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Abstract
Freeman Dyson conjectured the existence of an unknown partition statistic he called
the crank which would explain Ramanujan’s partition congruence mod 11 just as his
rank statistic explains Ramanujan’s partition congruences mod 5 and 7. Such a crank
statistic was found by Andrews and Garvan in 1988. In this paper, we investigate
the crank counting function, which counts the number of partitions of n with crank
congruent to r mod Q. First, we obtain an effective bound on the error term in Zapata
Rolón’s asymptotic formula for the crank counting function. We then use this to prove
that the crank counting function is asymptotically equidistributed mod Q, for any
odd number Q. We also use this to study surjectivity of the crank when viewed as a
function from partitions to the integers mod Q, and to prove strict log-subadditivity
of the crank counting function. The latter result is analogous to Bessenrodt and Ono’s
strict log-subadditivity of the partition function.
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1 Introduction and statement of results

A partition of a positive integer n is a non-increasing sequence of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λ > 0, called its parts, such that λ1 + λ2 + · · · + λ = n. Let
p(n) count the number of partitions of n. In 1918, Hardy and Ramanujan [8] gave the
following asymptotic formula for p(n):

p(n) ∼ 1

4
√
3n

eπ


2n
3

as n → ∞.
Ramanujan [13,14] also proved the following famous congruences for the partition

function: for any l ∈ Z≥0 we have

p(5l + 4) ≡ 0 (mod 5),

p(7l + 5) ≡ 0 (mod 7),

p(11l + 6) ≡ 0 (mod 11).

Atkin andWatson [1,15] proved generalizations of Ramanujan’s congruences mod-
ulo any integer of the form 5a7b11c, where a, b, c ∈ N. Ono [12] proved that there
are infinitely many new partition congruences for any prime modulus Q ≥ 5.

Dyson [6] conjectured that Ramanujan’s congruences modulo 5 and 7 could be
explained using a function he called the rank. The rank of a partition λ is defined to
be its largest part minus the number of its parts; namely,

rank(λ) := λ1 − .

Let N (r , Q; n) be the number of partitions of n with rank congruent to r modulo
Q. Dyson conjectured that:

• For each r (mod 5),

N (r , 5; 5l + 4) = p(5l + 4)

5
.

• For each r (mod 7),

N (r , 7; 7l + 5) = p(7l + 5)

7
.

In 1954, Atkin and Swinnerton-Dyer [3] proved this conjecture.
Dyson observed that the rank fails to explain Ramanujan’s congruence modulo 11.

He instead conjectured the existence of another statistic which he called the crank
which would explain all three congruences. In 1988, Andrews and Garvan [2] found
such a crank.More precisely, let o(λ) be the number of 1’s in λ and ν(λ) be the number
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Asymptotic distribution of the partition crank 805

of parts of λ larger than o(λ). The crank of λ is then defined to be

crank(λ) :=


λ1 if o(λ) = 0,

ν(λ) − o(λ) if o(λ) > 0.

Remark 1.1 Garvan et al. [7] found different cranks which also explain all of Ramanu-
jan’s congruences.

Let M(r , Q; n) be the number of partitions of n with crank r modulo Q. Ramanu-
jan’s congruences follow from the “exact” equidistribution of M(r , Q; n) on the
residue classes r (mod Q) for certain Q and n. Here, we show that M(r , Q; n)

becomes equidistributed on the residue classes r (mod Q) for odd Q as n → ∞.
More precisely, Zapata Rolón [16] gave an asymptotic formula for M(r , Q; n) with
an error termwhich is O(n). Here we refine his analysis to give an effective bound on
the error term with explicit constants. We then use this bound to prove the following
effective equidistribution theorem.

Let μ(n) := √
24n − 1.

Theorem 1.2 Let 0 ≤ r < Q with Q an odd integer. Then we have

M(r , Q; n)

p(n)
= 1

Q
+ R(r , Q; n),

where when Q < 11 we have

|R(r , Q; n)| ≤ 105(40.93Q + 6.292)e
−


1− 1

Q


πμ(n)

6 n
11
8

and when Q ≥ 11 we have

|R(r , Q; n)| ≤ 105(40.93Q + 6.292)e
−


1−


1+12( 1

Q2 − 1
Q )


πμ(n)

6 n
11
8 .

It follows immediately that the cranks are asymptotically equidistributed modulo
Q.

Corollary 1.3 Let 0 ≤ r < Q with Q an odd integer. Then we have

M(r , Q; n)

p(n)
−→ 1

Q

as n → ∞.

In the recent work [10], Masri proved a quantitative equidistribution theorem for
partition ranks (mod 2) with a power-saving error term using spectral methods and
subconvexity bounds.

Corollary 1.3 can be seen as analogous toDirichlet’s theoremon the equidistribution
of primes among the residue classes r (mod Q) with (r , Q) = 1. Motivated by this,
we will use Theorem 1.2 to prove an analog of Linnik’s theorem which gives an upper
bound for the smallest prime in each residue class r (mod Q).
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806 A. Hamakiotes et al.

Theorem 1.4 Let Q be an odd integer and for Q ≥ 11 we define the constant

CQ := (1.93 × 1059)(40.93Q2 + 6.292Q)8
π − π


1 + 12( 1

Q2 − 1
Q )

24 + 1. (1)

Then, we have

M(r , Q; n) > 0

if Q < 11 and n ≥ 263, or if Q ≥ 11 and n ≥ CQ.

We will also prove the following result (which includes the case that Q is even)
using a different, combinatorial argument.

Theorem 1.5 For odd Q ≥ 11 we have

M(r , Q; n) > 0

if and only if n ≥ Q+1
2 . For even Q ≥ 8 we have

M(r , Q; n) > 0

if and only if n ≥ Q
2 + 2.

In a related direction, Bessenrodt and Ono [4] proved strict log-subadditivity of the
partition function. Dawsey and Masri [5] later proved strict log-subadditivity for the
Andrews spt-function. We will use Theorem 1.2 to prove strict log-subadditivity of
the crank counting function.

Theorem 1.6 Given any residue r (mod Q) where Q is odd, we have

M(r , Q; a + b) < M(r , Q; a)M(r , Q; b),

if Q < 11 and a, b ≥ 396 or if Q ≥ 11 and a, b ≥ CQ, where CQ is defined in (1).

2 Effective Asymptotic Formula forM(r,Q;n)
In [16,17], Zapata Rolón gives an asymptotic formula for M(r , Q; n). Here, we refine
his analysis and give an asymptotic formula with an effective bound on the error term.
We begin by stating a few necessary definitions.

Let

ωh,k := exp(π is(h, k)),
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Asymptotic distribution of the partition crank 807

where the Dedekind sum s(h, k) is defined by

s(h, k) :=


u (mod k)

u
k


hu

k


.

Here ((·)) is the sawtooth function defined by

((x)) :=

x − x − 1

2 if x ∈ R\Z,

0 if x ∈ Z.

Let 0 ≤ h < k be relatively prime integers. Let 0 < r < Q be relatively prime
integers where Q is odd. Let h be a solution to the congruence hh ≡ −1 (mod k)
if k is odd and hh ≡ −1 (mod 2k) if k is even. Let c1 := c

(c,k) and k1 := k
(c,k) . Let l

be the minimal positive solution to l ≡ ak1 (mod c1). For m, n ∈ Z we define:

Ba,c,k(n,m) := (−1)ak+1 sin
πa

c

 
h (mod k)

(h,k)=1

ωh,k

sin


πah
c

e−π ia2k1h


c e
2π i
k (nh+mh),

where the sum runs over all primitive residue classes modulo k.
For the case c  k we define

Da,c,k(m, n) := (−1)ak+l sin
πa

c

 
h (mod k)

(h,k)=1

ωh,ke
2π i
k (nh+mh),

where l is the solution to l ≡ ak1 (mod c1).
To provide certain bounds, we define the following:

δia,c,k,r :=


−( 12 + r) l
c1

+ 1
2 (

l
c1

)2 + 1
24 if i = +,

l
2c1

+ 1
2 (

l
c1

)2 − 23
24 − r(1 − l

c1
) if i = −,

δ0 := 1

2Q2 − 1

2Q
+ 1

24
<

1

24
,

and

m+
a,c,k,r := 1

2c21
(−a2k21 + 2lak1 − ak1c1 − l2 + lc1 − 2ark1c1 + 2lc1r),

m−
a,c,k,r := 1

2c21
(−a2k21 + 2lak1 − ak1c1 − l2 + 2c21r

−2lrc1 + 2ark1c1 + 2lc1 + 2c21 − ak1c1).

Note that δ±
a,Q,k,r ≤ δ0 < 1

24 .

123



808 A. Hamakiotes et al.

Zapata Rolón obtains an asymptotic formula for M(r , Q; n) by using the circle
method. First, he defines the generating function

C(w, q) :=
∞
n=0

∞
m=−∞

M(m, n)wmqn,

where M(m, n) is the number of partitions of n with crank m. In order to use the
modular properties of this function, he plugs in a root of unity for w and studies the
coefficients of q. Additionally, he defines

C(e2π i
j
k , q) :=

∞
n=0

Ã


j

k
, n


qn,

and uses the circle method to find an asymptotic formula for Ã


j
k , n


, and uses the

identity

M(r , Q; n) = 1

Q

Q−1
j=0

ζ− jr Ã


j

Q
, n


(2)

to get an asymptotic formula for M(r , Q; n). Note that Ã( 0
Q , n) = p(n).

Moreover, Zapata Rolón gives the following asymptotic formula for Ã


j
Q , n


:

Ã


j

Q
, n


= 4

√
3i

μ(n)


Q|k

k≤√
n

B̃ j,Q,k(−n, 0)√
k

sinh


πμ(n)

6k



+8
√
3 sin(π j

Q )

μ(n)


k,s
Qk

δij,Q,k,s>0
i∈{+,−}

Dj,Q,k(−n,mi
j,Q,k,s)√

k

× sinh


24δij,Q,k,s

πμ(n)

6k


+ O(n),

which when plugged into equation (2) gives
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Asymptotic distribution of the partition crank 809

M(r , Q; n) = 1

Q
p(n) + 1

Q

Q−1
j=1

ζ
−r j
Q

4
√
3i

μ(n)


Q|k

k≤√
n

B̃ j,Q,k(−n, 0)√
k

sinh


πμ(n)

6k



+ 1

Q

Q−1
j=1

ζ
−r j
Q

8
√
3 sin(π j

Q )

μ(n)


k,s
Qk

δij,Q,k,s>0
i∈{+,−}

Dj,Q,k(−n,mi
j,Q,k,s)√

k

× sinh


24δij,Q,k,s

πμ(n)

6k


+ O(n).

Proof of Theorem 1.2 We first break the O(n) error term from the calculation of
Ã(

j
Q , n) into six pieces: Serr , S1err , S2err , Terr , and the contributions of error from

certain integrals which we will call1 Ierr and2 Ierr . Zapata Rolón provides bounds
on each of those pieces, which we can then refine and sum up to get bounds on the
error in the formula for Ã(

j
Q , n). Then using equation (2) and the triangle inequality,

we can get our desired bound on |R(r , Q; n)|.
Fix odd integers j and Q. We will bound the error coming from Ã(

j
Q , n). Zapata

Rolón provides the following bounds:

|Serr | ≤
2e2π+ π

24 | sin(π j
Q )|(c2 + 2(1 + | cos( π

Q )|)c1(1 + c2))n
1
4


1 + log


Q−1
2



π(1 − π2

24 )Q
,

|Terr | ≤ 16e2π f (Q)n
1
4

sin


π j

Q

 ,

where

f (Q) := 1 + c2eπδ0

1 − e
−π
Q

+ eπδ0c1(1 + c2) + eπδ0(c2 + 1)c3
2

,

andwhere the ci are constants defined in [16].We have the approximations c1 ≤ 0.046,
c2 ≤ 1.048, and c3 ≤ 0.001. Also,

|S1err | ≤ 8e2π+ π
12 (1 + log( Q−1

2 ))n
1
4

π(1 − π2

24 )Q
,

|S2err | ≤ 32e2πn
1
4

sin


π j

Q


e2πδ0

1 − e
−2π
Q

,
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810 A. Hamakiotes et al.

|1 Ierr | ≤
4


4
3 + 2

5
4

 sin


π j
Q



1 + log


Q−1
2


e2π+ π

12 n
3
8

π

1 − π2

24


Q

,

|2 Ierr | ≤ 8


4

3
+ 2

5
4

 sin


π j

Q


e2πδ0+2π

1 − e− 2π
Q

.

Now, we estimate some of the expressions in those bounds to simplify them:

•
sin


π j
Q

 ≤ 1,

• (1+log( Q−1
2 ))

π(1− π2
24 )Q

≤ 0.1902,

•

4
3 + 2

5
4


≤ 3.712,

• 1

1−e
− π

Q
≤ πQ,

• 1

1−e
− 2π

Q
≤ 2πQ.

To prove these last two bounds, let g(x) := 1

1−e− b
x
, where b, x > 0. Then we have

g(x) = b g(x)2

x2
e− b

x . Moreover, the function h(x) := bx satisfies h(x) = b, and in
the case of b = π and b = 2π we have h(1) > g(1) and h(1) > g(1) by a short
calculation. This implies that h(Q) > g(Q) for all Q ≥ 1, as desired.

In addition, we simplify the bounds given in [16]:

• |Serr | ≤ 330.9n
1
4 ,

• |Terr | ≤ (59071Q + 930.05)n
1
4 ,

• |S1err | ≤ 1059n
1
4 ,

• |S2err | ≤ 22306n
1
4 ,

• |1 Ierr | ≤ 1965n
3
8 ,

• |2 Ierr | ≤ 113883Q.

Summing these all upgives the total contributionof theO(n) error term to Ã(
j
Q , n).

We then use equation (2) to get the contribution of the error term to M(r , Q; n).
However, after applying the triangle inequality these two bounds will be the same
except for a factor of (Q − 1)/Q, which we will round up to 1 for simplicity. So, the
bound for the O(n) error term of M(r , Q; n) is

(172954Q + 26591)n
3
8 .

Now, we will bound the main terms from the formula for M(r , Q; n) by using the
following bounds from [16]:

• Bj,Q,k(−n, 0) ≤ 2k

1+log Q−1

2



π

1− π2

24

 ≤ 0.3804kQ,

• Dj,Q,k(−n,mi
j,Q,k,s) ≤ k,
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Asymptotic distribution of the partition crank 811

• 
Q|k

k≤√
n

k
1
2 ≤ 2

3Q n
3
4 ,

• sinh


24δ j

j,Q,k,s
πμ(n)
6k


≤ 1

2e
√
24δ0

πμ(n)
6k .

First, we have the following estimate.


Q|k

k≤√
n

k
1
2 ≤

 √
n

0
x

1
2 dx = 2

3
n

3
4 .

Hence, we obtain



1

Q

Q−1
j=1

ζ
−r j
Q

4
√
3i

μ(n)


Q|k

k≤√
n

B̃ j,Q,k(−n, 0)√
k

sinh


πμ(n)

6k




≤ 4
√
3

μ(n)
sinh


πμ(n)

6Q




Q|k

k≤√
n

0.3804k
1
2 Q

≤ 1.757
1

μ(n)

1

2
e

πμ(n)
6Q n

3
4

≤ 0.8785e
πμ(n)
6Q n

1
4 .

Next, by the same argument in [16, p. 35], it follows that for fixed k we have


k,s
Qk

δij,Q,k,s>0
i∈{+,−}

1 ≤ Q + 18

24
.

Similarly, we bound the other main term:



1

Q

Q−1
j=1

ζ
−r j
Q

8
√
3 sin( π j

Q )

μ(n)


k,s
Qk

δij,Q,k,s>0
i∈{+,−}

Dj ,Q,k (−n,mi
j ,Q,k,s )√

k
sinh


24δij,Q,k,s

πμ(n)

6k




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812 A. Hamakiotes et al.

≤ 8
√
3

μ(n)
sinh


24δ0

πμ(n)

6

 
k,s
Qk

δij,Q,k,s>0
i∈{+,−}

k
1
2

≤ 8
√
3

μ(n)

1

2
e
√
24δ0

πμ(n)
6

Q + 18

24
· 2
3
n
3
4

≤ (0.1924Q + 3.464)e
√
24δ0

πμ(n)
6 n

1
4 .

From [9] we get the following lower bound for p(n):

p(n) >

√
3

12n


1 − 1√

n


e

πμ(n)
6 .

We also note that for n ≥ 2,

1

1 − 1√
n

≤ 1

1 − 1√
2

≤ 3.415.

Finally, combining all the estimates, we get

|R(r , Q; n)| =

M(r , Q; n)

p(n)
− 1

Q



≤


1

p(n)
0.8785e

πμ(n)
6Q n

1
4 + 1

p(n)
(0.1924Q + 3.464)e

√
24δ0

πμ(n)
6 n

1
4

+ 1

p(n)
(172954Q + 26591)n

3
8



≤ 20.79e


1
Q −1


πμ(n)

6 n
5
4 + (4.553Q + 81.96)e(

√
24δ0−1) πμ(n)

6 n
5
4

+ 105(40.93Q + 6.292)e− πμ(n)
6 n

11
8 .

This is a sum of three terms each with similar factors. To combine this into an upper
bound which can be worked with we take the sum of all three coefficients, the highest
order exponential, and the highest power of n from the three terms and put them
together in one term. This gives the bounds in the statement of the theorem. We have
to break up the Q < 11 and Q ≥ 11 cases because that is the point at which 1/Q − 1
is overtaken by

√
24δ0 − 1. Note that the third term has far larger coefficients but also

a much faster decaying exponential term, so a lot of accuracy is lost when combining
this term with the others. 

3 Surjectivity

The crank is a function that maps the set of partitions Sn of n to the integers Z. We
can take the reduction of this map modulo Q to get a function from Sn to Z/QZ. It
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Asymptotic distribution of the partition crank 813

is natural to ask for which n this map is surjective. This is an analogue of Linnik’s
theorem on the smallest prime in an arithmetic progression. We study this question in
Theorems 1.4 and 1.5, which we now prove in turn.

Proof of Theorem 1.4 To prove that the reduction of the crank modulo Q is surjective,
it is sufficient to prove that

|R(r , Q; n)| <
1

Q
,

because this implies M(r , Q; n) > 0.
By our bounds on |R(r , Q; n)|, when Q < 11 we need

105(40.93Q + 6.292)e
−


1− 1

Q


π
6 μ(n)

n
11
8 <

1

Q
,

and when Q ≥ 11 we need

105(40.93Q + 6.292)e
−


1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8 <

1

Q
.

First assume that Q < 11. Then, to show the inequality

105(40.93Q + 6.292)e
−


1− 1

Q


π
6 μ(n)

n
11
8 <

1

Q
,

it suffices to show that

105(40.93 × 11 + 6.292)e
−


1− 1

3


π
6 μ(n)

n
11
8 <

1

11
. (3)

By a short computation, we find that (3) holds when n ≥ 263.
Hence, it follows that if Q < 11 and n ≥ 263, then

|R(r , Q; n)| <
1

Q
.

Next, we deal with the case Q ≥ 11. It suffices to show that

|R(r , Q; n)| ≤ 105(40.93Q + 6.292)e
−


1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8 <

1

2Q
,

where we replaced 1/Q with 1/2Q since we will need this inequality in Sect. 4. To
verify the inequality, it is equivalent to show that

e


1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8

> 2 × 105Q(40.93Q + 6.292). (4)
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814 A. Hamakiotes et al.

Moreover, we recall the following inequality [11, Eq. 4.5.13]

ex >


1 + x

y

y

, x, y > 0. (5)

Hence, by taking y = 3 in (5), we get

e


1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8

>
1

n
11
8


1 +


1 −


1 + 12(

1

Q2 − 1

Q
)


π

18
μ(n)

3

>
π3(24n − 1)

3
2

183n
11
8


1 −


1 + 12(

1

Q2 − 1

Q
)

3

.

By combining (4), it suffices to show that

(24n − 1)
3
2

n
11
8

>
2 × 105 × 183Q(40.93Q + 6.292)

π − π

1 + 12( 1

Q2 − 1
Q )

3 . (6)

In addition, if n ≥ 2, then we have

(24n − 1)
3
2

n
11
8

>
24

3
2 (n − 1)

3
2

n
11
8

= 24
3
2


1 − 1

n

 11
8

(n − 1)
1
8 ≥ 24

3
2

2
11
8

(n − 1)
1
8 .

Hence, by a simple calculation, if we choose the constant

CQ := (1.93 × 1059)(40.93Q2 + 6.292Q)8
π − π


1 + 12( 1

Q2 − 1
Q )

24 + 1,

then (6) holds when n ≥ CQ > 2. This completes the proof. 
Remark 3.1 From our estimation, the exponent y in (5) controls the magnitude of CQ .
Hence, it is not hard to see that we can choose the constant CQ so that CQ  Q for y
sufficiently large.

There is a different, combinatorial method which allows us to include the case that
Q is even.

We will need the following lemma.

Lemma 3.2 For n ≥ 6, the cranks of the partitions of n take on exactly the values −n
through n except for −n + 1 and n − 1.

Proof It is clear from the definition of crank that a partition λ of n cannot have crank
larger than n, since λ1 ≤ n and ν(λ) is much less than n. The crank cannot be less
than −n since o(λ) ≤ n. Say there was a partition λ with crank n − 1. Since ν(λ) is
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much less than n, it must be that o(λ) = 0 and therefore λ1 = n − 1, but this implies
λ2 = 1, which is a contradiction. Now say we have a partition λ with crank −n + 1.
If every part of λ is 1, then the crank would be −n, so we must have λ1 ≥ 2. This
implies o(λ) ≤ n − 2, so the crank can not be −n + 1.

We have shown that the crank can only take on the claimed values. We now show
that it takes on each of those values. Let 3 ≤ k ≤ n and we will construct a partition λ

of crank k. Let λ1 be k. If n − k is even, then let all the remaining parts be 2. If n − k
is odd, then let λ2 be 3 and let all the remaining parts be 2. Notice that this does not
work when k = n − 1 because 1 cannot be written as a sum of 2s and 3s. We can
also create a partition of crank −k by letting there be k 1’s, and letting the remaining
parts be 2 or 3 as before. Since k ≥ 3, we have ν(λ) = 0, and so the partition has the
desired crank. Note that once again this does not work when k = n − 1 for the same
reason as before. Now it only remains to find partitions with cranks equal to 2, 1, 0,
−1, and −2. For n ≥ 7, the following partitions work:

• n = (n − 5) + 2 + 2 + 1,
• n = (n − 3) + 2 + 1,
• n = (n − 1) + 1,
• n = (n − 2) + 1 + 1,
• n = (n − 3) + 1 + 1 + 1.

For n = 6, we also must consider the partitions 2 + 2 + 2 and 2 + 2 + 1 + 1 with
cranks 2 and −2, respectively, and for the 1, 0, and −1 cases the above partitions still
work. 
Proof of Theorem 1.5 For even Q and n ≥ Q/2+2, Lemma 3.2 implies that the crank
takes on at least Q consecutive values, so the crank maps onto each residue class. For
n = Q/2+1, no partition has crank congruent to Q/2. For n = Q/2, no partition has
crank congruent to Q/2 − 1. For lower n, no partition has crank congruent to Q/2.

For odd Q and n = (Q + 1)/2, the residues (Q ± 1)/2 are mapped onto by −n
and n, and all the other residues are mapped onto by −n + 2 through n − 2. For n >

(Q + 1)/2, the crank takes on at least Q consecutive values. When n = (Q − 1)/2,
no partition has crank congruent to (Q − 3)/2. For lower n, no partition has crank
congruent to (Q − 1)/2. Thuswe have shown that for odd Q ≥ 11 and even Q ≥ 8, the
cranks of the partitions ofn takeon everyvaluemoduloQ exactlywhenn ≥ (Q + 1)/2
or n ≥ Q/2 + 2 respectively, as desired. 

4 Strict log-Subadditivity for Crank Functions

Bessenrodt and Ono [4] showed that if a, b ≥ 1 and a + b ≥ 9, then

p(a + b) < p(a)p(b).

Also, Dawsey and Masri [5] showed the following similar result for the spt-function,

spt(a + b) < spt(a)spt(b),
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for (a, b) = (2, 2) or (3, 3).
We now prove Theorem 1.6, which is an analogous result for the crank counting

function.

Proof of Theorem 1.6 We first deal with the case Q < 11. By our bounds on
|R(r , Q; n)|, when Q < 11 we have

L(Q, n) < M(r , Q; n) < U (Q, n),

where

L(Q, n) := p(n)


1

Q
− 105(40.93Q + 6.292)e

−

1− 1

Q


π
6 μ(n)

n
11
8


,

U (Q, n) := p(n)


1

Q
+ 105(40.93Q + 6.292)e

−

1− 1

Q


π
6 μ(n)

n
11
8


.

Moreover, by 3 ≤ Q < 11 and n ≥ 263, we have

L(Q, n) > p(n)


1

11
− 105(40.93 × 11 + 6.292)e− π

9 μ(n)n
11
8


> (0.00306)p(n).

Similarly, we get

U (Q, n) < p(n)


1

3
+ 105(40.93 × 11 + 6.292)e− π

9 μ(n)n
11
8



< (1.10213 × 107)p(n).

Hence, if n ≥ 263, then we have

(0.00306)p(n) < M(r , Q; n) < (1.10213 × 107)p(n).

On the other hand, Lehmer [9] gives the following bounds for p(n):

√
3

12n


1 − 1√

n


e

π
6 μ(n) < p(n) <

√
3

12n


1 + 1√

n


e

π
6 μ(n).
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Together these give the bounds

(0.00306)

√
3

12n


1 − 1√

n


e

π
6 μ(n)

< M(r , Q; n) < (1.10213 × 107)

√
3

12n


1 + 1√

n


e

π
6 μ(n). (7)

Now, we follow the argument in [5, Sect. 6] and let b = Ca for some C ≥ 1. Then by
(7), it follows that

M(r , Q, a)M(r , Q, b)

> (0.00306)2
1

48Ca2


1 − 1√

a

 
1 − 1√

Ca


e

π
6 (μ(a)+μ(Ca)),

and

M(r , Q, a + b) < (1.10213 × 107)

√
3

12(a + Ca)


1 + 1√

a + Ca


e

π
6 μ(a+Ca).

It suffices to show that

Ta(C) > log (Va(C)) + log (Sa(C)) ,

where

Ta(C) := π

6
(μ(a) + μ(Ca) − μ(a + Ca)),

Sa(C) :=
1 + 1√

a+Ca
1 − 1√

a

 
1 − 1√

Ca

 ,

Va(C) := (1.10213 × 107)

(0.00306)2
4
√
3Ca

C + 1
.

As functions of C , it can be shown that Ta(C) is increasing and Sa(C) is decreasing
for C ≥ 1, and by combining

Va(C) <
(1.10213 × 107)

(0.00306)2
4
√
3a,

it suffices to show that

Ta(1) = π

6
(2μ(a) − μ(2a))

> log


(1.10213 × 107)

(0.00306)2
4
√
3a


+ log

⎛
⎜⎝

1 + 1√
2a

1 − 1√
a

2

⎞
⎟⎠
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= log


(1.10213 × 107)

(0.00306)2
4
√
3a


+ log (Sa(1)) . (8)

By computing the values Ta(1) and Sa(1), we find that (8) holds for all a ≥ 396.
Hence, if Q < 11 and a, b ≥ 396, then we have

M(r , Q; a + b) < M(r , Q; a)M(r , Q; b).

Next, we deal with the case Q ≥ 11. By our bounds on |R(r , Q; n)|, when Q ≥ 11
we have

L2(Q, n) < M(r , Q; n) < U2(Q, n),

where

L2(Q, n) := p(n)


1

Q
− 105(40.93Q + 6.292)e

−

1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8


,

U2(Q, n) := p(n)


1

Q
+ 105(40.93Q + 6.292)e

−

1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8


.

By the proof of Theorem 1.4, we know that if n ≥ CQ , then we have

|R(r , Q; n)| ≤ 105(40.93Q + 6.292)e
−


1−


1+12( 1

Q2 − 1
Q )


π
6 μ(n)

n
11
8 <

1

2Q
.

It follows that


1

2Q


p(n) < M(r , Q; n) <


3

2Q


p(n).

By the same argument of the case Q < 11, we need to show that for any b = Ca for
some C ≥ 1,

Ta(C) > log (Wa(C)) + log (Sa(C)) ,

where

Wa(C) := (6Q)
4
√
3Ca

C + 1
.

Moreover, by the trivial bound

Wa(C) < 24
√
3Qa,

123



Asymptotic distribution of the partition crank 819

and the same argument, it suffices to show that

Ta(1) = π

6
(2μ(a) − μ(2a)) > log(24

√
3Qa) + log

⎛
⎜⎝

1 + 1√
2a

1 − 1√
a

2

⎞
⎟⎠

= log(24
√
3Qa) + log (Sa(1)) . (9)

On the other hand, if a ≥ 2, then we get

log(24
√
3Qa) + log (Sa(1)) < log(24

√
3Qa) + log

⎛
⎜⎝

1 + 1√
4

1 − 1√
2

2

⎞
⎟⎠ < log(432Qa). (10)

Also, if a ≥ (432Q)2 ≥ (432 × 11)2, then we have

Ta(1) = π

6

16a − 1√
48a − 1

> 2 log a ≥ log a + 2 log 432Q > log(432Qa). (11)

Hence, by combining (9), (10) and (11), we can choose a, b ≥ (432Q)2 to get the
desired result. 
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