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Abstract— Advances in embedded systems have given rise to integrating several small-size health monitoring devices
within daily human life. This trend led to an ongoing extension of wearable sensors in a broad range of applications.
Wearable technologies, which are firmly connected with the human body, utilize sensors and machine learning to describe
individuals’ physical or psychological routines through activity recognition and human movement. Since wearables are
used all day long, the power consumption of these systems needs to be reasonably low. Current research considers
that such machine learning methods are trained with fixed properties, including sensor sampling rate and statistical
features computed from the time series data. However, in reality, wearables require continuous reconfiguration of their
computational algorithms due to the personalized nature of human gait and movement. Furthermore, computational
algorithms must become energy- and memory-efficient due to these embedded sensors’ limited power and memory. In
this paper, we propose a resource-efficient framework for real-time, continuous, and on-node human activity recognition.
Typically activity recognition problem is a multi-class classification problem. However, we suggest transforming this
problem based on MET (Metabolic Equivalent of Task) into a hierarchical classification model, providing personalized
structure for each individual. We discuss the design and construction of this nhew configurable classification paradigm.
Our results demonstrate that the proposed probabilistic cascading system accuracy for different personalized scenarios
varies between 94.5% and 96.9% in detecting activities using a limited memory, while power usage of the system is reduced
by as high as 17.2% compared to the traditional methods.

Index Terms— wearable sensors, machine learning, activity recognition, power optimization

[. INTRODUCTION 23% of adults ages 18 to 64 perform at least 150 minutes of
moderate or 75 minutes of vigorous-intensity activities. Also,
another 32% of the population either perform moderate or
vigorous-intensity activities, and 45% do not perform either
of these activities [7]. These statistics suggest that activity
behaviors vary drastically across individuals. For instance,
the report mentioned above indicates that most people are
not highly active, concluding that most people do not per-
form moderate or vigorous daily activities. Therefore, activity
monitoring systems measure light intense activities most of
the time. On the other hand, light intensity activities such as
sitting and sleeping have a lower frequency, and the sensor
signal variation is low. As a result, using a lower sampling
frequency for activity monitoring systems could be sufficient
to recognize most of the activities-of-daily living. In addition,
the study shows that sampling rates are up to 57% higher
than necessary, which leads to a waste of system resources
[24]. The traditional method focuses on extracting potentially
complex features from sensor signals and using a sampling
frequency according to the activities of interest. However,
each individual’s daily physical activity is different, and some
people may be more active and some less. Therefore, we need
a system that can adapt its properties with the user’s daily
routine to consume energy only when required. For example,
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Wearable devices have emerged as a promising technology
with the potential to play essential roles in the realization of
many Internet-of-Things (IoT) applications such as healthcare
and medical [38], diet management [22], assistance of industry
workers [43], security surveillance [29], home automation
[10], and military [39]. The use of these technologies in
humans’ daily lives is increasing as these devices can be
employed almost anywhere. Nowadays, mobile phones consist
of embedded sensors such as accelerometers, gyroscopes,
magnetometers, GPS, and barometers. In addition, wearable
devices with embedded sensors such as activity trackers,
smartwatches, smart shoes, smart glasses, and smart clothing
are becoming more popular [13]. According to a Pew Research
Center survey of June 2019, one-in-five United States adults
(21%) regularly wear a smartwatch or wearable fitness tracker.
In most applications of these devices, a sensor node is required
to obtain physical measurements, and embedded software such
as a signal processing algorithm is used for local processing.
Furthermore, a sensor node is responsible for storing the
results and transmitting them to a gateway [14].

According to the NCHS report, which drew on five years
of data from the National Health Interview Survey, about
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continuous and real-time processing of clinically important
information from sensor readings. Nevertheless, many of these
algorithms do not take into account memory and computation
constraints of these relatively small embedded systems. As a
result, Designing a personalized machine learning algorithm
that achieves a reasonable classification performance while
satisfying the system’s resource constraints is challenging.
In fact, these systems need to be low-power and small in
size so that individuals can use these devices in their daily
life. Furthermore, these embedded devices are often battery-
operated, making performing a computationally-intensive pro-
cess on these devices not feasible.

This paper introduces a probabilistic cascading binary clas-
sifier as a resource-efficient machine learning system for
human activity classification. Our proposed approach can
control the sensor sampling frequency and the number of
extracted features in real-time during the system operation.
Particularly, we propose to convert the traditional multi-class
human activity classification problem into a probabilistic hier-
archical binary classification problem that takes into account
each individual’s activity pattern and achieves a desirable
classification accuracy while consuming less energy and mem-
ory storage. First, we consider different intensity levels for
human activities based on the Metabolic Equivalent of Task
(MET) [1]. The intensity levels include light, moderate, and
vigorous-intensity groups. We then assign different sampling
frequencies and feature sets to each intensity group. As the
intensity level increases, the sampling frequency increases,
and more sophisticated features are considered for activity
recognition. Since lighter intensity activities constitute smaller
duty cycles, the changes in their signals are not as fre-
quent as higher intensity activities. Therefore, the system
uses lower sampling frequency and fewer complex features
to classify lighter intense activities. The construction of our
probabilistic cascading classifier reduces the machine learning
classification’s energy consumption without sacrificing the
classification performance. To the best of our knowledge,
our work is the first to investigate the problem of energy
minimization in wearable sensor systems while considering
the sensing, processing, and memory limitations of these
systems. In addition to providing a mathematical formulation
for the energy minimization problem, we construct a machine
learning architecture for the hierarchical classification of the
incoming signals. We conduct extensive experiments using
sensor data collection with real subjects to demonstrate the
effectiveness of our approach compared to conventional multi-
class classification. Moreover, we implement our method on
a real hardware system to provide practical insight on the
extended battery lifetime of the system due to the hierarchical
classification architecture.

This article is organized as follows: Section 2 highlights
the trend of wearable devices optimization and existing meth-
ods and their ability to reduce the required resources for a
wearable device. Section 3 identifies the potential problems
and challenges of wearable devices. Section 4 presents the
solution that we propose for the design and development
of a cascading binary classifier. Then, Section 5 illustrates
the utility of the proposed method while trying all possible

operational scenarios. Section 6 aims to explain the limitations
and the future work of the proposed method.

[1. RELATED WORK

Processing sensor data and performing continuous human
activity recognition quickly drains the battery of embed-
ded sensors and mobile devices [25], [30]. Furthermore, the
wearable nature of activity recognition systems puts design
constraints on the size and capacity of the battery and demands
the design of efficient algorithms to be used in these embedded
systems. Therefore, reducing the energy overhead of sensing
and computation is essential for continuous human activity
recognition and the adoption of these technologies in daily
lives [28], [35], [47].

Reducing the energy footprint of an activity recognition sys-
tem and maximizing the classification accuracy of the machine
learning model used for inference are at odds. Sophisticated
features and longer computation time are needed for maximum
classification performance, whereas shorter computation time
with simpler CPU operation results in longer battery life.
Prior studies [21], [49] have shown that richer sets of features
that result in higher computing costs lead to higher accuracy
of activity recognition models. Furthermore, reducing the
sampling frequency lowers the energy overhead but increases
the classification errors.

[27] uses lower sampling frequency to save battery but
suffers from low classification accuracy. In [49], an adaptive
model is proposed that is activity-sensitive and adjusts the
sampling frequency and classifier features in real-time based
on the current activity to lower the power consumption by
20 — 30%. In a similar fashion, authors in [45] proposed
an adaptive algorithm that selects an appropriate combination
of adjustable frequency and classification features for each
individual to achieve an energy saving of 28%. The context of
a user changes continuously throughout the day, and adapting
the algorithm based on the user context reduces the energy
requirement of human activity recognition systems. In [17],
the user context is used to dynamically adapt the sampling
rate of the sensing module to extend the battery life of the
activity recognition system by up to 5 times. Furthermore, [26]
argues that HAR approaches are energy-inefficient because
the sensors are required to run without stopping so that the
physical activity of a user can be recognized in real-time. To
that end, the author proposed to control the activity recognition
duration in conjunction with variable sampling frequency and
window size for energy-efficient human activity recognition.
The authors were able to reduce the energy consumption by a
minimum of about 44.23% without sacrificing on classification
accuracy. In machine learning systems, the most power is
consumed by the computation needed to process an input.
Hence, in [42] a clustering-center based pre-classification
strategy is used to reduce the call frequency of deep learning
models. The sampling frequency of the inertial sensor is also
controlled resulting in energy savings of 49% in Android
smartphones.

In [44], a layer-wise convolutional neural networks (CNN)
with local loss for human activity recognition was proposed.
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This method can be used to alleviate memory requirement of a
wearable system. Shallow Convolutional neural networks [18]
is also another method that is used in wearable sensors for hu-
man activity recognition. This method can be used to develop
lightweight deep models for reducing memory requirements.
In [37], the authors proposed a technique for memory opti-
mization based on Support Vector Machine (SVM) parameters.
This method reduces the number of required support vectors,
which results in less memory usage. Moreover, they designed
a hierarchical classifier structure for SVM by considering the
probability distribution of class labels to reduce the compu-
tations. They show that their method can save up to 56%
memory for storing the SVM classifier. Moreover, in [46]
authors suggested a Convolutional Neural Network which can
be used for weakly labeled wearable sensor data. This method
can reduce the need for sufficient labeled training data which
ultimately results in more efficient data collection process.
In [8], [40], [33], [6], [12], [5] authors suggest different
effective methods for resource efficient pre-processing and
feature extraction for HAR using wearable platforms.

However, these studies only work with a fixed and pre-
trained activity recognition model. Designing a personalized
activity detection model requires the model to be adjusted
upon changes in the system’s attributes. Traditionally, chang-
ing the model requires classifier retraining by collecting a
sufficient amount of labeled training data- a time-consuming,
labor-intensive, and expensive process that has been identified
as a significant barrier to personalized medicine [50]. There-
fore, it is essential to adapt and modify the trained model
on the device and in real-time for the maximum benefit of
mobile health devices. Also, collecting a large amount of
labeled data requires sufficiently large memory storage on the
device, which may not be available on tiny wearable sensors.
Leveraging the online learning paradigm, we design power and
memory-efficient machine learning model training framework
that can adjust the trained machine learning model on the
device as new labeled observations become available.

[1l. PROBLEM STATEMENT

An embedded sensing module usually has sensors, such
as accelerometer, gyroscope, and magnetometer, for capturing
different physical states of an individual. In addition, it has an
embedded software module to process the collected signals
and a machine learning model used to make inference on
the collected data [16]. As shown in Fig 1, these devices
are also equipped with a communication module such as
Bluetooth for data transmission. The conventional approach for
handling computation and memory intensive processes that is
not feasible on the sensor node is to transfer these processes to
a more powerful unit, referred to as base-station, which gathers
the sensed signals for signal processing and machine learning.
The base-station is responsible for executing the essential
power-hungry computational algorithms. However, there are
several disadvantages to this traditional architecture. First,
it does not allow embedded sensor nodes from functioning
as a stand-alone device and thus presents a single point of
failure to the system. Second, this method prevents the system

and sensing nodes from providing real-time results. Third,
transmitting the collected data to the base-station is a power-
hungry procedure [31]. Finally, continuous data transmission
from the sensor node to the base-station over a channel raises
security and privacy concerns [19]. These problems motivate
designing a per-node intelligence resource-efficient module
that can independently make decision based on its collected
sensor data.

However, performing the required processing locally in-
troduces another challenge. Since the sensor node needs to
process the collected data in real-time, we cannot use external
memory to store and process the collected data. The reason is
that using an external memory increases the response time
and power consumption [48]. As a result, we need a fast
algorithm and low-power memory to store and process the
data. Sensor nodes utilize low-power microcontrollers with
limited memory, making it challenging to collect time-series
data and process them on-the-fly. We need to use SRAM (static
random access memory) to store the collected time series data
and extract features from them. However, because SRAM is
expensive, the SRAM size on micro-controllers is quite limited
[4]. Therefore, while processing the collected data locally, we
have to consider this constraint as well.

(ED
== ((())

Fig. 1: Wearable devices architecture.

Each sensor node processes sensor readings by using dif-
ferent pre-programmed software for signal processing and
machine learning. Physical activity recognition applications
start with sensor node Inertial Measurement Unit (IMU).
Collected signals from IMU go through signal processing
algorithms to remove artifacts and noise. Statistical and spatial
features are computed from the processed sensor segments,
and the features are used to train machine learning models to
recognize human activities such as ‘running’, and ‘sitting’.

Fig 2 shows the human activity recognition machine learn-
ing pipeline from sampling a sensor node to the classification.
First, a filter is used to diminish high-frequency noise. Second,
we need to identify the start and endpoints of each activity
classified, which can be done through segmentation. Since
‘start’ and ‘end’ of activity could not be easily detected, we
use a sliding window with an overlap to segment signals into
instances of physical activities. Third, the feature extraction
block generates statistical and morphological characteristics of
the signal segment. Moreover, in the learning phase, impor-
tant features are defined, which is based on the application.
Features represent different properties of the signal, such as
‘amplitude’, ‘start to end value’, and ‘mean value’. Finally, a
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classification algorithm uses the generated features to recog-
nize the incoming activity of the individual.
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Fig. 2: Per-node classification process

Sensors

An observation x;, sensor readings over a signal segment,
made by a wearable sensor at time ‘¢’ can be represented
as a K-dimensional feature vector, x {ds1, dia, ...,
dix }. Each feature is processed from a certain time window.
The activity recognition task requires a label space A =
{a1,a2,...,a,,} including of the set of labels for activities of
concern, and a conditional probability distribution P(A|z;),
which is the probability of inferring label a; € A given
an observed instance z;. The probability of performing each
activity for an individual in a daily basis is given as P, =
{pal sPass s Pam }-

A wearable device that works as a stand-alone process-
ing unit needs to store and manipulate sensor readings to
extract the required features for later processing. SRAM
(Static Random Access Memory) of the micro-controller is
where the variables can be manipulated while the system is
running. SRAM is an expensive memory compared to DRAM
(Dynamic Random Access Memory), resulting in less SRAM
space in processing units. Therefore, if we desire to process the
data locally, then we need to consider the space limitation of
SRAM. Let, for a sensing device, s be the feature complexity,
and f be the sampling frequency. For each observation z;, the
computation complexity of feature extraction, Compute(z;),
is defined as the normalized number of required instructions to
extract a feature vector from a signal segment. Furthermore,
the IMU readings for each observation consist of x,, and
Zm, Which represent accelerometer and magnetometer values
respectively. In addition, we define the size that is used to store
each observation x; as M, and the available SRAM of a micro-
controller is k. Therefore, we have the memory constraint as:

M<k 1

Furthermore, we define the minimum acceptable accuracy
by introducing a bound on classifier errors. In other words,
for a set of observations in D, we have:

Z (yr — flzt)) <€ (2)

€D

where e denotes the maximum bearable error of the clas-
sification. In addition, the power consumption of real-time
classification can be divided into the energy consumed by
sensing (i.e., sampling) and feature computation as follows.

Z f x (Sense(x:) + Compute(zy)) < 6 3)
€D
where 6 represents the maximum acceptable energy consump-
tion (e.g., battery capacity). Assuming a potential solution
fulfills these three constraints, we may hold two constraints

and try to minimize the third one. For instance, accuracy opti-
mization can be defined as accurately classifying observations
made by the embedded sensing device such that the misclas-
sification error is minimized while complying with the energy
and memory constraints. Alternatively, we can define energy
and memory optimization challenges. However, in this work,
we investigate methods of minimizing energy consumption
while maintaining an upper bound on the classification error
and satisfying the memory requirements. In the following, we
formally define this optimization problem.

Minimize Z f x (Sense(x:) + Compute(zt)) (4)
€D

Subject to: Z (ye — f(zy)) <€ )
xt €D

M<Kk (6)

The optimization problem in (4)—(6) aims to minimize the
amount of energy consumption due to sensing and compu-
tation subject to an upper bound on the classification error,
shown in (5), while satisfying the memory constraint in (6).
This problem allows us to set our desired threshold for
classification accuracy and memory size and minimize energy
consumption when classifying physical activities on a sensor
node.

IV. METHOD

Human activity recognition is a multi-class classification
problem that requires comprehensive knowledge of human
gait to recognize activities of interest. However, increasing
the number of classes and sensor nodes increases the com-
putational complexity of these systems. Designing a single
multi-class classifier model to distinguish a class from many
other classes is challenging and may not result in an efficient
classifier in terms of power and memory requirements. On
the other hand, conforming with the Divide-and-Conquer
paradigm, by breaking down the problem into multiple hi-
erarchical classifiers, we can save energy and computation
without losing the classification accuracy. The properties of
our proposed probabilistic cascading classifier include sensing
efficiency, personalized structure, and feature computation
efficiency. Furthermore, we evaluate the performance of the
proposed classifier using two datasets: 1) "Daily and Sports
Activities" dataset [2], which consists of 19 activities per-
formed by eight subjects and, 2) "PAMAP2 Physical Activity
Monitoring" dataset [36], including 12 activities performed
by nine subjects. Both datasets include raw IMU signals,
including accelerometer, magnetometer, and gyroscope.

A. Sensing and Computation Efficiency

Human physical activities vary from one another based on
their intensity level. For instance, activity such as running is
more intense than sitting. If we are to develop a single multi-
class classifier to classify all activities, we need to make sure
that we use a sampling frequency according to the fastest
activity. Only then we can avoid aliasing in the collected
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data. Aliasing results in signal distortion because the sampling
frequency is too low to regenerate the original analog content
accurately. Considering fs as the sampling frequency of the
sensor and f, as the frequency of the activity, according
to Nyquist—-Shannon sampling theorem [41] we must have
fs = 2f,. Therefore, the required sampling frequency of a
single multi-class classifier is at least two times greater than
the frequency of the fastest activity of interest. According to
[3], human physical activity frequencies are between 0 to 20
Hz. As a result, the required sampling frequency for a multi-
class classifier to capture the activity signal needs to be at least
40Hz. However, activity such as normal walking has a fre-
quency between 1.4 to 2.5 Hz [20] and a sampling frequency
of 5Hz should be sufficient to avoid aliasing. Furthermore,
by setting the sampling frequency according to the most
intense activity, we over-sample for the rest of the activities,
which do not require such a high sampling frequency. In
addition, a multi-class classifier requires a complex set of
features to separate all activities of interest, and extracting
complex features is both memory and energy inefficient. In
this study, we develop a cascading approach to adjust sampling
frequency and feature complexity efficiently. We categorize
all activities of interest into three categories according to the
Metabolic Equivalent of Task (MET) studies, which include
light-intensity, moderate-intensity, and vigorous-intensity [1].
For light-intensity activities, a lower sampling frequency is
adequate to captures the required information for recognizing
the activities. Similarly, for vigorous-intensity activities, we
need a higher sampling frequency to detect activities and avoid
aliasing. As shown in Fig 3, we consider different sampling
frequency values and different feature complexities for each
group. The feature complexity and sampling frequency (fs)
increases with the increase in the intensity level of activities.

Feature Complexity

Light Intensity
Classifier
| I Frequency

Fig. 3: Cascading classifier resource assignment for each
intensity group.

1) Sampling Frequency Determination: As stated -earlier,
we have different sampling frequencies for each intensity
group. We determine the sampling frequencies according to
Nyquist—Shannon sampling theorem and define the sampling
frequency of each intensity group according to the most
intense activity in that group. Because the fastest or most
intense activity has the highest frequency, this guarantees the
Nyquist-Shannon sampling theorem holds (fs > 2f,) for all

the activities in each intensity group. Equation (7) shows the
sampling frequency of each intensity group including light
(fa), moderate (fomn), and vigorous (fs,) groups. fi, fun,
and f, are the frequencies of light, moderate, and vigorous
activities in each group respectively.

fsla fsma fsv :2max(fl>7 2max(fm>7 2Inax(f'u) (7)

If the classifier identifies the current activity as light-
intensity, the sampling rate remains low. However, if the classi-
fier detects the current activity belonging to a higher-intensity
group, then the system increases the sampling frequency.

2) Feature Selection: Different sets of features are used for
each intensity group based on the classification difficulties.
We have used two feature selection methods to select the
best performing features for each intensity group without
sacrificing classification accuracy. We have 3-axial data from
accelerometer and magnetometer sensors, and for training
human activity recognition models, we compute time-domain
statistical features from the sensor window segments. Time-
domain features avoid complex pre-processing stages like
framing and Fourier transformation required for frequency-
domain features. Consequently, computing time-domain fea-
tures consumes less processing power than frequency-domain
features [11]. Since, in this work our aim is to decrease the
energy footprint of the HAR system, we have decided to
use only time-domain features in our analysis. We extract
9 features for each axis, which includes amplitude, median,
mean, maximum, minimum, peak-to-peak amplitude, standard
deviation, root mean square power, and start to end value. As
a result, we have 81 features from each window-segment, and
this requires significant computation resources. Using a large
number of features usually results in higher performance of the
trained machine learning models [21], [49], however, feature
computation requires energy and memory, which are limited
in embedded systems. Hence, it becomes crucial that we use
a minimal number of features for the maximum attainable
accuracy of the activity recognition models. We use Recursive
Feature Elimination (RFE) - to select the best features for each
level in our cascading model for human activity recognition.
To select relevant features, a feature selection criterion is
needed to measure the relevance of each feature with the
class labels [34]. Recursive feature elimination (RFE) is a
wrapper-type feature selection algorithm that uses weights of
a machine-learning algorithm to rank features for selection.
RFE has two hyperparameters: the number of features to
select and a machine learning algorithm used for ranking
features. RFE works by searching for an optimal subset of
features by starting with all features present in the dataset
and successfully removing features until the specified number
of features remains. Traditionally, Support Vector Machine
(SVM) is used as the ranking machine learning algorithm
with recursive feature elimination for binary and multi-class
classification problems [9], [15].

B. Cascading Classifier

After categorizing the activities into three groups, we de-
velop the probabilistic cascading classifier to recognize human
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activities. The input specifications, including the feature set
and sampling frequency of this classifier, are determined by
each activity’s intensity level. The probabilistic cascading
classifier consists of binary classifiers and group classifiers
connected to the human activity recognition system. In this
subsection, we first explain each component of the classifier,
and then we go over the personalized structure and the
connections between different components of the system.

1) Binary Classifiers: The first level of the cascading clas-
sifier system consists of binary classifiers. Binary classifiers
are used to determine the intensity level of an input window-
segment. Detecting intensity level for a given input, allows the
system to adopt the correct sampling frequency and feature
complexity for activity classification. As shown in Fig 3, we
need three binary models to separate intensity groups, which
include binary classifier for light intensity group BC;, binary
classifier for moderate-intensity group BC),, and binary clas-
sifier for vigorous-intensity group BC),. Each binary classifier
distinguishes that intensity group from the rest. We train three
simple binary classifiers based on intensity groups. Each of
these binary classifiers works with a unique sampling fre-
quency and feature complexity. For this purpose, we construct
a dataset with activities from each intensity group. Then we
label our data according to the intensity group of each activity.
As a result, we define sub-label according to the intensity
group of each classifier. For training BC; we assign true as
the sub-label of all low-intensity activities and false to other
intensity groups activities. We follow the same procedure for
BC,, and BC, by assigning the true to moderate-intensity
and vigorous-intensity groups. The intensity group activities
are similar in some factors, such as changes, amplitude, and
max/min of the signal. For instance, for an activity such as
standing, we have fewer signal changes, and slower movement
of this activity results in low amplitude or low absolute values
of min/max. Other light intensity activity works accordingly.
However, more intense activity such as walking has higher
amplitude or min/max values due to the higher acceleration
of the activity. As a result, we expect by just using intensity
group labels, it is possible to distinguish intensity groups from
one another. We train these classifiers with different models,
including Support Vector Machine (SVM), Decision Tree,
Random Forest, Logistic Regression, Multilayer Perceptron,
and K-Nearest Neighbour. Ultimately, we can choose the
model with the best performance for this application.

2) Groups Classifier: After detecting each input’s intensity
level, we need to classify the input segment as an activity
belonging to the detected intensity group. Group classifiers
are multi-class classifiers that are responsible for classifying
an input segment as an activity class. Group classifiers are
trained on a particular feature set to recognize activities for
each intensity group. Group classifiers include M C; for light
intensity group, M C,, for moderate-intensity group, and M C,
for vigorous-intensity group. The sampling frequency used in
these models is the same as the sampling frequency of the
respective intensity group. However, a different set of features
is required for each multi-class classifier model than the binary
classifier of the same intensity group. We train group classifiers
using different popular algorithms, including Support Vector

Machine, Decision Tree, Random Forest, Logistic Regression,
Multilayer Perceptron, and K-Nearest Neighbour. Therefore,
based on the achieved results, we can select the algorithm
that has the best classification accuracy as our model.

3) Classifier Flow: After setting variable sampling frequen-
cies and feature sets, we connect different components of the
classification system. However, some assumptions need to be
discussed before we talk about our experiments and results.
First, we assume that we have pre-trained models trained on
a limited amount of data and stored on the wearable device.
Second, we assume that the initial probability of performing
each intensity group for each individual is equally likely. We
update the models and probabilities as an ongoing process as
the user uses the classification system. This learning on the go
provides the personalization for our systems. We consider the
personalized variable structure for our probabilistic cascading
classifier. We determine the classifier’s structure based on
the probabilities of intensity groups for each individual. The
purpose of this structure is to help save energy by going
through less computation for each user. Fig 4 shows the main
components of the probabilistic cascading binary classifier.
First, the system fetches the initial probability (p;) of each
intensity group for a user. Then it sorts the intensity groups
based on their probabilities. Therefore, the sensor node starts
sampling and computation according to the frequency and
feature level (f;, s;) of the most likely group. If the current
activity is not a member of the most likely intensity group, then
we change the sampling frequency and feature set according to
the next likely group. The system keeps executing this process
until the current activity is recognized and uses the recognized
activity to update the probabilities of intensity groups.

Initial p;

Activity (4;)

Fig. 4: Probabilistic cascading binary classifier components.

Fig. 5: Flow chart of the cascading binary classifier.

A variable classifier structure aims to minimize the re-
sampling and individualize the classifier for each subject. For
example, let’s consider for a user the activities of daily living
has 50% chance of being moderate intensity, 40% chance
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Algorithm 1 Probabilistic Cascading Binary Classifier.

P1,p2,p3 < Probabilities(U ser)

while T'rue do
Freq = fy
Features = sq1
RawData = Read(IMU, Freq)
Features < Read(RawData, Features)
ActivityGroup < BC)(ExtractedFeatures)
if ActivityGroup = L1 then
ActivityLabel < MC4(ExtractedFeatures)
else

Features = 542
if fgo > fg1 then
Freq = f2
RawData = SensorReadings(IMU, Freq)
else
RawData = DownSample(RawData, fg1, fg2)
end if

ExtractedFeatures < Read(RawData, Features)
ActivityGroup < BCq(ExtractedFeatures)
if ActivityGroup = Lo then

ActivityLabel <~ MCo(ExtractedFeatures)

else
Features = sgy3
if fg3 > f42 then
Freq = fy3
RawData = Read(IMU, Freq)
else
RawData = DownSample(RawData, fg2, fg3)
end if

ExtractedFeatures < Read(IMU, Freq, Features)
ActivityLabel < MCs(ExtractedFeatures)
end if
end if
Probabilities «+ Update Probability(Activity Label)
Report < ActivityLabel
end while

of being light intensity, and 10% chance of being vigorous.
Therefore, the system selects the moderate binary classifier
when input arrives and checks whether the input belongs
to moderate-intensity group or not. Fig 5 and Algorithm 1
shows the flow chart and pseudo code of the cascading binary
classifier for the three possible intensity groups. The first
group is the intensity group with the greatest probability. The
second group is the intensity group, which has the second-
largest probability. And the third group is the intensity group
with the least probability. We start with the most probable
intensity group with sampling frequency fq1 and feature set
sg1 and set the sampling frequency to f,; and we extract
feature according to sq4;. Then we check if the current activity
is in this intensity group (L) or not using binary classifiers.
If the current activity is not in the most probable intensity
group, then we select the next intensity group with the second
greatest probability value. We modify the specification of the
classifier to fgo and sgo. If the new sampling frequency is
greater than the last sampling frequency (fg2 > fg1), then
we need to re-sample sensor data again. However, if the new
sampling frequency is less than the previous one, then we
down-sample the collected data. This process tries to avoid
unnecessary re-samplings that cause energy consumption and
add a re-sampling delay to the process. We follow the same

procedure for the second and third intensity groups until we
identify the activity. We also conclude that if the activity is not
in the first two more likely intensity groups, then the activity
is in the least likely intensity group without going over the
group’s binary classifier. Algorithm 1 describes the process of
the probabilistic cascading binary classifier.

C. Resource Analysis

We have variable structures for the probabilistic cascading
binary classifier, which results in different energy consump-
tion for each scenario. The goal of variable structures is to
minimize the energy consumption of each working scenario.
The most typical scenario for daily physical activities is the
scenario in which the probability of lighter intensity activities
is higher than other intensity groups. If we keep this scenario
as our fixed approach for all users, then an individual with a
higher distribution of activities in moderate or vigorous groups
will perform poorly. The system’s critical path will be longer,
resulting in higher resource usage. This introduces delay and
higher power consumption comparing to a normal multi-class
classifier method for activity recognition. Therefore, we need
to personalize the classifier’s structure by considering the
probabilities of activities for each user to maximize resource-
saving and reduce the response time. The power consumption
of the cascading classifier framework is given by:

(Ty1 fq1(Sense(z) + Computeg (z) + Computegii(z))
+ (Ty2 fg2(Sense(x) + Computegs(x) + Computegor (z))
+ (T3 fg3(Sense(z) + Computegs(x)) (8)

where 1,1, fq1 and Computes, are time, frequency for
detecting this level vs. other intensity activities and compu-
tation of feature for first intensity level binary classifier. We
add Computeyi1 for the first level activities because after
knowing that the activity is in the first intensity group, the
classifier uses the second level of this intensity group features
to distinguish different activities of this group and infers one
single activity as the classification result. The process is similar
for the second and thirds intensity groups. The probability
consideration helps the classifier minimize the critical path by
starting the intensity groups most likely. Therefore, most of the
time, the first line of Equation 8 is the total power consumption
of the sensor node while executing the probabilistic cascading
binary classifier. Since the classifier structure is different for
each individual, the power consumption model is different.
However, the structure is flexible to reduce the power con-
sumption of the sensor node.

V. VALIDATION

In this section, we provide the results of our experiment
using the probabilistic cascading binary classifier. First, we
explain the experimental setup of our binary and multi-class
classifiers and datasets used in our experiments. Second, we
examine each level of our cascading classifier separately.
Third, we evaluate the system for activity classification by
connecting all the components and discussing the system’s
performance. Lastly, we report our system’s resource analysis
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using the actual hardware system and compare our results with
the standard way of human activity classification.

A. Experimental Setup

We use two different datasets to evaluate the cascading
binary classifier. The first dataset is the "Daily and Sports
Activities Dataset" [2] and the second dataset is "PAMAP2
Physical Activity Monitoring" [36]. Our validation focuses
on the first dataset, for which we present a comprehensive
analysis, and for the second dataset, we offer a summary
of our analysis. In the "Daily and Sports Activities dataset”,
there are apparent inter-subject variations in the speeds and
amplitudes of the same activity because the subjects were
asked to perform the activities with their desirable style and
were not restricted to how the activities should be performed.
Subjects performed 19 activities while wearing 5 motion
sensor nodes on 5 different body locations, including the
torso, right arm, left arm, right leg, and left leg. Each sensor
node has a 3-axis accelerometer, 3-axis gyroscope, and 3-axis
magnetometer. However, we do not include the gyroscope data
in our analysis because the gyroscope is typically considered
more power-hungry than an accelerometer and magnetometer
[23]. It requires vibration at a certain frequency to measure the
angular velocity [32]. Furthermore, we process the data that
is collected on the torso. The original sampling frequency of
the collected data is 25Hz, and the 5-min signals are divided
into 5-sec segments so that 480(=60x8) signal segments are
obtained for each activity. Table I shows the activities, their
respective intensity groups, and the MET values.

We assigned an intensity group to each activity as their sub-
labels, according to MET. As shown in Table I, activities 1 to
5 are light intense activities, activities 6 to 11 are moderate
intense activities, and activities 12 to 19 are vigorous intense
activities. From each 5 seconds segment of the individual
sensor streams, we extract 9 statistical features. Possibly,
several different features can be extracted from human phys-
ical activities. However, we use the amplitude of the signal
(AMP), the median of the signal (MED), mean of the signal
(MNVALUE), maximum of the signal (MAX), minimum of
the signal (MIN), peak to peak amplitude (P2P), the standard
deviation of the signal(STD), root mean square power (RMS),
and stand to end value (S2E). As a result, for each IMU with
an accelerometer and magnetometer 9 features are extracted
for each axis, which gives us 2 x 3 x 9 = 54 total features.
These features aim to capture both the shape and amplitude of
the signals. For instance, features such as amplitude and mean
of the signal can be used to capture the signal’s amplitude
while the standard deviation of the signal and start-to-end
value attributes try to capture the signal’s structure. We divide
these features into different levels of complexity based on the
number of extracted features for each classifier. Each level uses
a different set of features which aims to classify the incoming
activity efficiently.

The original sampling frequency of the dataset is 25Hz.
We downsample the dataset into 1Hz, 2Hz, 5Hz, and 8Hz
sampling frequencies for evaluation purposes. We assign 2Hz
to light intense activities, 5Hz to moderate-intensity activities,
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Fig. 6: Down sampling example of a light intense activity.
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Fig. 7: Down sampling example of a vigorous intense activity.

and 8Hz to vigorous intense activities and satisfy the Nyquist
theorem to avoid aliasing. We also include 1Hz sampling
frequency as the lowest frequency for comparison. The original
dataset was constructed by collecting 125 samples for each
5 second time segment. However, we collect 5, 12, 25, and
42 samples during the 5 seconds time window to reach the
desired sampling frequencies for each intensity group. Fig 6
and Fig 7 show the raw acceleration data of the X-axis before
and after downsampling for a light intensity activity and a
vigorous intensity activity respectively. First, we select the
desired number of samples from the original 125 samples.
Then we regenerate the signal with the selected number of
samples. As shown in Fig 7, sampling a vigorous intense
activity with low sampling frequency such as 2Hz cannot
capture all the detail and shape of the signal. Therefore, we can
conclude that low sampling frequency may not be used to train
a classifier to achieve a reasonable accuracy for high-intensity
activities. On the other hand, in Fig 6, which belongs to a light
intensity activity, we can use lower sampling frequency and
still capture the signal with a sensible detail. Therefore, the use
of high sampling frequency to capture low-intensity activity
signal can be avoided, resulting in lower power consumption.

B. Binary Group Intensity classifiers

As stated earlier, the output of this level of the probabilistic
cascading binary classifier determines the intensity level of
the activity. We have three binary group intensity classifiers
including BC}, BC,,, and BC,,. BC| distinguish low-intensity
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TABLE I: Activity and group list

Activity ID Activity Description Intensity Group | MET
1 Sitting Light 1.3
2 Lying on back Light 1.3
3 Lying on right side Light 1.3
4 Standing Light 2
5 Standing in elevator Light 2
6 Walking in a parking lot Moderate 32
7 Walking on a treadmill with a speed of 4 km/h Moderate 35
8 Moving around in elevator Moderate 3
9 Walking on inclined (15 deg) treadmill at 4km/hr Moderate 53
10 Ascending stairs Moderate 5
11 Descending stairs Moderate 35
12 Running on a treadmill with a speed of 8 km/h Vigorous 9.8
13 Exercising on a stepper Vigorous 9.8
14 Jumping Vigorous 9
15 Exercising on a cross trainer Vigorous 9.5
16 Cycling on a horizontal exercise bike Vigorous 9
17 Cycling on a vertical exercise bike Vigorous 9
18 Rowing Vigorous 12
19 Playing basketball Vigorous 9.3

activities from the rest, BC,, distinguish medium intensity
from the rest, and BC, distinguish high intensity from the
rest. We train each model separately using different feature sets
computed from data sampled at different sampling frequencies.
We use the recursive feature selection method to select the best
features for each binary classifier. 50% of the down-sampled
data is used as the training dataset for binary classifiers and
feature selection. To this end, we choose half of the data for
each activity label, at random, to construct the training set.
This gives us approximately the same number of instances
of each activity in both training and test sets. To achieve the
most informative features for each binary classifier, we use
the recursive features selection method for which we set the
number of desired features, and this gives us the best feature
combination based on their performance on the train set. For
training the binary group classifiers, we re-label the dataset
into binary class considering which binary classifiers we are
training. For instance, if we are training BC}, we assign label 1
to all feature rows for light intensity activities and 0 for feature
rows from moderate and high-intensity activities. Ultimately,
we have 3 different datasets for each binary classifier. While
training each classifier, we assign true labels to the activities
of that classifier and false labels to the rest of the activities.

Table II shows an example of the selected features for
different feature selection methods for BC) binary classifier.
We analyzed the data using RFE to sort the features according
to their importance. This table demonstrate that the feature
selection method adds one feature with the most contribution
to the class label each time we increase the number of selected
features. As it can been from Table II, from the first 10 im-
portant features for light intensity group, 9 features are similar
between the two tested (RFE and AdaBoost) feature selection
methods. Furthermore, we include the selected features of RFE
method in later analysis.

TABLE II: The first 10 feature combinations selected by the
recursive method.

Feature Order RFE AdaBoost
1 Mag RMF(z) | ACC MIN(y)
2 ACC MIN(y) | Mag RMF(z)
3 ACC MIN(x) | ACC MAX(x)
4 ACC MED(x) | ACC MED(x)
5 ACC S2E(z) | ACC MIN(x)
6 Mag STD(z) | ACC MIN(z)
7 ACC MAX(y) | ACC S2E(z)
8 Acc P2P(x) Mag STD(z)
9 Mag S2E(y) | ACC MAX(y)
10 ACC MIN(z) | Mag S2E(y)

We use the other half of the data as our test set. Therefore,
after feature selection and training the model on training
data, we use a test set to evaluate the classifier performance.
The most challenging situation for each classifier is when
each classifier serves as the first component of the cascading
classifier structure. Therefore, the first model (the intensity
group with the highest probability) has to distinguish the class
data from the other two classes. However, the middle model
of the classifier structure only needs to distinguish one class
from another class because one group is eliminated from the
decision process. After the feature extraction phase, we use the
constructed train set and test set to evaluate different machine
learning algorithms for binary classification. We also start
training our models with only one feature and increment the
number of features and retrain the model for each feature set
obtained from the feature selection algorithm. After training,
we test the trained model on the test set.

Fig 8 shows the accuracy of classification on the test set
using a variable number of features and different sampling
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Fig. 8: BC;, BC,,, and BC,, classifier performance using Random Forest classifier.

frequencies for all the binary classifiers using random forest
classifier. For BCj, we can conclude that increasing the
number of features and collecting data with higher frequency
results in slightly more accurate predictions. We can also
observe that using only a few numbers of features produces a
desired accuracy. Moreover, increasing the number of features
do not contribute to the classification accuracy after a certain
number of features which shows that using more features does
not necessarily improve the accuracy on light-intensity vs.
rest binary classification task. Therefore, we can extract a few
features and classify the current activity with reasonable accu-
racy. For instance, extracting 2 features while collecting data
with a sampling frequency of 1Hz can achieve a classification
accuracy of 98%. Therefore, we conclude that we can collect
sensor data with lower sampling frequency and extract fewer
features while achieving a high classification accuracy for light
intensity group vs. rest of activities.

Fig 8 shows the result of classification for BC),. This
classifier distinguishes moderate intense activities from the
rest of the activities. From BC) and BC,, (Fig 8), we realize
that the classification accuracy decreased. The reason for this
difference is that the moderate-intensity activities are in the
middle of MET values. In other words, these activities are not
very low intense or very high-intensity activities, which make
them more difficult to classify than light intensity activities.
Therefore, moderate-intensity activities can be mistaken for
either a light intensity group or a vigorous-intensity group. Us-
ing different sampling frequency and features, we realize that
more features are needed to classify moderate-intensity groups
from the rest comparing to BC classifier. Sampling frequency
seems to be a more critical factor in BC), comparing to BCj.
This can be explained by the shape and changes of the signals
for light intensity activities. Based on Fig 6, it can be seen that
changes in the light intensity group’s signal are minimal. As a
result, it is easier to distinguish these activities from the rest.
We conclude that achieving a reasonable accuracy to classify
moderate intense activities from other activities needs more
resources than light intensity classifiers and requires higher
sampling frequency and more features.

Fig 8 also shows the performance of the BC,, binary classi-
fier for variable features and sampling frequencies. BC,, solves
the binary classification problem of high-intensity activities vs.
the rest. Comparing BC,, and BC,,, we observe that sampling
frequency seems to be a more important factor for BC,.
Considering that the frequency of vigorous-intensity activities

is higher than moderate intense activities, we can conclude that
higher sampling frequency is required to achieve an acceptable
classification accuracy. Like the previous binary classifiers,
we observe that adding more features to train the classifiers
does not necessarily improve the classifier’s performance.
Therefore, we can recognize activities by extracting a few
features while collecting data with lower sampling frequency.
In fact, we can reduce the required resources and still achieve
reasonable accuracy. For instance, while detecting a vigorous
intense group, we can collect data with a sampling frequency
of 2Hz and extract 7 features to achieve 97% accuracy.
Comparing the obtained results from BC;, BC,,, and BC,,
we can define a threshold for the classification accuracy and set
the parameters including the number of features and sampling
frequency to satisfy the performance threshold. Therefore, we
do not over-sample sensor data, which does not contribute to
the classifier’s performance. At the same time, we also do
not extract features when their contributions to the classifiers’
performance are negligible. We choose random forest models
to use for the binary intensity group classification task. This
model gives us two advantages while going forward with con-
structing the classifier. First, the model is easy to implement.
Second, the performance of this model on the test data is more
accurate than other tested models. Moreover, the test set that
is used for each model includes the data for all 3 groups.
However, this scenario is only true if the classifier is the
first component of the cascading classifier, which is the most
challenging testing scenario of the model. Furthermore, if each
binary classifier comes as the second module of the classifier,
it needs to distinguish one group intensity from another group
intensity, making the prediction less challenging compared to
the most difficult scenario, which is having all the intensity
groups in the test set. We test the binary classifier in the
most challenging scenario for better evaluation of the method.
Ultimately, we observe that higher intense activities require
higher sampling frequency and more number of features.

C. Multi-Class classification of Activities

We have three multi-class classifiers MC;, MC,,, and
MC, for each intensity group. Each classifier is used to
classify the activity of that intensity group. After group in-
tensity detection, these multi-class classifiers use the original
sampling frequency of their intensity groups and extract the
required features to classify the activities. The down-sampled
data is used for this experiment, and hence we can evaluate
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the performance of each classifier using different sampling
frequency to collect sensor data. We consider 50% of the
data belonging to each intensity group for feature selection
algorithm and training the multi-class classifier. The other 50%
is considered as a test set of the multi-class classifier. We
use the recursive method on the training set to select a set
of features from all the possible combinations of the features
between having only 1 feature and all features. We train 6
different models, including Support Vector Machine, Decision
Tree, Random Forest, Logistic Regression, Multilayer Per-
ceptron, and K-Nearest Neighbour. We assess different types
of classifiers to discover the impacts of sampling frequency
and features on classification performance. The outcome of
the feature selection method is the features with the most
contributions to detecting the label. However, each time we
increase the number of selected features, we also try all
different combinations of the features. Therefore, adding new
features does not undermine the ability of the classifier for
classification. Adding new features could result in better
performance or the same performance if the newly added
feature does not contribute to the model. Fig 9 shows the
performance of Random Forest classifier to classify all three
activity groups using different sampling frequencies and with
a different number of features. As can be seen, increasing
sampling frequency does not contribute to the classification
accuracy for light intensity group. The number of features
seems to be more critical for M Cj. Since we expected light
intensity activities have fewer changes in their signals, we can
conclude that lower sampling frequency can be sufficient to
classify these activities. In other words, collecting data with
higher sampling frequency does not necessarily improve the
classification result for light intense activities. Therefore, by
sampling with high frequency, we over-sample, which results
in consuming more resources. These resources mainly include
power consumption due to data collection and memory usage.
This is because of the greater amount of data points collected
and could be greatly reduced for light-intensities activities.

Comparing MC,, and MC; (Fig 9), we can observe that
sampling frequency is more critical for M C,,,, which classifies
moderate intense activities. Since moderate-intensity group
activities are faster than light-intensity activities, we need a
higher sampling frequency to capture the more intense changes
in moderate-intensity activities.

Similar to MC,, we observe that classification accuracy
is highly dependent on the sampling frequency for MC,,.
Therefore, we justify that to detect vigorous intense activities,
the sampling frequency must be high enough to capture
changes in the signals in this activity group. In addition,
we need to extract more features to reach the saturation
point of classifier performance. Comparing M C,,, and MC,
classification results, we observe that we need to increase
the extracted features for MC,. In addition, we observe
that increasing sampling frequency produces more significant
impact on M C), than M C,,. Therefore, we conclude that for
vigorous intense activities, the higher sampling frequency is
required comparing to moderate-intensity activities.

D. Cascading Classifier Performance

In this subsection, we examine cascading classifier’s overall
performance as a human activity recognition system. As
mentioned earlier, we use variable sampling frequency and
variable feature set for each group of activities. Furthermore,
the structure of the classifier depends on the probability of
each intensity group. Therefore, we have six different working
scenarios for cascading classifier. We evaluate the performance
of the cascading classifier for each scenario. Table III shows
all possible operational scenarios of the overall system. The
first intensity group is the most likely activity group of each
scenario, and the third intensity group is the least likely inten-
sity group of each scenario. All the scenarios require at least 1
round of sampling, but some such as scenario 1 may require 3
round of data sampling depending on the activity. Scenarios 5
and 6 do not require re-sampling because we already sampled
the sensor with the highest frequency. Therefore, we down-
sample the collected data and continue with the rest of the
classification process. The rest of the scenarios (1 to 4) may
require one or two re-sampling processes, which can be done
by increasing the sampling frequency of sensors. Fig 10 shows
the process of preparing the test data to evaluate the cascading
classifier for the first scenario of Table III. First, we feed the
2Hz test set to BCj to distinguish light and non-light intensity
groups. The light intensity group are then fed to MC) for
light intensity activity classification. We also use the dataset
index of non-light intensity groups to select only a non-light
group from 5Hz datasets. Therefore, we increase the sampling
frequency from 2Hz to 5Hz, which is required for BC, and
MC). We perform the same process to exclude the moderate-
intensity group from 8Hz test set as well. We feed the 8Hz test
set of predicted vigorous intense group to vigorous-intensity
classifier (M C,). A similar process of preparing the test data
to evaluate using different sampling frequency is also per-
formed for the rest of the evaluation scenarios, which simulates
the real testing situation. To evaluate the performance of the
cascading classifier, we use 50% of the data of each activity
class for testing purposes, and the rest of the data are used
for feature selection. We conduct the experiment using a 5-
fold cross validation strategy applied on the test set. We select
random forest models for each level in the binary cascading
structure which includes these classifiers: BC;, BC,,, BC,,
MCy, MC,,, MC,. We select the Random Forest algorithm
because it is simple for implementation, and the performance
of these models on the training data is reasonable compared
to other machine learning algorithms.

TABLE lll: Different operational scenarios of the cascading
classifier.
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1 Light Moderate  Vigorous

2 Light Vigorous Moderate

3 Moderate Light Vigorous

4 Moderate  Vigorous Light

5 Vigorous Light Moderate

6 Vigorous  Moderate Light
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Fig. 9: MC;, MC,,, and MC,, classifier performance using Random Forest Classifier.
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Fig. 10: Test set preparation and classification of the first
evaluation scenario.

To test the cascading classifier, we set a threshold for
accuracy changes while increasing the number of features for
each classifier. The threshold needs to be high enough for a
hierarchical classifier to prevent propagation error. We select
the minimum number of features, which results in an accuracy
of equal or more than 98% for each model. For instance, if
the maximum accuracy of a model reported as 100%, then
we select the minimum number of features that result in a
98% classification accuracy. As a result, we select the number
of features for each model and connect it with the model’s
input/output to construct the binary classifier. Table IV shows
sampling frequency and the number of extracted features for
each model. Using these frequency values and feature sets, we
achieve at least 98% accuracy for each model. In addition, Ta-
ble IV shows the performance of each classifier with different
metrics obtained through a 5-fold cross validation experiment
using a random forest classifier. These results suggest that each
component alone is capable of performing the assigned classi-
fication task with a relatively high classification performance.
Furthermore, Fig 12 shows the performance of cascading
classifier for each scenario. Fig 12 shows that each intensity
group’s overall accuracy is similar across different scenarios.
This can be potentially explained by our model’s attempt to
adjust the sampling frequency and feature set to maintain a
minimum accuracy performance in all scenarios. Therefore, we
expect to observe similar behavior for all possible operational
scenarios of the cascading classifier. However, scenarios that
begin with higher intensity activities show higher accuracy
since higher sampling frequency is used to classify these
activities. Moreover, the higher frequency results in larger
data size for the same window interval and better captures the

signal changes for higher classification accuracy. Furthermore,
Fig 11 shows the confusion matrix of all possible scenarios. It
can be seen all scenarios share relatively similar misclassified
activities. For instance, "standing in elevator" is repeatedly
misclassified as "Moving around in elevator" in all scenarios.
Therefore, we conclude that the proposed method is effective
in all the scenarios despite variable sampling frequency and
different number of features.

E. PAMPZ2 Dataset Evaluation

We consider using another dataset to evaluate the gen-
eralizability of the suggested method. Therefore, we se-
lected "PAMAP2 Physical Activity Monitoring" as the second
dataset. We selected 12 activities, which includes four activi-
ties from each intensity group. The selected activities include
lying, sitting, standing, computer work, walking, ascending
stairs, descending stairs, Nordic walking, running, cycling,
rope jumping, and playing soccer. This data is collected
with a sampling frequency of 100Hz. We down-sampled the
sampling frequency to 2Hz, 6Hz, and 10Hz for light intensity,
moderate intensity, and vigorous intensity, respectively. We
process the data of the IMU that is located on the chest of
individuals. Similar to the previous analysis, we only feed
accelerometer and magnetometer data to our classifier. Table V
shows the specifications of each model of our probabilistic
cascading binary classifier, which led to an accuracy of 98%.
As expected, we need to sample higher intensity activities with
higher frequency and more extracted features. For instance, we
require the sampling frequency to be 2Hz for light intensity
activities. However, a higher sampling frequency is required
for recognizing vigorous intensity activities (10Hz). Fig 13
shows the classification accuracy of the classifier for all pos-
sible scenarios according to Table III. For scenarios 1 and 2,
we observe better prediction for the light intensity group. This
can be justified by mentioning that the classifier first checks the
light intensity group in these two scenarios. Therefore, we do
not have a propagation error for this group. The same pattern
can be observed for the groups that the classifier checks first.
Moreover, The average classification performance increases as
the intensity level of the first checked group increases. This is
because higher intense activities seem to be more challenging
to classify. As a result, they are more vulnerable to propagation
error. If we check higher intensity groups earlier than other
groups, then we decrease the propagation error.
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TABLE IV: Models specifications of Daily and Sports Activities dataset.
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Fig. 11: Confusion matrix of all the scenarios for daily and sports activities dataSet.

TABLE V: Models specifications of PAMAP2 dataset for cut-

off accuracy of 98% .
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memory usage of the proposed method. The goal of the
proposed method is to save resources in wearable technologies.

Fig. 12: Cascading classifier performance of Daily and Sports

Activities dataset for all possible scenarios.

Therefore, we conduct this experiment to implement the actual
method in a real-world setting. Then we compare the energy

consumption of the system for different scenarios. For this

F. Power Consumption and Memory Usage Evaluation

in-lab experiment, we use Adafruit Feather MO, which is
equipped with ARM Cortex MO processor and the Adafruit

to experimentally investigate the energy consumption and LSM303 triple-axis Accelerometer and Magnetometer break-

In another experiment, we aim to simulate the probabilis-

tic cascading binary classifier on a real hardware system
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Fig. 13: Cascading classifier performance of PAMAP2 dataset
for all possible scenarios.

out board. LSM303 is a low power IMU, and the sensor
was put in a low-power mode in our experiments. This IMU
let us sample data with different sampling frequency at the
hardware level, which helps us conduct this experiment. We
also use the INA219 current sensor to measure the current
consumed by the system. A 1000 mAh LiPo battery powers
the system. Fig 14 shows the experiment components and the
connections that we use to measure energy consumption. An
Arduino Uno is also used to read the current sensor readings.
Furthermore, we report the free space of SRAM to compare
the required memory for each scenario. We develop each
classifier according to Table IV, which comes with a particular
sampling frequency and number of features. However, accord-
ing to LSM303 datasheet, the sampling frequency can be set to
(1,10, 25,50, 100, 200, 400)Hz. Therefore, we consider using
(1,10, 25)Hz sampling frequencies as a proof of concept for
this experiment. We set the window size to 5 seconds for each
sensor observation. The, we start sampling sensor data with
the mentioned sampling frequencies, and at the same time, we
measure the power consumption by the INA219 current sensor.
Table VI shows the results of this experiment, including the
average power consumption and memory usage. Battery life is
calculated by considering a 1000mAh battery, which we use
in this experiment. The required SRAM is determined by the
difference between the total size of Cortex MO SRAM (32KB)
and the free space of RAM, which we report via our program.
The program reports the space between the heap and stack of
SRAM. As shown in Table VI, if we consider equal probability
for each intensity level, then the average battery life of the
system is 75.2 hours. We can use such a wearable system for
6 hours longer than the traditional multi-class classification
method that uses a single classifier using a sampling frequency
that is needed to reliably classify the most intense activities
in the activity pool of interest.

G. Comparison with State-of-the Art

Table VII shows the specifications of the related studies
- energy saving, classification accuracy, number of activities,
and tested device - that offers power management in activity
recognition systems. These studies are closely related to our
work and we compare our results with these studies in Ta-
ble VII. All these studies intend to reduce energy consumption
by reducing sampling frequency of the inertial sensors. How-

Current Sensor

Arduino Uno

Processing Unit
1 (Adafruit Feather MO)

Wearable Sensor Components

Fig. 14: Current measurement experiment of the cascading
binary classifier.

ever, each study uses a different sensing module or different
types of inertial sensors such as accelerometer, gyroscope,
and magnetometer with different sampling frequencies. In
addition, each study considered a different number of activity
classes with varying intensity levels. We note that our proposed
method is evaluated on two datasets consisting of 19 and 12
activity classes compared to the competing approaches, which
are tested on datasets with 5-11 classes.

V1. CONCLUSION, DISCUSSION, AND FUTURE WORK

We designed, developed, and evaluated a probabilistic
cascading binary classifier for a recourse-efficient wearable
sensor. We aim to reduce the system’s power consumption
and memory usage by adjusting sampling frequency and
feature computation in real-time for activity recognition. The
activity intensity level, which is based on MET, is used to
determine the number of features and the sampling frequency
for recognizing each activity. The system samples sensor data
with variable sampling frequencies based on daily activity
history. The system also computes a varying number of
features depending on the intensity level of the activity. The
structure of the classifier changes according to an individual’s
activity pattern for more efficient resource management. We
evaluated our proposed framework on two popular datasets,
“PAMAP?2 Physical Activity Monitoring Data Set” and “ Daily
and Sports Activities Data set”. The final results show that
the classification accuracy for each intensity group of these
two datasets varies between 94.2% and 96.9%. Moreover,
we measure the power consumption and memory usage of
the approach on a micro-controller. The experimental result
demonstrates that energy consumption can be reduced by
17.2%, while SRAM usage can be decreased by 58%.

As stated earlier, the probabilistic cascading binary classifier
has 6 machine learning models. In this paper, we train each
model with an accuracy threshold of 98%. This means that
the number of features decided for each intensity level is
dictated by the requirement that the classification accuracy of
the trained model must be > 98%. The accuracy threshold
places a hard constraint on the classification accuracy and
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TABLE VI: Power consumption and memory usage report for different sampling frequency.

Frequency (Hz) | Required SRAM (KB) Power Consumption (mW)  Current Draw (mA) Battery life (h)
1 4.16 48.03 12.10 82.64
10 6.31 52.53 13.29 75.24
25 9.91 58.04 14.51 68.91

TABLE VII: Comparison with state-of-the art methods for power management for human activity recognition systems.

Research | Energy Saving (%) | Classification Accuracy (%) | # Activities Tested Device
[27] 25 85 11 HTC G11/Samsung 1909
[49] 20-25 86.8 10 Samsung Galaxy S2
[45] 28 85.2 5 Samsung Galaxy Note
[26] 44.23-78.85 90 6 LG Optimus Pro
[42] 49 88 8 MI phone
This Study 10-17.2 96.4 19 Adafruit Feather MO
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Fig. 15: MC;, MC,,, and M C,, Random Forest classifier performance using different window sizes.

the resources - power and memory - required to achieve the
threshold accuracy. By increasing the accuracy threshold for
each component of the binary cascading system, we increase
the classification accuracy of the cascading classifier since
the cascading classifier is vulnerable to propagation error.
Propagation error comes from the misclassification error of
each individual component in the hierarchical architecture.
However, by increasing the accuracy threshold of each compo-
nent, we also increase the required resources. Therefore, there
is a trade-off between classification accuracy and resources,
which needs to be considered. As a result, if we need a
lower classification error, we need to increase the accuracy
threshold of the classifier’s components and allow for flexible
resource optimization. One limitation of our framework is that
the system cannot fix the propagation error which happens
on the go. To address this limitation in our future work, we
plan to add an unsupervised (one-class classification method)
component to the system that can recognize misclassified
instances or instances from unseen activity and update the
weight of the system in real-time. Also, we note that if the
current activity is in the least likely activity intensity group,
the system may need to re-process the data 2 additional times.
The worst-case scenario happens when the higher intensity
groups are less likely. As a result, the system needs to re-
sample sensor data 2 times, which requires another 10 seconds
of the activity. Therefore, we conclude that the classifier needs
at least 15 seconds of each activity to recognize the activity
correctly. If performing activities takes less than 15 seconds,
we cannot guarantee the right prediction for such activity.

Furthermore, the classifier process may need more than 10
seconds in the worst-case scenario.

Another consideration is the sampling frequency which sup-
ported by the sensors. Since sensors support specific sampling
frequencies, we need to consider it as another factor to deter-
mine the proper sampling frequency of each intensity group.
For instance, popular accelerometer sensors such as ADXL.345
can be configured to use (12.5, 25, 50, 100, 200, 400)Hz as its
sampling frequency. Therefore, we also need to consider the
supported sampling frequency of the used IMU and other
factors that have been mentioned. A comprehensive sampling
frequency determination method considers activity frequency,
sensor sampling rates, and classification accuracy for different
sampling frequencies.

We have three design choices for the probabilistic cascading
classifier: 1) sampling frequency, 2) the number of features,
3) window size. We consider a fixed value (5 seconds) for
window size while using variable sampling frequency and
feature set. Therefore, we only study the effects of variable
sampling frequency and features in our analysis. We look deep
into the impacts and the benefits of using varying window sizes
in our future works. However, we briefly analyze the effects
of using variable window size while the sampling frequency
is fixed. Fig 15 demonstrates the classification results for each
intensity levels (M C;, M C,,, MC,) using different window
sizes and fixed sampling frequency (8Hz). We use the first
dataset to illustrate the impact of window size. It can be
seen that using greater window sizes significantly affects the
classification accuracy for higher intensity activities.



IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021

We do not consider each feature’s computation and the
difference between processing each feature in this work. As
future work, we plan to rank the computed features based
on their contributions to energy consumption. This method
considers the complexity of processing different features and
compares them. It can also consider the sensor that needs to
be sampled to extract that feature. For instance, we need to
compute the mean of the signal from the accelerometer and
gyroscope. As we know, the energy consumption of gyroscope
is usually higher than the accelerometer. Therefore, the same
feature from the gyroscope turns out to be more expensive,
which can be considered for the final model. Also, this ranking
method observes the required features for a model. If the
majority of features are coming from one sensor of an IMU
(e.g., magnetometer), then we are confident that we need to
include that specific sensor. As a result, those features are
considered less expensive than features from another sensor.
Therefore, the ranking method tries to eliminate sampling from
other sensors as long as it can replace its features with the
features of the sensor that had the majority in our feature
set, which can produce a reasonable classification accuracy.
Finally, the output of this ranking method is the feature sets
of binary and multi-class classifiers.
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