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Dissipation-enabled hydrodynamic conductivity 
in a tunable bandgap semiconductor
Cheng Tan1,2†, Derek Y. H. Ho3,4†, Lei Wang5,6,7, Jia I. A. Li8, Indra Yudhistira4,9, Daniel A. Rhodes1, 
Takashi Taniguchi10, Kenji Watanabe10, Kenneth Shepard2, Paul L. McEuen5,6, Cory R. Dean11, 
Shaffique Adam3,4,8,12*, James Hone1*

Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has 
taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined 
theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating 
that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons 
and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of 
gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range. Away from 
neutrality, the electron-hole conductivity collapses to a single curve, and a set of just four fitting parameters 
provides quantitative agreement between theory and experiment at all densities, temperatures, and gaps 
measured. This work validates recent theories for dissipation-enabled hydrodynamic conductivity and creates a 
link between semiconductor physics and the emerging field of viscous electronics.

INTRODUCTION
More than 50 years ago, it was predicted that it was possible for 
electron transport to be described by macroscopic equations of mo-
tion similar to those in classical fluid mechanics (1, 2). This regime 
is of particular relevance to low-dimensional materials such as 
graphene, for which interactions are intrinsically strong and disorder 
can be low. Within this emerging class of hydrodynamic materials, 
ambipolar conductors with coexisting electrons and holes (such as 
semimetals or small-gap semiconductors at finite temperature) are 
of particular interest because electron-hole scattering does not 
conserve current. Therefore, ambipolar materials can, in principle, 
act as hydrodynamic conductors in which electron-hole scattering 
plays a dominant role in determining the conductivity, making 
them a promising platform for detailed experimental and theoretical 
exploration of hydrodynamic behavior. Such systems are predicted 
(3–7) to display rich new phenomena beyond the diffusive or ballistic 
transport of effectively independent carriers seen in most metals, 
have the potential for technological application [for example, in the 
generation of terahertz radiation (8)], and are a readily accessible 
bridge between strongly correlated quantum fluids observed in 
otherwise unrelated fields such as quark-gluon plasmas in ion 
colliders and ultracold atomic Fermi gasses in optical traps (9).

A notable prediction of theory is that, at precise charge neutrality, 
carrier-carrier collisions occur at a quantum critical (Planckian) 
rate kBT/ħ (10–12), which can lead to temperature-independent 
conductivity when electron-hole scattering is dominant. Planckian 
dissipation has recently been measured through terahertz spectros-
copy of graphene (13), and temperature-independent conductivity 
has been observed in suspended bilayer graphene (14). However, 
the former study required optical excitation of carriers to observe 
dominant electron-hole scattering, while the latter yielded inconsistent 
results across samples and the temperature range was limited to 
100  K and below. Therefore, there still exists no experimental 
platform that shows intrinsic hydrodynamic conductivity over a 
wide temperature range with sufficient repeatability to validate 
theoretical models.

The behavior of hydrodynamic conductors away from charge 
neutrality is less well understood. An observed scaling of conductivity 
with chemical potential in suspended bilayer graphene was initially 
interpreted as evidence of electron-hole–limited conductivity away 
from neutrality (14). However, from a first-principles viewpoint, 
electron-hole scattering cannot affect the net current away from 
perfect neutrality. Instead, more recent theory has pointed to the 
importance of interaction between electron-hole scattering and 
momentum-nonconserving (dissipative) scattering from defects and 
phonons. While these mechanisms might naively be expected to 
add independently to electron-hole scattering as encapsulated in 
Matthiessen’s rule, theory instead predicts that a more complex 
interplay between these processes determines conductivity, in what 
has been described as a dissipation-enabled hydrodynamic regime 
(11, 12). This theory has not yet been experimentally tested. Last, we 
note that hydrodynamic conductivity is completely unexplored 
(theoretically or experimentally) for gapped materials.

RESULTS AND DISCUSSION
Here, we adopt the two-fluid formalism of (12), which assumes that 
electrons and holes each form a fluid in local equilibrium, a condi-
tion that holds in the hydrodynamic regime. The two-fluid model 
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reproduces a numerical solution of the full quantum Boltzmann 
equation (15) and is largely in agreement with the three-mode 
ansatz of (11). For simplicity, we assume that the electron and hole 
bands are parabolic with the same effective mass—a standard 
approximation for many semimetals including bilayer graphene. 
While the conductivity predicted by this model is in general a com-
plicated function of the carrier densities and relaxation times (see 
the Supplementary Materials), a simple picture emerges in the limit 
0 ≪ dis, where 0 is the electron-hole relaxation time, and dis is the 
relaxation time from dissipative mechanisms. We find

	​  = ​   4 ​n​ e​​ ​n​ h​​ ─ (​n​ e​​ + ​n​ h​​) ​  ​ ​e​​ 2​ ─ 
​m​​ *​

 ​ ​​ 0​​ + ​ ​(​n​ e​​ − ​n​ h​​)​​ 2​ ─ (​n​ e​​ + ​n​ h​​) ​  ​ ​e​​ 2​ ─ 
​m​​ *​

 ​ ​​ dis​​​	 (1)

where ne and nh are the densities of thermally excited electrons and 
holes, and m* is the effective mass.

As depicted in Fig. 1, this equation has a simple physical inter-
pretation, in which the first and second terms describe the relative 
and center-of-mass motion, respectively, of the electrons and holes 
[we note that a similar decoupling between relative and center-of-
mass motion was conjectured to explain the  ∼ T2 dependence of 
the bulk conductivity of titanium disulfide as a possible signature 
of electron-hole–dominated scattering (16); however, unlike the 
present case, the conductivity arising from the relative motion is 
neither temperature independent nor universal, and comparisons 
between theory and experiment are complicated by imperfect 
sample stoichiometry disagreeing by over an order of magnitude]. 
The conductivity due to relative motion is limited by Coulomb drag 
with relaxation time 0 and is maximized at charge neutrality (ne = nh). 
Close to charge neutrality, this term can be expressed as 0 exp 
[−(1/3)(/(kBT))2], where  is the chemical potential and kBT is the 
product of the Boltzmann constant and temperature (see eq. S14 for 
the more general case). Here, 0 = (e2/h) × 8 log (2)/0, where h 
is Planck’s constant and 0 ∼ 0.2 is a dimensionless constant that 
characterizes the electron-hole coupling strength (10–12). We high-
light that this temperature-independent hydrodynamic conductivity 
0 not only is independent of the degree of disorder showing no 

sample-to-sample variation [similar, e.g., to mesoscopic universal 
conductance fluctuations (17)] but also is insensitive to materials 
parameters such as m* in the strongly interacting limit (see section 
S6 for detailed discussion).

The center-of-mass motion is described by a Drude model for a 
plasma with charge density −(ne − nh)e, mass density (ne + nh)m*, 
and momentum-nonconserving scattering time dis. This term is 
zero at charge neutrality and equivalent to the conventional Drude 
conductivity in the unipolar regime. Together, Eq. 1 captures the 
full crossover from the universal behavior at charge neutrality to 
nonuniversal behavior away from charge neutrality.

We next establish that ultraclean bilayer graphene encapsulated 
in hexagonal boron nitride (hBN) can act as a model system to com-
pare theory to experiment. Graphene has emerged in recent years as 
an excellent platform for the study of hydrodynamics (13, 18–20) 
due to its low disorder, weak electron-phonon coupling, and strong 
carrier-carrier interactions. Bilayer graphene has electron and hole 
bands that are well described by hyperbolic bands, with dispersion 
​​ϵ​ ±​​(k ) = ± ​√ 

____________________
  ​(​ħ​​ 2​ ​k​​ 2​ / (2 ​m​​ *​ ) )​​ 2​ + ​( / 2)​​ 2​ ​​, where ± denotes the conduc-

tion and valence bands with effective mass m* ≈ 0.03  me, and a 
bandgap  that is tunable by an out-of-plane electric field. It is even 
better suited for the study of hydrodynamic conductivity than 
monolayer: The hydrodynamic regime is 1000× less sensitive to dis-
order at low temperature and should exhibit no high-temperature 
cutoff due to weaker coupling between electrons and optical pho-
nons (10). hBN encapsulation (21) provides disorder approaching 
that of suspended graphene while suppressing flexural phonons and 
providing a wider range of sample geometry. Dual-gated structures 
offer independent tuning of carrier density and bandgap.

For this study, five dual-gated devices with Hall bar geometry 
and channel size from 2 to 10 m were fabricated, all of which 
showed substantially identical behavior. Low-temperature conduc-
tivity and Hall effect measurements (fig. S2) were used to calibrate 
top and bottom capacitances, allowing calculation of  and  as a 
function of the top and bottom gate voltages using the hyperbolic 
band structure (see Materials and Methods). Using this calibration, 
we measured the conductivity  for gapless bilayer graphene as a 
function of temperature for  = 0 and as a function of  at a series of 
fixed temperatures. This was then repeated for different values of .

Figure 2A compares experiment to literature estimates of hydro-
dynamic, phonon-limited, and impurity-limited conductivity for 
the gapless case ( = 0) at  = 0. At this point, the system is charge 
neutral (ne = nh), and free carriers are generated solely by thermal 
excitation, with ne, h ∝ T. The temperature-independent hydrody-
namic conductivity is given by 0 as discussed above (where the 
range in values for 0 in the theoretical literature does not arise 
from any expected variation in the experimental value but rather 
from the level of approximation in the calculation). The scattering 
time due to acoustic and substrate polar optical phonons has been 
calculated numerically using standard expressions available in the 
literature [e.g., (22, 23); see section S3.2]. Unlike the case of mono-
layer graphene, acoustic phonon scattering is dominant over optical 
phonons at all temperatures and leads to scattering time of  = 
(ackBT)−1ħ, where ac is the (temperature- and density-independent) 
bilayer graphene electron-phonon coupling strength (10) that varies 
as the square of the deformation potential D. The shaded region 
shows conductivity for the reported values of ac in the literature that 
correspond to D between 15 and 30 eV. Scattering from charged 
impurities was calculated using the standard expression (24), yielding 
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Fig. 1. Schematic of dissipative hydrodynamics. In the limit of strong Coulomb 
interactions 0 ≪ dis, the two-fluid model decomposes into two additive compo-
nents (see Eq. 1). The relative motion between electrons and holes (A) is the universal 
Coulomb drag that dominates at charge neutrality. Away from neutrality, it decays 
as the number of minority carriers. The center-of-mass motion (B) is the nonuniversal 
linear response of the collective electron-hole plasma under an electric field and 
reduces to the usual Drude conductivity far from neutrality. Together, these two 
components fully describe the dissipation-enabled hydrodynamics, giving a smooth 
crossover from universal to nonuniversal behavior as carrier density is tuned away 
from neutrality.
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a scattering time imp that is nearly temperature and density inde-
pendent (within 20%), leading to conductivity that increases linearly 
with temperature. imp is inversely proportional to the charged impurity 
density nimp, which can be estimated from Hall effect measurements to 
fall within the range 5 × 109cm−2 < nimp < 5 × 1010 cm−2. See section S3 
for a detailed discussion of all the relevant scattering mechanisms.

The solid points in Fig. 2A show data for three different devices. 
All show identical, constant conductivity with a best fit value of 
(24.7 ± 0.2)  e2/h over a wide temperature range of 50 to 500  K, 
which falls within the range for electron-hole–limited conductivity. 
This finding confirms the earlier observation in suspended bilayer 
graphene and extends the temperature range by a factor of 5. The 
magnitude of the conductivity falls well outside the range for acoustic 
phonon scattering. Likewise, temperature-independent conductivity 
cannot be explained by charged impurity scattering; however, we 
note that the observed downturn in conductivity below 50 K is con-
sistent with the calculated impurity-limited conductivity and that 
the conductivity at high density (shown below) matches predictions 
for acoustic phonon scattering. We thus conclude that, between 
50 and 500 K, the charge-neutral conductivity is determined by 
electron-hole scattering, and we find experimentally that 0 = 0.225 
± 0.002, indicated by the solid line in the figure.

We next consider the behavior away from charge neutrality by 
plotting () for two fixed temperatures (Fig. 2B). The dissipative 
hydrodynamic theory successfully describes the transition between 
the hydrodynamic regime near  = 0 and the dissipative regime at 
large ∣∣. In contrast, combining electron-hole scattering with 
phonon/impurity scattering through Mattheissen’s rule underesti-
mates the conductivity at intermediate , which violates Kohler’s 
theorem (25); this discrepancy becomes stronger at higher tempera-
ture. This analysis already confirms that (i) gapless bilayer graphene 
at  = 0 displays sample-independent hydrodynamic conductivity 
limited by electron-hole scattering at the Planckian rate 1/0 = 
0kBT/ħ ∼ kBT/ħ (26) over a wide temperature range up to and ex-
ceeding room temperature and (ii) its conductivity away from charge 
neutrality cannot be accounted for by pure electron-hole scattering 
or by including independent scattering from phonons/impurities.

We next extract universal Coulomb drag and dissipative contri-
butions to the conductivity (Eq. 1) from the data. At any tempera-
ture, we can match the experimental data () using the previously 
determined value 0 = 0.225 and two fitting parameters, e,dis and h,dis, 
which represent the dissipative (phonon + impurity) scattering 
time for electrons and holes, respectively. The observed electron-hole 
asymmetry in the conductivity data is consistent with previous 
experiments (27) and necessitates fitting separately for electrons 
and holes. Following Eq. 1, we can obtain the dissipative compo-
nent (dashed lines in Fig. 3A). This dissipative component collapses 
onto a single curve when acoustic phonon scattering dominates 
over impurity scattering, as is seen above 100 K in these devices. 
This collapse was previously attributed to electron-hole scattering 
(14). We next subtract the dissipative component from the total 
measured conductivity. As seen in the figure, the subtracted experi-
mental data collapse onto the theoretical curve, revealing the uni-
versal behavior of electron-hole Coulomb drag scattering as a 
function of carrier density and temperature. At high temperature 
where the hydrodynamics is stronger, the agreement is excellent. To 
our knowledge, this universal electron-hole scattering contribution 
to the hydrodynamic conductivity has not been demonstrated pre-
viously, in either the theoretical or experimental literature.

The extracted values of dis(T) can be used to separately determine 
the phonon and impurity contributions to the dissipative scattering. 
To do so, we plot ​​​e/h,dis​ 

−1 ​​  versus temperature (Fig. 3B). Because ​​​dis​ 
−1 ​

(T ) = ​​ ac​​ ​k​ B​​ T / ħ + ​​imp​ −1 ​​  (see the Supplementary Materials for details), 
a line fit yields ac from the slope and imp from the intercept. Following 
this procedure, we obtain ​​​ac​ 

e  ​  =  0.030 ± 0.008​, ​​​ac​ 
h ​  =  0.041 ± 0.008​, 

and ​​​imp​ −1 ​  =  0.2 ± 0.2​ ps−1. The derived parameters are consistent 
with theoretical calculations and other experimental estimates in 
the literature as well as other independent measurements on our 
samples (see section S4 for full details). The three parameters above, 
together with the value of 0 = 0.225 determined earlier, are suffi-
cient to reproduce the entire (, T) dataset in the hydrodynamic 
regime. To illustrate this, Fig. 3C plots  versus /kBT for four 
different temperatures. The solid curves, generated by using only these 
four global parameters, show excellent agreement with the data.
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Fig. 2. Robust hydrodynamic conductivity in bilayer graphene. (A) Measured charge neutral conductivity as a function of temperature for the gapless case for three 
devices (symbols). The green-shaded window shows the expectation from the theoretical literature for the electron-hole–limited conductivity 0.15 < 0 < 0.35 (10–12). 
Similarly, the blue region represents literature estimates of phonon-limited conductivity 0.03 < ac < 0.11 (32–34), and red for impurity-limited conductivity 0.8 ps < imp 
< 8 ps, corresponding to a charged impurity density range of (0.5 − 5) × 1010cm−2 (18, 19, 35). The solid line is the best fit for the electron-hole–limited conductivity 0 = 0.225 
± 0.002. (B) For a given temperature, the experimental data (symbols) can be fit using the dissipative hydrodynamic theory (Eq. 1, solid lines) where, to account for a slight 
electron and hole asymmetry in the data, we allow for dis to be different for electrons and holes. The dashed lines show a fit using a phenomenological “Matthiessen’s 
rule” where the resistance channels are added together in series. The disagreement with experiment shows that the momentum-conserving and momentum-nonconserving 
scattering do not act independently. In addition, the Matthiessen’s rule conductivity is below the experimentally observed values, which is unphysical.
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We now address the effect of a bandgap. We hypothesize that 
gap-induced changes in transport scattering times are dictated by 
changes to the carrier density and group velocity rather than changes 
to the universal electron-hole coupling strength 0. In this case, 
both terms in Eq. 1 are suitably modified. The thermally activated 
carrier densities ne and nh become functions of both /kBT and 
/kBT, and we find that () is obtained from the gapless  by a 
multiplicative function of /kBT (see section 5.3). Because for  = 0, 
kBT and  are the only remaining energy scales [the Coulomb energy 
drops out because it is present in both eh() and 0], the normal-
ized conductivity for the model hyperbolic band structure collapses 
as a function of /kBT

	​​ 
​​ ​σ​ eh​​(Δ) ─ ​σ​ 0​​ ​   =  1 + ​  1 ─ log(2) ​​[​​log​(​​cosh​(​​ ​  Δ ─ 4 ​k​ B​​T ​​)​​​)​​−​

​    
​​  Δ ─ 4 ​k​ B​​T ​ tanh​(​​ ​  Δ ─ 4 ​k​ B​​T ​​)​​ − ​ 1 ─ 8 ​ ​​(​​ ​  Δ ─ ​k​ B​​T ​​)​​​​ 

2
​ exp​(​​ − ​  5Δ ─ 8 ​k​ B​​T ​​)​​​]​​​

​​	 (2)

This temperature-mediated insulating-to-conducting crossover 
function is completely different from the usual Arrhenius behavior 
 ∼ exp (−/2kBT) seen in conventional disorder-limited semi-
conductors within the gap (although it mimics Arrhenius behavior 
at the lowest temperature). While this crossover function is specific 
to our model of two hyperbolic bands, it is only slightly modified for 
different band structures (see section S6.2 for details). Making use 
of the relationship between the top and bottom gates and  (see 
Materials and Methods), we plot the resulting function of kBT/ 
(solid line) in Fig. 4C alongside the experimental data (dots) of 
Fig. 4B (omitting the T < 20 K portion that lies in the impurity-
limited regime) replotted as a function of kBT/. As predicted, the 
experimental data collapse onto a single curve. The collapse of the 
experimental data validates our assumptions about 0 and provides 
strong evidence that transport in bilayer graphene remains electron-
hole–limited even as we move deep into the insulating regime.

Having validated the dissipative hydrodynamics model, it is now 
possible to quantitatively map out the phase space for hydrodynamic 
conductivity. To do this, we calculate the net effect of electron-hole 
scattering by subtracting the conductivity (Eq. 1) from the conduc-
tivity calculated with only phonon and impurity scattering. We plot 
the ratio of this value to the total conductivity in Fig. 5, for the 
zero-gap case and for the case with  = 52 meV. As expected, 
electron-hole interactions dominate transport near charge neutrality—
even in the presence of a bandgap—with the regions of dominance 
expanding as temperature increases.

Our results confirm that an intuitive model (as captured in 
Eq. 1) provides a complete description of the conductivity of bilayer 
graphene over a wide range of temperatures, carrier densities, and 
gap sizes. Our ultraclean samples are dominated by electron-hole 
scattering achieving both the first room-temperature hydrodynamic 
conductor including confirmation of Planckian dissipation and the 
first realization of a hydrodynamic semiconductor whose proper-
ties do not depend on material-specific parameters like the effective 
mass. We emphasize that our hydrodynamic theory can be easily 
adapted to other systems with different band structures, electron-
phonon coupling, or disorder. For example, we find that the hydro-
dynamic conductivity seen here is suppressed for nimp = 1011 cm−2 
and disappears completely for nimp = 1012 cm−2. The need for low 
disorder explains why the hydrodynamic regime went unexplored 
for so long: The required disorder level of nimp ∼ 1010 cm−2 (i.e., 
dis ∼ 4 ps) is only achievable in suspended samples (dielectric con-
stant  ∼ 1) or hBN-encapsulated samples with graphite gates ( ∼ 4). 
However, once strong hydrodynamics is achieved (i.e., dis ≫ 0 and 
m*(e2/)2/T ≫ 1), then the hydrodynamic properties will be uni-
versal and material independent (see the Supplementary Materials). 
We therefore expect that these insights should be applicable to 
many ambipolar two-dimensional systems with low disorder and 
strong electron-hole interactions including gapped monolayer 
graphene, twisted bilayer graphene, narrow-gap semiconductors 
and semimetals, and optically excited electron-hole fluids.
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Fig. 3. Ambipolar hydrodynamic conductivity comprises a universal and a dissipative contribution. (A) The decay of the universal component of the hydrodynamic 
conductivity away from neutrality extracted from the experiment (symbols) agrees with the theoretical calculations (solid line). The nonuniversal dissipative contribution 
to the hydrodynamic conductivity is also shown (dashed lines). The sum of the universal and dissipative contributions gives the solid lines in Fig. 2B. (B) The dissipative 
scattering rates ​​​e/h,dis​ 

−1  ​​ extracted at different temperatures are used to obtain a single set of four global fit parameters [0 = 0.225 ± 0.002 and ac = 0.030 ± 0.008 for 
electrons, ac = 0.041 ± 0.008 for holes, and ​​​imp​ −1 ​  =  (0.2 ± 0.2)​ ps−1]. These four fit parameters are used in the hydrodynamic theory lines in (C). (C) Zero-gap conductivity 
measurements (symbols) as a function of  (meV) for T = 50,100,175, and 300 K. The data are in excellent agreement with hydrodynamic theory developed in this work 
(solid lines). For the rest of this work, the same set of four global fit parameters mentioned in (B) is used consistently across the full range of carrier densities, temperature, 
and bandgaps.
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As a room-temperature hydrodynamic conductor, bilayer graphene 
is an ideal model system for studying more complex hydrodynamic 
behavior—including effects of viscosity, flow through constrictions, 
collective sound modes, high-frequency magnetotransport, and 
shockwaves in supersonic flow—via a variety of techniques. Specifi-
cally, our experimentally measured values for the electron-hole 
scattering allow us to conclude that this platform should host more 
than a factor of 2 larger violation of the Wiedemann-Franz law 
compared to monolayer graphene (19), a large frequency window 
where one might observe electron-hole sound waves at temperatures 
extending to room temperature and beyond (28), and an ideal 
system to explore the recently found hydrodynamic spin generation 
effect (29) for applications in semiconductor spintronics, thereby 
combining semiconductor physics with viscous electronics.

MATERIALS AND METHODS
Heterostructure devices were fabricated with the van der Waals 
assembly technique (30). To briefly summarize, a transfer substrate 
of polypropylene carbonate–coated polydimethylsiloxane is used to 
pick up the top layer of exfoliated hBN, which is then used to pick 

up the subsequent layers of the heterostructure. Once the hetero-
structure is assembled, it is transferred to the substrate of interest 
and annealed in vacuum (∼10−8 Torr) at 350°C. Depending on the 
gating and contact configurations of interest, different processing 
steps of electron beam lithography (NanoBeam nB4), etch, and 
electron beam evaporation are used to etch and define the hetero-
structure into a dual gated device with multiple terminals for Hall 
measurements, as outlined in the Supplementary Materials. Devices 
were then wire-bonded to a dual-inline package for measurement. 
An optical image of one device is shown in fig. S1.

Low-temperature to room-temperature measurements were mea-
sured in liquid helium cryogenic systems capable of temperatures as 
low as 1.2 K and magnetic fields as high as 14 T. High-temperature 
measurements were done in a cryostat with a heating stage for 
elevated temperatures. Device gates were biased with Keithley 2400 
and Yokogawa GS200 DC source meters. The device current and 
voltages were measured with Stanford Research System 830 lock-in 
amplifiers. The conductivity measurements are performed at 
currents ∼10 to 100 nA, well within the range in which electrons 
may be considered to be in thermal equilibrium with the lattice even 
in the presence of strong electron-hole scattering (19).

−60 −40 −20
0

100

200

300

400

500

600

700

0 20 40 60

σ 
(e

2 /h
)

µ (meV)

T
50 K
100 K
175 K
300 K

∆ = 52 meV

T (K)B C

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 0 102 4 6 8

µ 
= 
0/

µ 
= 
0(∆

 =
 0
, T

 =
 1
00
 K
)

0 50 100 200 250150 300

kBT (meV) kBT/∆

T = 20–300 K 

Experiment
Theory
Arrhenius fit

∆ ≠ 0  50 meV 

|∆|
0 meV 

∆n = 0

A

Fig. 4. Hydrodynamic semiconductor. (A) Representative gapped conductivity measurements (symbols) as a function of  (meV) for T = 50,100,175, and 300 K. The data 
are in excellent agreement with hydrodynamic theory developed in this work (solid lines). The same set of four global fit parameters has been used consistently to fit the 
full range of carrier densities, temperature, and bandgaps (additional data for  = 13,28, and 36 meV are shown in the Supplementary Materials). (B) Normalized 
charge-neutral conductivity as a function of kBT (lower x axis) and T (upper x axis) for varying . The color gradient denotes the magnitude of ∣∣. (C) Normalized 
charge-neutral conductivity as a function of kBT/ for temperatures from 20 to 300 K. The data collapse onto a single curve are in agreement with the theoretical prediction 
(solid line) of Eq. 2. The color scale for the data in (C) matches that in (B).

−50 0 50
 (meV)

50

100

150

200

250

300
T
 (K

)

0

1

2

3

4

5

−50 0 50
 (meV)

50

100

150

200

250

300

T
 (K

)

σtotal < e
2/h

∆ = 0 meV ∆ = 52 meV 

∆σ/σtotalBA

Fig. 5. Phase space for hydrodynamic conductivity. Calculated ratio of  = ac + i − total to total, for  = 0 (A) and 52 meV (B). Contour lines demarcate integer values, 
incrementing from 1. The shaded area in (B) shows the insulating regime where total < e2/h. The degree to which electron-hole scattering dominates transport remains 
unchanged by the bandgap.

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 19, 2022



Tan et al., Sci. Adv. 8, eabi8481 (2022)     15 April 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 7

For the dual-gated devices used in this study,  and  can be 
independently controlled if the top and bottom gate capacitances 
are known. Therefore, we characterize the device by mapping the 
resistance as a function of top and bottom gate voltages (fig. S2A). 
The peak at  = 0 follows a diagonal line whose slope is the ratio of 
the two capacitances. This is combined with Hall effect measurements 
to determine each capacitance individually, allowing us to define 
two experimental parameters: the interlayer potential energy differ-
ence ext, which sets ; and an effective voltage Veff, which tunes  
at constant ext. For the range considered in this work, ext ≈ 2.6 
as determined experimentally from Arrhenius fittings, in good 
agreement with tight-binding models (31). The inset in fig. S2D shows 
the induced carrier density n determined from low-temperature Hall 
effect measurements, taken along contours of fixed ext = 0,150 meV, 
as depicted in fig. S2C. These measurements confirm that (i) n 
increases linearly with Veff; (ii) the samples are in the low-disorder 
limit with charge disorder below ∼3 × 1010cm−2; and (iii) a gap 
opens between the electron and hole branches for nonzero ext. At 
higher temperatures, the Hall data show thermal excitation of elec-
trons and holes (fig. S8). Details of device characterization and determi-
nation of carrier density, chemical potential, and bandgap are 
provided in the Supplementary Materials (sections S5.1 and S5.2).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi8481
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