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ABSTRACT

For many decades, educational communities, including computing
education, have debated the value of telling students what they
need to know (i.e., direct instruction) compared to guiding them to
construct knowledge themselves (i.e., constructivism). Comparisons
of these two instructional approaches have inconsistent results. Di-
rect instruction can be more efficient for short-term performance
but worse for retention and transfer. Constructivism can produce
better retention and transfer, but this outcome is unreliable. To
contribute to this debate, we propose a new theory to better explain
these research results. Our theory, multiple conceptions theory,
states that learners develop better conceptual knowledge when
they are guided to compare multiple conceptions of a concept dur-
ing instruction. To examine the validity of this theory, we used this
lens to evaluate the literature for eight instructional techniques
that guide learners to compare multiple conceptions, four from
direct instruction (i.e., test-enhanced learning, erroneous examples,
analogical reasoning, and refutation texts) and four from construc-
tivism (i.e., productive failure, ambitious pedagogy, problem-based
learning, and inquiry learning). We specifically searched for vari-
ations in the techniques that made them more or less successful,
the mechanisms responsible, and how those mechanisms promote
conceptual knowledge, which is critical for retention and transfer.
To make the paper directly applicable to education, we propose
instructional design principles based on the mechanisms that we
identified. Moreover, we illustrate the theory by examining instruc-
tional techniques commonly used in computing education that
compare multiple conceptions. Finally, we propose ways in which
this theory can advance our instruction in computing and how com-
puting education researchers can advance this general education
theory.
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1 INTRODUCTION

The primary goal of this paper is to provide new information for
researchers and practitioners who use, blend, and theorize about
direct and constructivist instructional approaches. For decades, the
education community has debated the merits of each approach,
with interest growing broader during the past 20 years [5, 17, 42,
49, 60, 77, 114]. Direct instruction explicitly tells learners content
that they are expected to know and, typically, only canonically
correct information. Critics of direct instruction argue that it tries
to transpose experts’ knowledge into a learner’s brain in ways that
do not draw from principles of how people learn (e.g., [24, 49]). In
contrast, constructivism guides learners to construct knowledge
for themselves, sometimes by providing space for learners to ex-
plore canonically incorrect knowledge to better understand the
boundaries of correct knowledge. Critics of constructivism pro-
vide evidence that it is less efficient than direct instruction with
equivalent learning outcomes (e.g., [60]).

To contribute to this debate, we have analyzed four instructional
techniques from each approach, eight in total. Our goal was to
find shared underlying mechanisms across techniques that make
them successful regardless of whether they used a direct instruc-
tion or constructivist approach. Using evidence from this analysis,
we propose a new theory to explain the success of instructional
techniques from both approaches. Our theory posits that learners
develop better conceptual knowledge when they are guided to com-
pare multiple conceptions of a concept, which we will explain in
detail in the next section. Using this theory and evidence from the
literature, we propose instructional design principles that empower
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instructors to successfully implement whichever technique they
choose based on their preferred teaching style.

This paper begins by introducing concepts related to our pro-
posed theory. Next, we describe and summarize literature about the
eight focal instructional techniques. Then, we share our analysis
of mechanistic similarities among the techniques. We use these
similarities to propose our theory and related instructional design
principles. Finally, we provide examples of these principles applied
to computing education contexts and present necessary next steps
to further this work.

2 MULTIPLE CONCEPTIONS THEORY

We propose a new theory called multiple conceptions theory -
learners develop better conceptual knowledge when they are
guided to compare multiple conceptions of a concept. To help
explain this statement, this section will define conceptual knowl-
edge, guided, and multiple conceptions. Throughout this section,
we ground our definitions in the context of a simple example rele-
vant to computing education: the difference between integers and
floats.

Multiple conceptions is a new term that we use when describing
the comparison of different conceptions of a concept. In most of the
techniques we will showcase, canonically correct conceptions are
compared to non-correct conceptions for the purpose of learning.
In the case of integers and floats, the correct conception is that
integers are a data type that stores whole numbers without decimal
places and floats store numbers with decimal places.

To compare against correct conceptions, we considered three
types of non-correct conceptions. (1) Incomplete conceptions are
not incorrect, but they are missing knowledge. If a learner did
not know that integers and floats are different data types, they
would have an incomplete conception. Alternatively, if they did
not recognize that both fall under the category of data types, their
conception is also incomplete. (2) Incorrect conceptions include
erroneous information. If a learner misunderstood and thought
integers had decimals and floats did not, this would be an incorrect
conception. (3) Misconceptions are a type of incorrect conception
that often results from the misapplication of prior knowledge to
anew concept. A common misconception is that integer division
that has a remainder will create a float, which is a misapplication of
arithmetic to data types [34, 90]. Comparing multiple conceptions
might involve comparing any of these types of conceptions among
each other or to the correct conception.

Our theory posits that learners should be guided to compare mul-
tiple conceptions. The amount and type of guidance largely relies
on the instructional approach: direct instruction or constructivism.
Sharing correct conceptions with students is the cornerstone of
direct instruction approaches, but as shown in the next section,
some techniques explicitly call attention to incorrect conceptions,
especially misconceptions. In contrast, constructivist approaches
tend to start with learners’ incomplete conceptions and build knowl-
edge to develop complete conceptions. Another major difference
between approaches is the source of the conceptions, whether they
are identified by the teacher or shared by the learner and their
peers. Despite differences in approach, all techniques discussed in
this paper guide learners to compare multiple conceptions.
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Our theory specifically targets conceptual knowledge. From the
Revised Bloom’s Taxonomy [62], conceptual knowledge is the un-
derstanding of how or why a process works. In our example, under-
standing why different data types are used and how to use them
appropriately to solve a problem would demonstrate conceptual
knowledge. In contrast, procedural knowledge is knowing how to
apply a process to solve a problem, such as knowing how to make
an integer or a float. A learner can have conceptual knowledge
without procedural knowledge or vice versa. In addition, a precur-
sor to conceptual or procedural knowledge is declarative/factual
knowledge, which refers to the ability to recall facts. For example,
knowing that an integer does not have decimals and a float does.
Conceptual knowledge, while not guaranteeing procedural success,
is often considered deep learning and leads to better retention and
transfer [62]. From our analysis, comparing multiple conceptions
often improves only conceptual knowledge. Given the importance
of conceptual knowledge, we do not consider this a limitation of
the theory.

We have chosen to submit this new theory to ICER for five rea-
sons. (1) The computing education community, like other education
communities, currently debates the trade-offs of direct instruction
and constructivist approaches [51, 72]. (2) Like in many other proce-
dural domains, computing students struggle to achieve conceptual
knowledge in addition to procedural knowledge [35, 107]. (3) As
a domain that is similar to but distinct from others, computing
education offers a unique context to examine and advance this area
of research. (4) The computing education community is actively
calling for theoretical work, especially “to explain how computing
teachers design and implement their pedagogical actions,” [71, p.
193]. (5) As computing education research continues to grow, it
consistently welcomes adaptations of research from other educa-
tion fields. Thus, when selecting techniques to analyze (see Section
4), we included some that are familiar in computing education re-
search and some that are not to expand the repertoire of techniques
used to teach computing. When selecting examples to illustrate
multiple conceptions theory in computing education (see Section
7), we have chosen activities that are widely studied in education
(Peer Instruction) and unique to computing education (Parsons
problems).

3 METHOD

To identify instructional techniques to include in our analysis, we
created a list of direct instruction and constructivist approaches that
included multiple conceptions. This list was likely not comprehen-
sive, but with the varied expertise of the authors, it likely included
most common techniques. Besides selecting techniques based on
familiarity in computing education research, as described above,
we used several other criteria to create a cohesive list. Given our
goal of contributing to the debate between direct and constructivist
approaches, we decided to have half of the techniques use direct
instruction and the other half constructivism. Because there were
more constructivist approaches than direct instruction approaches,
we eliminated minimal guidance and sense-making from the list. We
chose to eliminate these techniques because they are less defined
than the others. We also eliminated peer instruction from the list be-
cause it is a variation of test-enhanced learning, which is included,
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and we wanted to discuss it as an exemplar of multiple conceptions
applied to computing education. We included techniques that range
from activities that take a few minutes to module-long projects
because our goal is to provide various options to compare multiple
conceptions based on the needs and preferences of the instructor.

Just as we are not attempting to provide a comprehensive list
of techniques, we are also not attempting to conduct a system-
atic literature review about the selected techniques. In most cases,
each technique has a systematic review or meta-analysis elsewhere,
which we cite. Our goal was to analyze the literature with a new
lens to determine whether comparing multiple conceptions is con-
sistently a feature of effective techniques. Instead of a systematic
review, we used the snowball method for identifying key papers
about the techniques and their variations. From commonly cited
papers about a technique, we used the reference list to identify new
papers to consider. Once new papers did not yield new citations
to explore, we considered the core literature about a technique to
be complete. Then we mined this core literature for variations of
the techniques and differences in efficacy to conduct our analysis
about comparing multiple conceptions.

4 TECHNIQUES FOR COMPARING MULTIPLE
CONCEPTIONS

For each technique, we have included four key pieces of informa-
tion, 1) a description of the technique, 2) how it guides comparisons
of multiple conceptions, 3) the theory or mechanism that it is based
upon, and 4) variations of the technique related to multiple concep-
tions that are more or less successful.

4.1 Test-Enhanced Learning

Test-enhanced learning refers to the use of testing or quizzing to
increase students’ retention and understanding of material [93].
The basis for this strategy is the robust phenomenon known as the
testing effect: retrieving information from memory enhances the
long-term retention of that information [92]. The benefits of test-
enhanced learning are well established and generalize to realistic
classroom environments across a variety of types of learners, learn-
ing materials, and performance measures [75, 83, 112]. The extent
to which learners compare multiple conceptions during testing de-
pends on the format and design of the questions used. For instance,
multiple-choice questions present learners with the correct answer
alongside deliberately incorrect distractor options, which can be
designed to target known misconceptions.

Test-enhanced learning is often cited as an example of a desirable
difficulty. Desirable difficulties refer to a wide range of learning
conditions that are challenging, and hence create difficulty for
the learner while acquiring new knowledge and skills [12]. Such
conditions tend to slow the rate of apparent learning, often impair-
ing short-term performance relative to easier learning conditions,
but lead to better retention over time and more effective transfer
[12, 100].

Beyond desirable difficulties, Roediger et al. described both di-
rect and indirect benefits of using test-enhanced learning in the
classroom [94]. The direct benefits — improved long-term reten-
tion and retrieval accuracy — are hypothesized to connect memory
pathways to cues used to retrieve information. Indirect benefits
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include improved study habits as students prepare for testing and
metacognitive benefits relating to the feedback generated from a
test, such as helping students identify their knowledge gaps thus
improving the efficiency of subsequent study sessions. Corrective
feedback is particularly important for preventing students who hold
an incorrect conception from reinforcing that misunderstanding
through the act of being tested [19].

The benefits of testing can be enhanced when learners are encour-
aged to make deliberate comparisons between the correct and in-
correct conceptions presented in the answers. In reviewing whether
multiple-choice testing can promote the type of retrieval processes
known to improve learning, Bjork et al. concluded that students
should be trained in self-explaining both why incorrect options are
wrong and their selected option is correct [11]. To incentivize these
comparisons, confidence-weighted scoring can be used to reward
students for having high confidence in correct answers [18]. This
type of scoring can encourage students to reflect more deeply on in-
correct alternatives and their corresponding incorrect conceptions.
Sparck et al. found that the use of confidence-weighted scoring
on an initial test significantly improved subsequent performance
on related questions [108]. The effectiveness of testing can also be
enhanced through repetition, particularly if the practice is spread
out over time rather than concentrated in a single session [92, 121].

4.2 Erroneous Examples

Worked examples are a form of direct instruction in which learners
are presented with a step-by-step solution to a problem [44]. A con-
troversial adaptation of worked examples is erroneous examples,
which deliberately replace some of the correct steps in the solution
with incorrect steps. Though some intuitively believe that inten-
tionally introducing students to incorrect steps hinders learning,
researchers argue that it introduces a desirable difficulty in which
students must self-explain why steps are incorrect and reconcile
incorrect and correct conceptions [2, 3, 44, 102].

This reconciliation process can uniquely develop conceptual
knowledge and promote retention better than correct worked exam-
ples while achieving the same procedural knowledge [31]. Whether
the erroneous examples are compared to correct examples does
not seem to matter, but students must compare multiple examples
to be effective [14]. Comparing examples that include erroneous
examples is also linked to improved metacognition, specifically
error detection [115] and more flexibility in the problem-solving
process [102]. Erroneous examples that target common misconcep-
tions can be particularly useful in guiding learners to detect and
repair incorrect conceptions [76].

Consistent with other types of desirable difficulties, using erro-
neous examples can negatively impact students’ learning experi-
ence and performance early in the process. McLaren et al. [76, 77]
found that students who studied erroneous examples exhibited bet-
ter long-term learning, but not immediate performance, compared
to correct examples. Perhaps as a consequence of lower immediate
performance, Tsovaltzi et al. [115] found that studying erroneous
examples can cause lower self-efficacy than those who practiced
solving problems. Similarly, studying erroneous examples causes
more confusion and frustration than correct examples [2, 91]. While
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examining learner differences, Grofie & Renkl [44] found that erro-
neous examples were more effective for students with higher prior
knowledge while correct examples were more effective for students
with lower prior knowledge. As a result, erroneous examples might
be best suited for more advanced learners who can treat finding
and recovering from errors as a puzzle rather than a reflection of
their aptitude.

4.3 Analogical Reasoning

Analogical reasoning is a powerful teaching tool because analogies
can facilitate far transfer, in which students are able to understand
new situations that differ substantially from those with which they
are already familiar [40]. During analogical reasoning, students
learn by comparing examples that share a similar underlying struc-
ture, even if they do not have many other commonalities. The goal
is to help learners better identify conceptual principles that can aid
them when approaching new problems.

There are two main ways to teach with analogical reasoning
[50]. Projective analogies suggest how a new concept is similar to
something learners already understand, as in the common instruc-
tion that “electricity flows like running water” In contrast, mutual
analogies do not invoke learners’ prior knowledge. Instead, learners
compare two examples of a new concept to understand their shared
structure, such as the solutions to two algebra problems.

To apply knowledge learned during analogical comparison, learn-
ers must generate a mental schema abstract enough to fit both
objects in the analogy [40]. The key to building this schema is to
recognize that both objects have aspects that relate in the same
way to an underlying concept [37, 40]. For example, a learner might
realize that both flowing water and electric circuits have small units
(i.e., water molecules or charges) that move in a uniform direction
through a medium (i.e., pipes or wires). To generate a schema that
is effective for analogical reasoning, learners must align aspects
of the objects that they are comparing, mapping them such that it
becomes clear how different parts of each object play similar roles
[37]. When learners describe their schema in terms of relation-
ships rather than common surface details, they are more successful
applying the knowledge they have learned [40].

When designing exercises that require analogical reasoning, in-
structors should consider how easily learners will be able to align
the objects they are comparing. Objects that share many concrete
similarities (such as two hydrocarbon combustion reactions) are
easier to align [39]. However, learners might overfit their schema,
and include irrelevant concrete aspects as well as conceptual princi-
ples (e.g. believing that combustion occurs only with hydrocarbons).
If learners are able to align objects that contain few concrete simi-
larities, the underlying structure is more evident, and analogical
reasoning is more likely to facilitate far transfer [45]. Research sug-
gests a balance in practice: comparing objects with some concrete
similarity, or using a highly similar analogy at first and a more
distant analogy later [21].

Learners are most successful at analogical reasoning when they
have the opportunity to build a schema based on multiple examples
and when they are explicitly guided to perform alignment. Even
when support for abstraction is provided, such as a diagram or
description of the conceptual principle at play, it is more challenging
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for learners to apply analogous knowledge after they have learned
from one example than when they have learned from two analogous
examples [40]. Even for the same set of two analogous examples,
comparing them is more effective than studying them sequentially
[38]. However, learners do not always spontaneously identify the
key elements of analogous examples. Analogical comparison leads
to more successful learning when students are explicitly directed to
identify corresponding elements or when the underlying structure
is explicitly provided [6].

4.4 Refutation Texts

Refutation texts are an approach to addressing misconceptions,
which has been primarily studied in science education [113]. They
are effective in science education because, as people interact with
the physical world, they can develop misconceptions about how it
works [28]. To fully address a misconception, learners must reor-
ganize existing knowledge structures to fit new information (ex-
plained further in Section 5) [89]. This requirement makes direct-
instruction approaches, which are rarely responsive to individual
students’ existing knowledge, often ineffective for addressing mis-
conceptions [91]. Refutation texts, however, are consistently more
effective than other direct-instruction approaches at addressing
misconceptions in science education and improving conceptual
knowledge [28, 29, 113].

Compared to expository text, which gives only an explanation,
refutation texts have two components: a commonly held miscon-
ception and an explanation of the correct concept [113]. These
pieces are typically joined by a third component, called a cue, that
indicates the misconception is incorrect. Here is a truncated version
of an example from Tippett [113].

e Common Misconception: Many people believe that ostriches
bury their head in the sand when faced with danger.

o Cue: If this were true, they wouldn’t be able to breathe.

e Correct Concept: Ostriches will sometimes listen for sounds
with their heads near the ground.

Tippett’s [113] review of refutation text literature found that
their benefits are robust to most differences in learner characteris-
tics and environments, but they require a couple of features to be
successful. They are more effective when students are asked to ex-
plain or predict phenomena before reading the text. This activates
prior knowledge on the subject and makes the learner recognize
whether it is wrong, making them more likely to address existing
knowledge if needed. In addition, Tippett found that refutation
texts are most effective for students in grades 3-10 (i.e., 8-16 years
old). They can be effective outside of this range, but less reliably so.
For younger students, it is possible that they have not developed
misconceptions yet, so refutation texts are equally effective as ex-
pository text because no conceptual change is necessary. For older
students, many knowledge structures are more interconnected and
crystallized, making them more difficult to change. In this situ-
ation, a constructivist approach to conceptual change that more
deeply addresses existing knowledge might be more effective than
a direct-instruction approach like refutation texts.

4.4.1 Impasse triggers. Related to refutation texts, there is a small
body of work on impasse triggers, which at a theoretical level work
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the same way - by making learners aware of common misconcep-
tions or gaps in knowledge before explaining a concept. Refutation
texts state these misconceptions or gaps explicitly while impasse
triggers give students a problem that highlights a misconception,
which they are expected to fail to solve [98]. Another variation of an
impasse trigger is warning students of common errors made while
solving a problem [1]. These impasse triggers are then followed
by a correct explanation of how to solve the problem. Like with
refutation texts, impasse triggers followed by correct explanations
are more effective than correct explanations alone for developing
and retaining conceptual knowledge [1, 98].

4.5 Productive Failure

Productive failure asks students to use their prior knowledge and
logical reasoning to attempt to solve a problem in small groups
before the instructor compares their solutions to the canonical solu-
tion [56]. The comparison between multiple conceptions is two-fold:
comparisons among learners’ incomplete solutions during small
group work, and the learners’” incomplete solutions compared to
the canonical solution. This technique provides a unique combi-
nation of constructive, small-group work, called the generation
or invention phase, followed by direct instruction that explicitly
compares learners’ solutions to the canonical solution, called the
consolidation phase [52, 53]. When productive failure is success-
ful, students develop better conceptual knowledge than in direct
instruction with equivalent procedural knowledge [54, 56].

Proponents of productive failure argue that it is effective because
it primes students’ prior knowledge as they attempt to find a solu-
tion to a problem [55, 70]. When students fail, they recognize the
gaps in their knowledge and are better prepared to learn the canon-
ical solution than in pure direct instruction [57]. Furthermore, the
student-responsive instruction addresses the prior knowledge that
they have applied and whether it has been applied appropriately to
the new concept [70].

Comparing solutions is a critical feature of productive failure.
Loibl and Rummel [70] found that learners benefited from produc-
tive failure only when students’ solutions were explicitly addressed
in the following instruction — not when instruction focused on
only the canonical solution. Moreover, Kapur and Bielaczyc [57]
found that students who generated and compared more incorrect
solutions performed better than those who found the correct solu-
tion early in the exploration process and compared fewer solutions.
Similarly, in his review of productive failure literature, Kapur [56]
argues that the quality of students’ solutions does not matter for
later learning, but the number of comparisons being made does.

Comparing typical student solutions to the correct solution
rather than students’ actual solutions can also be effective. Ka-
pur evaluated a spinoff of productive failure called vicarious failure.
In vicarious failure, students do not generate their own solutions,
but they still evaluate the typical solutions of students before com-
paring these incomplete solutions to the canonical correct solution
during instruction [55]. He found that vicarious failure was not
as potent as productive failure, but it was more effective than in-
struction that did not compare incomplete solutions to the correct
solution. In addition, Loibl and Rummel [70] found that the con-
solidation phase could be based on typical student solutions rather
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than solutions generated by the current group of students with-
out affecting performance. Using typical student solutions might
capture the benefits of comparing incomplete to correct solutions
while providing support for instructors during the consolidation
phase.

4.5.1 Invention approach. The invention approach is a predecessor
to productive failure. Both approaches ask students to generate
procedures to solve problems before giving them direct instruction
on the canonical solution. The research conducted on the invention
approach focused more on the role of prior knowledge during the
generation phase and scaffolding the generation phase [97, 101].
Schwartz and Martin [101] argued that generating solutions al-
lows learners to understand how prior knowledge does or does
not apply to a new concept, prompting them to abandon inap-
propriate knowledge structures and build new ones. They found
that following the generation phase with direct instruction was
critical to filling new knowledge structures with accurate informa-
tion [101]. Furthermore, the generation phase appears to improve
conceptual knowledge only, and direct instruction is necessary to
achieve procedural knowledge [95]. Regarding scaffolding during
the generation phase, Roll et al. [97] found that scaffolds must be
domain-independent to be effective, such as prompts to engage
in metacognition or prompts to discuss a topic with peers. They
argued that domain-specific scaffolds were ineffective because they
hindered connections to prior knowledge [97]. Scaffolds during the
generation phase, however, are unnecessary when students already
attempt to make abstract procedures for solving problems, even if
those procedures are incorrect [96].

4.6 Ambitious Pedagogy

Ambitious pedagogy combines a cognitively complex instructional
task or problem with a reflective class discussion. It shares elements
with productive failure, including carefully designed problems with
multiple solution paths [52, 118] and distinct generation and consol-
idation phases [15, 52]. Ambitious pedagogy differs in the aim and
orchestration of the consolidation phase [70, 80]. In an ambitious
lesson the teacher wields the task and the discussion as comple-
mentary instructional tools [15, 79, 118]. The task is designed to be
approachable from multiple angles, requiring students to compare
multiple conceptions, and is introduced with little scaffolding. Stu-
dents apply their full range of conceptions to it [22, 79], and reach a
result in any way they can. The lesson concludes with a whole-class
discussion in which the students share their work, explain their
reasoning, and make connections between their ideas.

Ambitious pedagogy was developed in primary level mathemat-
ics education in the 1990s out of efforts to promote equitable, rigor-
ous, authentic learning in mixed student populations [22, 80]. In the
decades since, educators have applied the ambitious approach at the
secondary level and in other subjects, including science [80, 118],
history [36], and language arts [36, 80].

Ambitious instruction has been shown to support conceptual
learning in many contexts: with high-achieving students [13], stu-
dents with mixed academic achievement [13, 111], students of dif-
ferent cultural and socioeconomic backgrounds [80]; students with
individualized education plans [80]; and language-learning students
[80]. In addition to conceptual learning, ambitious instruction has
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been shown to support process knowledge and strategic flexibility
[13, 111]. It has a behavioral-cultural aspect as well, and a class-
room that consistently uses ambitious instruction can begin to feel
like a community of practice. Students have reported high levels
of engagement and intention to pursue the subject [13] and may
begin to identify as practitioners of the field [79].

During ambitious pedagogy, a class co-creates new knowledge
out of students’ collective thinking [15, 79, 117], or incomplete con-
ceptions. Building upon constructivist and sociocultural learning
theories [22] learners are positioned as sense-makers, constructors
of their own meaning within the social classroom environment
[36]. Ambitious teaching practice relies heavily on instructional
structure [64, 118], and has a well established repertoire of dis-
course “moves” to elicit and develop student responses [58, 64, 80].
These include revoicing or rephrasing student ideas [58], pressing
for deeper reasoning [15, 80], extending lines of thinking [13, 58],
linking or orienting toward other ideas [13, 15], and revising earlier
statements [58]. The teacher takes care to ensure that the students
are the ones doing the cognitive and social work of explaining,
justifying, and stating and improving ideas [15, 80, 111, 118].

A teacher using ambitious instruction ensures that a wide variety
of conceptions are aired in a lesson, offering students a range of
ideas they might be able to grasp, evaluate, and either integrate or
discard [15, 79]. Teachers make deliberate use of these conceptions
to scaffold the class as a whole [118]. Through revoicing, pressing,
linking, and other talk moves, the teacher guides students to com-
pare and further develop the conceptions they used to approach
the complex task [80]. Ambitious instruction does not seek to limit
students’ exposure to incorrect, incomplete, or misconceptions; nor
does it privilege optimal correct conceptions over less optimal (but
still correct) ones. Students holding these other conceptions con-
tribute alternate—if not sophisticated or optimal—ways of thinking
about the task at hand and are valued for their legitimate participa-
tion in the discourse [13, 79, 80, 111].

4.7 Problem-Based Learning

Problem-based learning (PBL) provides student groups opportu-
nities to consider a variety of ways to conceive and approach an
ill-structured problem and, subsequently, construct a solution to
that problem. The solution is built over a period of time called a
cycle, ranging from a single class or an entire semester. As a result,
during a PBL cycle students iteratively grapple with an authentic
problem, reflect on their progress and challenges, develop strate-
gies, and construct integrative knowledge [8, 9, 47, 48]. During this
iterative process, students are comparing their own incomplete
conceptions of the solution to those of their team members, identi-
fying gaps in their knowledge, and asking the instructor for help
in identifying a conceptually sound solution.

While many in-depth reviews have been published on PBL [4,
48, 116], we highlight a few key themes here that are relevant to
the intended outcomes and the effectiveness of this instructional
technique. First, PBL is designed to foster self-directed learning,
metacognition or the ability to monitor one’s own learning, prob-
lem solving skills, teamwork and collaboration, and motivation
[61, 78, 99]. Second, a primary goal of PBL is to foster the abilities
for students to consider different approaches to problem solving
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in professional settings. For example, biomedical engineering de-
partments use PBL because students are increasingly asked by
employers to demonstrate collaboration skills, integrative thinking,
a respect for the value of diverse teams, and the ability to quickly
consider multiple approaches to solving a problem [81, 82, 119].
Third, the role of the teacher as a scaffold during a PBL cycle is
central. Notably, PBL draws from the model of cognitive appren-
ticeship [23]. In PBL the teacher acts as a facilitator who provides
scaffolding to group problem-solving, reflection, and knowledge
construction at the beginning of a PBL cycle but slowly removes
this scaffolding over the course of the cycle or in later cycles.

Advocates of PBL argue that it supports learning by developing
the types of integrative thinking outlined above (e.g., critical think-
ing, reflection, diverse perspectives). Reviews and meta-analyses
of PBL have found that it is effective for long-term knowledge
retention and transferring knowledge outside the classroom and
into new contexts [109, 122]. As with many of the techniques that
we have discussed, PBL often appears less effective for short-term
knowledge acquisition. Many studies call for research to better
describe the mechanisms involved in this trade-off. Multiple con-
ceptions theory and our analysis in this paper stand to contribute
to describing such mechanisms.

4.8 Inquiry/Discovery Learning

Inquiry learning, interchangeable with discovery learning for our
purposes, is a similar technique to PBL. Both techniques ask learn-
ers to construct knowledge around a target topic by identifying
missing knowledge and using resources to fill that knowledge, with
the support of an instructor [5, 65]. The primary difference is that
the guiding structure for PBL is to solve an authentic problem
while inquiry learning is more open-ended. It is the most unstruc-
tured technique that we considered. It does not necessarily include
student teams, but like most constructivist techniques, students
typically collaborate and learn socially [5]. Thus, inquiry learning
involves comparisons of multiple conceptions much like PBL does,
by comparing the incomplete conceptions among learners and by
asking the instructor to fill in particular knowledge gaps, once they
are identified, with canonical conceptions.

Though there is much debate over the efficacy of inquiry learning
(e.g., [60, 74]), the underlying mechanisms that support the efficacy
of inquiry learning are similar to those for other constructivist
techniques. These mechanisms include activation and utilization of
prior knowledge, development of metacognitive skills, overcoming
desirable difficulties, and the generation effect [17]. The generation
effect is a robust phenomenon that refers to the long term benefits
of knowledge generation activities, like inquiry learning, due to
the cognitive conditions for encoding knowledge being similar to
those when retrieving knowledge [10, 105]. Meta-analyses of this
technique have found it to be more effective than direct instruction
techniques under certain conditions [5, 65].

Both major meta-analyses of discovery learning emphasize the
role of guidance in making the technique successful [5, 65]. Alfieri et
al. [5] identified four types of discovery learning ranging from least
to most guidance: unguided, generation, elicited explanation, and
guided discovery. Only elicited explanation and guided discovery
(in which students were given scaffolding, unexplained worked
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examples, and formative feedback) consistently performed better
than direct instruction. The generation types of discovery learning
did not perform better or worse than direct instruction.

Multiple conceptions theory can help explain why the gener-
ation type of discovery learning is less successful than another
technique that uses generation, productive failure. In productive
failure, generation is paired with direct instruction, and students
are guided to compare their incorrect and incomplete conceptions
with the canonical conception. This consolidation phase is a key
feature of productive failure. Loibl and Leuders [69] found that
in the productive failure paradigm, including students’ generated
solutions during the consolidation phase was beneficial only when
students were prompted to compare the incorrect to correct solu-
tions. This comparison of conceptions might be part of the reason
that Alfieri et al. found elicited explanation and guided discovery
to be effective as well. Similarly, Lazonder and Harmsen [65] found
that more guidance during inquiry learning was more effective
than less guidance, in which higher levels of guidance typically
involved prompting explanations and comparisons. The importance
of comparisons among conceptions is why multiple conceptions
theory states that learners must be guided to compare multiple
conceptions.

5 SYNTHESIS OF SIMILARITIES AND
MECHANISMS

5.1 Themes among direct and constructivist
approaches

Among the eight instructional techniques we have profiled, there
are similarities in the types of conceptions that are compared and
the mechanisms that make them effective. To highlight these simi-
larities, we created Table 1. The table lists each technique as a row
and has two sets of columns. The first set of columns indicates the
types of conceptions that are compared within the technique. The
second set of columns indicates the mechanism that helps learners
to build conceptual knowledge.

To be conservative, Table 1 indicates mechanisms only if they
are inherent in a technique. For example, all of the techniques could
cause conceptual change, but only some of them inherently target it.
The mechanisms are ordered from most common to least common.

In this table, an interesting but unsurprising theme emerged
regarding the type of conceptions that were compared. Direct in-
struction approaches focused on comparing incorrect and miscon-
ceptions to correct conceptions. Incomplete conceptions were not a
central tenet of any direct instruction technique that we examined
because direct instruction approaches introduce the canonically
correct solution early in the learning process. In contrast, every con-
structivist approach included building knowledge from incomplete
conceptions because they ask learners to identify existing knowl-
edge and construct on top of it. We cannot speculate whether one
approach is more effective than the other without further research,
but within these approaches, comparing multiple conceptions was
more effective than learning only one correct conception. The con-
structivist approaches also invoked more of the mechanisms on
average than the direct instruction approaches, perhaps by virtue
of being longer-duration techniques. All of the constructivist tech-
niques took at least a full class period to complete, whereas some of
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the direct instruction techniques could be completed in as little as a
minute. The literature suggests that comparing more conceptions is
more effective than less, but the trade-off in time-on-task is always
an important consideration in instructional design.

5.2 Mechanisms for effective learning from
multiple conceptions

Through our analysis of techniques, we identified five mechanisms
that lead to development of conceptual knowledge by comparing
multiple conceptions. Each of the mechanisms come from our lit-
erature review, but we have extended some mechanisms to tech-
niques whose literature does not explicitly discuss it. For example,
vicarious failure is explicitly discussed as a mechanism in the pro-
ductive failure literature but not in the refutation text literature,
even though it applies. Part of our contribution, therefore, is to ag-
gregate mechanisms from various literatures to better explain how
these techniques work. This aggregation provides the computing
education community common terminology with which to discuss
mechanisms underlying instructional techniques.

5.2.1 Vicarious failure. Vicarious failure, or learning from other’s
errors, is a mechanism for almost every technique except analogi-
cal reasoning, which compares only correct conceptions. In direct
instruction techniques, the errors are selected by the teacher, and in
constructivist techniques, the errors typically come from learners’
peers. In either case, learners are guided to compare more con-
ceptions than they would otherwise be exposed to without the
instructional scaffolding.

5.2.2  Self-explanation. The second most common mechanism is
prompting self-explanation. In direct instruction approaches, the
type of self-explanation is typically explaining the differences be-
tween incorrect or correct conceptions to determine why they
are correct or not. In constructivist approaches, the type of self-
explanation is typically building upon incomplete conceptions by
applying prior knowledge or processing new information. The con-
structivist approaches also ask students to work in small groups,
so self-explanation can also be an interactive process called peer
explanation [20].

5.2.3 Inductive reasoning. Some of the techniques employ induc-
tive reasoning to develop conceptual knowledge. In these tech-
niques, learners receive many examples or cases and compare them
to extrapolate canonical concepts. This mechanism can be partic-
ularly effective for learners with little prior knowledge because
concrete examples are easier to grasp than abstract concepts [32].
We found that many of the techniques that employ this mechanism
use scaffolding to support learners in this inductive process. In the
constructivist approaches, this process is typically conducted in
small groups and includes a social element.

5.2.4 Conceptual growth. The last two mechanisms come from
Posner et al’s model of conceptual change [89]. In this model, there
are four ways to process new information. The first way is concep-
tual growth, which happens when learners add new information to
existing, correct knowledge structures. A critical part of conceptual
growth is identifying gaps in knowledge that need to be filled [89].
Many of the constructivist approaches primarily aim for conceptual
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Table 1: The type of concept comparisons and concept-building mechanisms encouraged by each instructional technique. All
techniques make comparisons with correct conceptions. Comparisons that are used in some variations but not others are
annotated with ‘~’. Subcategories of mechanisms are annotated with ‘.

Type of Concept Comparison Concept-building Mechanism
Vicarious Inductive /
. . Prompts self- Conceptual
Instructional . . failure . case-based Conceptual
. Correct | Incomplete | Incorrect | Misconception explanation . growth
Technique (+Student- . reasoning . change
(*Interactive) i (+Multi-step)
generated) (*Social)
Direct Instruction Approaches
Test-enhanced
. X X ~X X X X
learning
Erroneous
X X ~X X X X
examples
Analogical
. X X X X
reasoning
Refutation
X X X X
texts
Constructivist Approaches
Productive
- X X ~X *X *X X X
failure
Ambitious
X X X X *X *X *X *X X
pedagogy
Problem-based
. X X *X *X *X *X
learning
Inquir
d : v X X *X *X *X *X
learning

growth on learners’ incomplete conceptions. Most of them do this
iteratively, going through multiple rounds of identifying knowledge
gaps and filling them.

5.2.5 Conceptual change. The other three ways of processing in-
formation from Posner et al’s model of conceptual change deal with
existing, incorrect knowledge structures [89]. According to Posner
et al., learners can take one of three paths when faced with facts
that contradict their prior knowledge:
o Ignore the new information because it doesn’t fit in existing
knowledge structures, and thus, doesn’t make sense
e Develop a separate knowledge structure disconnected from
the existing knowledge structure for the new information
(and perhaps not realize that they are in conflict)
e Reorganize existing knowledge structures to incorporate
new information (i.e., conceptual change)
Achieving conceptual change is the most demanding path, which is
why misconceptions are notoriously difficult to remedy. All of the
techniques that we claim invoke conceptual change explicitly test
learners’ knowledge and then call attention to incorrect knowledge
as a way of forcing learners to recognize when they have faulty
knowledge structures.

6 MECHANISM-BASED INSTRUCTIONAL
DESIGN PRINCIPLES

From the five mechanisms identified in Table 1, we have generated
instructional design principles for creating activities that guide
learners to compare multiple conceptions and develop conceptual
knowledge. Conceptual knowledge emerges from a web-like cog-
nitive architecture that connect various nodes of information [7].

Each of the mechanisms provides a method for growing, pruning,
or reinforcing these connections, captured by the proposed design
principles. For each principle, we provide an example of an em-
pirical study from the computing education literature that applies
the principle to an instructional design and reports measurable
learning benefits.

6.1 Vicarious failure: Introduce learners to
non-correct conceptions

Although it may seem counter-intuitive, exposing students to in-
correct conceptions, incomplete conceptions, or misconceptions
can accelerate their learning through the mechanism of vicarious
failure. Introducing learners to common non-correct conceptions
can help them identify the boundaries of correct conceptions and
prune their conceptual network appropriately. Our review of liter-
ature showed that the number of conceptions that a student has
compared is more predictive of conceptual knowledge than whether
those conceptions are correct [56, 69]. We have also seen that non-
correct conceptions can come from a variety of sources, including
a students’ own work or typical student solutions.

This principle was successfully applied by Ginat and Shmallo
in an OOP-based CS1 course in which students completed a set of
activities that highlighted erroneous conceptions that the authors
had commonly observed in previous student cohorts [41]. They
found the approach to be effective, as it triggered cognitive con-
flict in students with misconceptions, and recommend the use of
authentic student errors as the basis for these kinds of activities.
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6.2 Self-explanation: Prompt learners to
compare conceptions

Viewing multiple examples is particularly beneficial when learners
are guided to compare key aspects of examples and reconcile dif-
ferences between them. This process encourages self-explanation
in which learners reason about the relationships among pieces of
information. Comparing conceptions clarifies how a novice should
build mental connections between information nodes to develop a
network of conceptual knowledge.

In recent work by Tamang et al., this design principle was applied
by eliciting self-explanations from students as they were shown a
sequence of short code examples targeting fundamental program-
ming concepts [110]. In a controlled experiment, students who
self-explained the code examples performed significantly better
than those who only made output predictions, and these students
frequently drew comparisons between different parts of the code
examples while generating their explanations.

6.3 Inductive reasoning: Provide concrete
examples, correct or not

To promote inductive reasoning, help learners develop new concep-
tual knowledge by providing multiple correct or non-correct exam-
ples. Novices need concrete examples to form nodes that combine
into the cognitive architecture that is conceptual understanding. If
they have prior knowledge, activate these nodes by asking them to
think of examples.

Patitsas et al. apply this principle through the aesthetic design
of their instructional materials, by placing examples side by side
to guide students in the direct comparison of different solution
approaches [85]. They report significant benefits to students, for
both code reading and code writing performance, and suggest that
the approach helps students appreciate that not all problems have
a single correct answer.

6.4 Conceptual growth: Identify gaps in
students’ knowledge

To facilitate conceptual growth, explicitly identify gaps in students’
knowledge. Our review of techniques revealed that multiple ap-
proaches can be effective in producing conceptual growth. Whether
through testing, examples students cannot yet explain, or problems
students cannot yet solve, use activities that show students the
limitations of their knowledge and what they need to learn.

Xie et al. demonstrate the value of identifying gaps in students’
knowledge through their use of formative assessments to measure
introductory programming students’ performance on discrete pro-
gramming skills [120]. They found that identifying missing knowl-
edge through formative assessments and targeting that knowledge
with explicit instruction improved completion rates on exercises
and decreased error rates. Furthermore, their approach improved
performance on a delayed test, suggesting better conceptual knowl-
edge [120].
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6.5 Conceptual change: Show how
misconceptions are incorrect

To enact conceptual change, explicitly identify misconceptions from
prior knowledge and show how they are incorrect. Whether mis-
conceptions are identified by researchers, instructors, peers, or
learners themselves, test whether relevant prior knowledge is ap-
plied correctly or incorrectly to new concepts. If misconceptions
are present, recognize that conceptual change is an effortful and
time-consuming process.

Kennedy et al. apply this idea to a novel approach they call
misconception-based feedback, in which students work in pairs
to discuss their programs using structured prompts that target
common misconceptions [59]. Evaluation of this approach showed
that it was effective at enacting conceptual change for students who
initially held misconceptions about the difference between pass by
reference and pass by value.

7 MULTIPLE CONCEPTIONS IN COMPUTING
EDUCATION INSTRUCTION AND
RESEARCH

In this section we describe two instructional approaches that have
both received much attention in the computing education literature,
Peer Instruction and Parsons Problems, and illustrate how their
benefits can be explained by multiple conceptions theory. We also
propose ideas for future work, including how existing instructional
approaches could be modified to better guide students to compare
conceptions and how computing education research could help to
validate the theory, using notional machines as an example.

7.1 Peer Instruction

Peer instruction is a popular active learning technique, originally
developed and studied in physics classrooms [25] and since used
with considerable success in many discipline areas. Multiple con-
ceptions theory provides an elegant explanation of the mechanisms
that make this technique effective.

A typical peer instruction session takes place during an in-person
lecture and involves students responding to multiple-choice ques-
tions that target conceptual knowledge. Usually several conceptual
questions are presented to students in the course of one session, in-
terspersed with more traditional direct instruction. To support the
instructor in collecting and aggregating responses to the questions,
students submit votes using a small electronic device, commonly a
smartphone in recent years. A typical protocol has students vote
individually on a question, then engage in discussion of their re-
sponses in small groups with peers sitting nearby, then finally vote
a second time on the same question after discussion. Following
the second vote, the instructor leads a class-wide discussion of the
related concepts, shares the aggregated vote tallies, and explains
the correct conception as well as addresses any misconceptions
that were targeted by distractor options. Bouvier et al. provide a
detailed summary of the structure of a peer instruction session in
their review of the factors that influence its adoption in computing
classrooms [16].

Over the last decade, peer instruction has received a great deal
of attention in the computing education research literature. It has
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been shown to scale well as class sizes grow [67, 87], to be an effec-
tive method for identifying at-risk students early in a semester [68],
and to provide a more enjoyable learning environment compared
to classes that do not use peer instruction [104]. Conceptual under-
standing developed through peer instruction appears to successfully
translate to practical computing tasks. Zingaro and Porter found
that students who demonstrated learning during a peer instruction
session, consisting of conceptually-focused questions, exhibited bet-
ter performance on later code-writing questions [123]. In addition
to direct learning benefits, there is also evidence that peer instruc-
tion offers broader positive outcomes for computing students, such
as reducing failure rates [86] and improving the retention of majors
[88]. While most research on peer instruction in computing courses
has been focused at the introductory programming level, there is
an increasing interest on its application in upper-level courses such
as cybersecurity [27], software testing [43], computer architecture,
and courses on the theory of computation [66], which all require
substantial development of conceptual knowledge.

Peer instruction guides students to compare multiple conceptions
in several ways. This guidance occurs during the initial vote, the
peer discussion phase, and the review phase. When selecting a
response for the initial vote, students are prompted to compare
non-correct to correct conceptions as they evaluate each answer
choice [11]. Incorrect conceptions are embedded in the distractor
options, and often target common misconceptions [103]. During
the peer discussion phase, students are challenged to argue for
and defend the answer options they selected, thus incorrect and
correct conceptions are directly compared within small peer groups.
In fact, it is common for peer groups to eventually arrive at a
correct conceptual understanding even when no individual in the
group selects a correct answer on the initial vote [106]. Finally, in
the review phase, the instructor explains the correct conception
and explicitly calls attention to common misconceptions that are
highlighted in the vote tally to ensure students have reconciled
these incorrect conceptions.

7.2 Parsons Problems

Parsons problems are an alternative activity to writing code in
which learners are provided with pre-formed lines of code that they
must place in the correct order to solve a problem [26, 84]. Com-
pared to writing the same code, a Parsons problem greatly narrows
the problem-solving space and is thus more efficient for novices
while maintaining performance on later tasks [33]. Variations of
Parsons problems, such as two-dimensional Parsons problems that
require the learner to add appropriate indentation, can create a
wider problem-solving space.

One variation that is particularly relevant to multiple concep-
tions theory is Parsons problems with distractors. This variation
intentionally includes two lines of code, one correct and one in-
correct, that serve the same purpose, and the learner has to pick
which to use [33]. Related to multiple conceptions theory, Parsons
problems with distractors present a correct and incorrect concep-
tion that the learner must compare to successfully complete the
problem.

The results of research about Parsons problems with distrac-
tors are similar to those about other direct instruction activities
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that require students to compare multiple conceptions. First, they
are more efficient than more open-ended problem solving tasks,
resulting in less time on instruction to achieve the same level of
performance, even on delayed tests of knowledge and performance
[33]. Second, they enable misconceptions to be targeted directly
because misconceptions are often used as the distractors [26]. As
with the other direct instruction approaches, the misconceptions
are only those identified and implemented by the instructor or
designer who writes the problem. Most interesting for multiple
conceptions theory, though, is the comparison between Parsons
problems with and without distractors. Problems with distractors
are less efficient during instruction than those without distractors,
but they result in no difference in performance [46].

This pattern of results is common when comparing activities
that promote procedural knowledge to those that promote concep-
tual knowledge. For example, worked examples that can be directly
mapped onto near transfer problems are more efficient than erro-
neous examples that require comparison of multiple conceptions,
but they result in worse retention and transfer [3, 115]. Similarly, if
students are prompted to compare worked examples to inductively
extrapolate concepts, such as in analogical reasoning or by using
subgoal labels, they typically gain better retention and transfer than
if they receive the same examples without a prompt to compare
them [63, 73]. Activities that promote conceptual knowledge can
be less efficient during instruction than those that promote pro-
cedural knowledge for achieving the same procedural proficiency.
In farther transfer and retention tests, though, students who have
learned with concept-promoting activities typically perform better
[49, 114]. This trade-off is a key argument on both sides of the
debate between direct instruction and constructivist approaches
[49, 60, 114] because each side of the trade-off has value in certain
situations. We argue that by employing multiple conceptions
theory and its associated instructional design principles, in-
structors and designers can help students to develop concep-
tual knowledge while employing whichever approach best
serves their needs.

7.3 Future work

In this section, we discuss examples of future areas of work in com-
puting education research in which multiple conceptions theory
can be validated and expanded. Computing education is similar to
some domains, especially other technical fields that require robust
procedural and conceptual knowledge, yet unique, especially in the
number of canonical, correct conceptions that can co-exist. These
features make it a particularly good area of application for research
on comparing multiple conceptions.

One potential area to validate the theory and create more spe-
cific instructional design principles for computing education is to
use multiple conceptions theory to inform new research designs.
For example, one relevant research design would be to compare
learners writing code with learners solving Parsons problems with
and without distractors. In this paradigm, each condition would
make different use of multiple conceptions. Parsons problems with-
out distractors do not include multiple conceptions; distractors
add direct comparisons between deliberately chosen correct and
incorrect conceptions; and writing code implicitly entails multiple
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conceptions as students decide what to write and how to fix errors.
If these three conditions were compared on immediate near trans-
fer, immediate far transfer, delayed near transfer, and delayed far
transfer tasks, we predict that we would find differences among
the groups of novice programmers based on multiple conceptions
theory. We predict that the Parsons problems without distractors
group would be most efficient in successfully completing the imme-
diate near transfer assessment, but they would perform worse on
the other assessments that require deeper conceptual knowledge.
The Parsons problem with distractors condition is predicted to be
more efficient than the writing code condition with equal and more
consistent performance across all assessments. In the writing code
condition, we expect some students would perform well, but others
who do not spontaneously develop conceptual knowledge might
perform poorly. These predicted results are mostly aligned with
the research described in the Parsons problems section, but they
are from separate studies that do not compare all conditions and
assessments together. A unified study that tested these a priori
hypotheses would lend credence to the theory.

To expand knowledge about computing education, multiple con-
ceptions theory could be applied to support important areas of
work, such as the use of notional machines. Notional machines
are a pedagogical device designed by instructors to conceptually
explain some aspect of computation, such as how code execution
works [30, 107]. They are intended to be a bridge between concep-
tual models (i.e., scientifically-informed, complete, correct models
accepted by experts in the field) and a student’s mental model (i.e.,
an often incomplete and imprecise model that increases in accuracy
through learning) [35]. As Fincher et al. explain in a recent ITiCSE
working group report on notional machines, a teacher creates a
notional machine by interpreting a conceptual model into a simpli-
fied pedagogical device that is designed to help students form or
build upon their personal mental models [35]. The goal of notional
machines is to increase the accuracy and sophistication of students’
mental models without overwhelming them.

Using notional machines, therefore, is an instructional technique
that is well-suited to comparing multiple conceptions. The con-
ceptual model is the same as canonical, correct conceptions that
we have discussed throughout the paper. The notional machine
is a simplified correct conception used in direct instruction. The
student mental models are the same as the incomplete conceptions
often compared during techniques that follow a constructivist ap-
proach. If teachers preferred a direct instruction approach, they
might present multiple concrete examples and ask students to map
them onto the notional machine, or they might compare notional
machines that include mis- or incorrect conceptions to a correct no-
tional machine to help students develop mental models. If teachers
wanted to add a constructivist approach, they might provide a basic
notional machine as a starting point followed by a constructivist
activity that prompts learners to compare their mental models to
build towards the conceptual model. Sorva makes a compelling ar-
gument that notional machines should be explicitly acknowledged
and used by computing instructors [107]. Multiple conceptions
theory provides guidance for how this should be done, regardless
of the instructional paradigm being used, to produce conceptual

knowledge.
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In addition to these examples, multiple conceptions theory may
provide new contributions to two common challenges in comput-
ing education. First, many undergraduate computer science depart-
ments face overwhelming enrollment in introductory programming
courses. As a result these courses can have large class sizes, making
individual interactions between instructors and students difficult
and encouraging teachers to use direct instruction techniques. Mul-
tiple conceptions theory proposes a strategy, guiding comparison
of multiple conceptions, for building conceptual knowledge within
direct instruction techniques that can function in small or large
class sizes. A second challenge is that computer science courses
are increasingly taught online, in which learning environments
need to be more thoroughly designed to overcome difficulties in
communication. Our proposed instructional design principles may
provide guidance for or be expanded by instructors in the future to
help their students develop conceptual knowledge specifically in
different types of learning environments.

8 CONCLUSION

Computing students face the challenge of developing accurate con-
ceptual knowledge for machines that are both complex and opaque
[107]. Thus, instructional approaches that target conceptual under-
standing are useful to computing educators. Indeed, the comput-
ing education research community specifically calls for theoretical
work that guides computing teachers to effectively design and im-
plement their pedagogy to complement more plentiful theories
about students’ understandings of content [71]. In this paper, we
proposed a new theory, multiple conceptions theory, that states
learners develop better conceptual knowledge when they are guided
to compare multiple conceptions of a concept during instruction.

While this theory is applicable to any field, we have focused
on the contributions that it can make to computing education.
We started developing this theory by analyzing instructional tech-
niques across the spectrum of direct instruction and constructivist
approaches from education research in a wide range of STEM fields.
All of the techniques that we included can be used in computing
education. Through our analysis, we identified five mechanisms
that help learners build conceptual knowledge by comparing mul-
tiple conceptions. We then translated these mechanisms into five
instructional design principles to provide guidance for teachers.
Next, we proposed how these mechanisms explain the success of
two instructional approaches that are commonly used in computing
classrooms, Peer Instruction and Parsons Problems. Finally, we rec-
ommended ways in which computing instruction can be improved
through application of this theory and how computing education
researchers can advance the theory thus making contributions to
STEM and teacher education more broadly. We invite others to fur-
ther explore and define this emerging area of research, and we hope
it can also inspire conversations between computing education and
other education sub-fields.
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