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Abstract

Freeman Dyson conjectured the existence of an unknown partition statistic he called
the crank which would explain Ramanujan’s partition congruence mod 11 just as his
rank statistic explains Ramanujan’s partition congruences mod 5 and 7. Such a crank
statistic was found by Andrews and Garvan in 1988. In this paper, we investigate
the crank counting function, which counts the number of partitions of n with crank
congruent to » mod Q. First, we obtain an effective bound on the error term in Zapata
Rolén’s asymptotic formula for the crank counting function. We then use this to prove
that the crank counting function is asymptotically equidistributed mod Q, for any
odd number Q. We also use this to study surjectivity of the crank when viewed as a
function from partitions to the integers mod Q, and to prove strict log-subadditivity
of the crank counting function. The latter result is analogous to Bessenrodt and Ono’s
strict log-subadditivity of the partition function.

Keywords Crank - Effective equidistribution - Log-subadditivity - Partition

Mathematics Subject Classification 05A17 - 11P82 - 11P83

This work was supported by Texas A&M University and NSF Grant DMS-1757872.

B Wei-Lun Tsai
wt8zj @virginia.edu

Asimina Hamakiotes
asimina.hamakiotes @uconn.edu

Aaron Kriegman
ak2313@cam.ac.uk
1 Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009, USA

Department of Pure Mathematics and Mathematical Statistics (Jesus College), University of
Cambridge, Cambridge, UK

3 Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-021-00477-w&domain=pdf
http://orcid.org/0000-0002-8747-5230

804 A. Hamakiotes et al.

1 Introduction and statement of results

A partition of a positive integer n is a non-increasing sequence of positive integers
Al > Ay > - > Ap > 0, called its parts, such that Ay + Ay + -+ + Ay = n. Let
p(n) count the number of partitions of . In 1918, Hardy and Ramanujan [8] gave the
following asymptotic formula for p(n):

2n
T\ 3

p(n) ~ 4\@”6

asn — oo.
Ramanujan [13,14] also proved the following famous congruences for the partition
function: for any / € Z=( we have

p(5l+4)=0 (mod5),
p(7l+5)=0 (mod 7),
p(1ll+6)=0 (mod 11).

Atkin and Watson [1,15] proved generalizations of Ramanujan’s congruences mod-
ulo any integer of the form 547b11¢, where a, b, ¢ € N. Ono [12] proved that there
are infinitely many new partition congruences for any prime modulus Q > 5.

Dyson [6] conjectured that Ramanujan’s congruences modulo 5 and 7 could be
explained using a function he called the rank. The rank of a partition A is defined to
be its largest part minus the number of its parts; namely,

rank(A) := A} — £.

Let N(r, Q; n) be the number of partitions of n with rank congruent to » modulo
Q. Dyson conjectured that:

e Foreachr (mod 5),

51+4
N(r.5:50 +4) = %
e Foreachr (mod 7),
71
NG, 77 +5) = @.

In 1954, Atkin and Swinnerton-Dyer [3] proved this conjecture.

Dyson observed that the rank fails to explain Ramanujan’s congruence modulo 11.
He instead conjectured the existence of another statistic which he called the crank
which would explain all three congruences. In 1988, Andrews and Garvan [2] found
such a crank. More precisely, let o(A) be the number of 1’s in A and v(A) be the number
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Asymptotic distribution of the partition crank 805

of parts of A larger than o(A). The crank of A is then defined to be

A if o(A) =
crank(A) = ! 1 o) =0,
v(A) —o(A) ifo(A) > 0.
Remark 1.1 Garvan et al. [7] found different cranks which also explain all of Ramanu-
jan’s congruences.

Let M (r, Q; n) be the number of partitions of n with crank » modulo Q. Ramanu-
jan’s congruences follow from the “exact” equidistribution of M (r, Q; n) on the
residue classes r (mod Q) for certain Q and n. Here, we show that M (r, Q; n)
becomes equidistributed on the residue classes r (mod Q) for odd Q as n — oo.
More precisely, Zapata Rolén [16] gave an asymptotic formula for M (r, Q; n) with
an error term which is O (n€). Here we refine his analysis to give an effective bound on
the error term with explicit constants. We then use this bound to prove the following
effective equidistribution theorem.

Let u(n) := /24n — 1.

Theorem 1.2 Let O < r < Q with Q an odd integer. Then we have

M@, Q:n) 1
M 2m _ L ke 0,
by g TRE@m

where when Q < 11 we have

Tum

(1L
IR(r, O: n)| < 10°(40.930 + 6.292)¢ (1-5)=2 4

and when Q > 11 we have

—(1— NN :7710))
IR(r, 0: n)| < 105(40.930 + 6.292)¢ (1-/1+12G—p) =2

1

o

It follows immediately that the cranks are asymptotically equidistributed modulo
0.
Corollary 1.3 Let 0 < r < Q with Q an odd integer. Then we have

M@, Qi) 1

pn) Q

asn — OoQ.

In the recent work [10], Masri proved a quantitative equidistribution theorem for
partition ranks (mod 2) with a power-saving error term using spectral methods and
subconvexity bounds.

Corollary 1.3 can be seen as analogous to Dirichlet’s theorem on the equidistribution
of primes among the residue classes » (mod Q) with (r, Q) = 1. Motivated by this,
we will use Theorem 1.2 to prove an analog of Linnik’s theorem which gives an upper
bound for the smallest prime in each residue class r (mod Q).
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806 A. Hamakiotes et al.

Theorem 1.4 Let Q be an odd integer and for Q > 11 we define the constant

(193 x 10%%)(40.930% + 6.2920)®

co (71—71 /1+12(é—é))24

+1. (1

Then, we have
M(r,Q;n) >0

if Q <1landn > 263, orif Q > 1l andn > Cyg.

We will also prove the following result (which includes the case that Q is even)
using a different, combinatorial argument.

Theorem 1.5 For odd Q > 11 we have
M(r,Q;n) >0
if and only if n > % For even Q > 8 we have
M(r,Q;n) >0
if and only if n > % + 2.
In a related direction, Bessenrodt and Ono [4] proved strict log-subadditivity of the
partition function. Dawsey and Masri [5] later proved strict log-subadditivity for the

Andrews spt-function. We will use Theorem 1.2 to prove strict log-subadditivity of
the crank counting function.

Theorem 1.6 Given any residue r (mod Q) where Q is odd, we have
M(r,Q;a+b) <M(r, Q;a)M(r, Q; D),

ifQ<1landa,b>3%orif Q > 11anda,b > Cg, where Cg is defined in (1).

2 Effective Asymptotic Formula for M(r, Q; n)
In [16,17], Zapata Rolén gives an asymptotic formula for M (r, Q; n). Here, we refine
his analysis and give an asymptotic formula with an effective bound on the error term.
We begin by stating a few necessary definitions.
Let
wp k= exp(ris(h, k)),
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where the Dedekind sum s (%, k) is defined by

o= Y (9)((%))

u (mod k)

Here ((+)) is the sawtooth function defined by

_x—1x1 -3 ifx eR\Z,
(@)= {o ifx € Z

Let 0 < h < k be relatively prime integers. Let 0 < r < Q be relatively prime
integers where Q is odd. Let 4’ be a solution to the congruence 7k’ = —1 (mod k)
if k is odd and hh' = —1 (mod 2k) if k is even. Let ¢y := ﬁ and ky = ﬁ Let!
be the minimal positive solution to [ = ak; (mod cy). For m, n € Z we define:

~ . Ta Wh k —mia*kih'  omi ’
Bucx(n.m) = (=% sin (—) _Ohk T R k)
C

h (mod k) SIN (%)
(h.k)=1

where the sum runs over all primitive residue classes modulo k.
For the case ¢ 1 k we define

. Ta 2mi ,
Dy cx(m,n) = (— 1)+ gin (—) E wpxe & MhEmh)
c

h  (mod k)
(h,k)=1

where [ is the solution to [ = ak; (mod cy).
To provide certain bounds, we define the following:

s {—(% +nl+id?+ 4 ifi=+
ek T ) 1olN2_ 23 I[N ip:
wenr st - =15 ifi=—,
5 1 1 N 1 1
== - — —< —,
07202 20 24" 24
and
m* = i(—a2k2 + 2laky — akycy — 1> + lcy — 2arkicy + 2lerr)
a,c.k,r " 26‘% 1 1 1€1 1 1€1 17),
_ 1
My ey = F(—azkl2 +2laky — akyey — 1% + 2cir
1
—2lrcy 4 2arkicy 4 2lcy + 20% — akjcy).
+ 1
Note that Sa,Q,k’r <& < 35
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808 A. Hamakiotes et al.

Zapata Rolén obtains an asymptotic formula for M(r, Q; n) by using the circle
method. First, he defines the generating function

Cw.q):=Y_ Y Mmnuw"q"

n=0m=—o0

where M (m, n) is the number of partitions of n with crank m. In order to use the
modular properties of this function, he plugs in a root of unity for w and studies the
coefficients of g. Additionally, he defines

conto-Eilhe)e

and uses the circle method to find an asymptotic formula for A (% n) and uses the
identity

0-1 .
M@, Q:n) = é > oA (é n) 2)

to get an asymptotic formula for M (r, Q; n). Note that A(%, n) = p(n).

Moreover, Zapata Rolén gives the following asymptotic formula for A (é, n):

i/ _ A3 Bj ok(—n,0) . 7 (n)
A(E’”) ) 2 Jk Smh( 6k )

Olk

k<y/n

n(n) o vk
Otk
8 050
ie{+,—}

x sinh (,/243; o s%}i’”) +0(n°),

which when plugged into equation (2) gives
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Ql ~
: — —r/4‘/_ Bj g x(—n,0) . <7ru(n))

M@, Qin) = p(n)+ Zc o g}; T s (T

k</n

+i Q—lgierﬁsin(%) Z Djox(=n,m} )
Q="  um - Vk
Otk
8;,Q,k,s>0
ie{+,—}

x sinth < [248 s”’glin)) + 0.

Proof of Theorem 1.2 We first break the O(n¢) error term from the calculation of
A(é, n) into six pieces: Serr, Sterrs S2err» Terr, and the contributions of error from
certain integrals which we will call X1 I, and X I,,,. Zapata Rolén provides bounds
on each of those pieces, which we can then refine and sum up to get bounds on the
error in the formula for A (2 L , n). Then using equation (2) and the triangle inequality,
we can get our desired bound on |R(r, Q; n)|.

~.

Fix odd integers j and Q. We will bound the error coming from A(é, n). Zapata
Rolén provides the following bounds:

2625 sin ()l (e2 +2(1 + | cos(FNer (1 +ent (1+1og (%))

[Serr| < 2 s
r(1—-355)0
1 Torr| < 16637 £(Q)n? |sin (%) ,
where
14+ cre” e (cy + e
£ = LE2TY | i (1 4 oy 4 T2 D,
1—e Q 2

and where the ¢; are constants defined in [ 16]. We have the approximations ¢; < 0.046,
¢y < 1.048, and ¢3 < 0.001. Also,

5., < SR+ log(SH SIVE
lerr )

71— 30

) <7‘[]>‘ eZmSO
sin | — - q
/11—

1
[S2err] < 32@2”711
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4 (%‘ + 2%) ‘sin (é)‘ (1 + log (%)) 21+
4

|Ellerr| = ( ) ’
j 27180+2ﬂ
|ZH 1 |<8< +24> sin(—) —.
err 3 0 L e_%

Now, we estimate some of the expressions in those bounds to simplify them:

sin (”—d)‘ <1,

o-1
o LH2CT) 1902,
7(1-21)0

(4+21) =3712,

L4 1,1 <nQ,
l—el [
- <2m Q.

l—e ©

To prove these last two bounds, let g(x) := 1 +, where b, x > 0. Then we have
l—e ¥

gx) = bgixz)z ek Moreover, the function h(x) := bx satisfies #'(x) = b, and in
the case of b = 7 and b = 27 we have h(1) > g(1) and #'(1) > g'(1) by a short
calculation. This implies that 2(Q) > g(Q) for all Q > 1, as desired.

In addition, we simplify the bounds given in [16]:

|Serr| < 330974,

Tore| < (590710 + 930.05)n1,
|Sterr| < 10597,

|Saerr| < 2230607,

151 Leyr| < 196507,

1251, < 1138830.

Summing these all up gives the total contribution of the O (n€) error term to A~(é ,n).
We then use equation (2) to get the contribution of the error term to M(r, Q; n).
However, after applying the triangle inequality these two bounds will be the same
except for a factor of (Q — 1)/Q, which we will round up to 1 for simplicity. So, the
bound for the O (n€) error term of M (r, Q; n) is

(1729540 + 26591)n5.
Now, we will bound the main terms from the formula for M (r, Q; n) by using the
following bounds from [16]:

2% (1+10g 251 )

2
w(1-%)

o Djox(=n,m o)<k,

e Bjoi(-n,0) < < 0.3804k 0,
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1 j 7 u(n)
y Smh( 2451,Q,k,x—”’élﬁ”)) < leVP0TG"

First, we have the following estimate.

1 v 2 3
Z k2 < x2dx=§n4.
Olk 0
k<yn

Hence, we obtain

0-1 i .
1 —rj 43 Bj gx(—n.0) . (JT/L(n))
0 §Q w(n) E sinh

Jj=1 Olk \/E 6k
k</n

4
E \/g Sinh (M)

p(n) 60
3 0.3804k2Q
Olk
k<yn

1 zuem 3

< 1.757 —e 60 p4

p(n) 2

) 1
< 0.8785¢ 62 n+%,

Next, by the same argument in [16, p. 35], it follows that for fixed k we have

1
Z 1< Q;_4 8.
k,s
Ot
8},Q,k.s>0
ie{+,—}

Similarly, we bound the other main term:

k,s
o
8lj,Q.k,x>O
ie{+,—}

0-1 8 /3sin(%) D ox(=n,m )
1 —rj sin(“g j.0.k M oks) - 7(n)
— _— h 245" —_
0 ,«Zzl O - X NG VAR ks T
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83 wu(n) 1
< o sinh <\/24a S ) > k2
i

=t

>0

k

0
Q.k
e{}

St
Js
i

3

- Sﬁlem”“{f”’ 0+18 g
~ u(n) 2 24 3
)

l/-(

< (0.1924Q + 3.464)eV 240

From [9] we get the following lower bound for p(n):

(n) £ 1_L g
pn>12n ﬁe .

We also note that forn > 2,

< 3.415.

1 — 1
e

Finally, combining all the estimates, we get

0
0.8785e i nt 4+ T(() 19240 + 3.464)eV2¥0

R(r, 03 m)| = 'M !
%)

ﬂll(") 1

p(n)
+—(172954Q + 26591)ng
p(n)

7p(n) 5

L_ Tpn
520.796(Q 1) 6 n4+(4553Q+81 96)e(m 1) /() ol

/4() 11

+10°(40.930 + 6.292)¢™ 6 n's.

This is a sum of three terms each with similar factors. To combine this into an upper
bound which can be worked with we take the sum of all three coefficients, the highest
order exponential, and the highest power of n from the three terms and put them
together in one term. This gives the bounds in the statement of the theorem. We have
to break up the Q < 11 and Q > 11 cases because that is the point at which 1/0Q — 1
is overtaken by /248, — 1. Note that the third term has far larger coefficients but also
a much faster decaying exponential term, so a lot of accuracy is lost when combining
this term with the others. O

3 Surjectivity

The crank is a function that maps the set of partitions S,, of n to the integers Z. We
can take the reduction of this map modulo Q to get a function from S, to Z/QZ. It
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Asymptotic distribution of the partition crank 813

is natural to ask for which n this map is surjective. This is an analogue of Linnik’s
theorem on the smallest prime in an arithmetic progression. We study this question in
Theorems 1.4 and 1.5, which we now prove in turn.

Proof of Theorem 1.4 To prove that the reduction of the crank modulo Q is surjective,

it is sufficient to prove that

1
R ) ) -
| (rQn)|<Q

because this implies M (r, Q; n) > 0.
By our bounds on |R(r, Q; n)|, when Q < 11 we need

1
o

_1\z )

10°(40.930 + 6.292)6‘(1 b)Enin

11
ns <
and when Q > 11 we need

1 1 e
105(40.930 + 6200y (1T 2G D) Fuw w1

< —.
0
First assume that Q < 11. Then, to show the inequality
_(1—-1\z 1
105(40.930 + 6.292)e (1-3)Fum, & o
it suffices to show that

_(1—-1\z 1

105(40.93 x 11 + 6.292)¢ (1-4) g, 0 = 3)

By a short computation, we find that (3) holds when n > 263.
Hence, it follows that if Q < 11 and n > 263, then

1
[R(r, Q;n)| < —.
o
Next, we deal with the case Q > 11. It suffices to show that

(1= 1 _1y\z
R(r. 0 m)] < 10°(40.930 + 6.292)¢ U/ F2G=8)Fuem 1 i

where we replaced 1/Q with 1/2Q since we will need this inequality in Sect. 4. To
verify the inequality, it is equivalent to show that

6(1— [i+12(F =) Fuin)

m
ns

> 2 x 10°Q(40.930 + 6.292). 4)
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Moreover, we recall the following inequality [11, Eq. 4.5.13]

X X Y
e’ > 1+; , x,y > 0. 5)

Hence, by taking y = 3 in (5), we get

6(1— /1+12(é—é))%u(n) | " N\
— (1 + (1 - \/1 F12(— — —)) EM(n)>

§ 0* 0
3

ns ns
73Q4n — 1)3 S
>—F— |1 - — - — .
183 % 0 0

By combining (4), it suffices to show that

3

(24n — 1)% 2 x 107 x 1830(40.930 + 6.292)
0 > . (6)

11 3
ns _ 1 _ 1
(n 1+ 1205 - %)

In addition, if n > 2, then we have

1 3

1 242 1
(n—D8 > —(n—1s.
2%

|

3 3 3

24n —1)2 242(n —1)2 1

Gan 11 ) > (nn ) = 24% (1 - _>
ns ns n

Hence, by a simple calculation, if we choose the constant

(193 x 10°%)(40.930% + 6.2920)®

; T\ 24
(n—rr 1+12(@—§)

0: +1,

then (6) holds when n > Cp > 2. This completes the proof. O

Remark 3.1 From our estimation, the exponent y in (5) controls the magnitude of Cy.
Hence, it is not hard to see that we can choose the constant C so that Cg =< Q for y
sufficiently large.

There is a different, combinatorial method which allows us to include the case that
Q is even.
We will need the following lemma.

Lemma 3.2 Forn > 6, the cranks of the partitions of n take on exactly the values —n
through n except for —n + 1 and n — 1.

Proof 1t is clear from the definition of crank that a partition A of n cannot have crank
larger than n, since A\; < n and v(A) is much less than n. The crank cannot be less
than —n since o(A) < n. Say there was a partition A with crank n — 1. Since v(A) is
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Asymptotic distribution of the partition crank 815

much less than 7, it must be that o(A) = 0 and therefore A} = n — 1, but this implies
A2 = 1, which is a contradiction. Now say we have a partition A with crank —n + 1.
If every part of A is 1, then the crank would be —n, so we must have A; > 2. This
implies o(A) < n — 2, so the crank can not be —n + 1.

We have shown that the crank can only take on the claimed values. We now show
that it takes on each of those values. Let 3 < k < n and we will construct a partition A
of crank k. Let Aq be k. If n — k is even, then let all the remaining parts be 2. If n — k
is odd, then let A> be 3 and let all the remaining parts be 2. Notice that this does not
work when £k = n — 1 because 1 cannot be written as a sum of 2s and 3s. We can
also create a partition of crank —k by letting there be k 1’s, and letting the remaining
parts be 2 or 3 as before. Since k > 3, we have v(A) = 0, and so the partition has the
desired crank. Note that once again this does not work when k = n — 1 for the same
reason as before. Now it only remains to find partitions with cranks equal to 2, 1, 0,
—1, and —2. For n > 7, the following partitions work:

n=mn-5+2+2+1,
n=m-3)+2+1,
n=mn-1)+1,
n=mn-=-2)+1+1,
n=n-3)+1+1+1

For n = 6, we also must consider the partitions 2 + 2 4+ 2 and 2 + 2 + 1 + 1 with
cranks 2 and —2, respectively, and for the 1, 0, and —1 cases the above partitions still
work. O

Proof of Theorem 1.5 Foreven Q andn > Q/2+ 2, Lemma 3.2 implies that the crank
takes on at least Q consecutive values, so the crank maps onto each residue class. For
n = Q/2+4 1, no partition has crank congruent to Q /2. For n = Q/2, no partition has
crank congruent to Q/2 — 1. For lower n, no partition has crank congruent to Q /2.
For odd Q and n = (Q + 1)/2, the residues (Q + 1)/2 are mapped onto by —n
and n, and all the other residues are mapped onto by —n + 2 through n — 2. Forn >
(Q + 1)/2, the crank takes on at least Q consecutive values. Whenn = (Q — 1)/2,
no partition has crank congruent to (Q — 3)/2. For lower n, no partition has crank
congruentto (Q — 1)/2. Thus we have shown that forodd Q > 11andeven Q > 8, the
cranks of the partitions of n take on every value modulo Q exactly whenn > (Q + 1)/2
orn > Q/2 + 2 respectively, as desired. O

4 Strict log-Subadditivity for Crank Functions
Bessenrodt and Ono [4] showed thatif a, b > 1 anda + b > 9, then
pla+0b) < pa)pD).
Also, Dawsey and Masri [5] showed the following similar result for the spt-function,

spt(a + b) < spt(a)spt(h),

@ Springer



816 A. Hamakiotes et al.

for (a, b) # (2,2) or (3, 3).
We now prove Theorem 1.6, which is an analogous result for the crank counting
function.

Proof of Theorem 1.6 We first deal with the case Q9 < 11. By our bounds on
|R(r, Q;n)|, when Q < 11 we have

L(Q,n) <M(r,Q:n) <U(Q,n),

where

L(Q.n) := p(n) (é —10°(40.930 + 6.292){(1‘1@)’5“‘"’”1;) ,

U(Q,n) = pn) (é +103(40.930 + 6.292)e‘(1‘5)g“<”)ns> .
Moreover, by 3 < Q < 11 and n > 263, we have
L(Q,n) > p(n) (% —10°(40.93 x 11 + 6.292)e—3“<">n‘s3) > (0.00306) p(n).
Similarly, we get

L o — T, Y
U(Q.m) < p(n) ( 5 +10°(40.93 x 11 +6.292)e™ 5 s

< (1.10213 x 107) p(n).
Hence, if n > 263, then we have
(0.00306) p(n) < M(r, Q;n) < (1.10213 x 107)p(n).

On the other hand, Lehmer [9] gives the following bounds for p(n):

3 1 P 3 1 P
i 1— —)esH™ < pn) < i 1+ — )esh®™,
12n Jn 12n Jn
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Asymptotic distribution of the partition crank 817

Together these give the bounds

3 1 .
0003062 (1 L) sum
12n ﬁ
3 1 .
< M(r, Q;n) < (1.10213 x 107)% <1 + ﬁ) SERO). o

Now, we follow the argument in [5, Sect. 6] and let b = Ca for some C > 1. Then by
(7), it follows that

M(r, Q,a)M(r, Q,b)

1 1 1 x
0.00306)> 1— — ) (1= == ) eFR@+n(Cay
. "Isca ( «/5> < «/Ca)e

and

V3 1 .
M(r, Q.a+b) < (1.10213 x 10’ (1+ )eﬁumcg)_
e )= )12(a+Ca) Ja+ Ca

It suffices to show that
T,(C) > log (V,(C)) + log (5,(C)) ,
where

T,(C) = %(M(a) + 1(Ca) — p(a + Ca),

1
Sq(C) = 11+ Ja+Ca 1 ’
(1-%) (- 7&)
7
Vo€ e (1.10213 x 107) 44/3Ca

(0.00306)2 C+1°

As functions of C, it can be shown that 7, (C) is increasing and S, (C) is decreasing
for C > 1, and by combining

1.10213 x 107
Q1013 > 100, /3,

Ya(C) < —000306)2

it suffices to show that

T,(1) = %w(a) ET)

(1.10213 x 107) 1+
log [ ———" " "4/3 log | —Y24
g °g< (0.00306)? fa)+ * (1-

ol —
1N

S-
~—
o
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B (1.10213 x 107)
= log (W4ﬁa> + log (S(1)). )

By computing the values 7, (1) and S, (1), we find that (8) holds for all @ > 396.
Hence, if Q < 11 and a, b > 396, then we have

M(r,Q;a+b) < M(r, Q;a)M(r, Q; D).
Next, we deal with the case Q > 11. By our bounds on |R(r, Q; n)|, when Q > 11
we have
La(Q,n) < M(r, Q;n) < Ua(Q, n),

where

1 _(1— 1 _1\\z
L2(0, 1) = p(n) (6—105(40.93Q+6.292)e (1-y1+125 Q))6M(n)n181>,

1 (1 T _1)\z
Ux(Q,n) = p(n) (5 +10°(40.930 + 6.292)e (1-/1+125: =) 6’“’”/5) ,
By the proof of Theorem 1.4, we know that if n > Cy, then we have

_(1— T _1)\z 1
IR(r, Q:n)| < 10°(40.930 + 6.292)¢ (1 m)o””)n% <35

It follows that

<$) p(n) < M(r, Q:n) < (%) pn).

By the same argument of the case O < 11, we need to show that for any b = Ca for
some C > 1,

Ta(C) > log (Wa(C)) +1log (S4(C)),

where

4/3Ca
C+1°

Wa(C) := (60)
Moreover, by the trivial bound

W,(C) < 24+/3Qa,
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and the same argument, it suffices to show that

1+ -
Ta(l) = (@) — 12a)) > 10g24V30a) +log [ 2
(1-%)
= log(24+/3Qa) + log (S, (1)) . ©)

On the other hand, if @ > 2, then we get
1
I+
1

(1= )

log(24+/3Qa) + log (S4 (1)) < log(24+v/3Qa) + log < log(432Qq). (10)

%
Also, if a > (4320)% > (432 x 11)2, then we have

7 16a — 1
6 /48a — 1

Hence, by combining (9), (10) and (11), we can choose a, b > (432Q)2 to get the
desired result. O

T,(1) = > 2loga > loga +21og4320 > log(432Qa). (11
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