
1

Metacognition and Self-Regulation in Programming
Education: Theories and Exemplars of Use
DASTYNI LOKSA, Towson University, USA
LAUREN MARGULIEUX, Georgia State University, USA
BRETT A. BECKER, University College Dublin, Ireland
MICHELLE CRAIG, University of Toronto, Canada
PAUL DENNY, University of Auckland, New Zealand
RAYMOND PETTIT, University of Virginia, USA
JAMES PRATHER, Abilene Christian University, USA

Metacognition and self-regulation are important skills for successful learning and have been discussed and
researched extensively in the general education literature for several decades. More recently, there has been
growing interest in understanding how metacognitive and self-regulatory skills contribute to student success
in the context of computing education. This paper presents a thorough systematic review of metacognition
and self-regulation work in the context of computer programming and an in-depth discussion of the theories
that have been leveraged in some way. We also discuss several prominent metacognitive and self-regulation
theories from the literature outside of computing education – for example, from psychology and education –
that have yet to be applied in the context of programming education.

In our investigation, we built a comprehensive corpus of papers on metacognition and self-regulation
in programming education, and then employed backward snowballing to provide a deeper examination of
foundational theories from outside computing education, some of which have been explored in programming
education, and others that have yet to be but hold much promise. In addition, we make new observations
about the way these theories are used by the computing education community, and present recommendations
on how metacognition and self-regulation can help inform programming education in the future. In particular,
we discuss exemplars of studies that have used existing theories to support their design and discussion of
results as well as studies that have proposed their own metacognitive theories in the context of programming
education. Readers will also find the article a useful resource for helping students in programming courses
develop effective strategies for metacognition and self-regulation.

CCS Concepts: • Social and professional topics→ CS1; •Human-centered computing→User studies.

Additional Key Words and Phrases: cognition; CS1; metacognition; metacognitive awareness; programming;
self-regulation; cognitive control

ACM Reference Format:
Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny, Raymond Pettit, and James
Prather. 2022. Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use.
ACM Trans. Comput. Educ. 1, 1, Article 1 (January 2022), 32 pages. https://doi.org/10.1145/3487050

Authors’ addresses: Dastyni Loksa, Towson University, Towson, USA, dloksa@towson.edu; Lauren Margulieux, Georgia
State University, Atlanta, USA, lmargulieux@gsu.edu; Brett A. Becker, University College Dublin, Dublin, Ireland, brett.
becker@ucd.ie; Michelle Craig, University of Toronto, Toronto, Canada, mcraig@cs.toronto.edu; Paul Denny, University of
Auckland, Auckland, New Zealand, paul@cs.auckland.ac.nz; Raymond Pettit, University of Virginia, Charlottesville, USA,
raymond.pettit@virginia.edu; James Prather, Abilene Christian University, Abilene, TX, USA, jrp09a@acu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
1946-6226/2022/1-ART1
https://doi.org/10.1145/3487050

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0001-9675-025X
https://doi.org/10.1145/3487050
https://orcid.org/0000-0001-9675-025X
https://doi.org/10.1145/3487050

1:2 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

1 INTRODUCTION
Metacognition and self-regulation are popular areas of interest in education research broadly [83],
as they are linked with successful learning. Although extensively researched in other disciplines
for decades [35], the application of metacognition and self-regulation in computing education
contexts is newer and less understood [75], despite increased attention in recent years. The act
of computer programming, in particular, is unique enough that computing education researchers
should explore how prior work on metacognition and self-regulation in other areas can be applied
in this context. The limited work that has taken place on metacognition and self-regulation in the
context of programming has mostly aligned with results from other domains. However, there is
much more work to be done to understand how existing theory can be leveraged in the context of
programming education. Two broad areas to explore for example, are whether these theories need
to, or can be, adapted for the context of teaching programming specifically, and whether entirely
new theories of metacognition and self-regulated learning might arise from their application in
this context.
Computing education researchers hoping to explore these areas of metacognition and self-

regulation, however, will find decades of literature distributed across several disciplines, including
psychology, education, and learning sciences. The literature is convoluted enough that recent
reviews have called for more consistency in how terms are defined within and between disci-
plines [83]. One of the contributions of this paper is to synthesize prior work from other disciplines
to provide a resource that speeds progress towards understanding the unique role of metacognition
and self-regulation in computing education. As such, we have aggregated theories and explained
their similarities and differences so that computing education researchers can quickly and accu-
rately identify theories relevant to their research questions. We also present exemplars of these
theories applied in computing education research in order to guide researchers new to this area
on research design. In addition, we highlight promising future directions for research that will
advance our knowledge.

1.1 Aims and Approach
This paper builds on recent work by Prather et al. that surveyed research presented at ACM SIGCSE
conferences through 2019 on metacognition and self-regulation in programming [75]. We expand
upon that work in several ways including:

• broadening and bringing up to date the breadth of work surveyed
– including papers from ACM SIGCSE conferences (and in-cooperation venues) from 2019,
2020, and through to the present date in 2021

– including articles from the ACM Transactions on Computing Education and Computer Science
Education journals

• deepening the analysis of metacognitive and self-regulated learning theory as applied in
programming education

• exploring foundational metacognitive and self-regulation theories found and used outside of
the computing education community that have influenced work within that community

• identifying other such theories that have not yet, but are well poised to be applied in com-
puting education

• describing exemplars that display good use of theory in their motivation and/or exploration
of results.

The study by Prather et al. [75] made two important contributions. First, it identified and
synthesized relevant theories and measurements. Many were omitted, however, because they
did not appear in the computing education literature. Second, it synthesized prior work on the

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:3

topic into helpful categories for both researchers and educators. The authors classified existing
papers based on how thoroughly each utilized metacognitive theory, with 123 papers classified
as mentioning metacognitive or self-regulatory theory in passing, 53 classified as discussing the
theory in a peripheral way, and 31 classified as involving the theories in depth.

In the present work, we built upon the work of Prather et al. by bringing the search up to present
date and by expanding the venues and journals searched. Our method involved building a corpus
of papers starting with the 31 depth papers identified in [75]. We applied the same search criteria
to the Transactions on Computing Education and Computer Science Education databases, updated the
search for papers from SIGCSE conference venues, and added to the corpus all papers that met
the depth criteria outlined in [75]. Finally, we snowballed backwards by one level, examining the
papers that are cited in our corpus. Using citation frequency as a guide, we examined the most
cited papers and further expanded our corpus with those that met the depth criteria. Section 2
provides the details of these methods and discusses the practical challenges that we encountered in
conducting a systematic literature search.

Once an expanded corpus was established, we investigated the use of theories of metacognition
and self-regulated learning within these papers. We discovered that the corpus papers used only
four main theories – Flavell’s theory of metacognition [33], Bandura’s Self-Regulation model [4],
Zimmerman’s model of Self-Regulated Learning [100], and Pintrich and de Groot’s self-regulated
learning theory that connects to motivation [74]. In this paper, we distinguish between theories,
which posit that constructs are related, and models, which are a type of theory that specify a
process connecting constructs.

While there is no related work section in the present work because the entire paper functions as
one, it should be noted that there have been several recent and important literature reviews on the
use of theory in computing education that mention or discuss metacognition and self-regulation.
As mentioned above, Prather et al. [75] provided a literature review, sorting and grouping previous
work in computing education that utilized metacognition and self-regulation. The present work
contributes beyond Prather et al.’s work by going deeper into the theories, how researchers can
utilize them in their own studies, and detailed examples of these theories used well in computing
education. Szabo et al. provide a recent review of theories and their relationships to each other,
including metacognition [90]. While their work shows that concepts like metacognition and self-
efficacy are related, the present work discusses why they are often related in computing education
literature. Szabo et al. also did not distinguish between metacognition and self-regulation theories
as we do here. Recent reviews by Malmi et al. either did not mention metacognition and self-
regulation [57] or barely touch on it as a related concept to theories such as self-efficacy [58]. Due
to the lack of mention of our focus, applying the developed taxonomies in Malmi et al.’s work
would be beyond the scope of the present work. In this work, we go beyond these mentioned above
to provide a highly detailed discussion of metacognition and self-regulation theories and the most
up-to-date and in-depth analysis of their use in computing education literature.
In Section 3 we describe the basic components of each of these theories. This is followed in

Section 4 by a discussion of five exemplar computing education research papers that refer to
these foundational theories. Next in Section 5, we discuss two computing-specific metacogni-
tion theories and two corresponding exemplars. Finally, we expand observations about the way
the existing theories (both general and computer-education specific) are used in the computing
education community, and provide indications and recommendations to the community on the
future directions in terms of how metacognition and self-regulation can help inform programming
education. In particular, this last section includes descriptions for four additional metacognition and
self-regulated learning theories that were not encountered in the computing education literature
of our corpus, but are commonly used in psychological and educational research. These include

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Boekaert’s Adaptable Learning model [13], Efklides’ Metacognitive and Affective model [27], Winne
and Hadwin’s self-regulated learning model [96], and Hadwin et al.’s Socially Shared Regulated
Learning model [38]. Each of these theories connects metacognition and self-regulation to a re-
lated construct, such as social learning or affect, making them unique from the theories already
used in computing education research and, thus, valuable to expanding our knowledge. We invite
computing researchers to consider using these theories in their ongoing work.
We aim to encourage connections to constructs related to cognitive control (e.g., self-efficacy,

cognitive load, and social learning) by describing theories of a number of constructs not in our
corpus that interact with cognitive control. These constructs range from motivational to cognitive
to social, and can be measured to better understand why an intervention focused on metacognition
or self-regulation may or may not affect learning. By synthesizing work on these theories, we hope
that readers interested in work on cognitive control in the context of programming education will
be able to design better research plans in the future.
While the primary intended contribution of this paper is to support the research community

in identifying and using theories of metacognition and self-regulation appropriate to their work,
readers may also find the article a useful practical resource for effective approaches to help students
in programming courses develop important metacognitive skills.

1.2 ResearchQuestions
In this work we aim to address the following research questions:

(1) What theories have been used by the computing education research community in the
literature on metacognition and self-regulation in the context of programming education?

(2) What are the most seminal and influential works on these theories to inform application of
these theories in future research?

(3) In what ways are computing education researchers using theories of metacognition and
self-regulation to motivate their work and interpret their findings?

(4) Which theories ofmetacognition and self-regulation from other disciplines such as psychology
and the learning sciences are not currently being used by computing education researchers
and how might the theories be applied?

2 CONDUCTING THE LITERATURE SEARCH AND BUILDING THE CORPUS
The starting point for our literature search was the corpus of papers reported in a recent prior review
by Prather et al. [75]. This existing corpus comprised programming-related papers that examined
metacognition or self-regulation and were published in SIGCSE-sponsored venues. To be included
in the corpus, papers were required to use metacognition or self-regulation as a central theoretical
basis of the work, and to measure or interpret their results using these theories. This determination
was made through manual inspection, and papers satisfying this requirement were said to have
been categorized as “depth” (other categories being “passing” and “peripheral”). In this study we
started with the 31 depth papers. We then sought to construct a more comprehensive corpus by
including papers from a wider range of computing education research venues, bringing the search
up to present day, and by conducting reference searching, specifically reverse snowballing, after
direct database searches. We reverse snowballed both the Prather et al. “depth” papers and those
resulting from our expanded and up-to-date search. Combining a database search with snowballing
has been shown to drastically increase the proportion of relevant papers found, when compared
with multiple database-only searches [63]. We describe our method in detail in this section, and
provide a visual overview of the process and outcomes in Figure 1.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:5

ACM DL CSE TOCE

search: program* AND (metacog* OR self‐reg*)

70 39 30

Manual classification: “depth”

17 7 3 31

Original
corpus (2019)

58

Snowballing and Manual classification

5

63

Final corpus

Fig. 1. A simplified schematic of the search, classification and snowball process illustrating the number of
papers resulting from each step.

2.1 Search Replication (ACM DL SIGCSE-sponsored)
In their review, Prather et al. [75] conducted a literature search of SIGCSE-sponsored venues by
applying the “SIGCSE-sponsored” filter to the ACM Digital Library (ACM DL) on November 26,
2019. The search string used was: “programming” AND (“metacognition” OR “self-regulation”),
which was applied to the full-text content (matching anywhere in the title, abstract, keywords,
article body and reference list) of all articles within the ACM Full-Text Collection.

The first step in conducting our new search was to replicate this previously documented process.
However, on January 1st 2020, ACM launched an entirely new ACM DL1, which provided slightly
different search options. For instance, the inline “content.ftsec” command, which Prather et al. used
to conduct the full-text search, was no longer supported. Although configuring full-text searches
through the “Advanced Search” option in the new ACM DL is straightforward, we observed slightly
different behavior when comparing raw results using the same search keywords after the ACM DL
upgrade. We now briefly document these discrepancies, which appear to be explained by three main
factors: keyword variations, in-cooperation venues, and unmatchable articles. These observations
would be of interest to others who search the ACMDL and particularly those conducting systematic
literature reviews using the ACM DL.

2.1.1 Keyword Variations. Previously, the ACMDLwould automatically match various completions
of base terms even when quoted (i.e. “metacognition”). For example, there were papers matched
by the search in 2019 that contained only variations of the documented search terms, such as
“metacognitive”. The new ACM DL does not automatically generate these variations, however it
does support wild-card matches when the search terms are not quoted. For our new search, we
therefore modified the search string to the semantically equivalent: program* AND (metacog*
OR self-reg*). To test the validity of this given the new search mechanism, we also manually
1https://libraries.acm.org/training-resources/new-dl-features

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

constructed a search string composed of all relevant variations of these terms: (“program” OR
“programs” OR “programmers” OR “programming”) AND (“metacognition” OR “metacognitive”
OR “metacognitively” OR “self-regulation” OR “self-regulated” OR “self-regulatory” OR “self-
regulating”). Counter-intuitively, when comparing the result sets for the wild-card and manual
search strings, we found that the latter produced a greater number of results. Upon closer inspection,
we found that two valid variations (i.e. ‘self-regulatory’ and ‘self-regulated’) of the wild-card term,
self-reg*, were not being matched. Specifically, the manual search string returned papers that
contained only these two variations, but the same papers were not being returned by the wild-card
search. To resolve this discrepancy, the final search string included both the wild-card terms and
the manually constructed terms – although most of the terms were superfluous.

2.1.2 In-cooperation Venues. On 11th March 2021 we ran our final search string on the ACM DL
and applied the SIGCSE-sponsored filter, which included papers from the 2021 SIGCSE Technical
Symposium. Given the search string was now (effectively) identical to the string used by Prather
et al. in 2019, we expected to find all 31 of their previously categorized “depth” papers returned
as a subset of the results. Surprisingly, only 24 of these 31 papers were returned. Several of the
omissions appeared related to the venue of publication. In particular, ACM SIGCSE grants “in-
cooperation” status to non-SIGCSE events that are sponsored by other non-profit organizations. In
2018, conferences such as Koli Calling and WiPSCE were listed as being “in-cooperation”, however
this designation was removed in 20192. The original search, executed by Prather et al. using the
SIGCSE-sponsored filter, returned several articles published in these venues prior to 2018, however
our new search failed to return articles from these venues when the same filter was applied. This
inconsistent behavior of the filter appears related to the changing in-cooperation status of certain
venues. For consistency with the originally documented search method, we continued to apply the
SIGCSE-sponsored filter when searching for newer articles.

2.1.3 Unmatchable Articles. For two of the missing seven articles that were described in Section
2.1.2, we were unable to construct a keyword query that would successfully return them. For
example, one of these missing articles was published in ITiCSE 2016 (a venue “in-cooperation”
with SIGCSE) and included the keywords “programming”, “metacognition” and “self-regulation”
multiple times. However, even searching for the paper title verbatim failed to return a matching
result for this paper on the ACM DL. This issue was replicated using multiple browsers, by authors
in different countries, using both incognito browser settings and when signed in to the ACM DL.
Although this issue was observed over an extended period of time during the search phase, at the
time of writing this article the paper in question is now successfully returned by the ACM DL
search. The other missing article, a paper published at SIGCSE in 2014, still fails to be returned
by our keyword search despite clearly containing the matching terms. Even other, more specific
search strings, which use phrases unique to the paper, fail to return the paper in a standard search
at the time of writing.

2.1.4 Results. This ACMDL search yielded a total of 70 matching articles published after November
2019. The most common venue for these articles was the SIGCSE Technical Symposium, with 25
papers in 2021 and 20 papers in 2020. The next most common was ITiCSE, with 10 papers at the
conference in 2020 as well as three ITiCSE Working Group reports in 2019 and two in 2020. This
was followed by ICER (9 papers in 2020), and one CompEd Working Group report in 2019.

2https://sigcse.org/events/incoop.html

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:7

2.2 Broadening the Search (TOCE & CSE)
To broaden the corpus beyond conference papers and working group reports, we searched the
two leading computing education research journals, ACM Transactions on Computing Education
(TOCE) and Computer Science Education (CSE) published by Taylor & Francis. As an ACM journal,
TOCE is indexed by the ACM DL and thus we were able to use the same search string as described
in Section 2.1.1. In essence, this string is: program* AND (metacog* OR self-reg*), with the manual
inclusion of several term variations to avoid wild-card misses. We used the Taylor & Francis online
search facility, and the same search string, for the Computer Science Education journal. Both
searches were conducted on March 18th, 2021.

2.2.1 Results. Our search returned 39 unique results from Computer Science Education (46 indi-
vidual papers, but including 7 pairs of duplicate papers), covering the years 1998 to 2019, and 30
results from TOCE covering the years 2005 to 2021.

2.3 Classification
These new searches resulted in a total of 139 candidate papers, which were then considered
for inclusion in the corpus. Each paper was assigned to two reviewers, from the pool of seven
authors, resulting in a load of either 41 or 42 papers per reviewer. Assignments were random, and
balanced to minimize the number of times any two reviewers worked together. Reviewers worked
independently, and considered and classified each paper. Unlike in the prior work of Prather et
al., in which papers were classified into one of three categories based on the degree to which they
used metacognition or self-regulation as a theoretical basis, in the current work reviewers made
only a binary classification. Papers were judged on whether or not they met the requirements for
the strictest category, “depth”, as defined by Prather et al. [75].
All seven authors met to discuss and resolve discrepancies. For each paper where there was a

disagreement over the classification, the two corresponding reviewers presented their arguments
to the wider group in order to reach a consensus decision. Across all 139 papers reviewed, there
were 12 disagreements (an 8% disagreement rate).

2.3.1 Results. After completing this classification phase, 17 papers from the updated ACM DL
search were classified as “depth”. The journal searches resulted in seven CSE and three TOCE
papers at the “depth” level. These 27 new “depth” papers were added to the existing corpus of 31
papers published by Prather et al., resulting a new corpus of 58 papers.

2.4 Reverse Snowballing
The final stage in refining our corpus involved a reverse snowballing step, in which the reference list
of each paper in our corpus was mined for relevant work. This stage began with manual extraction
of 1789 references from the 58 corpus papers. We then calculated the frequency with which each
of these referenced papers appeared across the 58 paper corpus. There were 1519 unique papers
referenced in total, with only 163 being cited more than once. The most frequently cited paper
appeared in the reference list of 9 articles.

We then conducted one final classification step, considering a subset of the most frequently cited
papers from this snowballing process. We examined all papers that had been cited three or more
times – 47 in total. We followed the same method as described in Section 2.3, randomly assigning
papers to pairs of reviewers. This resulted in work from outside computing education venues and
journals being added to the corpus, which are listed in Appendix A (Table 3).

2.4.1 Results. We encountered two disagreements when classifying the snowballed papers, and
identified 5 new papers at the “depth” level.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0

2

4

6

8

10

Original corpus + new ACM DL
TOCE and CSE journals
Snowballing

Fig. 2. Distribution of the 63 papers in the final corpus by year of publication, organized by search source.

2.5 Final Corpus
Our final corpus consisted of 63 papers, published between 1993 and 2021. The full list of papers
within the corpus is detailed in Appendix A (Tables 1-3). The distribution of publication years
for articles in the corpus is shown in Figure 2. We calculated the inter-rater reliability for the
full two-stage rating process using Cohen’s Kappa (k = 0.74, which is considered “substantial”
agreement [20]).

3 THEORETICAL FRAMEWORKS USED WITHIN THE CORPUS
Metacognition, self-regulation, and self-regulated learning are terms used to describe learners’
ability to plan, monitor, and evaluate their cognitive processes. They are types of cognitive control
applied to make the learning process more effective or efficient [83]. Cognitive control is difficult
to define and understand because it is inextricably connected to many related concepts, like self-
efficacy and motivation. Furthermore, cognitive control is an internal process, which makes it
difficult to measure and research. Typical measurements of internal processes, such as think aloud
protocols, can be ineffective because they are inherently used during periods of high cognitive load.
For these reasons, there are multiple theories of metacognition, self-regulation, and self-regulated
learning that focus on different aspects of the learner or learning process, and they are all viable [67].

The distinctions between these terms are as unspecified as the definitions of each term, but there
are common themes. Metacognition typically describes learners’ knowledge about their cognitive
control, such as which strategies are most effective for them. Self-regulation typically describes
learners’ process of cognitive control, such as deciding whether to take a break based on monitoring
their emotion and progress. Some definitions of metacognition include self-regulation and vice
versa [25], so while it is clear that these terms are separate, it is often unclear where one begins and
the other ends. Self-regulated learning typically applies metacognition, self-regulation, and related
constructs to a specific learning task or environment. As such, metacognition and self-regulation
are typically discussed as theories (i.e., the foundations of cognitive control), and self-regulated
learning is typically discussed as a framework (i.e., the application of cognitive control) [67].

To help the reader understand theories of cognitive control and the similarities and differences
among them, we have created figures as visual representations of the theories being discussed. The

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:9

Metacognitive
Experiences

Cognitive
Strategies

Cognitive
Goals

Metacognitive
Knowledge

Task Person Strategy

Fig. 3. Flavell Theory of Metacognition (1979)

text in the figures describes the constructs included in the theory, and we have included icons as a
secondary representation of these constructs. The icons are intentionally repeated across figures
that share the same constructs to make comparison easier. The text provides details of how the
constructs are applied in each theory.

3.1 Foundational Theories of Cognitive Control
Theories of self-regulated learning stem from two foundational theories of cognitive control:
Flavell’s theory of metacognition [34] and Bandura’s Social Cognitive Model of Self-Regulation [4].
Flavell was the first to use metacognition in research about cognition [33]. He did not use it explicitly
in the context of education, instead describing it as “knowledge or cognitive activity that takes
as its object, or regulates, any aspect of any cognitive enterprise” [34, p104]. From this definition,
we see the intent to use metacognitive knowledge in the regulation of cognition, but the actual
theory focuses on metacognitive knowledge’s interactions with other areas of cognition and does
not include a self-regulation process. This is illustrated in Figure 3.
Education researchers have applied Flavell’s theory of metacognition to learning and problem-

solving in education contexts [11]. It is typically described as a mechanism used by students
to predict performance and monitor mastery [14]. These education researchers also explicitly
linked Bandura’s self-regulation model to Flavell’s concept of metacognition in the context of
education [11, 14].

Bandura’s model of self-regulation, like Flavell’s of metacognition, was also developed in general
psychology, outside of the context of education. Originally, it was an addition to Bandura’s Social
Cognitive Theory [7] used to explain how cognitive control can overcome social and environmental
predictors of behavior. This is illustrated in Figure 4. This differs from Flavell’s concept of cognitive
control because it defines the process of cognitive control, or self-regulation [4]. During self-
regulation, a person cycles from self-observation (i.e., monitoring cognition and behavior) to
judgmental processes (i.e., applying metacognitive knowledge to evaluate progress) to self-reaction
(i.e., updating metacognitive knowledge about success of strategies).

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Self-
Observation

Judgmental
Processes

Self-
Reaction

Fig. 4. Bandura Social Cognitive Model of Self-Regulation (1991)

These steps are found in the many theories of self-regulated learning that have been developed
after 1986 with a few key changes. Judgmental processes have been split into evaluating progress,
which is grouped with monitoring, and regulating emotions and motivation, which is sometimes
grouped with monitoring and sometimes treated separately [13, 27]. In addition, most self-regulated
learning theories include an additional step at the beginning for planning strategy use and activating
prior knowledge [73, 102]. Perhaps Bandura’s model of self-regulation is a popular foundational
theory for self-regulated learning because it already includes social and environmental influences
on behavior, making it particularly suited to education applications.

3.2 Self-Regulated Learning Theories in Computing Education Research
The foundational theories of cognitive control, Flavell’s theory of metacognition [33] and Bandura’s
model of self-regulation [4], are not specific to education, but they are often combined into theories
of self-regulated learning. Theories of self-regulated learning often incorporate other features
in addition to metacognition and self-regulation, like motivation or emotion, depending on the
context. As mentioned earlier, these differences between theories have produced several co-existing
theories that are used in different contexts. For this section of the paper, we will introduce two
self-regulated learning theories that are commonly used in computing education, based on our
review of the literature. Two additional theories that include metacognition or self-regulation,
but are not yet commonly used in computing education, will be described later in the paper to
complement the discussion and future work recommendations.

Both self-regulated learning theories discussed here build primarily on the process described in
Bandura’s model of self-regulation [4], but they also include metacognitive knowledge. These first
of these theories is Zimmerman’s model of self-regulated learning. This model is a three-phase
process that, as illustrated in Figure 5, iterates between

• forethought (a new addition to Bandura’s phases),
• performance (self-observation in Bandura’s model and self-control, related to regulation of
emotion and motivation in Bandura’s judgmental processes phase),

• self-reflection (judgmental processes and self-reaction in Bandura’s model).

Forethought
- Task analysis
- Self-motivation beliefs

Performance
- self-control
- self-observation

Self-Reflection
- self-judgement
- self-reaction

Fig. 5. Zimmerman Cyclical Phases Model (2009)

The second self-regulated learning theory commonly used in computing education differs by
focusing on the relationship of motivation to self-regulation. Pintrich’s [74] theory has four phases,
but it also includes areas of regulation that affect all phases as illustrated in Figure 6. The four

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:11

phases are the same as Zimmerman’s three, except that performance is split into monitoring or self-
observation and control. Thus, the four phases are forethought, monitoring, control, and reaction
and reflection. The split of performance into monitoring and control is valuable when considering
the interactions between these phases and the areas of regulation. The areas of regulation are
cognition, motivation and affect, behavior, and context. These areas of regulation can interact
differently with monitoring than they do with control. Pintrich’s theory is also unique among
self-regulated learning theories in that the forethought phase explicitly includes prior knowledge
activation.

Control
Forethought,
Planning,
Activation

Reaction &
ReflectionMonitoring

BehaviourCognition Context Motivation &
Affect

Phases
Areas of Regulation

Fig. 6. Pintrich Self-Regulated Learning Theory (2000)

Computing education research draws upon additional theories related to metacognition and
self-regulation that are not self-regulated learning theories. These theories include components
of cognitive control, but they are not primarily about cognitive control. A common framework
used in computing education is the Revised Bloom’s Taxonomy [12]. While the original Bloom’s
taxonomy categorized learning objectives based on the depth of knowledge about the disciplinary
content required, the revised taxonomy includes additional dimensions for learning objectives that
are not content-dependent. One of the new dimensions in the revised taxonomy is metacognitive
knowledge, which is an added knowledge dimension that learners can develop.

Another common theory seen in computing education research that includes cognitive control,
and focuses on features of successful learners, is Ertmer & Newby’s model of an expert learner [28].
In this model, expert learners view the learning environment as a system that includes themselves,
task requirements, and strategies. Similar to the self-regulated learning phases discussed previously,
this systems-view of the learners includes their metacognitive knowledge and strategies. The
strategies include selecting an approach (i.e., forethought), controlling cognition and behavior
(i.e., self-control), and monitoring progress towards learning goals. The only phase missing is
the evaluation phase, which is arguably part of updating the metacognitive knowledge about
themselves.

4 EXEMPLARS OF THEORY USE
The application of theories relating to metacognition and self-regulation appears to be of increasing
interest to computing education researchers, as evidenced by publication frequency over recent
years (see Figure 2). In this section, we review several recent articles that draw on knowledge from
other domains and integrate metacognition and self-regulation theories into computing education

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

research. They serve as exemplars, demonstrating the use of theory for providing motivation for the
research, using or adapting existing theoretical frameworks, and illustrating the type of valuable
and transformative implications that can result.

4.1 Aligning with Zimmerman
As noted earlier, foundational theories of metacognition and self-regulation arose from outside the
context of computing education. While it is helpful to understand the general self-regulated learning
(SRL) strategies a student could use [101], identification of domain-specific skills is potentially of
greater value. In their paper, “Identifying Computer Science Self-Regulated Learning Strategies” [32],
Falkner et al. addressed this gap using a mixed-methods approach to identify SRL strategies specific
to the domain of computing. They explored the research question: What SRL strategies do first-year
programming students articulate as using in programming assignments and which are specific to
CS?

4.1.1 Use of Theory. The authors used a grounded theory approach to understand the reflections of
students in a non-introductory software engineering course. After initial coding of their reflections,
the authors aligned their results with Zimmerman’s SRL framework. This was done to ensure
that the domain-specific SRL strategies that they identified would align well with and extend
Zimmerman’s existing categories. This is an excellent example of bringing external theory into
computing education and customizing it for the specific characteristics of the domain.

4.1.2 Study. Using a case study approach, the authors asked 85 students to reflect twice on their
software development processes and their analysis focused on how these processes changed. For
their quantitative analysis, the authors reflected on the frequency of appearance of SRL strategies
mentioned by students. Qualitative analysis involved the authors selecting relevant quotes from
the reflections, thus framing the SRL strategies using the words of the students themselves.

4.1.3 Use of Theory in Results and Discussion. The authors presented SRL strategies in two groups
along with their indicated frequencies: general SRL strategies and computing-specific SRL strategies.
The areas under which the strategies were classified were: assessing difficulty, decomposing the
problem, time management, personal management, and building knowledge. The skills listed under
the general list were vague and could apply to most disciplines, such as “ask friends” or “time
estimation” or “access resources.” The strategies listed under the computing-specific list were all
very specific to the domain, including “algorithm complexity” and “practice writing code.” A third
list provided strategies identified by students as unsuccessful, and were sorted into the same five
categories. Finally, the authors reclassified all strategies using Zimmerman’s categories to show
into which categories computing specific SRL strategies tend to fall. Out of 841 mentions of SRL
strategies by students, 243 fell into “goal-setting and planning” and 58 fell into “organizing and
transforming.” Curiously, none fell into two of Zimmerman’s categories: “keeping records and
monitoring” and “rehearsing and memorizing.”

This work of Falkner et al. shows that in the domain of computing education, some SRL strategies
will be more important or more relevant than others and this depends on context, such as in the
early stages of learning to program where students plan before writing code and set appropri-
ate milestones. They call for future work on scaffolding students through these early stages of
programming.

4.2 Building From Zimmerman
In their paper “Evolution of Software Development Strategies” [30], Falkner et al. build on their prior
work aligning their results with Zimmerman’s framework. In this paper the authors investigate

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:13

which strategies students find successful and particularly relevant to their development as computer
scientists and software engineers. They compare perspectives of novice and more advanced students
and explore opportunities to increase reflection on, and scaffolding for, developing successful
strategies.

4.2.1 Use of Theory. Like their previous paper [32] (described in Section 4.1) this work is heavily
based on Zimmerman’s framework (Figure 5) and explicitly identified SRL as the underlying theory.
The authors define SRL and explain how the ability to “plan, set goals, organize, self-monitor and
self-evaluate” are central to their efforts to identify and measure domain specific strategies for CS.
Additionally, SRL strategies are central to their research questions:

(1) What CS-specific SRL strategies do final-year students articulate as using in programming
assignments?

(2) What are the differences between the SRL strategies as identified by final-year students and
those identified by first-year students?

The SRL strategies the authors identified are discussed extensively and, while the details are
left to their prior paper, the axial coding framework that was used within this study was the one
developed previously in [32].

4.2.2 Study. To investigate their research questions the authors collected data from an introductory
programming course and a final year distributed systems course. In both of these courses students
completed a “substantial reflective exercise that requires students to describe their current software
development processes, how they have changed, and a description of how they intend to change
them in the future.” The authors analyzed student responses using a grounded theory approach by
coding student responses and reflections, followed by axial coding using their previously developed
framework. Through this analysis they identified general and CS-specific SRL strategies used by
novices and by final year students, allowing for comparison between these two groups.
Their results show that CS-specific SRL strategy usage increased over the use of general SRL

strategies from a ratio of 1:1 for the novices to 1.6:1 for the final year students. Successful strategies
for novices tended to focus on diagram use for design, developing sub-goals, prioritization of design
over implementation and testing. The final year students, in contrast, had an increased reliance on
strategies such as leveraging design principles and standards, refining design, and prioritizing core
components of the design over other implementation details.

4.2.3 Use of Theory in Results and Discussion. While there is no direct call back to SRL strategies in
the discussion section, within their suggestions for how to scaffold some of the strategy development
the authors refer to specific components of SRL, such as reflection and the sharing of mental
models and strategies, as cognitive development tools. They also touch briefly on the topics of
guided discovery and cognitive apprenticeship as methods that may be beneficial to support the
development of SRL strategies.

4.3 Building on Bandura and Pintrich Using Pintrich’s MSLQ Instrument
While some work in computing education has examined individual self-regulated learning con-
structs and course performance outcomes, the study by Lishinski et al. [53] examined the inter-
actions of self-efficacy, intrinsic and extrinsic goal orientations, and metacognitive strategies and
their impact on student performance in a CS1 course. In the paper titled, “Learning to Program:
Gender Differences and Interactive Effects of Students’ Motivation, Goals, and Self-Efficacy on
Performance”, the authors repeatedly take measures to capture reciprocal effects over time and
develop a more complex structural model to understand how the interactions of the constructs

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

impact performance outcomes and the constructs themselves. This paper also looked at the effect of
gender on how these constructs develop over time. The authors investigated the research questions:

(1) What are the relationships between self-efficacy, goal orientation, metacognitive strategies
and course outcomes in intro programming?

(2) How does self-efficacy relate to programming performance, and how does this relationship
change over time?

(3) Are there gender differences in the ways that self-efficacy affects performance in CS1?

4.3.1 Use of Theory. The authors begin the paper by situating their study in Self-Regulated Learning
constructs, citing Pintrich and computing education studies that have investigated the utility of
individual SRL constructs for predicting course outcomes. Beyond the high-level definition of SRL
constructs, the authors provide a theoretical basis and rationale for the use of each of the constructs
they are investigating. They cite Bandura [5], identifying that the strength of the self-efficacy
measure often explains the otherwise weak linkages between prior ability and achievement. They
provide context about the relationship of self-efficacy and other self-beliefs, identifying self-efficacy
as a relevant predictor of performance due to it correlating with resiliency in difficult and novel
tasks.
Citing Pintrich and Schunk, the authors define and briefly discuss the two goal orientations:

intrinsic and extrinsic. They proceed to define metacognitive strategies and illustrate their impor-
tance by highlighting that appropriate cognitive strategies may still fail due to lack of metacognitive
strategies. The authors describe at length the importance of, and prior work on, the relationships
between these concepts which provide the basis for the model used in their study. They state
that self-efficacy has been found to be positively associated with the use of more metacognitive
strategies. In addition, intrinsic goal orientations have been shown to be positively associated
with self-efficacy, whereas extrinsic goal orientations are negatively associated with self-efficacy.
Metacognitive strategy use has also been found to be significantly related to later self-efficacy,
possibly mediated by the effects of performance on self-efficacy. The authors identify prior work
demonstrating that self-efficacy consistently has the strongest relationship with academic outcomes,
followed by metacognitive strategies and goal orientation. Additionally they show that there exists
a self-efficacy feedback loop where initial self-efficacy beliefs affect performance, which in turn
affects later self-efficacy beliefs.
In addition to reviewing and providing context for each of these constructs, the authors also

review prior work on these constructs specifically in computer science. They demonstrate that
SRL constructs have largely confirmed theoretically expected associations within CS contexts,
supporting the use of the theory outcomes in CS classes.

4.3.2 Study. The authors measured self-efficacy, metacognitive self-regulation, and intrinsic and
extrinsic goal orientation using the subscales from the Motivated Strategies for Learning Question-
naire (MSLQ). The survey was given to an introductory programming course on the 2nd, 5th, and
10th week of the 12-week course. Other data collected included the scores on seven programming
projects and two multiple choice exams (midterm and final).
The SRL constructs investigated have many complex interactions, and so the authors analyzed

the data using a path analysis to model the relationships between the constructs. As they did with
their theory usage, the authors provided explicit reasoning for their selection of analysis methods
stating that path analysis is appropriate because the relationships between the motivation and
learning strategies constructs are theoretically and empirically well-grounded. The results support
the reciprocal relationship of the constructs with performance and are in line with the expectations

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:15

that self-efficacy would provide the strongest outcome effects and that the other MSLQ constructs
would provide indirect effects.

4.3.3 Use of Theory in Results and Discussion. Perhaps because of the theory-first approach to the
paper, the results are primarily discussed in terms of implications for CS pedagogy rather than
theory. This is unsurprising because the results align with the expectations and in doing so provide
many insights and implications for teaching. These implications include the need for a greater
focus on the self-efficacy feedback loop throughout the learning process and a need to consider the
gendered differences in the feedback loop effects within learning environments.

4.4 Interactions Between Metacognitive Strategies and Schemata in Program
Problem-solving

In their paper, “Empirical Evidence for the Existence and Uses of Metacognition in Computer
Science Problem Solving”, Parham et al. utilized a think-aloud study to explore the relationship
between traditional problem-solving steps (schemata) and participants’ strategies for self-reflection
on their progress through the problem (metacognition) [68]. The authors provided a taxonomy of
schemata and metacognitive processes and then explored the interactions that occur between them
while students solve a programming problem.

4.4.1 Use of Theory. The authors based their research on Flavell’s theory of metacognition [34].
They were primarily interested in students’ control over their own cognition and learning that
they are able to display or verbalize. Flavell’s theory was used as a basis for describing these
interactions, which were later built upon by Sternberg [88]. The authors used these theories to
study the interaction between students’ metacognitive strategies, goals, and knowledge while
solving a programming problem.

4.4.2 Study. After a pilot study to test validity, Parham et al. recruited 11 participants in a data
structures course to solve a programming problem and observed them during the process. They
followed a think-aloud protocol, observed actions taken, and interviewed students afterward.
Participants’ sessions were recorded on video, transcribed, and then coded for statements and
actions. After reaching 85% inter-rater reliability, the researchers created their taxonomy of schemata
and metacognitive processes. This taxonomy resulted in six schemata and six metacognitive
processes, which they presented in a table along with definitions of each and a representative quote
from a participant.

4.4.3 Use of Theory in Results and Discussion. The six schemata identified (design, write code,
compile, execute, diagnose, and fix code) were all general strategies that fit neatly into classical pro-
gramming problem-solving steps. The six metacognitive processes (start/revisit goals, understand
the problem/plan, verbalize having low knowledge, read/consider a design, inspect the solution, and
compare the solution to the problem statement) aligned with Flavell and others from psychology
literature. The authors explored the relationship between the identified schemata and metacognitive
processes by examining the most-common interactions between them (e.g. when a participant
moves from a schemata strategy to a metacognitive one).
A common issue among novice programmers is the tendency to jump right into coding when

they receive an error [8] without first re-thinking the problem or revisiting their goals [77]. Parham
et al. noticed this in their study as well, and while this provided an excellent place to tie their results
back to Flavell’s theory, the authors missed the opportunity to do so. In terms of Flavell’s theory,
this would have been an example of when cognitive strategies and cognitive goals interact with
actionable strategies. However, that connection does not seem to be present for many students
because the researchers found that the schemata strategy of examining errors (debugging) and

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

the metacognitive strategy of planning/re-planning goals only interacted in 12% of recorded
actions/verbalizations. This observation provides evidence that, upon seeing errors in their code,
only some students will utilize a metacognitive strategy to reconsider their goals before attempting
to fix the bugs in their code. Future work has continued to build on this important observation [78].
Although the authors observed that one metacognitive process could be followed by another,

this was rarely the case. Instead, most visits to a metacognitive process were followed by a visit to
one of the schemata, underscoring the role of metacognition in monitoring and evaluating which
action to take next. Most participants, however, utilized far more schemata than metacognitive
strategies. This behavior by novices is well known and underscores the need to explicitly teach
metacognition to novice programmers as they learn domain knowledge [55, 76].

4.5 Complex Interactions of Self-efficacy, Motivation, and Metacognition
Many factors influence learning, and they interact in complex ways. Hull and du Boulay explored
how self-efficacy, motivation, and metacognition interact to affect learner outcomes in the context
of a database course [40]. Their paper, “Motivational and metacognitive feedback in SQL-Tutor*” is
a good example of research that draws upon theories of metacognition and makes connections to
related theoretical constructs. They modified an existing intelligent tutoring system by adding both
motivational and metacognitive feedback to the user interface, and they measured the extent to
which this feedback improves learner focus as well as both perceived and actual learning benefits.

4.5.1 Use of Theory. In describing the reciprocal relationship between motivation and metacog-
nition, the authors cited theoretical work by Schunk, Pintrich and Meece in which motivation
is defined as “the process whereby goal-directed activity is instigated and sustained” [84]. They
further connected this to Pintrich’s goal-orientation theory when describing the roles that goals
have in different theories of motivation. The authors referred to the work of Paris and Winograd
on metacognition in academic contexts [69], and note that according to goal-orientation theory,
learners must have an insight into their own knowledge and experience in order to achieve mastery.
Having provided the theoretical background for both motivation and metacognition, the authors
then described how self-efficacy is deeply connected with both. They cited work by Pajares showing
that self-efficacy beliefs are correlated with other motivational constructs [66], as well as work by
Schunk et al. establishing that learners with high self-efficacy tend to be more likely to use various
cognitive and self-regulatory learning strategies [84].
Based on the interconnections between these theories, the study asked students using an in-

telligent tutoring system to provide regular self-reported measures of confidence (a proxy for
self-efficacy), which in turn was used to generate motivational and metacognitive feedback.

4.5.2 Study. The work reported in this paper forms part of a larger doctoral research project [39]
for which the primary research question was: "What are the relationships between self-efficacy,
goal orientation, metacognitive strategies and course outcomes in intro programming?". One aspect
of this question was the primary focus of the paper: “Does providing such feedback lead to any
measurable learning gains?”. The study involved first year undergraduate students enrolled in a
database course. An intelligent tutoring system, SQL-Tutor, was used as part of the course to help
students develop their knowledge and skills around the construction of valid queries. Students
were assigned to one of two conditions – a control condition and an intervention condition that
provided additional feedback based on the past states and experiences of the learner.
The motivational and metacognitive feedback that was added to SQL-Tutor for the study was

adaptive and based on learners’ self-reported self-efficacy and the previous problems they had
solved. At the beginning of a study session, students in the study condition were shown a short
paragraph of text summarizing their previous performance and prompted to report their level of

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:17

self-efficacy. This self-report used a Likert-scale, and specifically asked students to report their
“confidence” rather than self-efficacy. The authors note that these are not the same constructs,
citing a discussion of the differences by Bandura [6], but argue they provided sufficient context
in the question to elicit useful responses. This self-reported data was then shown to students in
subsequent sessions, allowing them to reflect on how their confidence was changing. The other
type of feedback shown to students in the study condition related to previously solved problems.
The authors argue that reflecting on prior experience, including past problems, is important for
helping students develop accurate mental representations and involves metacognitive processes
such as reflection on experience in which the learner must “learn how to learn.”
To address the specific research question around measurable learning gains, scores for two

summative activities were compared between groups. A pre-test established that there were no
significant differences between the two groups before the intervention. The post-test was the final
exam. The differences between the groups as a whole were not significant. In discussing why the
motivational and metacognitive feedback may not have produced measurable learning gains, as
hypothesized, the authors point to several limitations in the work including a limited number of
participants and a relatively short experimental time frame.

4.5.3 Use of Theory in Results and Discussion. This paper is a good example of a paper that leverages
multiple related theories, in this case theories of motivation, metacognition and self-efficacy, to
provide a compelling justification for the research. We found that many of the papers in our corpus
used theories of metacognition and self-regulation similarly to motivate their work, but were less
thorough in making connections back to the theories when interpreting or discussing their results.
In discussing their results, Hull and du Boulay focus more on the practical implications of the work
and potential future directions than the underlying theories. This may in part be due to the neutral
results that were observed.

5 DOMAIN-SPECIFIC THEORIES RELATED TO PROGRAMMING INSTRUCTION
While most research on metacognition and self-regulation in computing education has leveraged
existing theories from the fields of psychology and education, new metacognitive theories that
focus on instructional approaches for teaching programming have recently emerged. Two notable
examples of such theories are Xie et al.’s theory of instruction for introductory programming skills
[97] and Loksa et al.’s theory of programming problem-solving [55]. The former presents reading
and writing of both language semantics and reusable programming templates as four distinct skills
and suggests novices may benefit by incrementally developing these skills while learning how
to program. The latter proposes that novices progress through six distinct stages when engaging
in problem solving while programming. Both theories provide concrete recommendations for
instructional design, and they are complementary in the sense that they each target distinct skills
that, together, are crucial for the successful development of programming expertise. The common
metacognitive element of these theories is that making students aware of the skills or stages that
they must progress through via explicit instruction empowers them to monitor their own progress
and reflect on the effectiveness of the strategies and approaches they adopt when programming.
Thus, both of these theories build on the earlier foundational theories outlined in Section 3 by
providing direct support to aid students in monitoring their progress and evaluating their outcomes.
Xie et al. builds on the work of the BRACElet group [19], pointing to a large body of evidence

that tracing, explaining, and writing code are distinct but related skills, and argues that little is
known regarding how to sequence them effectively [97]. They propose a theory of instruction that
sequences code tracing, writing correct syntax, reading and recognizing common code templates,
and writing code using those templates. This sequence suggests reading skills are developed

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

before writing skills, and language semantics are mastered before common patterns of use. A
novel element of the theory, compared to taxonomies and theories commonly used in computing
education research, is that it provides direct and concrete recommendations for how to teach basic
programming skills. The authors hypothesize that providing explicit, incremental instruction of the
four skills will lower the cognitive demand on learners and result in better programming outcomes,
including a more robust understanding of the relationship between individual parts of the code
and its overall purpose. To test their theory, the authors conducted a small-scale randomized
between-subjects experiment in which both the control and experimental conditions were provided
with the same static learning materials, but for subjects in the experimental condition the four
different skills were described and labeled. This explicit labeling provided subjects with a framework
around which they could monitor their progress and evaluate confidence in their mastery of the
related skills. Both groups engaged in practice tasks for the writing-related skills, but practice
tasks for reading-related skills were provided only to subjects in the experimental condition. The
total amount of practice was balanced between the groups by providing additional practice on the
writing-related tasks for subjects in the control condition. In support of the theory, they found
evidence that subjects in the experimental condition completed more practice exercises, made fewer
errors, and exhibited a greater depth of understanding as measured by responses to metacognitive
prompts appearing on the post-test.
Moving beyond the basic skills of syntax and use of existing templates, Loksa et al. present an

approach for promoting metacognitive awareness in learners tackling the problem-solving aspects
of programming [55]. This awareness becomes more important as tasks become more open-ended
and difficult, as both novices and experts are known to exhibit more metacognitive self-regulating
behaviors, such as progress monitoring, when tackling programming tasks of higher complexity.
Central to Loksa et al.’s theory is the framing of programming problem-solving as an iterative
process in which mental representations of problems and solutions are refined then translated
and expressed as code. To help learners with this process, the authors propose explicitly teaching
programming problem-solving as a sequence of six distinct stages that programmers move through,
generally in order, although with some iterative refinement. These six stages directly support
metacognitive awareness, as they provide learners with a concrete way to plan and monitor their
progress through a problem, and to evaluate the efficacy of their strategies. When asking for help,
which is a type of metacognitive control strategy, students are prompted to describe their current
problem solving stage which encourages additional reflection. The authors evaluated the proposed
approach using a between-subjects experiment, conducted as part of a 10-day coding camp for
young children, in which an experimental group were taught the six problem solving stages and
given a paper handout and physical token to aid them in tracking their progress through the stages.
A control group worked on the same problems during the camp, but without receiving the explicit
instruction on the problem solving stages nor being prompted to identify their stage when seeking
help. Over the course of the camp, subjects in the experimental condition had higher productivity,
greater independence, and improved programming self-efficacy and metacognitive awareness.

5.1 Exemplars That Use a Computing-specific Theoretical Framework
Other researchers have used Loksa’s six stages as the theoretical framework for ongoing work
including Prather et. al [76] who focused on the first stage, “reinterpret the prompt” in the context of
an automated assessment tool. Before writing C++ code to solve a problem described in English text,
21 CS1 students in the treatment group were asked to select the expected output for a randomly-
generated test case. The 17 control-group students began coding immediately after reading the
problem prompt. A researcher observed all 38 students one-on-one using a think-aloud protocol
as they coded their solutions. The experimental group had a higher completion rate and students

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:19

in this group solved the problem in less time and with fewer submissions than their control-
group peers. However, because of the small sample size, the researchers didn’t test for statistical
significance of these differences. The qualitative data suggest that encouraging students to review
their interpretation of the program prompt may have led to deeper metacognitive awareness. All
but one student provided the correct test-case output on their first attempt which suggests that
the intervention didn’t necessarily correct the students’ misunderstanding of the prompt, but in
their verbalized comments, many students expressed an understanding of the purpose of the test
case and the usefulness of the exercise. One subject explicitly commented that it “made me realize
that I didn’t read the problem very well because I needed to go back and read it again”. The same
researchers followed-up their work with a larger study and quantitative analysis to confirm their
prior findings [24].

Craig et. al [22] ran a similar experiment using a different automated assessment tool on a larger
set of students (n=831) but without any think-aloud interviews. In this study, CS1 students provided
output to three instructor-designed test cases before writing Python code. Each student completed
the test case intervention on one of two problems and acted as a control subject for the other. For
one problem, the students who solved the test cases took statistically-significantly fewer attempts
to submit correct Python solutions. For the other problem, the students in both groups performed
the same. Based on inspection of the problem prompts and the errors submitted by the students,
the authors concluded that giving students test cases can help when the students are struggling to
understand the problem prompt (Loksa stage 1), but not when the students correctly understand
the task and struggle with the implementation (Loksa stages 4-5).

6 DISCUSSION
6.1 Use of Theories for Motivation, Measurements, and Discussion
The papers in our corpus were selected for their use of theories of metacognition and/or self-
regulation and followed the criteria outlined in [75] for being categorized as “depth” papers. We
found that most papers identified theories of metacognition and/or self-regulation as a motivation
for their work and cited the primary theoretical frameworks listed in Section 3. However, there
were 16 papers which identified metacognition or self-regulation as the motivation of the work and
either did not refer to a specific framework, or cited no cognitive theories at all. While the authors
of many of these papers, specifically the ones who wrote about metacognition and self-regulation
in general, offered appropriate prior work and demonstrated an understanding of the concepts of
cognitive control, it is unclear what theoretical frameworks they were drawing from.
Some studies conducted measurements of participants’ metacognition or self-regulation be-

haviors. These measurements came from a wide range of instruments including the analysis of
transcriptions of participants thinking aloud, surveys, quizzes, or self-reports and reflections such
as participant journals. The most predominant instrument, used by 17 papers, was the Motivated
Strategies for Learning Questionnaire (MSLQ) which includes up to 12 items on the Metacognitive
Self-Regulation scale.
While some of the papers measured metacognition and self-regulation, most were focused on

measuring student outcomes after a given intervention and did not measure self-regulation or
metacognition, despite stating the theories as motivation for the work. One reason for this may
be that the authors were not familiar with the cognitive mechanisms or with how to measure
them. This is a plausible reason given that interest in metacognitive theories is relatively new in
computing education. Another reasonwhy authors may not have explicitly measured self-regulation
or metacognition within their studies might be that the studies may have been experimental in
nature and not well suited to measuring the specifics of theoretical effects.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Another trend we identified was that papers often did not use theories when interpreting the
results or did not contextualize their observations or further discussion within the framework (even
if they motivated their work by referencing a self-regulation theory.) Instead, papers appropriately
focused on the implications of their work and where their results can inform future work. However,
not considering the results in the context of the theories or not considering the theories given
the results, leaves the reader on their own to consider how the results and the theories interact.
This lack of theory-based discussion may be because the authors believe that the theories, and
their expectations, apply directly to the context of CS and that there exist no domain-specific
nuances. Alternatively, because the papers are often focused on an intervention to improve or
understand student performance in CS and not focused on how well the theories apply, it is perhaps
unsurprising that there is not more discussion of theory in papers where authors must contend
with page length constraints of conference venues. Whatever the reason, given the nascent nature
of domain-specific use of these theories, the careful consideration of how the theories from other
domains apply within a CS context is a missed opportunity to better understand our domain.

6.2 Promising Theories Underutilized in the Literature
The papers that we analyzed in this review used a subset of the common theories of self-regulated
learning used in education research. This section describes theories that were rarely or not seen in
this review. We hope to make researchers aware of other options with which they might not be
familiar.

The first is Boekaerts’ Adaptable Learning Model [13], illustrated in Figure 7. Boekaerts’ model
separates the self-regulation of learning and the self-regulation of motivation as competing pro-
cesses. So while other theories include motivation, Boekaerts’ model is unique in that it treats
self-regulation of motivation as an alternative goal to learning. In other ways, the model follows a
similar process as other theories. It starts with analyzing the task, which is similar to forethought,
followed by monitoring and self-reaction and self-reflection. From this point, the learner can decide
to regulate their cognition towards the goal of learning or to regulate their motivation towards the
goal of maintaining well-being.

Motivational
Beliefs

Task-in-Context

Metacognitive
Strategy Use

Monitoring

Self-Reaction

Self-Reflection

Learning
Goal

Affect

Coping (Well-being Pathway)

Mastery (Growth Pathway)

Fig. 7. Boekaerts Dual Processing Self-Regulation Model (2011)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:21

The second (Figure 8) is Efklides’ Metacognitive and Affective Model of Self-Regulated Learn-
ing [27]. This theory places more focus than the others on metacognitive knowledge rather than
on the process of self-regulation. It include metacognitive knowledge about the person, the task,
and, uniquely, the interaction of person-and-task. For regulating learning, it includes concurrent
top-down and bottom-up forces. The task simply requires a certain set of knowledge and skills to
complete, and it is treated like a context. The person-level is driven by the learner’s goals for the
task, providing top-down influence on regulation. It includes metacognitive knowledge, metacog-
nitive skills, motivation, self-concept, and affect. The person-and-task level provides feedback
to the learner based on performance and progress, providing bottom-up influence on regulation.
These two forces ultimately dictate the learner’s metacognitive knowledge and skills, motivation,
self-concepts, and affect.

Task
Person
Motivation
Beliefs
Affect

Monitoring, Control & Self-Observation

Cognition Metacognition
&

Affect

Self-Regulation
of Affect

& Emotion

Task X Person

Fig. 8. Efklides Metacognitive and Affective Model of SRL (2011)

The third (Figure 9) is Winne & Hadwin’s model of self-regulated learning [96]. Like Efklides’
model, it also focuses on metacognition by constructing self-regulated learning as an information
processing task. This task has four phases, like other self-regulated learning theories, but the first
planning phase is split into two separate components. Most self-regulated learning models that
build upon Bandura’s self-regulation model [4] include a planning or forethought phase, but this is
the only one to split it into task definition and then goal setting and planning. The other two phases,
enacting strategies and metacognitive adaptation, are similar to other monitoring and self-reflection
phases. This model becomes an information processing task by treating information from internal
(i.e., the person) and external (i.e., task progress) as a feedback loop between the current state and
goal state, making the task definition important enough to separate. This feedback loop includes
five components of the information processing task of self-regulation: conditions (i.e., personal and
environmental resources), operations (i.e., cognitive processes), products (i.e., information created
through operations), evaluations (i.e., feedback about differences between products and standards),
and standards (i.e., criteria for goal completion). These five components are represented as the
COPES acronym and are carried forward to the last model we will discuss.

The last (Figure 10) is Hadwin et al.’s Socially Shared Regulated Learning (SSRL) model [38]. This
model builds upon Winne & Hadwin’s model [96] and COPES components to apply to collaborative
learning contexts. Collaboration affects many of the common features interconnected with cognitive
control because learners are managing their own and navigating others’ cognition and motivation

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Enacting
Study Tactics
& Strategies

Task
Definition

Metacognitive
Adaptation
of Studying

Goal Setting
& Planning

ProductsConditions StandardsOperations

Phases
Phase Facets

Evaluations

Fig. 9. Winne & Hadwin Information Processing SRL (1998)

through social interaction in the learning environment. Groups must coordinate planning, strategy
use, and evaluation in addition to individual members regulating their own planning, strategy use,
and evaluation. The SSRLmodel represents these interactions between self-regulation, co-regulation
(supporting others’ task regulation), and shared regulation of task strategies and progress towards
goals. Essentially, the SSRL model is the same as Winne & Hadwin’s model but carried out three
times for self-regulation, co-regulation, and shared regulation. Just as in Winne & Hadwin, COPES
components apply to each phase for each type of regulation.

Monitoring

Planning

StrategyEvaluation Self
Regulation

Monitoring

Planning

StrategyEvaluation Social
Regulation

Monitoring

Planning

StrategyEvaluation Shared
Regulation

Co-regulation

Fig. 10. Hadwin et al. Socially Shared Regulated Learning Model (2013)

7 CONCLUSIONS AND RECOMMENDATIONS
Computing education generally, and programming education specifically, could benefit from lever-
aging existing metacognitive and self-regulated learning theories that have been developed during
the past several decades. Computing education researchers may benefit from using these theories to
interpret their observations. This could lead to several developments including new ways to apply
these theories, new ways to measure the effects of applying them, and new interpretive approaches
specifically for use in computing education. Further, it is possible that computing-specific frame-
works may be required in order to best apply metacognitive and self-regulated learning theories in

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:23

computing education contexts. It is possible that computing-specific theories could arise from such
work.

The study of cognitive control becomes inextricably complex if researchers include all possible
related constructs, such as self-efficacy, motivation, and social context. As a result, researchers must
select which related constructs are most relevant to the aspect of cognitive control being studied.
This need for selection has allowed multiple theories of cognitive control to thrive under different
research contexts. Our goal for presenting various theories, including four that are not commonly
used in computing education, is to aid this selection of theories. Our description of each theory
includes which features make it unique from others. For example, if social constructs are important
to the research question at hand, Hadwin et al.’s Socially Shared Regulated Learning model [38] is
likely the best choice of theory because it is the only one to include a social dimension.

The descriptions of theories also include how they build upon and are presented in a way that is
common to all descriptions. This includes details such as the diagrams of theories using shared
icons to highlight which elements transcend more than one theory. We hope that this information
helps readers understand the relationships between these theories and distinguish between them
when deciding which is most appropriate for their specific context.

Recent work in computing education venues suggests that the computing education community
sees potential in the use of metacognitive and self-regulated learning theory in interpreting obser-
vations in computing classrooms. This work should be of interest not just to computing education
researchers but to practitioners who are interested in how theories that have proven useful in other
disciplines may be applied in the context of computing education.

REFERENCES
[1] Satu Alaoutinen. 2012. Evaluating the Effect of Learning Style and Student Background on Self-assessment accuracy.

Computer Science Education 22, 2 (2012), 175–198. https://doi.org/10.1080/08993408.2012.692924
[2] Kai Arakawa, Qiang Hao, Tyler Greer, Lu Ding, Christopher D. Hundhausen, and Abigayle Peterson. 2021. In Situ

Identification of Student Self-Regulated Learning Struggles in Programming Assignments. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 467–473. https://doi.org/10.1145/3408877.3432357

[3] Carole A. Bagley and C. Candace Chou. 2007. Collaboration and the Importance for Novices in Learning Java
Computer Programming. In Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (Dundee, Scotland) (ITiCSE ’07). Association for Computing Machinery, New York, NY,
USA, 211–215. https://doi.org/10.1145/1268784.1268846

[4] Albert Bandura. 1986. The Explanatory and Predictive Scope of Self-efficacy Theory. Journal of Social and Clinical
Psychology 4, 3 (1986), 359–373.

[5] Albert Bandura. 1986. Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall.
[6] Albert Bandura. 1997. Self-efficacy: The Exercise of Control. W H Freeman/Times Books/ Henry Holt & Co.
[7] Albert Bandura and Richard H. Walters. 1977. Social Learning Theory. Vol. 1. Prentice-Hall.
[8] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil,

Amey Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error
Messages Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research. In Proceedings
of the Working Group Reports on Innovation and Technology in Computer Science Education (Aberdeen, Scotland Uk)
(ITiCSE-WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210. https://doi.org/10.1145/
3344429.3372508

[9] Susan Bergin and R. Reilly. 2005. The Influence of Motivation and Comfort-Level on Learning to Program. In PPIG.
Psychology of Programming Interest Group, 293–304. https://ppig.org/papers/2005-ppig-17th-bergin/

[10] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the Role of Self-Regulated Learning on
Introductory Programming Performance. In Proc. of the First International Workshop on Computing Education Research
(Seattle, WA, USA) (ICER ’05). ACM, New York, NY, USA, 81–86. https://doi.org/10.1145/1089786.1089794

[11] Katerine Bielaczyc, Peter L. Pirolli, and Ann L. Brown. 1995. Training in Self-Explanation and Self-Regulation Strategies:
Investigating the Effects of Knowledge Acquisition Activities on Problem Solving. Cognition and Instruction 13, 2
(1995), 221–252. https://doi.org/10.1207/s1532690xci1302_3

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1080/08993408.2012.692924
https://doi.org/10.1145/3408877.3432357
https://doi.org/10.1145/1268784.1268846
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://ppig.org/papers/2005-ppig-17th-bergin/
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1207/s1532690xci1302_3

1:24 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

[12] Benjamin Samuel Bloom. 2001. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives. Longman.

[13] Monique Boekaerts and Lyn Corno. 2005. Self-Regulation in the Classroom: A Perspective on Assessment and
Intervention. Applied Psychology 54, 2 (2005), 199–231. https://doi.org/10.1111/j.1464-0597.2005.00205.x

[14] J. Bransford, A.L. Brown, and R.R. Cocking. 2000. How People Learn: Brain, Mind, Experience, and School: Expanded
Edition. The National Academies Press, Washington, DC. https://doi.org/10.17226/9853

[15] Zack Butler, Ivona Bezakova, and Kimberly Fluet. 2017. Pencil Puzzles for Introductory Computer Science: An
Experience- and Gender-Neutral Context. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY,
USA, 93–98. https://doi.org/10.1145/3017680.3017765

[16] Jennifer Campbell, Diane Horton, and Michelle Craig. 2016. Factors for Success in Online CS1. In Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Science Education (Arequipa, Peru) (ITiCSE ’16).
Association for Computing Machinery, New York, NY, USA, 320–325. https://doi.org/10.1145/2899415.2899457

[17] Yuk Fai Cheong, Frank Pajares, and Paul S. Oberman. 2004. Motivation and Academic Help-Seeking in High School
Computer Science. Computer Science Education 14, 1 (2004), 3–19. https://doi.org/10.1076/csed.14.1.3.23501

[18] Cheng-Yu Chung and I-Han Hsiao. 2020. Investigating Patterns of Study Persistence on Self-Assessment Platform of
Programming Problem-Solving. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 162–168. https:
//doi.org/10.1145/3328778.3366827

[19] Tony Clear, JL Whalley, Phil Robbins, Anne Philpott, Anna Eckerdal, and Mikko-Jussi Laakso. 2011. Report on the
final BRACElet workshop: Auckland University of Technology, September 2010. Journal of Applied Computing and
Information Technology (2011).

[20] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20, 1
(1960), 37–46.

[21] Michelle Craig, Diane Horton, Daniel Zingaro, and Danny Heap. 2016. Introducing and Evaluating Exam Wrappers
in CS2. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA, 285–290. https://doi.org/10.1145/
2839509.2844561

[22] Michelle Craig, Andrew Petersen, and Jennifer Campbell. 2019. Answering the Correct Question. In Proceedings of the
ACM Conference on Global Computing Education (Chengdu, Sichuan, China) (CompEd ’19). Association for Computing
Machinery, New York, NY, USA, 72–77. https://doi.org/10.1145/3300115.3309529

[23] Kathryn Crawford and Alan Fekete. 1997. What Do Exam Results Really Measure?. In Proceedings of the 2nd
Australasian Conference on Computer Science Education (The Univ. of Melbourne, Australia) (ACSE ’97). Association
for Computing Machinery, New York, NY, USA, 185–190. https://doi.org/10.1145/299359.299386

[24] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and Raymond Pettit. 2019. A Closer
Look at Metacognitive Scaffolding: Solving Test Cases Before Programming. In Proceedings of the 19th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli Calling ’19). Association for Computing
Machinery, New York, NY, USA, Article 11, 10 pages. https://doi.org/10.1145/3364510.3366170

[25] Daniel L. Dinsmore, Patricia A. Alexander, and Sandra M. Loughlin. 2008. Focusing the Conceptual Lens on Metacog-
nition, Self-regulation, and Self-regulated Learning. Educational Psychology Review 20, 4 (01 Dec 2008), 391–409.
https://doi.org/10.1007/s10648-008-9083-6

[26] Shannon Duvall, Scott Spurlock, Dugald Ralph Hutchings, and Robert C. Duvall. 2021. Improving Content Learning
and Student Perceptions in CS1 with Scrumage. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
474–480. https://doi.org/10.1145/3408877.3432415

[27] Anastasia Efklides. 2008. Metacognition: Defining its Facets and Levels of Functioning in Relation to Self-regulation
and Co-regulation. European Psychologist 13, 4 (2008), 277–287.

[28] Peggy A. Ertmer and Timothy J. Newby. 1996. Expert Learner: Strategic, Self-regulated, and Reflective. Instructional
Science 24, 1 (1996), 1–24.

[29] Anneli Eteläpelto. 1993. Metacognition and the Expertise of Computer Program Comprehension. Scandinavian
Journal of Educational Research 37, 3 (1993), 243–254. https://doi.org/10.1080/0031383930370305

[30] Katrina Falkner, Claudia Szabo, Rebecca Vivian, and Nickolas Falkner. 2015. Evolution of Software Development
Strategies. In Proceedings of the 37th International Conference on Software Engineering - Volume 2 (Florence, Italy)
(ICSE ’15). IEEE Press, 243–252.

[31] Katrina Falkner, Rebecca Vivian, and Nickolas J.G. Falkner. 2014. Identifying Computer Science Self-Regulated
Learning Strategies. In Proc. of the 2014 Conference on Innovation and Technology in Computer Science Education
(Uppsala, Sweden) (ITiCSE ’14). ACM, New York, NY, USA, 291–296. https://doi.org/10.1145/2591708.2591715

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1111/j.1464-0597.2005.00205.x
https://doi.org/10.17226/9853
https://doi.org/10.1145/3017680.3017765
https://doi.org/10.1145/2899415.2899457
https://doi.org/10.1076/csed.14.1.3.23501
https://doi.org/10.1145/3328778.3366827
https://doi.org/10.1145/3328778.3366827
https://doi.org/10.1145/2839509.2844561
https://doi.org/10.1145/2839509.2844561
https://doi.org/10.1145/3300115.3309529
https://doi.org/10.1145/299359.299386
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1007/s10648-008-9083-6
https://doi.org/10.1145/3408877.3432415
https://doi.org/10.1080/0031383930370305
https://doi.org/10.1145/2591708.2591715

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:25

[32] Nickolas Falkner, Rebecca Vivian, David Piper, and Katrina Falkner. 2014. Increasing the Effectiveness of Automated
Assessment by Increasing Marking Granularity and Feedback Units. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for ComputingMachinery,
New York, NY, USA, 9–14. https://doi.org/10.1145/2538862.2538896

[33] J. H. Flavell. 1976. Metacognitive Aspects of Problem Solving. The Nature of Intelligence (1976), 231–235. https:
//ci.nii.ac.jp/naid/10021876052/en/

[34] John H Flavell. 1979. Metacognition and Cognitive Monitoring: A New Area of Cognitive-Developmental Inquiry.
American psychologist 34, 10 (1979), 906.

[35] Emily Fox and Michelle Riconscente. 2008. Metacognition and Self-regulation in James, Piaget, and Vygotsky.
Educational Psychology Review 20, 4 (2008), 373–389.

[36] Diana Franklin, Jean Salac, Zachary Crenshaw, Saranya Turimella, Zipporah Klain, Marco Anaya, and Cathy Thomas.
2020. Exploring Student Behavior Using the TIPP&SEE Learning Strategy. In Proceedings of the 2020 ACM Conference
on International Computing Education Research (Virtual Event, New Zealand) (ICER ’20). Association for Computing
Machinery, New York, NY, USA, 91–101. https://doi.org/10.1145/3372782.3406257

[37] Jamie Gorson and Eleanor O’Rourke. 2020. Why Do CS1 Students Think They’re Bad at Programming? Investigating
Self-Efficacy and Self-Assessments at Three Universities. In Proceedings of the 2020 ACM Conference on International
Computing Education Research (Virtual Event, New Zealand) (ICER ’20). Association for Computing Machinery, New
York, NY, USA, 170–181. https://doi.org/10.1145/3372782.3406273

[38] Allyson Fiona Hadwin, Sanna Järvelä, and Mariel Miller. 2018. Self-regulated, Co-regulated, and Socially Shared
Regulation of Learning. In Handbook of Self-regulation of Learning and Performance, D. H. Schunk and J. A. Greene
Greene (Eds.). Vol. 30. Routledge/Taylor & Francis Group, 83–106.

[39] Alison Hull. 2014. Motivational and Metacognitive Feedback in an ITS: Linking Past States and Experiences to Current
Problems. Ph.D. Dissertation. University of Sussex.

[40] Alison Hull and Benedict du Boulay. 2015. Motivational and Metacognitive Feedback in SQL-Tutor*. Computer Science
Education 25, 2 (2015), 238–256. https://doi.org/10.1080/08993408.2015.1033143

[41] Kalle Ilves, Juho Leinonen, and Arto Hellas. 2018. Supporting Self-Regulated Learning with Visualizations in
Online Learning Environments. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 257–262.
https://doi.org/10.1145/3159450.3159509

[42] Ville Isomöttönen and Ville Tirronen. 2016. Flipping and Blending—An Action Research Project on Improving
a Functional Programming Course. ACM Trans. Comput. Educ. 17, 1, Article 1 (Sept. 2016), 35 pages. https:
//doi.org/10.1145/2934697

[43] Shekhar Kalra, Charles Thevathayan, and Margaret Hamilton. 2020. Developing Industry-Relevant Higher Order
Thinking Skills in Computing Students. In Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education (Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery, New York, NY,
USA, 294–299. https://doi.org/10.1145/3341525.3387381

[44] Viggo Kann and Anna-Karin Högfeldt. 2016. Effects of a Program Integrating Course for Students of Computer
Science and Engineering. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(Memphis, Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA, 510–515.
https://doi.org/10.1145/2839509.2844610

[45] Amanpreet Kapoor and Christina Gardner-McCune. 2020. Exploring the Participation of CS Undergraduate Students
in Industry Internships. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education (Portland,
OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 1103–1109. https://doi.org/10.
1145/3328778.3366844

[46] Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Analysis of Online Coding Tutorials. In Proc. of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). ACM, New York, NY,
USA, 321–326. https://doi.org/10.1145/3017680.3017728

[47] Michael S. Kirkpatrick, Mohamed Aboutabl, David Bernstein, and Sharon Simmons. 2015. Backward Design: An
Integrated Approach to a Systems Curriculum. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery, New York, NY,
USA, 30–35. https://doi.org/10.1145/2676723.2677264

[48] Michael S. Kirkpatrick and Samantha Prins. 2015. Using the Readiness Assurance Process and Metacognition in an
Operating Systems Course. In Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer
Science Education (Vilnius, Lithuania) (ITiCSE ’15). Association for Computing Machinery, New York, NY, USA,
183–188. https://doi.org/10.1145/2729094.2742594

[49] Sophia Krause-Levy, Leo Porter, Beth Simon, and Christine Alvarado. 2020. Investigating the Impact of Employing
Multiple Interventions in a CS1 Course. In Proceedings of the 51st ACM Technical Symposium on Computer Science

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/2538862.2538896
https://ci.nii.ac.jp/naid/10021876052/en/
https://ci.nii.ac.jp/naid/10021876052/en/
https://doi.org/10.1145/3372782.3406257
https://doi.org/10.1145/3372782.3406273
https://doi.org/10.1080/08993408.2015.1033143
https://doi.org/10.1145/3159450.3159509
https://doi.org/10.1145/2934697
https://doi.org/10.1145/2934697
https://doi.org/10.1145/3341525.3387381
https://doi.org/10.1145/2839509.2844610
https://doi.org/10.1145/3328778.3366844
https://doi.org/10.1145/3328778.3366844
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.1145/2676723.2677264
https://doi.org/10.1145/2729094.2742594

1:26 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Education (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 1082–1088.
https://doi.org/10.1145/3328778.3366866

[50] Einari Kurvinen, Rolf Lindén, Teemu Rajala, Erkki Kaila, Mikko-Jussi Laakso, and Tapio Salakoski. 2012. Computer-
Assisted Learning in Primary School Mathematics Using ViLLE Education Tool. In Proceedings of the 12th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli Calling ’12). Association for Computing
Machinery, New York, NY, USA, 39–46. https://doi.org/10.1145/2401796.2401801

[51] Priscilla Lee and Soohyun Nam Liao. 2021. Targeting Metacognition by Incorporating Student-Reported Confidence
Estimates on Self-Assessment Quizzes. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education (Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA, 431–437.
https://doi.org/10.1145/3408877.3432377

[52] Leo Leppänen, Juho Leinonen, and Arto Hellas. 2016. Pauses and Spacing in Learning to Program. In Proceedings
of the 16th Koli Calling International Conference on Computing Education Research (Koli, Finland) (Koli Calling ’16).
Association for Computing Machinery, New York, NY, USA, 41–50. https://doi.org/10.1145/2999541.2999549

[53] Alex Lishinski, Aman Yadav, Jon Good, and Richard Enbody. 2016. Learning to Program: Gender Differences and
Interactive Effects of Students’ Motivation, Goals, and Self-Efficacy on Performance. In Proceedings of the 2016 ACM
Conference on International Computing Education Research (Melbourne, VIC, Australia) (ICER ’16). Association for
Computing Machinery, New York, NY, USA, 211–220. https://doi.org/10.1145/2960310.2960329

[54] Dastyni Loksa and Amy J. Ko. 2016. The Role of Self-Regulation in Programming Problem Solving Process and Success.
In Proceedings of the 2016 ACM Conference on International Computing Education Research (Melbourne, VIC, Australia)
(ICER ’16). Association for ComputingMachinery, New York, NY, USA, 83–91. https://doi.org/10.1145/2960310.2960334

[55] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, and Margaret M. Burnett. 2016.
Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 1449–1461. https://doi.org/10.1145/2858036.2858252

[56] Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J. Ko. 2020. Investigating Novices’ In Situ Reflections on
Their Programming Process. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 149–155. https:
//doi.org/10.1145/3328778.3366846

[57] Lauri Malmi, Judy Sheard, Päivi Kinnunen, Simon, and Jane Sinclair. 2019. Computing Education Theories: What Are
They and How Are They Used?. In Proc. of the 2019 ACM Conference on International Computing Education Research
(Toronto ON, Canada) (ICER ’19). ACM, New York, NY, USA, 187–197. https://doi.org/10.1145/3291279.3339409

[58] Lauri Malmi, Judy Sheard, Päivi Kinnunen, and Jane Sinclair. 2020. Theories and models of emotions, attitudes, and
self-efficacy in the context of programming education. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 36–47.

[59] Murali Mani and Quamrul Mazumder. 2013. Incorporating Metacognition into Learning. In Proceedings of the 44th
ACM Technical Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for
Computing Machinery, New York, NY, USA, 53–58. https://doi.org/10.1145/2445196.2445218

[60] Joshua Martin, Stephen H. Edwards, and Clfford A. Shaffer. 2015. The Effects of Procrastination Interventions
on Programming Project Success. In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery, New York,
NY, USA, 3–11. https://doi.org/10.1145/2787622.2787730

[61] Samiha Marwan, Anay Dombe, and Thomas W. Price. 2020. Unproductive Help-Seeking in Programming: What It is
and How to Address It. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science
Education (Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery, New York, NY, USA, 54–60.
https://doi.org/10.1145/3341525.3387394

[62] Adon Christian Michael Moskal and Rob Wass. 2019. Interpersonal Process Recall: A Novel Approach to Illuminating
Students’ Software Development Processes. Computer Science Education 29, 1 (2019), 5–22. https://doi.org/10.1080/
08993408.2018.1542190

[63] Erica Mourão, João Felipe Pimentel, Leonardo Murta, Marcos Kalinowski, Emilia Mendes, and Claes Wohlin. 2020. On
the Performance of Hybrid Search Strategies for Systematic Literature Reviews in Software Engineering. Information
and Software Technology 123 (2020), 106294. https://doi.org/10.1016/j.infsof.2020.106294

[64] Laurie Murphy and Josh Tenenberg. 2005. Do Computer Science Students Know What They Know? A Calibration
Study of Data Structure Knowledge. (2005), 148–152. https://doi.org/10.1145/1067445.1067488

[65] Claudia Ott, Anthony Robins, Patricia Haden, and Kerry Shephard. 2015. Illustrating performance indicators and
course characteristics to support students’ self-regulated learning in CS1. Computer Science Education 25, 2 (2015),
174–198. https://doi.org/10.1080/08993408.2015.1033129

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3328778.3366866
https://doi.org/10.1145/2401796.2401801
https://doi.org/10.1145/3408877.3432377
https://doi.org/10.1145/2999541.2999549
https://doi.org/10.1145/2960310.2960329
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/3328778.3366846
https://doi.org/10.1145/3328778.3366846
https://doi.org/10.1145/3291279.3339409
https://doi.org/10.1145/2445196.2445218
https://doi.org/10.1145/2787622.2787730
https://doi.org/10.1145/3341525.3387394
https://doi.org/10.1080/08993408.2018.1542190
https://doi.org/10.1080/08993408.2018.1542190
https://doi.org/10.1016/j.infsof.2020.106294
https://doi.org/10.1145/1067445.1067488
https://doi.org/10.1080/08993408.2015.1033129

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:27

[66] F. Pajares. 1997. Current Directions in Self-efficacy Research. In Advances in Motivation and Achievement, M. Maehr
and P. R. Pintrich (Eds.). JAI Press, Greenwich, CT, 1–49.

[67] Ernesto Panadero. 2017. A Review of Self-regulated Learning: Six Models and Four Directions for Research. Frontiers
in Psychology 8 (2017), 422. https://doi.org/10.3389/fpsyg.2017.00422

[68] Jennifer Parham, Leo Gugerty, and D. E. Stevenson. 2010. Empirical Evidence for the Existence and Uses of Metacog-
nition in Computer Science Problem Solving. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York, NY, USA,
416–420. https://doi.org/10.1145/1734263.1734406

[69] S. G. Paris and P.Winograd. 1990. HowMetacognition Can Promote Academic Learning and Instruction. InDimensions
of Thinking and Cognitive Instruction, B. F. Jones and L. Idol (Eds.). Lawrence Erlbaum Associates, Inc., 15–51.

[70] Miranda C. Parker, Kantwon Rogers, Barbara J. Ericson, and Mark Guzdial. 2017. Students and Teachers Use An
Online AP CS Principles EBook Differently: Teacher Behavior Consistent with Expert Learners. In Proceedings of
the 2017 ACM Conference on International Computing Education Research (Tacoma, Washington, USA) (ICER ’17).
Association for Computing Machinery, New York, NY, USA, 101–109. https://doi.org/10.1145/3105726.3106189

[71] Markeya S. Peteranetz, PatrickM.Morrow, and Leen-Kiat Soh. 2020. Development and Validation of the Computational
Thinking Concepts and Skills Test. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 926–932. https:
//doi.org/10.1145/3328778.3366813

[72] Markeya S. Peteranetz, Shiyuan Wang, Duane F. Shell, Abraham E. Flanigan, and Leen-Kiat Soh. 2018. Examining
the Impact of Computational Creativity Exercises on College Computer Science Students’ Learning, Achievement,
Self-Efficacy, and Creativity. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 155–160.
https://doi.org/10.1145/3159450.3159459

[73] Paul R. Pintrich. 2000. Chapter 14 - The Role of Goal Orientation in Self-Regulated Learning. In Handbook of
Self-Regulation, Monique Boekaerts, Paul R. Pintrich, and Moshe Zeidner (Eds.). Academic Press, San Diego, 451 –
502. https://doi.org/10.1016/B978-012109890-2/50043-3

[74] Paul R Pintrich and Elisabeth V De Groot. 1990. Motivational and Self-regulated Learning Components of Classroom
Academic Performance. Journal of Educational Psychology 82, 1 (1990), 33–40.

[75] James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and Lauren Margulieux. 2020. What Do
We Think We Think We Are Doing? Metacognition and Self-Regulation in Programming. In Proceedings of the 2020
ACM Conference on International Computing Education Research (Virtual Event, New Zealand) (ICER ’20). Association
for Computing Machinery, New York, NY, USA, 2–13. https://doi.org/10.1145/3372782.3406263

[76] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani Peters, Zachary Albrecht, and
Krista Masci. 2019. First Things First: Providing Metacognitive Scaffolding for Interpreting Problem Prompts. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 531–537. https://doi.org/10.1145/3287324.3287374

[77] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and Maxine Cohen. 2018. Metacognitive
Difficulties Faced by Novice Programmers in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference
on International Computing Education Research (Espoo, Finland) (ICER ’18). Association for Computing Machinery,
New York, NY, USA, 41–50. https://doi.org/10.1145/3230977.3230981

[78] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John Homer, Nevan Simone, and Maxine
Cohen. 2017. On Novices’ Interaction with Compiler Error Messages: A Human Factors Approach. In Proceedings
of the 2017 ACM Conference on International Computing Education Research (Tacoma, Washington, USA) (ICER ’17).
Association for Computing Machinery, New York, NY, USA, 74–82. https://doi.org/10.1145/3105726.3106169

[79] V.G. Renumol, Dharanipragada Janakiram, and S. Jayaprakash. 2010. Identification of Cognitive Processes of Effective
and Ineffective Students During Computer Programming. ACM Trans. Comput. Educ. 10, 3, Article 10 (Aug. 2010),
21 pages. https://doi.org/10.1145/1821996.1821998

[80] Alexander Ruf, Andreas Mühling, and Peter Hubwieser. 2014. Scratch vs. Karel: Impact on Learning Outcomes and
Motivation. In Proceedings of the 9th Workshop in Primary and Secondary Computing Education (Berlin, Germany)
(WiPSCE ’14). Association for Computing Machinery, New York, NY, USA, 50–59. https://doi.org/10.1145/2670757.
2670772

[81] Jean Salac, Cathy Thomas, Chloe Butler, and Diana Franklin. 2021. Supporting Diverse Learners in K-8 Computational
Thinking with TIPP&SEE. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA, 246–252. https:
//doi.org/10.1145/3408877.3432366

[82] Phil Sands and Aman Yadav. 2020. Self-Regulation for High School Learners in a MOOC Computer Science Course.
In Proceedings of the 51st ACM Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE ’20).

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.3389/fpsyg.2017.00422
https://doi.org/10.1145/1734263.1734406
https://doi.org/10.1145/3105726.3106189
https://doi.org/10.1145/3328778.3366813
https://doi.org/10.1145/3328778.3366813
https://doi.org/10.1145/3159450.3159459
https://doi.org/10.1016/B978-012109890-2/50043-3
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/1821996.1821998
https://doi.org/10.1145/2670757.2670772
https://doi.org/10.1145/2670757.2670772
https://doi.org/10.1145/3408877.3432366
https://doi.org/10.1145/3408877.3432366

1:28 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Association for Computing Machinery, New York, NY, USA, 845–851. https://doi.org/10.1145/3328778.3366818
[83] Dale H Schunk. 2008. Metacognition, Self-regulation, and Self-regulated Learning: Research Recommendations.

Educational Psychology Review 20, 4 (2008), 463–467.
[84] Dale H. Schunk, Paul R. Pintrich, and Judith L. Meece. 2008. Motivation in Education: Theory, Research, and Applications.

Pearson Merrill Prentice Hall, Upper Saddle River, NJ.
[85] Clifford A. Shaffer and Ayaan M. Kazerouni. 2021. The Impact of Programming Project Milestones on Procrastination,

Project Outcomes, and Course Outcomes: A Quasi-Experimental Study in a Third-Year Data Structures Course. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (Virtual Event, USA) (SIGCSE ’21).
Association for Computing Machinery, New York, NY, USA, 907–913. https://doi.org/10.1145/3408877.3432356

[86] Leonardo Silva, António José Mendes, Anabela Gomes, and Gabriel Fortes Cavalcanti de Macêdo. 2021. Regulation of
Learning Interventions in Programming Education: A Systematic Literature Review and Guideline Proposition. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (Virtual Event, USA) (SIGCSE ’21).
Association for Computing Machinery, New York, NY, USA, 647–653. https://doi.org/10.1145/3408877.3432363

[87] Ben Stephenson, Michelle Craig, Daniel Zingaro, Diane Horton, Danny Heap, and Elaine Huynh. 2017. Exam
Wrappers: Not a Silver Bullet. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY, USA,
573–578. https://doi.org/10.1145/3017680.3017701

[88] Robert J Sternberg et al. 1985. Beyond IQ: A Triarchic Theory of Human Intelligence. CUP Archive.
[89] Jeffrey A. Stone and Elinor M. Madigan. 2007. Integrating reflective writing in CS/IS. ACM SIGCSE Bulletin 39, 2 (jun

2007), 42. https://doi.org/10.1145/1272848.1272881
[90] Claudia Szabo, Nickolas Falkner, Andrew Petersen, Heather Bort, Kathryn Cunningham, Peter Donaldson, Arto Hellas,

James Robinson, and Judy Sheard. 2019. Review and Use of Learning Theories within Computer Science Education
Research: Primer for Researchers and Practitioners. In Proc. of theWG Reports on Innovation and Technology in Comp Sci
Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19). ACM, NY, USA, 89–109. https://doi.org/10.1145/3344429.3372504

[91] Josh Tenenberg and Laurie Murphy. 2005. Knowing What I Know: An Investigation of Undergraduate Knowledge
and Self-knowledge of Data Structures. Computer Science Education 15, 4 (2005), 297–315. https://doi.org/10.1080/
08993400500307677

[92] Tammy VanDeGrift, Tamara Caruso, Natalie Hill, and Beth Simon. 2011. Experience Report: Getting Novice Program-
mers to THINK about Improving Their Software Development Process. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery,
New York, NY, USA, 493–498. https://doi.org/10.1145/1953163.1953307

[93] Arto Vihavainen, Craig S. Miller, and Amber Settle. 2015. Benefits of Self-Explanation in Introductory Programming. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE
’15). Association for Computing Machinery, New York, NY, USA, 284–289. https://doi.org/10.1145/2676723.2677260

[94] Rebecca Vivian, Katrina Falkner, Nickolas Falkner, and Hamid Tarmazdi. 2016. A Method to Analyze Computer
Science Students’ Teamwork in Online Collaborative Learning Environments. ACM Trans. Comput. Educ. 16, 2, Article
7 (Feb. 2016), 28 pages. https://doi.org/10.1145/2793507

[95] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. 2014. No Tests Required: Comparing Traditional and
Dynamic Predictors of Programming Success. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
469–474. https://doi.org/10.1145/2538862.2538930

[96] Philip H Winne and Allyson F Hadwin. 1998. Studying as Self-Regulated Engagement in Learning. Metacognition in
Educational Theory and Practice (1998), 277–304.

[97] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng Dong, Harrison Kwik, Alex Hui Tan,
Leanne Hwa, Min Li, and Amy J. Ko. 2019. A Theory of Instruction for Introductory Programming Skills. Computer
Science Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

[98] Aman Yadav, Chris Mayfield, Sukanya Kannan Moudgalya, Clif Kussmaul, and Helen H. Hu. 2021. Collaborative
Learning, Self-Efficacy, and Student Performance in CS1 POGIL. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York,
NY, USA, 775–781. https://doi.org/10.1145/3408877.3432373

[99] Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on Coding Process for Novices. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for
Computing Machinery, New York, NY, USA, 253–259. https://doi.org/10.1145/3287324.3287483

[100] Barry J Zimmerman. 1989. A Social Cognitive View of Self-regulated Academic Learning. Journal of Educational
Psychology 81, 3 (1989), 329.

[101] Barry J. Zimmerman. 1990. Self-Regulated Learning and Academic Achievement: An Overview. Educational Psycholo-
gist 25, 1 (1990), 3–17. https://doi.org/10.1207/s15326985ep2501_2

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3328778.3366818
https://doi.org/10.1145/3408877.3432356
https://doi.org/10.1145/3408877.3432363
https://doi.org/10.1145/3017680.3017701
https://doi.org/10.1145/1272848.1272881
https://doi.org/10.1145/3344429.3372504
https://doi.org/10.1080/08993400500307677
https://doi.org/10.1080/08993400500307677
https://doi.org/10.1145/1953163.1953307
https://doi.org/10.1145/2676723.2677260
https://doi.org/10.1145/2793507
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3408877.3432373
https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1207/s15326985ep2501_2

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:29

[102] Barry J. Zimmerman. 2000. Chapter 2 - Attaining Self-Regulation: A Social Cognitive Perspective. In Handbook of
Self-Regulation, Monique Boekaerts, Paul R. Pintrich, and Moshe Zeidner (Eds.). Academic Press, San Diego, 13 – 39.
https://doi.org/10.1016/B978-012109890-2/50031-7

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1016/B978-012109890-2/50031-7

1:30 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

A APPENDIX

Author Ref Title Year
Crawford &
Fekete

[23] What Do Exam Results Really Measure? 1997

Bergin et al. [10] Examining the Role of Self-regulated Learning on Introductory Programming
Performance

2005

Murphy &
Tenenberg

[64] Do Computer Science Students Know What They Know?: A Calibration Study of
Data Structure Knowledge

2005

Bagley & Chou [3] Collaboration and the Importance for Novices in Learning Java Computer Pro-
gramming

2007

Stone & Madigan [89] Integrating Reflective Writing in CS/IS 2007
Parham et al. [68] Empirical Evidence for the Existence and Uses of Metacognition in Computer

Science Problem Solving
2010

VanDeGrift et al. [92] Experience Report: Getting Novice Programmers to THINK About Improving
Their Software Development Process

2011

Kurvinen et al. [50] Computer-assisted Learning in Primary School Mathematics Using ViLLE Educa-
tion Tool

2012

Mani &Mazumder [59] Incorporating Metacognition into Learning 2013
Falkner et al. [31] Identifying Computer Science Self-regulated Learning Strategies 2014
Ruf et al. [80] Scratch vs. Karel: Impact on Learning Outcomes & Motivation 2014
Watson et al. [95] No Tests Required: Comparing Traditional & Dynamic Predictors of Programming

Success
2014

Kirkpatrick et al. [47] Backward Design: An Integrated Approach to a Systems Curriculum 2015
Kirkpatrick et al. [48] Using the Readiness Assurance Process & Metacognition in an Operating Systems

Course
2015

Martin et al. [60] The Effects of Procrastination Interventions on Programming Project Success 2015
Vihavainen et al. [93] Benefits of Self-explanation in Introductory Programming 2015
Campbell et al. [16] Factors for Success in Online CS1 2016
Craig et al. [21] Introducing & Evaluating Exam Wrappers in CS2 2016
Kann & Högfeldt [44] Effects of a Program Integrating Course for Students of Computer Science and

Engineering
2016

Leppänen et al. [52] Pauses and Spacing in Learning to Program 2016
Lishinski et al. [53] Learning to Program: Gender Differences and Interactive Effects of Students’

Motivation, Goals, and Self-Efficacy on Performance
2016

Loksa & Ko [54] The Role of Self-Regulation in Programming Problem Solving Process & Success 2016
Butler et al. [15] Pencil Puzzles for Introductory Computer Science: An Experience- and Gender-

Neutral Context
2017

Kim & Ko [46] A Pedagogical Analysis of Online Coding Tutorials 2017
Parker et al. [70] Students and Teachers Use An Online AP CS Principles EBook Differently: Teacher

Behavior Consistent with Expert Learners
2017

Stephenson et al. [87] Exam Wrappers: Not a Silver Bullet 2017
Ilves et al. [41] Supporting Self-Regulated Learning with Visualizations in Online Learning Envi-

ronments
2018

Peteranetz et al. [72] Examining the Impact of Computational Creativity Exercises on College Computer
Science Students’ Learning, Achievement, Self-Efficacy, and Creativity

2018

Prather et al. [77] Metacognitive Difficulties Faced by Novice Programmers in Automated Assess-
ment Tools

2018

Prather et al. [76] First Things First: Providing Metacognitive Scaffolding for Interpreting Problem
Prompts

2019

Yan et al. [99] Pensieve: Feedback on Coding Process for Novices 2019
Table 1. Depth papers found by Prather et al. [75] from conferences (ACM DL sponsor: SIGCSE) through
26/11/2019

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Metacognition and Self-Regulation in Programming Education: Theories and Exemplars of Use 1:31

Author Ref Title Year
Cheong et al. [17] Motivation & Academic Help-Seeking in High School Computer Science 2004
Tenenberg &
Murphy

[91] Knowing What I Know: An investigation of Undergraduate Knowledge and self-
knowledge of data structures

2005

Renumol et al. [79] Identification of Cognitive Processes of Effective and Ineffective Students During
Computer Programming

2010

Alaoutinen [1] Evaluating the Effect of Learning Style and Student Background on Self-assessment
accuracy

2012

Hull & du Boulay [40] Motivational and Metacognitive Feedback in SQL-Tutor* 2015
Ott et al. [65] Illustrating Performance Indicators and Course Characteristics to Support Stu-

dents’ self-regulated learning in CS2
2015

Isomöttönen &
Tirronen

[42] Flipping and Blending—An Action Research Project on Improving a Functional
Programming Course

2016

Vivian et al. [94] A Method to Analyze Computer Science Students’ Teamwork in Online Collabo-
rative Learning Environments

2016

Moskal & Wass [62] Interpersonal Process Recall: a Novel Approach to Illuminating Students’ Software
development processes

2019

Xie et al. [97] A Theory of Instruction for Introductory Programming Skills 2019
Chung & Hsiao [18] Investigating Patterns of Study Persistence on Self-Assessment Platform of Pro-

gramming Problem-Solving
2020

Franklin et al. [36] Exploring Student Behavior Using the TIPP&SEE Learning Strategy 2020
Gorson &
O’Rourke

[37] Why Do CS1 Students Think They’re Bad at Programming? Investigating Self-
Efficacy and Self-Assessments at Three Universities

2020

Kalra et al. [43] Developing Industry-Relevant Higher Order Thinking Skills in Computing Stu-
dents

2020

Kapoor &
Gardner-McCune

[45] Exploring the Participation of CS Undergraduate Students in Industry Internships 2020

Krause-Levy et al. [49] Investigating the Impact of Employing Multiple Interventions in a CS1 Course 2020
Loksa et al. [56] Investigating Novices’ In Situ Reflections on Their Programming Process 2020
Marwan et al. [61] Unproductive Help-Seeking in Programming: What It is and How to Address It 2020
Peteranetz et al. [71] Development and Validation of the Computational Thinking Concepts and Skills

Test
2020

Sandsl & Yadav [82] Self-Regulation for High School Learners in a MOOC Computer Science Course 2020
Arakawa et al. [2] In Situ Identification of Student Self-Regulated Learning Struggles in Programming

Assignments
2021

Duvall et al. [26] Improving Content Learning and Student Perceptions in CS1 with Scrumage 2021
Lee & Liao [51] TargetingMetacognition by Incorporating Student-Reported Confidence Estimates

on Self-Assessment Quizzes
2021

Salac et al. [81] Supporting Diverse Learners in K-8 Computational Thinking with TIPP & SEE 2021
Shaffer &
Kazerouni

[85] The Impact of Programming Project Milestones on Procrastination, Project Out-
comes, and Course Outcomes: A Quasi-Experimental Study in a Third-Year Data
Structures Course

2021

Silva et al. [86] Regulation of Learning Interventions in Programming Education: A Systematic
Literature Review and Guideline Proposition

2021

Yadav et al. [98] Collaborative Learning, Self-Efficacy, and Student Performance in CS1 POGIL 2021
Table 2. Depth papers found by this study from conferences (ACM DL sponsor: SIGCSE) and TOCE, Computer
Science Education through 21/3/2021

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:32 Loksa, Margulieux, Becker, Craig, Denny, Pettit, Prather

Author Ref Title Year
Eteläpelto [29] Metacognition and the Expertise of Computer Program Comprehension 1993
Bielaczyc et al. [11] Training in Self-explanation and Self-regulation Strategies: Investigating the Ef-

fects of Knowledge Acquisition Activities on Problem Solving
1995

Bergin & Reilly [9] The Influence of Motivation and Comfort-level on Learning to Program 2005
Falkner et al. [30] Evolution of Software Development Strategies 2015
Loksa et al. [55] Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance 2016

Table 3. Depth papers found by this study from reverse-snowball search using papers from Prather et al. [75]
and this study (Tables 1 and 2)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	1.1 Aims and Approach
	1.2 Research Questions

	2 Conducting the Literature Search and Building the Corpus
	2.1 Search Replication (ACM DL SIGCSE-sponsored)
	2.2 Broadening the Search (TOCE & CSE)
	2.3 Classification
	2.4 Reverse Snowballing
	2.5 Final Corpus

	3 Theoretical Frameworks Used within the Corpus
	3.1 Foundational Theories of Cognitive Control
	3.2 Self-Regulated Learning Theories in Computing Education Research

	4 Exemplars of Theory Use
	4.1 Aligning with Zimmerman
	4.2 Building From Zimmerman
	4.3 Building on Bandura and Pintrich Using Pintrich's MSLQ Instrument
	4.4 Interactions Between Metacognitive Strategies and Schemata in Program Problem-solving
	4.5 Complex Interactions of Self-efficacy, Motivation, and Metacognition

	5 Domain-specific theories related to programming instruction
	5.1 Exemplars That Use a Computing-specific Theoretical Framework

	6 Discussion
	6.1 Use of Theories for Motivation, Measurements, and Discussion
	6.2 Promising Theories Underutilized in the Literature

	7 Conclusions and Recommendations
	References
	A Appendix

