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Abstract

The Madelung-de Broglie-Bohm formulation of the Schrödinger equation casts the

time-evolution of a wavefunction as dynamics of an ensemble of quantum, or Bohmian,

trajectories, interacting via the non-local quantum potential. This trajectory perspec-

tive gives insight into the quantumness (or classicality) of a given system due to clear

partitioning of the energy into classical and quantum components. Here, we propose

a system-independent measure of the quantumness of dynamics, based on the energy

time-change, referred to as ’quantum power’. This measure is local in the coordinate

space. Based on applications to model chemical systems, we argue that during the

transition from the quantum to classical regime, defined as compression of quantiza-

tion, the quantum features in dynamics do not ’disappear’ but are pushed forward in

time. This feature may be used to gauge the validity of the semiclassical and other

approximate dynamics approaches in applications to anharmonic systems.
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1 Introduction

Recent developments in exact methods of quantum dynamics, e.g.,1–8 enable description

of large chemical systems with relatively mild approximations. The applicability of the ap-

proximate methods often depends on the degree of quantumness in the underlying dynamics.

Many popular practical methods incorporate mild quantum effects at some level. One great

example is the quasiclassical trajectory (QCT) dynamics, introduced in 1965 by Karplus

et al.,9 which incorporates ad hoc quantization of the energy and angular momentum of

the initial state into the trajectory sampling. The remarkable success of the QCT method

in reproducing the experimental data and quantum scattering calculations for the H+H2

reaction,10 inspired decades of development and applications of the QCT dynamics, which

remains a standard tool of the reactive gas-phase dynamics, e.g.,11–15 and, moreover, has

spurred the development of quantum and semiclassical theories of chemical reactions and

Gaussian wavepacket methods, e.g.16–23 Enabled by the advances in quantum and mixed

quantum-(semi)classical dynamics methods, e.g.,24–26 and in the potential energy surface

construction and on-the-fly electronic structure calculations, e.g.,27–29 increasingly larger

molecular systems fall into the scope of theoretical and computational studies. Thus, de-

scription of spatially localized parts of molecular systems at different theory levels (similar

to ONIOM in the electronic structure theory30) according to the dynamics quantumness, be-

comes an important consideration in choosing an efficient dynamics method for good balance

of accuracy and numerical cost.

It is, therefore, highly desirable to have a spatially localized theoretical ’measure’ of the

quantum effects on the dynamics. Since there are no unambiguous ways to separate an

interacting quantum system into localized subsystems, such a measure would necessarily

be non-unique. The freedom to choose a particular form for this measure can be used to

make it practical, and to have a conveniently defined limiting values. Specifically, it is

desirable for such a measure to vanish in the classical limit of large (compared to the energy

quantization) energy, or large mass, or large (compared to the Plank’s constant) action.
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In this paper we present a candidate for the quantumness measure defined as the ratio of

expectation values of two linear operators in Hilbert space; this object quantifies the change

of local wavefunction energy with time, and is therefore referred as the quantum power

denoted Q. This definition makes Q formally independent of the representation, though it

retains parametric dependence on the wavefunction phase. The quantum power is inspired

by the quantum trajectory (QT) formalism31,32 and is adapted to the QT ’descriptors’, as

well as to the usual Hilbert space representation. Besides the main goal of quantifying the

local quantum effects in chemical systems, Q is useful in the analysis of approximations

underlying the quantum dynamics approaches, including the semiclassical implementations

of the QT dynamics developed in our groups.33–35

The QT formalism is reviewed in Section 2.1, and the quantumness measure is derived

in Section 2.2. Applications to the popular one- and two-dimensional models and discussion

of the revealed features in dynamics and challenges the approximate approaches may face,

are presented in Section 3. Section 4 concludes.

2 Theory

2.1 Theoretical background

In this section we review the quantum trajectory formulation of the time-dependent Schrödinger

equation (TDSE) and introduce objects relevant to the subsequent derivation of the quan-

tum power measure. For simplicity, the formalism below is described in Nd Cartesian coordi-

nates, x, with the diagonal form of the kinetic energy. Generalization of the QT formalism to

the curvilinear coordinates has been described previously.36,37 The gradient symbol denotes

the vector of spatial derivatives, ∇ = [∂/∂x1, ∂/∂x2, . . . ]. The arguments of functions are

suppressed when unambiguous. The subscript t indicates trajectory attributes: for example,

qt and pt are, respectively, the position and momentum of a trajectory at time t. Large

and small bold-face letters are used to denote matrices and vectors, respectively, including
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matrices and vectors of functions. The transpose notation, changing a column vector into a

row vector, is omitted as in p · v =
∑

i pivi. The ’hat’ symbol indicates an operator, acting

on all terms to the right, as in ∇̂SA = A∇S + S∇A. The absence of a hat implies action

on the first term after the derivative symbol only, as in ∇ ·p S = S
∑

i
∂pi
∂xi

. If the term(s) to

the immediate right of the derivative symbol are enclosed in the parentheses, the derivative

acts on all terms in the parentheses, as in ∇ · (pS) =
∑

i
∂(Spi)
∂xi

.

2.1.1 The quantum trajectory formulation of the TDSE

The QT framework is based on the standard TDSE and the polar form of a wavefunction,31,32

(
−~2

2
∇̂M−1∇̂ + V

)
ψ(x, t) = ı~

∂

∂t
ψ(x, t), (1)

where V ≡ V (x) is an external potential, referred to in the given context as classical. The

particle masses are position-independent and form the diagonal matrix M. For a wavefunc-

tion represented in the polar form,

ψ(x, t) = |ψ(x, t)|eıS(x,t)/~, S(x, t) ∈ R, (2)

application of the momentum operator p̂ yields:

p̂ψ = (−ı~r + p)ψ. (3)

The vectors p ≡ p(x, t) and r ≡ r(x, t) are interpreted as classical and nonclassical mo-

mentum components, respectively,

p := ∇S(x, t), (4)

r :=
∇|ψ(x, t)|
|ψ(x, t)|

, (5)
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and the velocity vector is straightforwardly related to the classical momentum,

v := M−1p. (6)

Using Eqs (2–6) in the TDSE (1), one obtains the continuity equation for the probability

density ρ ≡ ρ(x, t),

ρ := |ψ(x, t)|2, (7)

and the quantum Hamilton-Jacobi equation for S(x, t). Relating the phase gradient to the

momentum of a quantum trajectory at the position qt,

pt := ∇S(x, t)|x=qt
, (8)

the Lagrangian frame-of-reference is specified by the velocity of a QT,

dqt
dt

= vt, vt = M−1pt. (9)

To streamline the notation, henceforth, the point for which expressions are evaluated is

labeled as a subscript, e.g.

∇Sqt := ∇S(x, t)|x=qt
.

Along the QT the wavefunction phase St and the trajectory momentum pt evolve according

to:

dSt
dt

=
pt · vt

2
− (V + U)qt , (10)

dpt
dt

= −∇(V + U)qt . (11)

The only difference between the quantum Hamilton-Jacobi Eq. (10) and its classical coun-

terpart (and between following from them equations of trajectory motion (9,11)) is the
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time-dependent quantum potential, U ≡ U(x, t), which we find convenient to express in

terms of the nonclassical momentum r,

U := −~2

2

(
rM−1r + ∇(M−1r)

)
. (12)

U generates the quantum behavior of a system by coupling the QTs, collectively representing

a wavefunction as an ensemble, through the non-local quantum force, F q = −∇Uqt . In the

classical limit of ~→ 0, or heavy particle limit, U formally becomes small in the absence of

singularities. Discussion of the classical limit subtleties is deferred to Section 3.4.

Note, that the continuity equation for the probability density, which in the Lagrangian

framework reads,

dρt
dt
− (∇ · v)qtρt = 0, (13)

does not explicitly depend on U and, in general, is not unique to the QT dynamics. Alter-

natively, Eq. (13) can be expressed in terms of an additional QT ’descriptor’ ht (r = ∇h),

ht := ln |ψ(qt)|,
dht
dt

= −1

2
(∇ · v)qt . (14)

Eq. (14) is used in numerical work of Section 3. As follows from Eqs (9) and (13), ρt within

the volume element δxt, associated with a QT at a position qt, is conserved in time,33

w := ρtδxt = ρ0δx0 or
dw

dt
= 0. (15)

Thus, in principle knowledge of the trajectory positions – more precisely of the associated

volume elements δxt – is sufficient to determine ρt at qt. Thanks to the property (15), upon

discretization of ψ(x, 0) in terms of Ntr trajectories, a set of time-independent QT weights,
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{w(n)}, provides an easy way of computing the expectation values as ensemble averages,

〈Ô〉t =

∫
O(x, t)|ψ(x, t)|2dx ≈

Ntr∑
n=1

w(n)O(q
(n)
t ). (16)

Finally, the energy of a QT, {qt,pt}, is naturally defined as,

E(qt) =
1

2
pt M−1pt + Vqt + Uqt . (17)

To summarize, given the trajectory momentum definition (8), the quantum Hamilton-

Jacobi Eq. (9), formally equivalent to the TDSE, defines the QT dynamics. The quan-

tum features of the dynamics enter this formulation through the non-local quantum poten-

tial, which couples motion of trajectories within the ensemble representing a wavefunction.

Thanks to the probability density continuity, Eq. (13), the QT ensemble gives an ideally

compact representation of a wavefunction, but exact numerical implementation of the QT

dynamics (Eqs (9–12)), generally hindered by the singularities in U and ∇U at the wave-

function nodes, is highly challenging.38–41 This shortcoming is conceptually related to the

computational complexity of the TDSE for general coupled potentials.42,43 Nevertheless, the

QT framework is useful in developing the approximate and quantum/classical methods,44,45

including those for nonadiabatic dynamics in configuration and extended spaces,46–50 and in

interpreting the wavefunctions and the quantum phenomena in general.51–55

2.1.2 Time-dependent Gaussian window function

The quantum power measure will be defined by employing a Gaussian window-function,

g(x; qt,Bt) = exp (−(x− qt)Bt(x− qt)) , (18)

centered at a QT position, evolving as defined by Eqs (8) and (9). The time-dependent width

parameters of g form a symmetric positive definite matrix, B, whose dynamics comes from
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the equations of motion of the Thawed Gaussian, i.e. Eq. (65),

d

dt
Bt = −

(
Bt[∇⊗ v] + [∇⊗ v]TBt

)
qt
. (19)

In Eq. (19) and henceforth [f1 ⊗ f2] denotes a matrix resulting from the tensor product of

two vectors, f1 and f2. The Thawed Gaussian, popularized in chemical dynamics by Heller

and co-workers,56,57 is an exact solution to the TDSE in a parabolic potential,58 summarized

for reference in Appendix 5. The Gaussian of Eq. (18) integrates to Ng,

Ng :=

(
πNd

det Bt

)1/2

∼ δxt, (20)

proportional to the volume element δxt associated with the QT, as seen from the following

arguments. If the width matrix is diagonal (Bd), then the evolution of Ng gives (Eq. (65)),

d

dt

√
det Bd =

1

2

∑
ν

dbνν/dt

bνν

√
det Bd =

1

2

∑
ν

(
−2

∂vν
∂xν

)√
det Bd = −∇ · v

√
det Bd. (21)

Eq. (21) is of the same form as Eq. (13) describing the time-dependence of ρt. Given that

any symmetric positive definite matrix can be transformed into the diagonal form via (time-

dependent) unitary transformation described by a matrix T, det T ≡ 1, the proof above

holds for the non-diagonal B: det B = det(T−1) det Bd det T = det Bd. Because the QT

weight given by Eq. (15) is conserved in time, the width matrix determinant is related to

the volume associated with the QT: (det Bt)
−1/2 ∼ δxt.
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2.2 Operators for the local energy and the measure of quantum

power

2.2.1 The quantum trajectory operator

Let us introduce a Hermitian operator whose expectation value and evolution define a QT

in the coordinate space. This operator, gW , is defined as the limiting form of the Gaussian

window-function of Section 2.1.2,

gW = lim
ε→0

exp

(
−1

ε
(x− qt)Bt(x− qt)

)
. (22)

Its expectation value vanishes at the specified limit as

〈gW 〉 = lim
ε→0

ρ(qt)

√
(πε)Nd

det Bt

, (23)

which is consistent with the concept of an individual trajectory having an infinitesimally

small weight w (Eq. (15)) in the limit of exact representation of a wavefunction, because

w ∼ δx0. The limit ε→ 0 is understood to be taken after the expectation value is computed.

For convenience of working with normalizable functions, we also define the normalizable

form of the single trajectory operator gεW ,

gεW :=

(
1

ε

)Nd/2

gW . (24)

The operator gεW is essentially the δ−function, based on a narrow Gaussian normalized to

Ng of Eq. (20), which represents a QT located at qt, its weight rescaled by the reciprocal of

the initial discretization volume δx0 = εNd/2. In this sense, the limit variable ε corresponds

to the square root of the average initial discretization volume around a trajectory of interest.

We will be working with the operator gεW understanding that it needs to be rescaled by the

time-independent factor εNd/2 to represent an actual QT.
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Leaving the overall normalization issue aside, we now show that the expectation value of

this operator is time-independent:

∂

∂t
〈gεW 〉 = 〈∂ψ

∂t
gεWψ〉+ 〈ψ∂g

ε
W

∂t
ψ〉+ 〈ψgεW

∂ψ

∂t
〉 =
−ı
~
〈ψ[gεW , Ĥ]ψ〉+ 〈ψ∂g

ε
W

∂t
ψ〉. (25)

The first term in the last rhs of Eq. (25) contains the commutator [gεW , Ĥ]. Because gεW

is multiplicative in coordinate space, it commutes with the potential energy portion of Ĥ.

Before proceeding with the kinetic energy operator, let us introduce the following notations

for the mass-scaled gradient and the Laplacian,

m∇̂ := M−1∇̂, (26)

∆̂ := ∇̂M−1∇̂. (27)

The wavefunction in polar form is denoted as follows:

ψ = A exp(ıS/~), A := |ψ| (28)

With that, the kinetic energy part of the commutator becomes,

−ı
~
〈ψ[gεW , Ĥ]ψ〉 =

ı~
2
〈ψ
[
gεW , ∆̂

]
ψ〉 = −Ng

(
A2∆S + 2A(∇A ·m∇S)

)
qt

+O(ε). (29)

The last term in Eq. (25) is computed from the time-dependence of the parameters of gεW

(Eqs (9) and (19)):

〈ψ|∂g
ε
W

∂t
|ψ〉 =

1

ε
〈ψ| (vtBt(x− qt) + (x− qt)Btvt) g

ε
W |ψ〉 −

1

ε
〈ψ|(x− qt)

dBt

dt
(x− qt)g

ε
W |ψ〉

= Ng

(
2A(∇A ·m∇S) +A2∆S

)
qt

+O(ε). (30)

Together, Eqs (29) and (30) cancel each other through O(1) and have O(ε) dependence on
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the operator width. At the limit ε→ 0 the time dependence of its expectation value vanishes,

∂

∂t
〈gεW 〉 = 0. (31)

2.2.2 The local energy operator

Since the QT operator gεW is multiplicative in coordinate space, it is logical to define a local,

or ’window’, energy operator as the Hermitized product of gW with the Hamiltonian,

ÊW :=
−~2

4
(gW ∆̂ + ∆̂gW ) + V (x)gW . (32)

Its expectation value vanishes at the proper ε→ 0 limit, similar to the case of gW . Thus, it

is convenient to define the normalizable form for ÊW ,

Êε
W :=

(
1

ε

)Nd/2

ÊW . (33)

Let us investigate its properties by computing its expectation value first:

〈Êε
W 〉 = Ng

(
A2V +

A2

2
(∇S ·m∇S)− 1

2
A∆A

)
qt

+O(ε). (34)

Interpreting this result as the total energy of a QT within the window function, the QT

energy is computed by dividing Eε
W by the trajectory weight and taking the limit ε→ 0,

E(qt) =
〈Êε

W 〉
〈gεW 〉

=
〈ÊW 〉
〈gW 〉

= V (qt) +
pt · vt

2
+ U(qt), (35)

in agreement with the Bohmian energy of Eq. (17). Note that the result is independent of

the overall normalization of the QT operator gW .

Next, let us turn to the time dependence of the local energy 〈Êε
W 〉,

∂

∂t
〈Êε

W 〉 = 〈∂ψ
∂t
Êε
Wψ〉+ 〈ψ∂Ê

ε
W

∂t
ψ〉+ 〈ψÊε

W

∂ψ

∂t
〉 =
−ı
~
〈ψ[Êε

W , Ĥ]ψ〉+ 〈ψ∂Ê
ε
W

∂t
ψ〉. (36)
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The terms in the expression above can be partitioned according to their dependence on the

external potential V , since both the Hamiltonian and the local energy operators contain the

terms proportional to V and the terms independent of it. According to the derivation similar

to that of Section 2.2.1 and detailed in Appendix 5, the time-derivative of Eε
W simplifies to a

system-independent expression – in other words, it does not explicitly depend on the external

potential V :

∂

∂t
〈Êε

W 〉 = ~2Ng

(
2A(∆(∇S ·m∇A))−∆A(∇S ·m∇A) (37)

− 2A Tr(M−1[∇⊗∇A]M−1[∇⊗∇S]) +
A2

2
∆∆S −A(∇S ·m∇)∆A

)
qt

2.2.3 Definition of the Quantum Power

Using Eq. (37) along with Eqs (4, 12, 31), the time-derivative of the QT energy given by

Eq. (35), or the quantum power, Q, along the QT, defined as,

Q :=
∂

∂t

(
〈ÊW 〉
〈gW 〉

)
=
∂t〈Êε

W 〉
〈gεW 〉

, (38)

is equal to:

Q =
(
−(p ·m∇U)+~2 Tr(M−1[(r+∇)⊗r]M−1[∇⊗p])+~2(r ·m∇)∆S+

~2

4
∆∆S

)
qt
. (39)

For ψ written in standard form, Eq. (39) is equivalent to

Q =
~2

4|ψ|2qt

(
= (ψ∗∆∆ψ)− 2<

(
p ·m∇(ψ∗∆ψ) + ψ∗∆S∆ψ

))
qt

. (40)

The quantum power expressions (39) and (40), based on the system-independent defi-

nition of the local energy of Eq. (35), are the main analytic results of this Section. We

note that, like the quantum potential U of Eq. (12), Q is formally proportional to ~2 and,

therefore, vanishes in the classical limit (in the absence of singularities). For a Gaussian
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wavepacket, the phase S is quadratic in x, which restricts Q to a quadratic function of

coordinates.

The quantum power expression Eq. (38) is based on the time dependence of the expec-

tation values of the Hermitian operators Êε
W and gεW . While these operators depend on the

phase of the wavefunctions through the window-function parameters qt and Bt (Eq. (22)),

they are defined in Hilbert space. Thus, Êε
W and gεW can be evaluated in any representation,

such as coordinate, momentum, expansion in the basis, etc. Moreover, the ”quantumness”

measure Q is established without a priori separation of energy into the ”classical” and

”quantum” parts. Therefore, we expect Q to be applicable and useful in the context of any

quantum dynamics methods, not just those involving the quantum potential defined by Eq.

(12). Other useful local quantities can be derived similar to Q by computing the expectation

value of the symmetrized product of the corresponding operator with gW , as done in Eq.

(32). The properties of gW , in particular, the time-independence of 〈gεW 〉 (Eq. (31)) demon-

strated in Section 2.2.1 is crucial for this. This paper, however, is limited to the analysis of

Q. The results based on the informative model systems are presented in the next Section.

3 Results and discussion

Before proceeding with the applications, let us note, that evaluation of Q and construction

of the QTs are numerically challenging in systems whose dynamics is dominated by interfer-

ence effects, because the singularities in the wavefunction amplitude and phase, associated

with the wavefunction nodes, are amplified in the computations of the second-fourth order

spatial derivatives of |ψ| and S. We use Maple software for all models involving Gaussian

wavepackets and plane waves, where Q can be evaluated and analyzed analytically, provided

accurate numerical solutions of the equations of motion for the Gaussian wavepacket pa-

rameters. Selected Maple worksheets are available as Supplementary Information. For the

Eckart barrier model, Q and the QTs are constructed from the time-dependent wavefunc-
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tion computed on a dense spatial grid, employing the simplectic split-operator/Fast Fourier

Transform (SOFT) propagator59,60 with a time-step about ten times smaller compared to

that of conventional wavefunction evolution. The atomic units (~ = 1) are used henceforth.

3.1 Harmonic oscillator

To facilitate the analysis of the quantum power Q let us start with the one-dimensional

harmonic oscillator system, taking advantage of the analytic solution for the time-dependent

Gaussian wavepacket (GWP) described in Appendix 5. The GWP exhibits two independent

modes of motion: the translation of its center x and, superimposed on it, the ’breathing’

mode, determined by the time-dependence of the complex width parameter A = A<+ ıA=.

Adapted to one dimension, given the classical force constant V2 = mω2, the time-dependent

GWP is

ψ(x, t) = N0 exp
(
−A(x− xt)2/2 + ıpt(x− xt) + ıst + γt

)
. (41)

The prefactor N0 = (<(A0)/π)1/4 normalizes the wavefunction to 1 at t = 0, and the initial

values of the parameters γ0, and s0 are set to zero without loss of generality. For a particle

of mass m the quantum power becomes

Q =
A2
< pt
m2

(x− xt)︸ ︷︷ ︸
translation

− A<A=
m2

(
2A<(x− xt)2 − 1

)︸ ︷︷ ︸
breathingmode

. (42)

For a special choice of the initial GWP, i.e. A0 = mω/2, the width parameter remains

constant in time; such GWP is called coherent, and the wavepacket shape |ψ(x, t)| remains

’frozen’ in time. Using for simplicity m = 1, ω = 1 and centering the potential at x = 0 (all

in atomic units), the dynamics of the coherent GWP is limited to the translational motion

and accumulation of the linear in x phase; Q is simply a linear function of x described by the

first term of Eq. (42). The dynamics is illustrated in Fig. 1 for the GWP initialized as A = 1

a−20 , x0 = −2 a0 and p0 = 0. Several snapshots of Q are superimposed on the QTs ’flowing’
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in time (upwards on the plot): the line segments cross the corresponding GWP centers, and

the slope of Q changes over the oscillator period T1 = 2π as pt = −x0 sin(t). For t ∈ (0, π)

the GWP gains energy to the right of its center (and looses to the left of the center) which

corresponds to the GWP motion to the right; for t ∈ (π, 2π) the energy change is reversed

and the GWP moves to the left; Q is exactly zero when the wavepacket changes direction of

its motion at t = {0, π, 2π}.

-3 -2 -1 0 1 2 3

x [a
0
]

0

2
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6
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e
 [

a
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7π/4

3π/2

5π/4
π

3π/4

π/2

π/4

0

Figure 1: The translational motion of a coherent GWP in a parabolic potential. Time is
measured along the vertical axis. The QTs, shown as thin solid lines, track the dynamics of
the wavefunction, whose footprints are marked as circles. The corresponding Q, is plotted
as straight line segments for nine instances of time listed in the legend. For each t, thin
magenta lines show the axes for Q (vertical) vs (x − xt) (horizontal), where xt denotes the
GWP center.

To isolate the breathing mode, we start with the squeezed, compared to the coherent

case, GWP at the bottom of the potential well: A = 2 a−20 , x0 = 0 and p0 = 0. In this case,

Q is a parabola with the time-dependent curvature given by the second rhs term in Eq. (42).

The time-dependence of A, which in this case fully defines the dynamics of Q, is periodic on
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T2 = π. The snapshots of the GWP and Q are presented in Fig. 2, and the underlying QT

dynamics is shown in Fig. 3(a). For the initially squeezed GWP, the energy flows from the

center (the region of negative Q) to the fringes of the wavepacket (the regions of positive

Q) until the maximum wavepacket delocalization is reached at t = π/2 a.u. At this time

Q = 0 and the QTs are maximally spread out. Then, the energy flow reverses its direction

and proceeds from the fringes to the center until the initial width is reached at t = π.

For a general GWP, Q is a combination of both modes of motion resulting in a more

complicated time-dependence of Q; note that Q has different periods T1 and T2 for the

transnational and breathing modes.

3.2 Interference

One of the well-known demonstrations of the quantum nature of particles is the double-slit

experiment (e.g.61) revealing the interference patterns in the probability distribution. The

QT dynamics describing quantum interference of Gaussian wavepackets has been described

previously.62,63 In this section, we focus on the rate of the energy change associated with

interference.

3.2.1 Two GWPs

The complexity of Q grows significantly when wavefunction dynamics is characterized by

interference. The QTs and Q describing interference of two coherent GWPs, are shown in

Figs 3(b) and 4, respectively. The initial wavefunction is a sum of two displaced coherent

GWPs, each described by Eq. (41) for the initial parameter values A0 = 1 a−20 , x = ±2 a0 and

p = 0. In this model we observe the following dynamics features. (i) For t = [0, π/2] the two

GWPs accelerate towards each other and |ψ(x, t)| develops the typical interference pattern

shown in the upper row in Fig. 4. (ii) At t = π/2 the wavefunction exhibits maximum

interference characterized by singularities in r (middle row): ψ ∼ exp(−x2/2) cos(2x), r =

−x− 2 tan(2x). Nevertheless, at this time Q is zero for all x (bottom row) as the two GWPs
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t = 0 t = π/8 t = π/4

t = 3π/8 t = π/2 t = 5π/8

t = 3π/4 t = 7π/8 t = π

Figure 2: The GWP breathing mode. The snapshots of Q and |ψ| are plotted for times
indicated at the bottom of each panel. The vertical axis corresponds to Q in a.u. (parabolas
shown as red lines); on the same vertical scale, the wavefunction modulus (Gaussian functions
in blue) is multiplied by 2.68. The wavefunction is initialized as x0 = 0 a0, p0 = 0 and A0 = 2
a−20 .
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Figure 3: Evolution of the QT ensemble underlying (a) the breathing mode of the GWP
dynamics in Fig. 2 and (b) the wavepacket interference dynamics in Fig. 4. Dashes indicate
the time of snapshots presented in Figs 2 and 4. In panel (a) notice the instance of maximum
wavepacket localization at t = π for an initially squeezed GWP. In panel (b) the maximum
wavepacket localization is achieved at t = π/2; the QTs go around the wavefunction nodes
fully evolved at x = ±π/4 a0.

switch places. The smallest localization of |ψ| at t = π/2 is seen in the minimal spread of

QTs shown in Fig. 3(b); the maximum interference is manifested in the QTs circumventing

the nodal region of ψ at x = ±π/4 a0. (iii) Over the time interval [π/2, π] the two GWPs

separate, which is accompanied by Q changing its sign (compare t = 5π/8 and t = 3π/8

snapshots) and by the reversal of the dynamics compared to the [0, π/2] time interval. At

the wavefunction fringes the slope of Q corresponds to the direction of the GWP motion as

in the case displayed in Fig. 1, while the oscillatory behavior in the middle is dominated by

the dynamics of the peaks of |ψ| including their positions and widths.

3.2.2 Two plane waves

The challenge of using the QT dynamics as a numerical tool comes from the fact that the

quantum force does not vanish in the regions of low probability density, and is large near

the wavefunctions nodes. Even if the quantum force is formally zero, as for example the

case of excited eigenstates, this zero is achieved by cancellation of singularities of opposing

signs. Therefore, to gain further insight into the role of the quantum energy in interference,
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wavefunction modulus |ψ|

nonclassical momentum r

quantum power Q

t = π/8 t = π/4 t = 3π/8 t = π/2 t = 5π/8

Figure 4: Interference of two coherent Gaussians, initialized as x0 = ±2 a0, p0 = 0 and
A0 = 1 a−20 . The top, middle and bottom rows show |ψ|, r and Q, respectively, plotted at
times, labeled at the bottom of each column, as a function of x, all in atomic units.
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we proceed with the idealized model of this effect.

Let us consider a wavefunction composed of two plane waves with different momenta and

amplitudes describing a particle of mass m = 1 a.u.,

ψ(x, t) = C1 exp (ı(p1x− E1t)) + C2 exp (ı(p2x− E2t)) (43)

Denoting the phase shift as Ω,

Ω := (E1 − E2)t− (p1 − p2)x, (44)

the probability density and the nonclassical and classical momenta are given by

ρ = C2
1 + C2

2 + 2C1C2 cos Ω

r = ρ−1C1C2(p1 − p2) sin Ω

p = ρ−1
(
C2

1p1 + C2
2p2 + C1C2(p1 + p2) cos Ω

)
. (45)

Substituting Eqs (45) into Eq. (39), the quantum power in this model is equal to:

Q =
(
C1C2(C

2
1 − C2

2)2(p2
2 − p2

1)(p1 − p2)
2 sin Ω

)
/(4ρ3) . (46)

This expression is periodic with the temporal frequency E1−E2 and spatial frequency p1−p2,

consistent with the usual plane wave interference pattern. The expression is singular at the

nodes formed when C1 = C2. To understand this singularity, let us define C2 = (1 + z)C1

and analyze its behavior as z → 0. For small z, Q reaches its extrema at Ωx = π ± z/
√

5,

Qx = ± 1

z3
(p2

1 − p2
2)(p1 − p2)

225
√

5

216
. (47)

The points in coordinate space and time where the energy change is maximized are adjacent

to the minima of the density ρmin = C2
1z

2 at Ω = π. The sharp O(z−3) singularity presents
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significant numerical challenge to the QT description of systems with spatial nodes. The

superposition of two plane waves analyzed above is illustrated in Fig. 5 in one dimension,

for the parameter values of p1 = −1, p2 = 2 a.u. and C1 = 1, C2 = 1.4. The C2 value,

chosen for visual clarity, is beyond the small z approximation, and the presented functions

|ψ|2 and Q are computed exactly. As seen in Fig. 5(a), the QTs, initiated on an equidistant

grid, flow around the low-density near-nodal features of the wavefunction located at t = 0

at x = ±π/3 (Fig. 5(b)). This behavior corresponds to the prominent peaks in Q (Fig.

5(c)) even in this case of z = 0.4. These features drift to the right with constant velocity

v = 1/2 a.u., as illustrated by the same functions, shown at t = 1 a.u. Note that individual

QTs move differently. In this system they all move to the right with velocities ranging from

0.75 a.u. to 9.5 a.u. They experience the sharpest accelerations near the partial nodes of

the wavefunction (Fig. 5(b)) by redistributing the quantum energy as shown in Fig. 5(c).

a) QT positions b) probability density |ψ|2 c) quantum power Q

0 0.2 0.4 0.6 0.8 1

time [a.u.]

-2

-1

0

1

2

q
t [

a 0
]

Figure 5: Plane wave interference in one dimension. The wavefunction parameters are given
in the text. (a) The positions of the quantum trajectories, {qt} (vertical axis) are shown as
functions of time (horizontal axis); magenta dashes show the drift of observable features such
as those shown on the other panels. (b) The probability density, |ψ|2, and (c) the quantum
power, Q, are shown as functions of coordinate x at t = 0 and t = 1 (all in atomic units) as
red solid lines and blue dashes, respectively.
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3.3 Tunneling dynamics

In this section we examine dynamics dominated by tunneling, which can be viewed as the

signature of quantum interference. We start with a popular benchmark potential, i.e. the

Eckart barrier, mimicking the transition state of H+H2 reaction, and proceed to an analytic

two-state model for a closer examination of the deep-tunneling regime.

3.3.1 Scattering on the Eckart barrier

Wavepacket scattering on the Eckart barrier in one dimension is a typical model of a reactive

system. The functional form is V = V0/ cosh(ηx)2, where V0 = 16 a.u., η = 1.3624 a−10 .

These particular parameter values correspond to the transition state of H+H2 rescaled to

have the particle mass of m = 1 a.u.33 The QTs shown in Fig. 6, describe dynamics of the

wavepacket, initially localized in the reactant region, x < 0, to the left of the barrier. The

underlying wavefunction is computed on an equidistant grid of 4096 points spanning the

range x = [−40, 40] a0 using SOFT propagator with the time-step of 6.25 × 10−5 a.u. The

parameters in Eq. (41) are set to A0 = 1/2, x0 = −4 and p0 = 4 a.u. The wavepacket energy

is close to half the barrier height, thus bifurcation – the trajectory ensemble splits into the

reflected and transmitted parts – is a prominent feature of the dynamics. Another noticeable

feature is the oscillatory behavior of the bifurcating trajectory pairs, associated with the

wavefunction reflection inside the barrier. In the figure, the batches of trajectories shown

with different colors spin off the oscillating separatrix in both directions. Their dynamics

underlies the interference pattern seen on both sides of the barrier, including low-amplitude

interference on the product side (x > 0), as seen in Fig. 7(a) displaying |ψ| on the logarithmic

scale. The corresponding quantum power Q, shown in Fig. 7(b-d), reveals an intriguing

picture of the tunneling process. (i) On the reactant side of the barrier (Fig. 7(b)), Q

displays the expected interference pattern (compare to the interference of two GWPs in Fig.

4), especially prominent at shorter times due to combination of the incoming and reflected

components of ψ. (ii) There is a wavepacket bifurcation point near x = 0 at all times, where
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Q changes sign from negative to positive (t = {1.51, 1.38, 1.84} a.u.) as the transmitting

part of ψ is pushed to the product side, and from positive to negative near x = −0.4 a0

at t = 2.3 a.u. as the reflecting part is pushed towards the reactant side; at t = 1.61 and

t = 2.07 a.u., the amplitude of Q is very large (|Q| >1500) at the points of inside-the-barrier

reflection seen near the QTs turning points x ≈ −0.4 and x ≈ −0.2 a0, for the two times,

respectively. (iii) On the product side of the barrier, associated with the purely transmitted

waves, Q changes sign, as seen in Fig. 7(c-d), at the points related to the oscillatory behavior

of the separatrix shown in Fig. 6.

0.5 1 1.5 2 2.5

time [a.u.]
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o
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]

1.15 1.38 1.61 1.84 2.302.07

Figure 6: The wavepacket bifurcation on the Eckart barrier. The short dashes indicate the
positions of the barrier half-height. Sets of trajectories of different colors (25 trajectories
each) are initialized as insertions into the preceding bifurcating trajectory pair, highlighted
with dashes. The order of colors is black, red, green, blue and maroon. The last bifurcating
trajectory pair is marked with thick black lines. The vertical dot-dashes correspond to the
times, indicated at the top of the graph, of snapshots of |ψ| and Q displayed in Fig. 7.
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Figure 7: Scattering on the Eckart barrier. The snapshots of |ψ(x, t)| (panel (a), logarithmic
vertical scale) and Q (panels (b-d)) are shown for the times listed in a.u. on the legend
applicable to all panels. The spatial regions of the energy gain/loss are the upper/lower half-
plains separated by the short dash. Note the difference in vertical scale and shift in x-range
in panel (b) corresponding to the reactant region, compared to panels (c-d) corresponding
to the product region.
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3.3.2 Analytic model: deep tunneling in the double well

To gain insight into the deep tunneling regime, let us consider the two-level system, as the

limiting case of dynamics in a double-well potential representing a reaction in condensed

phase. We define a time-dependent wavefunction in the configuration space as a super-

position of two normalized Gaussians, χR/L, of equal widths, α, centered for simplicity at

xR/L = ±1 a0,

χL =
(α
π

)1/4
exp

(
−α(x+ 1)2

2

)
, χR =

(α
π

)1/4
exp

(
−α(x− 1)2

2

)
. (48)

The diagonal elements of the Hamiltonian matrix are shifted to zero; its off-diagonal elements,

dependent on the exact shape of the external double-well potential, are specified by the

parameter ε, ε = 〈χL|Ĥ|χR〉. The off-diagonal elements of the basis overlap matrix are

denoted σ, σ = 〈χL|χR〉 = exp (−α). Introducing the dimensionless time τ ,

τ := − 2σεt

1− σ2
, (49)

the solution to the TDSE, initially localized in the left basis function, takes the following

form:

ψ(x, t) = exp

(
ıεt

1 + σ

)(
1 + eıτ

2
χL +

1− eıτ

2
χR

)
. (50)

The classical and nonclassical momentum components (Eqs (4) and (5)), defining Q of

Eq. (39), are equal to:

p =
−2α sin τ

(1+cos τ)ζ−1 + (1−cos τ)ζ
, ζ := exp(2αx)

r = −α(1+cos τ)(x+ 1)ζ−1 + (1−cos τ)(x− 1)ζ

(1+cos τ)ζ−1 + (1−cos τ)ζ
(51)

We will focus on Q computed at two short values of the dimensionless time, τ = π/10000

and τ = π/10, for α = 5 a−20 . Note that Q = 0 at τ = nπ (n ∈ N), which defines π as the
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time-scale in this model. We also calculate Q without the third and fourth order derivatives

in Eq. (39); the neglected terms would be equal to zero for a single GWP. This ’quadratic’

approximation to Q, is of interest, because the quantum potential based on the Gaussian

approximation to |ψ| has been explored by several research groups.64–67

A few time-snapshots of the wavefunction amplitude are shown in Fig. 8 on a logarithmic

vertical scale. The wavefunction, initially a Gaussian centered at x0 = −1 a0, is fully

transferred to the right at τ = π and is equally distributed across the wells at τ = π/2. In

this deep-tunneling model, the wavefunction dynamics is markedly different compared to the

Eckart barrier model: due to the bound character of the underlying double-well potential,

the interference pattern moves from right (which is the low density region at τ = 0) to

left, as seen in the positions of node in Q shown in Fig. 8(b). The minimum of |ψ| (Fig.

8(a)) is seen in the right well already at very short times, e.g. |ψ| ∼ 10−7 at τ = π/107.

Subsequently, the minimum shifts towards the barrier region of higher density.

Another observation is that the quadratic approximation to Q (associated with a Gaus-

sian approximation to ψ) is poor in this system. It is qualitatively incorrect. At very short

times the energy change exhibits large amplitude very far from the initial localization of

ψ. As time moves forward, Q of high amplitude propagates from the distant wall of the

right well towards the barrier. While most of the probability density and, thus, of QTs with

non-zero weights, are located in the left well, the quantum energy redistribution occurs in

the nearly empty right well. We interpret this as QTs being ”pulled” through the potential

barrier via the wavefunction tails. Practical description of such process via QT formalism

requires pre-populating the empty well with QTs of negligible weights, which is consistent

with very low tunneling probabilities, or with very long tunneling times. In the general

case the total volume of the regions of space that has to be covered with the QTs grows in

proportion to the size of the total space, which is exponential with respect to the number of

dimensions, or particles. This helps to explain why QT formalism is unlikely to overcome

the computational complexity of quantum mechanics.68
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Figure 8: Dynamics in the model double well system for the initial wavepacket centered at
x = −1 a0. The wavefunction modulus, |ψ| (on a logarithmic vertical scale) and Q (on a
linear vertical scale) are shown in panels (a) and (b), respectively, as a function of coordinate
x. |ψ| is displayed for times t = {0, π/107, π/104, π/10}. Note, that the minimum develops
far on the right at very short times in the region of low |ψ|, e.g. the t = π/107 curve, and
drifts to the left during the dynamics. This feature is seen in the time-evolution of Q, given
at t = π/104 and t = π/10 as green and blue lines, respectively. The dashes of the same
colors correspond to Q computed in the quadratic approximation.
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3.4 Dynamics in the large mass limit

It is instructive to consider the energy flow in the semiclassical limit. In the development

of approximate quantum trajectory methods targeting the semiclassical limit, we have pre-

viously argued for the ”...limit of large mass for arbitrary physically reasonable initial wave

function and kinetic energy density...”.69

To implement this limit, we start with the reference particle mass m0, and for simplicity

set the GWP center parameters to zero, x0 = 0, p0 = 0. The initial width parameter of the

GWP will be fixed to a real reference value, A(0), for all values of the particle mass m ≥ m0.

The quadratic coefficient for the initial phase (t = 0) will depend on m as follows,

A
(m)
0 = A(0)

(
1 + ı

√
m/m0−1

)
. (52)

This choice ensures that upon increase of mass, the total GWP energy is unchanged while

the spacing between the energy levels is compressed. The classical limit is analyzed as the

mass ratio λ = m0/m approaches zero. Using the time-dependence of the GWP parameters

evolving in a parabolic potential V = kx2/2 from Appendix 5, and introducing rescaled time

τ , width α and QT position q,

τ = t
√
k/m, θ = tan τ, α = A(0)/

√
km0, qτ = x

√
A

(m)
< (t), (53)

Q in this model is given by:

Q = A<A=(1− 2A<x
2) =

k(1− 2q2τ )

m0

λ3/2α (1+θ2)
(
α(1−θ2)

√
1−λ+ θ (α2−1)

)(
θ2α2 + 2 θα

√
1−λ+ 1

)2 . (54)

The quantum measure Q, evaluated at the parabola tip, x = 0, is shown in Fig. 9(a) as a

function of the rescaled time τ for λ = {0.1, 0.01, 0.001}. The model parameters are taken

as m0 = 1 and k = 1 a.u. and the GWP reference width is equal to the coherent value

A(0) = 1 a−20 . As seen in the figure, as the particle mass increases (λ→ 0), the peaks become
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narrower and their magnitude approaches a finite, non-zero limiting value, which shows that

the quantum effects persist into the large mass limit.

The times τx of Q reaching its maximum/minimum values (at qτ = 0), to the leading

order in λ, are determined from the following expression,

tan τx =
1

α

(
−
√

1−λ±
√
λ/3
)
. (55)

The extrema of Q as a function of τ obtained from Eq. (54) are, remarkably, independent

of λ,

Qx = Q|τ=τx = ± k

m0

3
√

3(1 + α2)2

16α2
(1− 2q2τx). (56)

Comparing the classical limit λ→ 0 of the time-dependent form of Q given by Eq. (54)

with its extrema given by Eq. (56), we note that away from τx, Q vanishes as O(λ3/2).

This is consistent with the premise of this work that the rate of change of the local energy

operator describes local quantum effects in the system. At the extrema associated with the

passage of the GWP through the near-focal points, the quantum effects do not vanish for

any particle mass. The frequency of the focal point occurrence goes down with the particle

mass increase as m−1/2. At the limit of very large mass this happens increasingly rarely, but

with the same magnitude. This suggests an interpretation of the semi-classical system as

the one where quantum effects are ’rare’ rather than ’small’.

We finish by examining the classical limit as described above for a popular mixed quan-

tum/classical model,45,70–72 consisting of the light particle of unit mass, harmonically bound

to the heavy particle of mass m. The potential in atomic units is defined as:

V (x1, x2) =
k1
2

(x1 − x2)2 +
k2
2
x22, k1 = 5, k2 = 15. (57)

The reference mass for the heavy particle is set to m0 = 8.965 a.u. The initial wavefunction

is a factorizable two-dimensional Gaussian function given by Eq. (58) for the following
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initial parameter values: x = 0, p = 0, A11 =
√

5, A12 = 0. The initial width parameter

in the heavy particle dimension x2 is A
(m0)
22 =

√
15m0 for the reference wavepacket, and

it is A
(m)
22 = A

(m0)
22 (1 + ı

√
m/m0−1), as in the one-dimensional case above. Presence of

the quantum degree of freedom x1 representing the light particle complicates the behavior

of the system. To have well-defined extrema of the quantum power Qx, special values of

m, producing periodic in time pattern of Q (due to resonant frequencies) were numerically

found. The resulting Qx are shown for these special values of m in Fig. 9(b). The results

are compared to those from uncoupled dynamics (V = k1x
2
1/2 + k2x

2
2/2) for the same initial

wavepackets. As m increases the minima and maxima become equal in magnitude, as true

in the uncoupled case for all m. This trend shows that additional degrees of freedom do

not ’wash out’ the quantum features in the dynamics of the heavy particle. Therefore, our

earlier conclusion, i.e. in the classical limit the quantum effects become rare rather than

small, applies to the mixed quantum/classical systems.
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Figure 9: (a) The quantum power Q, evaluated at x = 0, for a GWP in one dimension as
a function of the rescaled time, τ . The values of the mass ratio λ = m0/m are given in
the legend. (b) The extrema of Qx as a function of the relative mass of the heavy particle,
m/m0, for the two-dimensional quantum/classical model (Eq. (57)). The results from the
uncoupled dynamics are displayed for comparison.
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4 Conclusions

In this paper we have introduced a linear operator whose expectation value defines a quantum

trajectory (QT). Essentially, it is a spherical (in Cartesian coordinates) Gaussian of vanishing

width, whose center and width evolve according to the gradient and the hessian of the

wavefunction phase. The symmetrized product of this operator with the Hamiltonian defines

the local energy associated with the QT. The ratio of the expectation values of these operators

defines the QT energy, whose time-derivative is the newly introduced quantum power, Q,

acting as a local measure of quantumness of a system evolving in time. We demonstrate

that Q has no explicit dependence on the external potential, and vanishes in the classical

limit ~→ 0, or when the local dynamics of the probability density flow is dominated by the

forces from the external potential. The quantum power measure is ”system-independent” or

”universal”, in the same sense as the universality of the exact exchange-correlation functional

of the Density Functional Theory.73

We note that the concept of Q does not rely on a priori separation of total energy into

the ”quantum” and ”classical” components. As such, it is not limited to the QT formalism

and is applicable to other traditional quantum dynamics methods.

Computation of Q for the harmonic oscillator model demonstrates how the translational

and the breathing motions of the Gaussian wavepacket (GWP) are facilitated by the loss

of quantum energy at the trailing portions of the wavefunction, and gaining energy at the

leading portions. Further application to the systems with prominent quantum interference,

such as two GWPs, or two plane waves, demonstrates the complexity of Q and its singularity

at the wavefunction nodes.

Analysis of Q in the tunneling models, i.e. the Eckart barrier and the deep double well,

demonstrates the interpretive utility of Q. When the GWP with the median energy below

the barrier top, the interference between the incoming and the reflected portions of the

GWP creates an interference pattern that transfers energy to some QTs, thus pushing them

over the barrier. This process, while being challenging, can be described at the essentially
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semiclassical level of QTs.33,74,75 This is consistent with the current observation that the

main features of Q at the early stages of tunnelling are observed on the side of the barrier

with the incoming GWP. In contrast, analysis of the deep double well system shows that

the main features of Q are formed at the initially empty side of the barrier. QTs are being

’pulled’ through the barrier via the quantum energy redistribution among QTs at the leading

tail of the wavefunction beyond the barrier. Such a process is hard to describe via QTs, as

(consistent with very low probabilities or very long times for such processes) it requires

coverage by QTs of the low-probability, essentially ’unpopulated’ regions of the coordinate

space. This is consistent with the known difficulties in describing the deep tunneling regime

in the double well with QTs and time-dependent bases centered on classical trajectories.7,76

Furthermore, application of Q to the mixed quantum-classical 2D harmonic model, at

the limit of large mass of the ’classical’ particle demonstrates that the near singular features

of Q do not vanish. The maximum value of |Q| approaches a constant. This maximum

value is achieved at the times of resonance between the oscillations in the ”quantum” and

the ”classical” degrees of freedom. This resonance happens increasingly rarely as mass of the

”classical” particle increases. Our interpretation of this result is that the quantum features

of dynamics become rare rather than small at the classical limit.

Finally, we reiterate that computation of Q near wavefunction nodes is numerically chal-

lenging due to the fourth order spatial derivatives. We took advantage of the analytic

functional form combined with the high-accuracy solvers for the relevant equations of mo-

tion using Maple software, whenever possible, and we have used extra dense grids and small

time-steps for the fully numerical wavefunction propagation. We speculate that some of the

numerical difficulties will be alleviated in implementations where wavefunctions are repre-

sented within a basis of analytic functions, as commonly done in chemical applications.
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Appendix A: Evolution of a Gaussian wavepacket

A multidimensional Gaussian function of coordinates with time-dependent parameters solves

the TDSE for a parabolic potential with possibly time-dependent coefficients. The solution

known as a Gaussian wavepacket (GWP) or Thawed Gaussian58 is given here for reference

for an Nd-dimensional system described in Cartesian coordinates in atomic units (~ = 1),

ψ(x, t) = N0 exp (−(x− xt)At(x− xt)/2 + ıpt(x− xt) + ıst + γt) . (58)

The subscript t indicates functions dependent only on time t; it is omitted when unambigu-

ous. N0 is the initial normalization constant, so that initial value of the real scalar function

γt is set to zero, γ0 = 0,

N0 =

(
det<(A0)

πNd

)1/4

. (59)

The wavefunction evolves according to the Hamiltonian,

Ĥ = −1

2
∇̂M−1∇̂ + V (x), V (x) =

1

2
xV2 x, (60)

M is a diagonal matrix of particle masses; V2 is a real symmetric matrix defining the

quadratic potential V (x), whose minimum is at the origin of the coordinate system and

is equal to zero. In Eq. (58) the parameters xt and pt are real Nd-dimensional vectors,

describing the GWP center. The real scalar function st describes the coordinate-independent

GWP phase. The remaining time-dependent functions form a complex symmetric matrix At,

At = A< + ıA=,

with A< defining the GWP width and A= defining the quadratic phase of ψ(x, t).

Substituting Eq. (58) into the TDSE with the Hamiltonian (60), dividing the result by

ψ(x, t) and setting imaginary and real coefficients, multiplying powers of x, to zeroes, one
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obtains the following equations determining the time-evolution of the parameters:

dx

dt
= M−1p,

dp

dt
= −∇V |x=x , (61)

ds

dt
=

1

2
p M−1p− V (x)− E0, E0 :=

1

2
Tr(A<M

−1), (62)

dγ

dt
=

1

2
Tr(A=M

−1), (63)

ı
dA

dt
= AM−1A−V2. (64)

The last equation can be written for the real and imaginary parts separately as:

dA<
dt

= (M−1A=)TA< + A<M
−1A=, (65)

dA=
dt

= A=M
−1A= −A<M

−1A< + V2. (66)

Eqs (61) are simply the Newton’s equations of motion for the center of the Gaussian

wavepacket, xt = 〈ψ|x|ψ〉t. Thus, {xt,pt} are the coordinates and momenta of a classi-

cal trajectory. Eq. (62) defines evolution of the classical action function st along the center

trajectory, except for the last rhs term, E0. For the ground state wavefunction, this term is

equal to the ground state energy; thus, E0 is interpreted as the time-dependent generalization

of the zero-point energy.

Finally, the time-dependence of A defines what is referred to as the breathing mode of

the Gaussian, i.e. the change in localization of |ψ(x, t)|, with accompanying it quadratic

phase. The change in A< correlates with the time-dependence of γt, which ensures that

the GWP norm remains constant in time, 〈|ψ(x, t)|2〉 = 1. For a special choice of A0, the

GWP width remains constant in time, while the wavepacket center moves classically. Such a

wavefunction is known as the coherent GWP: in the normal mode coordinates A is diagonal,

Ann = mnωn, where ωn and mn are the frequency and mass of the nth normal mode.
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The total GWP energy,

E = 〈ψĤψ〉 =
1

2
p M−1p + V (x) +

1

2Nd
Tr(A−1< V2) +K + U , (67)

consists of the classical energy of the wavepacket center (first two rhs terms in Eq. (67))

and of the potential energy contribution due to the wavepacket delocalization (the third rhs

term). The last two rhs terms, K and U , denote the kinetic energy associated with the

derivatives of the wavefunction phase and amplitude, respectively,

K :=
1

4
Tr(A=A

−1
< A=M

−1), U :=
1

4
Tr(A<M

−1). (68)

U is equal to the expectation value of the quantum potential discussed in Section 2.1.

Appendix B: Derivation of equation (37)

Let us derive the time dependence of the average local energy 〈Êε
W 〉 defined by Eqs (32) and

(33),

∂

∂t
〈Êε

W 〉 = 〈∂ψ
∂t
Êε
Wψ〉+ 〈ψ∂Ê

ε
W

∂t
ψ〉+ 〈ψÊε

W

∂ψ

∂t
〉 =
−ı
~
〈ψ[Êε

W , Ĥ]ψ〉+ 〈ψ∂Ê
ε
W

∂t
ψ〉. (69)

To simplify the analysis, we separate this expression into parts according to their dependence

on the external potential V , since both the Hamiltonian and the local energy operators

contain the terms proportional to V and the terms independent of it. Denoting ∂/∂t = ∂t

and using the notations of Eqs (26-28), these terms are:

dE(V 2) :=
−ı
~
〈ψ[V gεW , V ]ψ〉 = 0 (70)

dE(V ) :=
ı~
4
〈ψ([V gεW , 2∆̂] + [gεW ∆̂ + ∆̂gεW , V ])ψ〉+ 〈ψ|V ∂tgεW |ψ〉 (71)

dE(1) :=
−ı~3

8
〈ψ[gεW ∆̂ + ∆̂gεW , ∆̂]ψ〉+

−~2

4
〈ψ(∂tg

ε
W ∆̂ + ∆̂∂tg

ε
W )ψ〉. (72)
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The first term, given by Eq. (70), is equal to zero because it contains only the commu-

tator of multiplicative functions. The next term (Eq. (71)) contains contributions from the

commutator,

ı~
4
〈ψ([V gεW , 2∆̂] + [gεW ∆̂ + ∆̂gεW , V ])ψ〉

= −~2NgAqt

(
2V (∇A ·m∇S) + V A∆S +A(∇V ·m∇S)

)
qt

+O(ε), (73)

and from the explicit time derivative,

〈ψ|V ∂tgεW |ψ〉 = ~2NgAqt

(
2V (∇A ·m∇S) +A(∇V ·m∇S) + V A∆S

)
qt

+O(ε). (74)

The sum of Eqs (73) and (74) vanishes as ε→ 0, dE(V ) = 0. Therefore, the time-dependence

of the local energy expression defined via Êε
W is system-independent, in other words, it does

not depend on the forces acting on the quantum particles due to the classical external

potential V .

The third term (Eq. (72)) contains contributions from the commutator,

− ı~3

8
〈ψ[gεW ∆̂ + ∆̂gεW , ∆̂]ψ〉 = ~2NgAqt

(
2∆(∇S ·m∇A) (75)

+ (∇ ·m∇S)∆A− 2 Tr(M−1[∇⊗∇A]M−1[∇⊗∇S]) +
A
2

∆(∇ ·m∇S)

− 1

~2
(
A∆S(∇S ·m∇S) +A(∇S ·m∇)(∇S ·m∇S) + 2(∇A ·m∇S)(∇S ·m∇S)

))
qt

,

and from the explicit time derivative,

−~2

4
〈ψ(∂tg

ε
W ∆̂ + ∆̂∂tg

ε
W )ψ〉 = ~2Ng

(
−∆A(∇S ·m∇A)−A∆S∆A−A(∇S ·m∇)∆A (76)

+
1

~2
(

2A(∇A ·m∇S)(∇S ·m∇S)+A2(∇S ·∇(∇S ·∇S))+A2 ∆S(∇S ·m∇S)
))

qt

+O(ε).
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Eqs (75) and (76) add up to:

∂

∂t
〈Êε

W 〉 = ~2Ng

(
2A(∆(∇S ·m∇A))−∆A(∇S ·m∇A) (77)

− 2A Tr(M−1[∇⊗∇A]M−1[∇⊗∇S]) +
A2

2
∆∆S −A(∇S ·m∇)∆A

)
qt

.
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