additionally, we want to determine whether predictive
performance from lab-based data was comparable to data
collected outside the lab.

IV. METHODS

To compare the four different sensor modalities available on
the E4 wearable devices, acceleration, blood volume pulse,
electrodermal activity, and temperature, we ran several tests on
each modality from both datasets to determine which would
yield the highest performance. To begin this process, we first
preprocessed the datasets to make them compatible with our
learning algorithms1. To format the WESAD dataset, we began
by first separating out the wearable device data, as the chest
sensor data are not relevant for our purposes. From the wearable
device data, we removed data for the class labels that were not
defined, should be ignored, or were -categorized as
“amusement.” With the remaining labels, we combined
“baseline” and “meditation” categories to form a “nonstress”
class and categorized the remaining data as the “stress” class.
The changes to the label distribution can be seen in Figures 1

L All code for formatting, training algorithms, and evaluation
can be found online at

https://github.com/RyanCHolder/Comparing-Single-
Modalities.



and 2. We partitioned the remaining data into one-second
windows with 50% overlap. The number of data instances in
each window varied across modalities, as each modality was
sampled at a different frequency (32 Hz for acceleration, 64 Hz
for blood volume pulse, 4 Hz for electrodermal activity, and 4
Hz for temperature). These windows were used as the training
data for our learning algorithms.
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Fig. 1. WESAD label distribution for single subject before preprocessing.
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Fig. 2. WESAD label distribution for single subject after preprocessing.

To format the ADARP data, we defined instances of the
stress class to encompass all data occurring within 20 minutes
(10 minutes in each direction) of the subject’s stress tags. All
other nonstress data within an hour in each direction of that tag
was removed, because the subject’s stress state during that
period is unknown. The labeled data were formed into one-
minute windows with 50% overlap, creating the ADARP data
that we used for training and testing the classifiers. The label
distribution for a single subject from the ADARP dataset can be
seen in Figure 3.
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Fig. 3. ADARP label distribution for single subject.

An additional dataset was created for both WESAD and
ADARP by extracting statistical features that describe each
window of data. The statistical features were mean, median,
minimum, maximum, standard deviation, skew, kurtosis, and

interquartile range. We initially performed separate experiments
with the raw data and the statistical features. We report results
for only the raw data with the longer tests, as the performance
using the statistical features was very similar to the performance
using the raw data. These formatted datasets were used to train
our learning algorithms.

To classify stress in the datasets we compare three learning
algorithms: k-nearest neighbors (KNN), decision tree (DT), and
a convolutional neural network (CNN). The k-nearest neighbors
classifier was trained with uniform weights, a Minkowski
distance metric, and Euclidean distance for the Minkowski
power parameter. The decision tree classifier was trained with
Gini to measure split quality, choosing the best option at each
split, no maximum depth (expanding until all leaves are pure), a
minimum of two samples to split a node, one minimum sample
to be considered a leaf node, an unlimited number of allowable
leaf nodes, a minimum impurity decrease of zero, and a
minimum impurity split of zero.

The convolutional neural network consisted of two 2D
convolutional layers, the first containing 10 filters and the
second 20, both with ‘same’ padding. The CNN was trained
using ReLU (rectified linear unit) activation and a kernel size of
five. The convolutional layers were followed by a singular unit
dense layer with sigmoid activation for producing output. The
convolutional model was compiled with binary cross-entropy as
the loss function, Adam as the optimizer, and accuracy as the
training metric. The model was trained with 10 epochs, a batch
size of 30, and a 20% validation split. For learning on WESAD,
the algorithms were trained with no class weighting. However,
in resolving the class imbalance issue with the ADARP dataset,
class weighting was used that we will describe later.

V. EXPERIMENTAL CONDITIONS

To gather results for each modality, we ran two varieties of
tests. The first variety was a randomly selected train-test split
from the combined data of all subjects. The split was chosen
with 75% training data and 25% testing data. We chose this split
to ensure plenty of data for training, and a portion of testing data
large enough to avoid a biased sample. In our testing with this
split we found algorithms to converge consistently on training
data, as well as perform comparably on testing data. Each
algorithm was trained with the training portion of the data for
each modality individually for a total of 10 epochs. The trained
models were used to predict class labels for the remaining 25%
of the data, and these predictions were evaluated based on both
accuracy and fl-score. The results for each iteration were
averaged to produce an accuracy and f1-score for each modality
and each learning algorithm.

The second experiment we ran was a leave-one-subject-out
test. For this experiment, we combined the data of all but one
subject to form the training data and used the data of the left out
subject as the testing set. This was run for one iteration per
subject, where each subject was used as testing once. Each
modality was trained individually on each algorithm for every
iteration, and the resulting models were used to predict class
labels for the remaining subject. Accuracy and fl-score were
used to evaluate the predictions, and the average of these results
for each iteration were computed to yield one accuracy and one
fl-score value for each modality using each algorithm.



These two varieties of experiments were run on both
datasets; however, the balance between nonstress and stress
classes in each dataset was very different. After our formatting,
the WESAD exhibited a stress to nonstress ratio of
approximately 1:3, while the ADARP dataset had a ratio of
roughly 1:16. Because of the large imbalance in the ADARP
data, we also added four class imbalance solutions to the above
testing methods and tested those on the ADARP data. The
solutions we used were majority class undersampling, minority
class oversampling, class weighting, and a combination of the
three methods. In the case of undersampling, we randomly
selected a portion of nonstress data to include that was
equivalent to the amount of stress data for each training set. In
the case of oversampling, we used the Imbalanced-learn
library’s Synthetic Minority Over-sampling Technique
(SMOTE) [13] algorithm to generate synthetic data to create an
equal amount of stress and nonstress data. For our weighting
method, we set the class weights when training to 16 on the
stress class, and 1 on the nonstress class. For our combination
method, we performed undersampling in the same way as above,
while selecting a portion of nonstress that was ten times the size
of the stress class. We then performed oversampling on the
resulting set to bring the stress class up to one-fourth the size of
the nonstress class. With the new dataset, the learning
algorithms were trained with the class weights set at four for the
stress class and one for the nonstress class. In both the
standalone weighting solution and the combined method, we
only used the decision tree and convolutional neural network
algorithms, as k-nearest neighbors does not support class
weights as a parameter for its learning. We tested each of these
class imbalance solutions using the same two testing varieties
described above, using the adjusted dataset where applicable in
place of the original data in the random sampled test, and
creating the adjusted dataset at the beginning of each iteration
for the leave-one-out test.

To create a baseline of comparison for our results on singular
modalities, we also ran the same tests using a combination of all
four modalities. To combine the modalities, we changed some
of the data preprocessing to downsample each modality as
needed to fit the same number of instances per window, which
was necessary because of the differing sampling frequencies.
This was performed by selecting the first value of every quarter
of a second from each modality, resulting in no change in the
electrodermal activity or temperature data, but reducing the
quantity of data from both the accelerometer and blood volume
pulse sensor values. We combined the resulting downsampled
data into a singular dataset by concatenating all the sensor values
together in each instance within each window. The resulting
dataset was then run with the same random sample test, as well
as the leave-one-out test. Because of the class imbalance in the
ADARP data, we performed these tests with the same
oversampling we performed on the singular modalities when
testing combined modalities on the ADARP data, generating
enough synthetic data to create equal proportions of stress and
nonstress data. We choose to use oversampling rather than one
of the other imbalance solutions when testing with all modalities
because it was the best-performing solution we tested on
singular modalities with the ADARP data.

VI. RESULTS

We can see that singular modalities showed promising
performance on the WESAD dataset. The results from the
statistical and raw features were very similar, so we focus on just
the results of the raw data. While not all modalities performed
close to the combined modalities, we can see in the random
holdout validation that acceleration only decreased accuracy by
0.0493 and f1-score by 0.1019 on average across all algorithms
(see Figure 4). Electrodermal activity closely followed
acceleration in the random holdout validation, with an accuracy
decrease of 0.0689 and an fl-score decrease of 0.1387 from the
combined modalities on average across all algorithms (see
Figure 4). Similarly, on the leave-one-out validation, we saw
electrodermal activity perform very strongly, outperforming the
combined modalities by 0.0511 in accuracy, and 0.0950 in f1-
score on average across all algorithms (see Figure 5). We
suspect that the combined modalities did not perform as well as
electrodermal activity due to the decrease in training data
because of downsampling, as well as an increase in features
without a corresponding increase in data volume, both
contributing to underfitting. Despite the potential of
underfitting, we can clearly see the potential of singular
modalities to yield performance similar to combined modalities.
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Fig. 4. Average performance of 3/4-1/4 validation on WESAD.
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From our testing on the ADARP dataset we saw results that
also suggest singular modalities have potential to give
performance similar to that of multiple combined modalities.
Our results from oversampling were best out of all our class
imbalance solutions, so we will focus on those results. In our
random holdout testing, we found that all modalities performed
similarly, and on average were short of the performance of the
combined modalities by 0.0446 in accuracy and 0.0373 in f1-
score across all algorithms (see Figure 6). This result shows that
in the dataset with significantly more data available (though still



very imbalanced) singular modalities continue to show
performance comparable to that of the combined modalities. Our
leave-one-subject-out results were quite extreme, as on average
the singular modalities outperformed the combined modalities
by 0.2128 in accuracy and were short from the combined
modalities by 0.2525 in fl-score (see Figure 7). These results
show that our singular-modality algorithms were overfitting
much more than our combined modality algorithms, however
the high accuracies still show potential for accurately detecting
stress states from singular modalities. We also suspect that the
combined modalities may have performed worse in this case for
similar reasons as in the WESAD testing, as downsampling to
align the modalities greatly reduced the amount of training data
and increasing the number of features without increasing the
amount of data leads to underfitting. Summaries of the
experimental results are provided in Tables 1 through 4.
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TABLE 1. 3/4-1/4 VALIDATION WITH WESAD DATASET.
Raw Data Statistical Features
Modality Accuracy FI-Score Accuracy FI1-Score
- o |LACC 0.9587 0.9146 0.9566 0.9140
§ § BVP 0.7974 0.5423 0.7582 0.4637
S S [ EDA 0.9199 0.8394 0.8313 0.6474
E g TEMP 0.8940 0.7865 0.7857 0.5414
All 0.9871 0.9743
§ ACC 0.9427 0.8860 0.9479 0.8967
2 BVP 0.7513 0.5102 0.7186 0.4481
S EDA 0.9115 0.8248 0.8500 0.7012
§ TEMP 0.9212 0.8389 0.8094 0.5684
Q All 0.9886 0.9775
ACC 0.9099 0.8129
BVP 0.7872 0.5018
E EDA 0.9209 0.8388
© TEMP 0.7584 0.2766
All 0.9835 0.9673

TABLE II. LEAVE-ONE-SUBJECT-OUT VALIDATION WITH WESAD
DATASET.
Raw Data Statistical Features
Modality Accuracy FI1-Score Accuracy F1-Score
- o LACC 0.6528 0.2566 0.7331 0.4763
§§ BVP 0.7713 0.4831 0.7377 0.4177
3 +=| EDA 0.8975 0.7885 0.6815 0.3421
Eg TEMP 0.6463 0.3493 0.6633 0.3456
All 0.8391 0.6812
§ ACC 0.6668 0.3685 0.7071 0.4164
2 BVP 0.7271 0.4732 0.6947 0.4099
i) EDA 0.8618 0.7293 0.6912 0.3976
'§ TEMP 0.6522 0.3621 0.6834 0.3316
Q All 0.8508 0.6992
ACC 0.6758 0.2052
> BVP 0.7573 0.4127
% EDA 0.9167 0.8229
TEMP 0.6794 0.2667
All 0.8328 0.6753
TABLE III. CLASS IMBALANCE STRATEGIES USING ADARP DATASET
WITH 3/4-1/5 VALIDATION.
Under- Over- Weighting | Combination
sampling sampling
Mod-| Acc- FlI- Acc- FlI- Acc- F1- Acc- FI-
ality | uracy | Score | uracy | Score | uracy | Score | uracy | Score
« o |ACC |0.6119] 0.5743 | 0.8388| 0.8607
§ E BVP [0.4943| 0.5098 |0.7006| 0.7698
] <, |EDA [0.5768] 0.5388 |0.8424 | 0.8629
E g TEMP |0.5751| 0.5736 |0.8208| 0.8475
All 0.9043 | 0.9125
ACC |0.6067| 0.6039 |0.8437| 0.8495 | 0.8918 | 0.1631 | 0.8125 | 0.5454
S o |BVP |0.5142] 0.5130 |0.7740| 0.7847 | 0.8830 | 0.0701 | 0.7659 | 0.4337
é S EDA [0.5704| 0.5676 [0.8339| 0.8395 |0.8880 | 0.1191 | 0.8006 | 0.5176
a TEMP [0.5718| 0.5714 [0.8681| 0.8721 | 0.8898 | 0.1162 | 0.8150 | 0.5521
All 0.8757 0.8795
ACC |0.5473] 0.5364 |0.7185| 0.7431 | 0.3705 | 0.1224 | 0.5457 | 0.4029
= BVP |0.5108| 0.5088 |0.8524| 0.8574 |0.7066 | 0.0987 | 0.7602 | 0.5156
5 EDA [0.5409] 0.5334 [0.5857| 0.6229 | 0.4481| 0.1171 | 0.5149 | 0.3442
TEMP |0.5803 | 0.5812 [0.5800| 0.6069 |0.1758 | 0.1068 | 0.4461 | 0.3329
All 0.6685 | 0.6992
TABLE IV. CLASS IMBALANCE STRATEGIES USING ADARP DATASET
WITH LEAVE-ONE-SUBJECT-OUT VALIDATION.
Under- Over- Weighting | Combination
sampling sampling
Mod-| Acc- FlI- Acc- FlI- Acc- F1- Acc- FI-
ality | uracy | Score | uracy | Score | uracy | Score | uracy | Score
v o | ACC |0.6536| 0.1140 | 0.6625 | 0.1080
§_§ BVP |0.4658| 0.1075 |0.4348| 0.1066
5 <, | EDA [0.5547] 0.1043 |0.6608 | 0.0991
E g TEMP|0.5218] 0.1097 |0.6452 | 0.1028
All 0.4852| 0.2571
ACC |0.5631| 0.1185 |0.7066 | 0.1088 | 0.8588 | 0.0662 | 0.7641 | 0.0854
_5 o | .BVP |0.4900| 0.1088 |0.6909 | 0.0922 | 0.8742 | 0.0603 | 0.7911 | 0.0796
3 S EDA |0.5043| 0.1073 | 0.6898 | 0.0902 | 0.8388 | 0.0545 | 0.7675 | 0.0792
a TEMP|0.4965| 0.1054 | 0.6318 | 0.0987 | 0.8652 | 0.0609 | 0.7729 | 0.0887
All 0.5010 | 0.2740
ACC |0.6441| 0.0977 |0.7970 0.0835 |0.6780 | 0.0915 | 0.9349 | 0.0000
= BVP |0.6473| 0.1114 |0.7933| 0.0771 | 0.6410| 0.0853 | 0.9349 | 0.0000
5 EDA |0.8738| 0.0768 | 0.8931| 0.0533 | 0.5129 | 0.0856 | 0.9349 | 0.0000
TEMP|0.8683| 0.0537 |0.8899| 0.0324 | 0.3482| 0.0715 | 0.9349 | 0.0000
All 0.4994 | 0.4896




VII. CONCLUSIONS AND FUTURE WORK

The goal of our work was to investigate the predictive
performance of individual sensor modalities in detecting stress
states using machine learning techniques. To accomplish this,
we compared performance of individual sensor modalities from
two stress detection datasets, using several different machine
learning techniques. Our results lead us to believe that there is
potential for singular modalities to perform comparably to
multiple modalities. Including more features and data available
will certainly lead to higher performance; however, the
performance in many cases of singular modalities were close to
that of the combined modalities. We believe that our results
provide evidence to support the hypothesis that singular
modalities can predict stress at a high enough level to be used in
place of multiple modalities to save on computational
requirements.

While our work gives some preliminary evidence for
the promise of reducing sensor modalities to save computational
requirements to detect stress, there is still a lot more work that is
necessary to refine the use of singular modalities in stress
detection. Our work can be enhanced by testing a greater variety
of algorithms. In particular, the structure of the convolutional
neural network may be refined to improve performance, as these
networks show promise of being the most powerful tool for
processing time series data. Future work could test several
convolutional architectures, as well as increasing depth and
number of epochs to optimize the performance of singular
modalities and compare to the performance of combined
modalities to see if the results are comparable in a more
optimized environment.

Future work can also be directed toward resolving the
class imbalance problem that is common in stress detection
datasets. Our oversampling solution did yield an increase in
performance compared to learning from imbalanced data, but
we believe that more can be done to refine how the class
imbalance is addressed to give increased performance of both
combined and singular modalities. We believe the class
imbalance may have influenced our results, especially in our
experiments that utilized the ADARP dataset. As class
imbalance solutions improve, employing these solutions to
adjust imbalanced datasets like the ADARP dataset can lead to
results with less irregularity to better show how singular
modalities perform against multiple modalities.
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