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For primitive nontrivial Dirichlet characters x1 and 2, we study the weight zero newform
Eisenstein series Ey, y,(z,s) at s = 1. The holomorphic part of this function has a
transformation rule that we express in finite terms as a generalized Dedekind sum. This
gives rise to the explicit construction (in finite terms) of elements of H!(T'o(NV), C). We
also give a short proof of the reciprocity formula for this Dedekind sum.
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1. Introduction
1.1. Background and statement of result

Let x1,x2 be primitive Dirichlet characters modulo ¢i,q2, respectively, with
x1Xx2(—1) = 1. The weight zero newform Eisenstein series attached to y; and x2 is
defined (initially) as

1 (229)°x1(c)x2(d)
Evixe(2,8) =5 Z gz +d= Re(s) > 1.
(e,d)=1
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Here, E,, ,, is an automorphic form on the congruence subgroup I'g(g1¢2) with
central character v = x1xz. Precisely, for all v = (‘; Z) € To(q192),

EX17X2(72’S) = ¢(7)EX1,X2<273)7 (1'1)

where 1 (y) = ¢(d). Moreover, E,, ,, is an eigenfunction of all the Hecke operators
(see (24)), which indicates why it is called a newform. We refer to [I5] for the
properties of the newform Eisenstein series used in this paper.

The classical Kronecker limit formula relates the constant term in the Laurent
expansion of Eq 1(z, s) at s = 1 to logn, where 7 is the Dedekind n-function given by

_ 7rzz/12 H 27rznz

For v = (¢ Z) € Ip(1), with ¢ > 0, logn obeys the transformation formula

logn(vz) = logn(z) + mi (%j + s(—d, c)) —log(—i(cz + d)),

where s(h, k) is the classical Dedekind sum given by
k—1
r [ hr hr 1
h,k) = === —-=]-
=35 (7|5 -3)

See [I] for more background on the n-function and the classical Dedekind sums.
Consider the “completed” Eisenstein series defined by

gL -
EXl,Xz(Z’S) - T(X?) F( )L(2 7X1X2)EX1,X2( s ) (12)

Here, 7 denotes the Gauss sum given by 7(x) = >_,,noa ) X(12)€q(n), Where e4(n) =

e(n/q), e(x) = exp(2miz), and x is a Dirichlet character modulo ¢. The Fourier
1 x» is conveniently stated in [I5] (see also [I0]). When q1,q2 # 1,
the Fourier expansion simplifies as

E}, o (2,8) = 205 ) Avioa (n s)e(na) K,y (2x|nly), (1.3)
n#0

where K, is the K-Bessel function and

expansion for E7

M (08) = velmm) Y- ulwo) (2) (1.4

ab=|n|
The Fourier expansion gives the analytic continuation of EY, Xz( z,8) to s € C. In
particular, there is no pole at s = 1, and ([L3)) specializes as

E;I Xz( D= frax:(2) + X2(71)7X—1,X—2(Z)7 (1.5)

where
o0

Fanae) = 3 2oz, (1.6

n=1
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using K /o(2my) = 271y~ 1/2 exp(—2my). Because E}, \,(#,5) has no pole at s = 1,

(T3) is the analogue of the Kronecker limit formula and the function fy, , is the
analogue of logn.
Define

Px1 xa (7’ z) = Ox1xz (7) = thXz (72) - 1/1(7)fX1,X2 (Z)v
for v € I'g(g1¢2) and z € H; in Lemma [21] we show that ¢,, , is independent of z.

Definition 1. Let xi,x2 be primitive Dirichlet characters of conductors g, g2,
respectively, with ¢1,¢2 > 1, and x1x2(—1) = 1. For v € T4(q1¢2), define the
Dedekind sum Sy, ., associated to the newform Eisenstein series F,, y, by

Sna = "% ). (1.7

Let By denote the first Bernoulli function given by

1
x—|z] —= ifxeR\Z,
Bi(z) = 2

0 if x € Z.

The first main result in this paper is an evaluation of Sy, ,, in finite terms.

Theorem 1.1. Let x1,x2 be primitive Dirichlet characters of conductors qi,qs,

respectively, with qi1,q2 > 1, and x1x2(—1) = 1. Let v = (a b

. d) € To(qrqa). For

c>1, then

SaM= > > x )Bl( )31 (ﬁ + %) . (18)

j (mod ¢) n (mod q1) o«

Our second main result gives a simple proof of the following reciprocity formula.

Theorem 1.2. For vy = (cq?qz Z) € To(q1qe), let v = (_bjlqz ) eTolqae). If xa
and x2 are even, then

SXl»Xz (7) = SX27X1 (Py/)' (19)

If x1 and x2 are odd, then

Suune(1) = =S () + (1= ) DL L1 5L xa). (L10)

The main step in the proof of Theorem is to study the action of the Fricke
involution wgy, ¢, = ( q10q1 Bl). Since Ey, y, is a pseudo-eigenvector of all the Atkin—
Lehner operators (see [I5] Sec. 9]), it seems plausible that an adaptation of the
proof can give a family of reciprocity formulas, one for each Atkin-Lehner operator.

Many authors have investigated generalized Dedekind sums arising from various
types of Eisenstein series. Goldstein [§] studies the Eisenstein series attached to

cusps for the principal congruence subgroup I'(N). Nagasaka [I3] and Goldstein
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and Razar [9] investigate functions essentially equivalent, in our notation, to fy ;
they derive the transformation properties of f, , (including the reciprocity formula)
by relation to the Mellin transform of the product of Dirichlet L-functions instead
of via properties of Eisenstein series.

The generalized Dedekind sums attached to pairs of Dirichlet characters have
appeared in the literature in connection with certain Eisenstein-type series. Berndt
[3, Sec. 6] defines generalized Dedekind sums which essentially correspond to the
right-hand side of (L)) when ¢; = 1 or g2 = 1. Berndt derives properties of his
Dedekind sums using a different variant of Eisenstein series than what is used in
this paper; Berndt’s Eisenstein-type series have more complicated transformation
properties than E,, , (compare [2] Theorem 2] to (II])). Many authors have stud-
ied generalized Dedekind sums, such as [Bl 6 [12] [14], based ultimately on Berndt’s
transformation formulas.

Reciprocity formulas for variants of Sy, y,,
X1, X2 have appeared in [6]. However, it appears that Theorem [[2] is new (e.g.,
[6, Theorem 1] excludes the case p = 1 which would correspond to Theorem [[2)).

In Sec.[0] we connect Sy, y, to the Eisenstein component of the Eichler-Shimura

with general pairs of characters

isomorphism in weight 2.

2. Basic Properties of S, .,

Lemma 2.1. The function ¢y, y, s independent of z.

Proof. Since E . (vz,1) = v(V)E, ,, (2,1) and EI  (2,1) = fyx(2) +

_ X1:X2 X1,X2 X1,X2
X2(—1) fx755(2), it immediately follows that

P e (7, 2) = =x2(= 1)z (7, 2)- (2.1)

Since ¢y, y, is holomorphic and ¢ . is antiholomorphic, ¢y, y, must be constant
in z. O

For later reference, we point out a symmetrized form for ¢,, ,, following from

@D):
Fras () = 5(Bxas ()~ X2~ Dz (). (22)

Lemma 2.2. Let 71,72 € To(q1g2). Then

Sx1.x2 (7172) = Syix (1) + ¢(71)SX1,><2 (72)- (2.3)

Remarks. It is obvious from the definition that Sy, ,(v) = 0ify = ((1) 1), fornez,
and consequently Sy, y,(7) only depends on the lower row of 7 (or, alternatively,
the first column of ).

Let G = I'o(q1g2) and M = C, and consider the action .z of G on M given
by 7.z = 1(v)z. Note G acts via automorphisms on M (as a module). With this
notation, Lemma [Z 2] shows that Sy, , is a 1-cocycle (or a crossed homomorphism)



Dedekind sums arising from newform FEisenstein series 2133

for this group action of G on M. Hence, Sy, , gives rise to an element of H'(G, M).
In particular, if ¢ is trivial then H'(G, M) = Hom(I'(q1g2),C) (i.e. Sy, » is a
group homomorphism). Note also that ¢ is trivial on I'1(¢1¢2) so Sy, .y, may always
be viewed as an element of Hom(I'1(¢1¢2), C).

Proof. Since 1 is multiplicative, and by Lemma 21l we have

Pxr x2 (1172) = Txixe (71722) — ¢(’Yl)fX1,Xz (722)

‘i’xl,xg('yl)
+w(71) (le,Xz (722) - ¢(’Y2)f><1,><2 (Z)) :
¢X1,X2('Y2) O

Let T}, be the Hecke operator acting on weight 0 periodic functions, with char-
acter x (cf. [IIl, (6.13)]), defined by

T f)(2) = % Yox@) Y f (az;b)'

ad=n b (mod d)

It is easy to check that

%
T"EX1>X2

(sz) - >‘X1»X2 (TL,S)E* (275)7 (24)

X1,X2

for any n > 1. We remark in passing that

Tofxa e = Maxe (n, 1)f><1,><zv (2.5)

which follows immediately from (CH) and the fact that the Hecke operators preserve
holomorphicity (and anti-holomorphicity).

3. Proof of Theorem [1.7]

Our goal for the proof of Theorem [[1lis to use properties of fy, y, in order to sim-
plify ¢y, .y, and write it in finite terms. Our process loosely follows the methodology
of Goldstein [§]. Let v = (£ Z) € T'o(q1ge), with ¢ > 1, and let z = =2 4 _L for
some u > 0. Then vz = 2 + iu, and

_d :
Dxrpxa (V) = ulirgl+ [fXI,XQ (% Jrz'u) — D) frrixs <_ + i )} .

c ' cu
From the Fourier expansion of E} . it is clear that lim, o+ fy, v, (=2 + =) = 0.
Thus,
. a .
Dxrx= () = uli)%l+ Faxe <E + Zu) . (3.1)

This is the “constant term” in the Fourier expansion of f, ,, around the cusp a/c.
To evaluate this limit, we begin by writing fy, y, as

Fxixa(2) = Z Z Xl(l)lx_2(k)e<kl2)-

k=11=1
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Then

8

Fraxa( where ( Z X(k)e(klz).  (3.2)

The following 1emma will be used in several of the proofs as follows.

Lemma 3.1. Let x be a character of conductor q. Let a,c,l € Z with ¢ > 1, c=0
(mod q), (a,c) =1, and I # 0 (mod £). Then

> x()eelalj) =0.

7 (mod ¢)

Proof. Let j = A+ ¢B where A runs modulo ¢ and B runs modulo ¢/q. Then
> XUeclal) = D X(Aec(ald) D eyq(alB).

j (mod ¢) A (mod q) B (mod ¢/q)

Since ¢ { al, the sum over B vanishes. O

Lemma 3.2. Let x be a character of conductor q. Let a,c,l € Z with ¢ > 1, ¢ =0
(mod q), (a,¢) =1, and 1 0 (mod £). Then

c—1 i 1
0y (% + iu,l) Z j)ec(alj) w—wc, where x = e(iul).

j=1

Proof. We have
a | < .
Ox (E +u, l) = Zx(k)ec(akl)x
k=0
Now, let k = 7+ mc where 0 < 7 < ¢ and m runs over non-negative integers. Then
c-1 o0 c—1 .
a ) ~ (1 : j me __ — . . !
Ox (E + iu, l) = ZOX(])ec(a]l);pJ Zox = le(])ec(a]l) — (33
J= m= j=

Using Lemma Bl and adding 0 = Z;;} X(j)ec(ajl) =L to B3) completes the
proof. |

Corollary 3.3. Under the same assumptions as Lemma [3.2]

Tim 0, (% —l—iu,l) -- 3 xG)B (%) ec(aly).

j (mod c)
Proof. As u approaches 0, z = e(iul) approaches 1, and lim,_,q fi;l = %J Thus,
a c—1 _j
lim 0, (E + iu,l) > —Ix()eclaly)
=
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Note X(j)(2—[2]—3) = X(5)B1 (L), since X(j) = 0 when £ € Z, so using Lemma31]

C

again finishes the proof. |

Remark. We need a definition of the generalized Bernoulli function for a (primitive)
Dirichlet character x modulo ¢, which is stated in [4, Definition 1]. One may easily
unify Berndt’s formulas as

Biy(x Z Xt (3.4)

€7
170

Proof of Theorem [IT.3l We apply (32)) to (3I)). Provided that we can interchange
the limits (see Lemma B.4),

dxixe(7) = lim 7 Xll(l)exz (% + iu, l) =3 Xll(l) im0y, (% + i, l) .
=1

=1

Then by Corollary 3.3,
— xi(0) i (I )
b == S ) (L) ectati
j (mod ¢)
Applying [2.2)), we obtain

Dx1,x2 (v) = 7% Z Xll(l) Z X2(j)B1 (%) ec(alj)

=1 j (mod ¢)

_1);X1l(l) > Xa0)B (%)ec(—alj).

j (mod c)

Changing variables | — —[ and using y1x2(—1) = 1, this simplifies as

b)) =3 . X)B: <§)Z><1l(”ec<a1j>.

j (mod ¢) 1#0

Letting ¢ = ¢’q1 and substituting (3.4)), we obtain

Praxa (V) = m) > x2li)B (%)&,Xl (Z—‘Z) (3.6)

(Xl j (mod ¢)

Next, we use [4, Theorem 3.1] which states

By (z qz_: (m i ”) . (3.7)

q

Substituting 7)) into 306 completes the proof. O

Lemma 3.4. The interchange of limits in [B.5) is justified.
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Proof. Applying Lemma [3.2] to the left-hand side of B3], we have

c—1 ] o
A0 S SaGentatn Tt

Let R(z) = Rj . (x) = ”fi;l Note that R is a rational function (in z) with no poles
on 0 < x <1, so it is smooth on this interval.

Let a; = x1(l)ec(alj), by = $R(e” "), and S(N) = Zf\il a;. By Lemma [B1]
2 i(mod ¢y @ = 0 (since we may assume (j,q2) = 1 whence j # 0 (mod ¢/q1)), so
S(N) is bounded (independently of u, of course). Therefore, by partial summation,
Sy ab =372, S()(br — bigr). We claim by — b1 = O(172), with an implied
constant independent of u. Given this claim, the Weierstrass M-test shows the sum
converges uniformly in w which justifies the interchange of limits.

Now, we show the claim. We have

R(e—Zﬂ'(H-l)u)
l+1

o~ =

bt — bil = T | R(e=2m(+ D) — Re~2miny (3.8)

|R(ef27‘r(l+1)u)‘

value theorem,

R(672ﬂ—lu) _ R(€727r(l+1)u) _ (6727rlu - 6727r(l+1)u)R/(t)

< % for some constant C independent of [ and u. By the mean

for some ¢ € [0, 1]. Since R(t) is smooth on [0, 1], then |R'(t)| < Cs for some constant
C5 independent of [ and u. Additionally,

e—27rlu _ e—27r(l+1)u _ e—27rlu(1 _ e—27ru) < %ule—Zﬂ'lu < %’
for some constants Cs, Cy, since xze™" is bounded for 0 < x < oco. Putting everything
together proves the claim. |

4. Proof of Theorem

Let w = wg,q, = (qloq1 _01) be the Fricke involution. An easy calculation shows that

. a b
if v= (Cq1q2 d) € T'o(q1¢2), then
wy =7w, (4.1)

where 7/ = (_bjlqz ) € To(q1g2). Note the map v — 4/ is an involution. The
newform Eisenstein series is a generalized eigenfunction of the Fricke involution,

precisely it satisfies (see [I5] Sec. 9.2])

By xz (wz,8) = XQ(*l)EX%)a (z,5).
For the completed Eisenstein series, using ([2]) we deduce

* T(Xl)q2
E wz,1) =6y, ., E e
( ) X1:X2 T(Xz)Q1

N1iXe z,1), where 0y, v, = x2(—1)

;2>X1(
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Define ¢y, v, (W) = fy1x2 (WZ) = Oxy xo fxo.xa (2), and similarly define

Sua(@) = Xy (). (1.2)

m
An easy modification of the proof of Lemmal[2Tlshows that ¢,, y,(w) is independent
of z (justifying the notation).

Lemma 4.1. Let x1,x2 be primitive Dirichlet characters of conductors qi,q2,
respectively, with qi,q2 > 1, and x1x2(—1) = 1. Then

7(X1)T(X2

%L(LXl)L(LXz), Yi(=1) = ya(—1) = —1,

Sy e (W) = (4.3)

0, x1(=1) =xz2(-1) =1.

Proof. The ideas are similar to the proof of Theorem [[.2 so we will be brief. We
have @y, v, (W) = limy, o+ fyy,x (71). Then following the idea of proof in Lemmal[3.2]
we have

oo

Fxaxe (i) = Z Xlg(g) Z E(j)ﬁ, x = e(liu).

1 — 2%
=1 0<j<q2

Letting v — 0T (using a variant on Lemma [3.4] to change the limits) gives

¢X1,X2 (w) = _L<1’ Xl)Bsz (0)7

using ([B71). Finally, we use [4) to complete the proof. O

Now, we calculate fy, o (@7V2) — Oy1a®(V) froxa (2) in two ways. One
expression is

Txixe (wyz) — 5)(1,)(2]0)(2,)(1 (v2) +5X1»X2 [fX2,X1(’YZ) - w(V)fxz,xl (2)]-

bx1.x2 (W) xa.x1 (V)

Alternatively, using (£1]), it equals

Fxaxe ('Y/WZ) - ¢(’Yl)f><1,><2 (w2) +E(’Y)[fX1»X2 (wz) — 5X1,foX1,xz (2)],

bx1.x2 (V) Px1.x2 (W)

where we have used 1(7') = ¥(a) = 1(d) = (7). Equating the two expressions, we
derive

Ox1x2 ('Y/) - 5X1,X2¢X2,X1('7) =(1- E(V))@m,m (w).

Converting the notation using (LT), and using 0y, . % = x1(—1), we derive

Sxra (V) = X1 (=1)Sya 0 (1) = (1 = (7)) Sy yo (W)-

Using Lemma (1] and switching the roles of v and 4’ completes the proof of
Theorem [[L2
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5. Remarks on the Eichler—Shimura Isomorphism

Let B3y, .y, (2) be the holomorphic weight 2 Eisenstein series attached to the prim-
itive nontrivial characters x1, x2, defined by (using the notation (L4]))

Eaxixe <Z) =2 Z n1/2/\X1»X2 (na 1)qn’ q= e2miz,
n=1
See [7 Sec. 4.6] for more details. The Eichler-Shimura map applied to Es y, y, 1S
defined by

v(o0)
s / E2 31 x: (z)dz,

oo

for v € To(q1¢2). By direct calculation with (L6), we have

d 1
E_-thXZ (2) = E2,X1,X2 (Z)

™

Therefore the Eichler—Shimura map applied to Es y, , is precisely 7(X1) Sy x2-
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