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For primitive nontrivial Dirichlet characters χ1 and χ2, we study the weight zero newform
Eisenstein series Eχ1,χ2(z, s) at s = 1. The holomorphic part of this function has a
transformation rule that we express in finite terms as a generalized Dedekind sum. This
gives rise to the explicit construction (in finite terms) of elements of H1(Γ0(N), C). We
also give a short proof of the reciprocity formula for this Dedekind sum.
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1. Introduction

1.1. Background and statement of result

Let χ1, χ2 be primitive Dirichlet characters modulo q1, q2, respectively, with
χ1χ2(−1) = 1. The weight zero newform Eisenstein series attached to χ1 and χ2 is
defined (initially) as

Eχ1,χ2(z, s) =
1
2


(c,d)=1

(q2y)sχ1(c)χ2(d)
|cq2z + d|2s

, Re(s) > 1.

∗Corresponding author.
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Here, Eχ1,χ2 is an automorphic form on the congruence subgroup Γ0(q1q2) with
central character ψ = χ1χ2. Precisely, for all γ =

a b
c d

 ∈ Γ0(q1q2),

Eχ1,χ2(γz, s) = ψ(γ)Eχ1,χ2(z, s), (1.1)

where ψ(γ) = ψ(d). Moreover, Eχ1,χ2 is an eigenfunction of all the Hecke operators
(see (2.4)), which indicates why it is called a newform. We refer to [15] for the
properties of the newform Eisenstein series used in this paper.

The classical Kronecker limit formula relates the constant term in the Laurent
expansion of E1,1(z, s) at s = 1 to log η, where η is the Dedekind η-function given by

η(z) = eπiz/12
∞

n=1

(1 − e2πinz).

For γ =
a b

c d

 ∈ Γ0(1), with c > 0, log η obeys the transformation formula

log η(γz) = log η(z) + πi


a+ d

12c
+ s(−d, c)


+

1
2

log(−i(cz + d)),

where s(h, k) is the classical Dedekind sum given by

s(h, k) =
k−1
r=1

r

k


hr

k
−


hr

k


− 1

2


.

See [1] for more background on the η-function and the classical Dedekind sums.
Consider the “completed” Eisenstein series defined by

E∗
χ1,χ2

(z, s) =
(q2/π)s

τ(χ2)
Γ(s)L(2s, χ1χ2)Eχ1,χ2(z, s). (1.2)

Here, τ denotes the Gauss sum given by τ(χ) =


n(mod q) χ(n)eq(n), where eq(n) =
e(n/q), e(x) = exp(2πix), and χ is a Dirichlet character modulo q. The Fourier
expansion for E∗

χ1,χ2
is conveniently stated in [15] (see also [10]). When q1, q2 = 1,

the Fourier expansion simplifies as

E∗
χ1,χ2

(z, s) = 2
√
y


n=0

λχ1,χ2(n, s)e(nx)Ks− 1
2
(2π|n|y), (1.3)

where Kν is the K-Bessel function and

λχ1,χ2(n, s) = χ2(sgn(n))


ab=|n|
χ1(a)χ2(b)


b

a

s− 1
2

. (1.4)

The Fourier expansion gives the analytic continuation of E∗
χ1,χ2

(z, s) to s ∈ C. In
particular, there is no pole at s = 1, and (1.3) specializes as

E∗
χ1,χ2

(z, 1) = fχ1,χ2(z) + χ2(−1)fχ1,χ2
(z), (1.5)

where

fχ1,χ2(z) =
∞

n=1

λχ1,χ2(n, 1)√
n

e(nz), (1.6)
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using K1/2(2πy) = 2−1y−1/2 exp(−2πy). Because E∗
χ1,χ2

(z, s) has no pole at s = 1,
(1.5) is the analogue of the Kronecker limit formula and the function fχ1,χ2 is the
analogue of log η.

Define

φχ1,χ2(γ, z) = φχ1,χ2(γ) = fχ1,χ2(γz) − ψ(γ)fχ1,χ2(z),

for γ ∈ Γ0(q1q2) and z ∈ H; in Lemma 2.1, we show that φχ1,χ2 is independent of z.

Definition 1. Let χ1, χ2 be primitive Dirichlet characters of conductors q1, q2,
respectively, with q1, q2 > 1, and χ1χ2(−1) = 1. For γ ∈ Γ0(q1q2), define the
Dedekind sum Sχ1,χ2 associated to the newform Eisenstein series Eχ1,χ2 by

Sχ1,χ2(γ) =
τ(χ1)
πi

φχ1,χ2(γ). (1.7)

Let B1 denote the first Bernoulli function given by

B1(x) =

⎧⎪⎨
⎪⎩
x− x − 1

2
if x ∈ R\Z,

0 if x ∈ Z.

The first main result in this paper is an evaluation of Sχ1,χ2 in finite terms.

Theorem 1.1. Let χ1, χ2 be primitive Dirichlet characters of conductors q1, q2,

respectively, with q1, q2 > 1, and χ1χ2(−1) = 1. Let γ =
a b

c d

 ∈ Γ0(q1q2). For

c ≥ 1, then

Sχ1,χ2(γ) =


j (mod c)


n (mod q1)

χ2(j)χ1(n)B1

 j
c


B1


n

q1
+
aj

c


. (1.8)

Our second main result gives a simple proof of the following reciprocity formula.

Theorem 1.2. For γ =
 a b
cq1q2 d

 ∈ Γ0(q1q2), let γ =
 d −c
−bq1q2 a

 ∈ Γ0(q1q2). If χ1

and χ2 are even, then

Sχ1,χ2(γ) = Sχ2,χ1(γ
). (1.9)

If χ1 and χ2 are odd, then

Sχ1,χ2(γ) = −Sχ2,χ1(γ
) + (1 − ψ(γ))

τ(χ1)τ(χ2)
(πi)2

L(1, χ1)L(1, χ2). (1.10)

The main step in the proof of Theorem 1.2 is to study the action of the Fricke
involution ωq1q2 =

 0 −1
q1q1 0


. Since Eχ1,χ2 is a pseudo-eigenvector of all the Atkin–

Lehner operators (see [15, Sec. 9]), it seems plausible that an adaptation of the
proof can give a family of reciprocity formulas, one for each Atkin–Lehner operator.

Many authors have investigated generalized Dedekind sums arising from various
types of Eisenstein series. Goldstein [8] studies the Eisenstein series attached to
cusps for the principal congruence subgroup Γ(N). Nagasaka [13] and Goldstein
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and Razar [9] investigate functions essentially equivalent, in our notation, to fχ,χ;
they derive the transformation properties of fχ,χ (including the reciprocity formula)
by relation to the Mellin transform of the product of Dirichlet L-functions instead
of via properties of Eisenstein series.

The generalized Dedekind sums attached to pairs of Dirichlet characters have
appeared in the literature in connection with certain Eisenstein-type series. Berndt
[3, Sec. 6] defines generalized Dedekind sums which essentially correspond to the
right-hand side of (1.8) when q1 = 1 or q2 = 1. Berndt derives properties of his
Dedekind sums using a different variant of Eisenstein series than what is used in
this paper; Berndt’s Eisenstein-type series have more complicated transformation
properties than Eχ1,χ2 (compare [2, Theorem 2] to (1.1)). Many authors have stud-
ied generalized Dedekind sums, such as [5, 6, 12, 14], based ultimately on Berndt’s
transformation formulas.

Reciprocity formulas for variants of Sχ1,χ2 , with general pairs of characters
χ1, χ2 have appeared in [6]. However, it appears that Theorem 1.2 is new (e.g.,
[6, Theorem 1] excludes the case p = 1 which would correspond to Theorem 1.2).

In Sec. 5, we connect Sχ1,χ2 to the Eisenstein component of the Eichler–Shimura
isomorphism in weight 2.

2. Basic Properties of Sχ1,χ2

Lemma 2.1. The function φχ1,χ2 is independent of z.

Proof. Since E∗
χ1,χ2

(γz, 1) = ψ(γ)E∗
χ1,χ2

(z, 1) and E∗
χ1,χ2

(z, 1) = fχ1,χ2(z) +
χ2(−1)fχ1,χ2

(z), it immediately follows that

φχ1,χ2(γ, z) = −χ2(−1)φχ1,χ2
(γ, z). (2.1)

Since φχ1,χ2 is holomorphic and φχ1,χ2
is antiholomorphic, φχ1,χ2 must be constant

in z.

For later reference, we point out a symmetrized form for φχ1,χ2 following from
(2.1):

φχ1,χ2(γ) =
1
2
(φχ1,χ2(γ) − χ2(−1)φχ1,χ2

(γ)). (2.2)

Lemma 2.2. Let γ1, γ2 ∈ Γ0(q1q2). Then

Sχ1,χ2(γ1γ2) = Sχ1,χ2(γ1) + ψ(γ1)Sχ1,χ2(γ2). (2.3)

Remarks. It is obvious from the definition that Sχ1,χ2(γ) = 0 if γ =
1 n
0 1


, for n∈Z,

and consequently Sχ1,χ2(γ) only depends on the lower row of γ (or, alternatively,
the first column of γ).

Let G = Γ0(q1q2) and M = C, and consider the action γ.z of G on M given
by γ.z = ψ(γ)z. Note G acts via automorphisms on M (as a module). With this
notation, Lemma 2.2 shows that Sχ1,χ2 is a 1-cocycle (or a crossed homomorphism)
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for this group action ofG onM . Hence, Sχ1,χ2 gives rise to an element of H1(G,M).
In particular, if ψ is trivial then H1(G,M) = Hom(Γ0(q1q2),C) (i.e. Sχ1,χ2 is a
group homomorphism). Note also that ψ is trivial on Γ1(q1q2) so Sχ1,χ2 may always
be viewed as an element of Hom(Γ1(q1q2),C).

Proof. Since ψ is multiplicative, and by Lemma 2.1, we have

φχ1,χ2(γ1γ2) = fχ1,χ2(γ1γ2z) − ψ(γ1)fχ1,χ2(γ2z)  
φχ1,χ2(γ1)

+ψ(γ1) (fχ1,χ2(γ2z) − ψ(γ2)fχ1,χ2(z))  
φχ1,χ2(γ2)

.

Let Tn be the Hecke operator acting on weight 0 periodic functions, with char-
acter χ (cf. [11, (6.13)]), defined by

Tnf)(z) =
1√
n


ad=n

χ(a)


b (mod d)

f


az + b

d


.

It is easy to check that

TnE
∗
χ1,χ2

(z, s) = λχ1,χ2(n, s)E
∗
χ1,χ2

(z, s), (2.4)

for any n ≥ 1. We remark in passing that

Tnfχ1,χ2 = λχ1,χ2(n, 1)fχ1,χ2 , (2.5)

which follows immediately from (1.5) and the fact that the Hecke operators preserve
holomorphicity (and anti-holomorphicity).

3. Proof of Theorem 1.1

Our goal for the proof of Theorem 1.1 is to use properties of fχ1,χ2 in order to sim-
plify φχ1,χ2 and write it in finite terms. Our process loosely follows the methodology
of Goldstein [8]. Let γ =

a b
c d

 ∈ Γ0(q1q2), with c ≥ 1, and let z = −d
c + i

c2u for
some u > 0. Then γz = a

c + iu, and

φχ1,χ2(γ) = lim
u→0+


fχ1,χ2

a
c

+ iu

− ψ(γ)fχ1,χ2

−d
c

+
i

c2u


.

From the Fourier expansion of E∗
χ1,χ2

, it is clear that limu→0+ fχ1,χ2(
−d
c + i

c2u ) = 0.
Thus,

φχ1,χ2(γ) = lim
u→0+

fχ1,χ2

a
c

+ iu

. (3.1)

This is the “constant term” in the Fourier expansion of fχ1,χ2 around the cusp a/c.
To evaluate this limit, we begin by writing fχ1,χ2 as

fχ1,χ2(z) =
∞

k=1

∞
l=1

χ1(l)χ2(k)
l

e(klz).
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Then

fχ1,χ2(z) =
∞
l=1

χ1(l)
l

θχ2(z, l), where θχ(z, l) :=
∞

k=1

χ(k)e(klz). (3.2)

The following lemma will be used in several of the proofs as follows.

Lemma 3.1. Let χ be a character of conductor q. Let a, c, l ∈ Z with c ≥ 1, c ≡ 0
(mod q), (a, c) = 1, and l ≡ 0 (mod c

q ). Then
j (mod c)

χ(j)ec(alj) = 0.

Proof. Let j = A+ qB where A runs modulo q and B runs modulo c/q. Then
j (mod c)

χ(j)ec(alj) =


A (mod q)

χ(A)ec(alA)


B (mod c/q)

ec/q(alB).

Since c
q  al, the sum over B vanishes.

Lemma 3.2. Let χ be a character of conductor q. Let a, c, l ∈ Z with c ≥ 1, c ≡ 0
(mod q), (a, c) = 1, and l ≡ 0 (mod c

q ). Then

θχ

a
c

+ iu, l


=
c−1
j=1

χ(j)ec(alj)
xj − 1
1 − xc

, where x = e(iul).

Proof. We have

θχ

a
c

+ iu, l


=
∞

k=0

χ(k)ec(akl)xk.

Now, let k = j +mc where 0 ≤ j < c and m runs over non-negative integers. Then

θχ

a
c

+ iu, l


=
c−1
j=0

χ(j)ec(ajl)xj
∞

m=0

xmc =
c−1
j=1

χ(j)ec(ajl)
xj

1 − xc
. (3.3)

Using Lemma 3.1 and adding 0 =
c−1

j=1 χ(j)ec(ajl) −1
1−xc to (3.3) completes the

proof.

Corollary 3.3. Under the same assumptions as Lemma 3.2,

lim
u→0+

θχ

a
c

+ iu, l


= −


j (mod c)

χ(j)B1


j

c


ec(alj).

Proof. As u approaches 0, x = e(iul) approaches 1, and limx→1
xj−1
1−xc = −j

c . Thus,

lim
u→0

θχ

a
c

+ iu, l


=
c−1
j=1

−j
c
χ(j)ec(alj)

= −


j (mod c)

χ(j)

j

c
−


j

c


− 1

2
+

1
2


ec(alj).



October 13, 2020 7:12 WSPC/S1793-0421 203-IJNT 2050109

Dedekind sums arising from newform Eisenstein series 2135

Note χ(j)( j
c− j

c− 1
2 ) = χ(j)B1( j

c ), since χ(j) = 0 when j
c ∈ Z, so using Lemma 3.1

again finishes the proof.

Remark. We need a definition of the generalized Bernoulli function for a (primitive)
Dirichlet character χ modulo q, which is stated in [4, Definition 1]. One may easily
unify Berndt’s formulas as

B1,χ(x) =
−τ(χ)
2πi


l∈Z

l =0

χ(l)
l
eq(lx). (3.4)

Proof of Theorem 1.1. We apply (3.2) to (3.1). Provided that we can interchange
the limits (see Lemma 3.4),

φχ1,χ2(γ) = lim
u→0+

∞
l=1

χ1(l)
l

θχ2

a
c

+ iu, l


=
∞
l=1

χ1(l)
l

lim
u→0+

θχ2

a
c

+ iu, l

.

(3.5)

Then by Corollary 3.3,

φχ1,χ2(γ) = −
∞

l=1

χ1(l)
l


j (mod c)

χ2(j)B1


j

c


ec(alj).

Applying (2.2), we obtain

φχ1,χ2(γ) = −1
2

∞
l=1

χ1(l)
l


j (mod c)

χ2(j)B1


j

c


ec(alj)

+
χ2(−1)

2

∞
l=1

χ1(l)
l


j (mod c)

χ2(j)B1


j

c


ec(−alj).

Changing variables l → −l and using χ1χ2(−1) = 1, this simplifies as

φχ1,χ2(γ) = −1
2


j (mod c)

χ2(j)B1


j

c

 
l =0

χ1(l)
l

ec(alj).

Letting c = cq1 and substituting (3.4), we obtain

φχ1,χ2(γ) =
πi

τ(χ1)


j (mod c)

χ2(j)B1


j

c


B1,χ1


aj

c


. (3.6)

Next, we use [4, Theorem 3.1] which states

B1,χ(x) =
q−1
n=1

χ(n)B1


x+ n

q


. (3.7)

Substituting (3.7) into (3.6) completes the proof.

Lemma 3.4. The interchange of limits in (3.5) is justified.
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Proof. Applying Lemma 3.2 to the left-hand side of (3.5), we have

φχ1,χ2(γ) = lim
u→0+

∞
l=1

χ1(l)
l

c−1
j=0

χ2(j)ec(alj)
xj − 1
1 − xc

.

Let R(x) = Rj,c(x) = xj−1
1−xc . Note that R is a rational function (in x) with no poles

on 0 ≤ x ≤ 1, so it is smooth on this interval.
Let al = χ1(l)ec(alj), bl = 1

lR(e−2πlu), and S(N) =
N

l=1 al. By Lemma 3.1,
l(mod c) al = 0 (since we may assume (j, q2) = 1 whence j ≡ 0 (mod c/q1)), so

S(N) is bounded (independently of u, of course). Therefore, by partial summation,∞
l=1 albl =

∞
l=1 S(l)(bl − bl+1). We claim |bl − bl+1| = O(l−2), with an implied

constant independent of u. Given this claim, the Weierstrass M -test shows the sum
converges uniformly in u which justifies the interchange of limits.

Now, we show the claim. We have

|bl+1 − bl| =
1
l

R(e−2π(l+1)u) −R(e−2πlu) − R(e−2π(l+1)u)
l + 1

 . (3.8)

Here, |R(e−2π(l+1)u)|
l+1 ≤ C1

l for some constant C1 independent of l and u. By the mean
value theorem,

R(e−2πlu) −R(e−2π(l+1)u) = (e−2πlu − e−2π(l+1)u)R(t)

for some t ∈ [0, 1]. Since R(t) is smooth on [0, 1], then |R(t)| ≤ C2 for some constant
C2 independent of l and u. Additionally,

e−2πlu − e−2π(l+1)u = e−2πlu(1 − e−2πu) ≤ C3

l
ule−2πlu ≤ C4

l
,

for some constants C3, C4, since xe−x is bounded for 0 ≤ x <∞. Putting everything
together proves the claim.

4. Proof of Theorem 1.2

Let ω = ωq1q2 =
 0 −1
q1q1 0


be the Fricke involution. An easy calculation shows that

if γ =
 a b
cq1q2 d

 ∈ Γ0(q1q2), then

ωγ = γω, (4.1)

where γ =
 d −c
−bq1q2 a

 ∈ Γ0(q1q2). Note the map γ → γ is an involution. The
newform Eisenstein series is a generalized eigenfunction of the Fricke involution,
precisely it satisfies (see [15, Sec. 9.2])

Eχ1,χ2(ωz, s) = χ2(−1)Eχ2,χ1(z, s).

For the completed Eisenstein series, using (1.2) we deduce

E∗
χ1,χ2

(ωz, 1) = δχ1,χ2E
∗
χ2,χ1

(z, 1), where δχ1,χ2 = χ2(−1)
τ(χ1)q2
τ(χ2)q1

.
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Define φχ1,χ2(ω) = fχ1,χ2(wz) − δχ1,χ2fχ2,χ1(z), and similarly define

Sχ1,χ2(ω) =
τ(χ1)
πi

φχ1,χ2(ω). (4.2)

An easy modification of the proof of Lemma 2.1 shows that φχ1,χ2(ω) is independent
of z (justifying the notation).

Lemma 4.1. Let χ1, χ2 be primitive Dirichlet characters of conductors q1, q2,

respectively, with q1, q2 > 1, and χ1χ2(−1) = 1. Then

Sχ1,χ2(ω) =

⎧⎪⎨
⎪⎩
τ(χ1)τ(χ2)

(πi)2
L(1, χ1)L(1, χ2), χ1(−1) = χ2(−1) = −1,

0, χ1(−1) = χ2(−1) = 1.
(4.3)

Proof. The ideas are similar to the proof of Theorem 1.2, so we will be brief. We
have φχ1,χ2(ω) = limu→0+ fχ1,χ2(iu). Then following the idea of proof in Lemma 3.2,
we have

fχ1,χ2(iu) =
∞

=1

χ1()



0≤j<q2

χ2(j)
xj − 1
1 − xq2

, x = e(iu).

Letting u→ 0+ (using a variant on Lemma 3.4 to change the limits) gives

φχ1,χ2(ω) = −L(1, χ1)B1,χ2(0),

using (3.7). Finally, we use (3.4) to complete the proof.

Now, we calculate fχ1,χ2(ωγz) − δχ1,χ2ψ(γ)fχ2,χ1(z) in two ways. One
expression is

fχ1,χ2(ωγz) − δχ1,χ2fχ2,χ1(γz)  
φχ1,χ2 (ω)

+δχ1,χ2 [fχ2,χ1(γz) − ψ(γ)fχ2,χ1(z)  
φχ2,χ1 (γ)

].

Alternatively, using (4.1), it equals

fχ1,χ2(γ
ωz)− ψ(γ)fχ1,χ2(ωz)  

φχ1,χ2 (γ)

+ψ(γ)[fχ1,χ2(ωz) − δχ1,χ2fχ1,χ2(z)  
φχ1,χ2 (ω)

],

where we have used ψ(γ) = ψ(a) = ψ(d) = ψ(γ). Equating the two expressions, we
derive

φχ1,χ2(γ
) − δχ1,χ2φχ2,χ1(γ) = (1 − ψ(γ))φχ1,χ2(ω).

Converting the notation using (1.7), and using δχ1,χ2
τ(χ1)
τ(χ2)

= χ1(−1), we derive

Sχ1,χ2(γ
) − χ1(−1)Sχ2,χ1(γ) = (1 − ψ(γ))Sχ1,χ2(ω).

Using Lemma 4.1 and switching the roles of γ and γ completes the proof of
Theorem 1.2.
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5. Remarks on the Eichler–Shimura Isomorphism

Let E2,χ1,χ2(z) be the holomorphic weight 2 Eisenstein series attached to the prim-
itive nontrivial characters χ1, χ2, defined by (using the notation (1.4))

E2,χ1,χ2(z) = 2
∞

n=1

n1/2λχ1,χ2(n, 1)qn, q = e2πiz.

See [7, Sec. 4.6] for more details. The Eichler–Shimura map applied to E2,χ1,χ2 is
defined by

γ →
 γ(∞)

∞
E2,χ1,χ2(z)dz,

for γ ∈ Γ0(q1q2). By direct calculation with (1.6), we have

d

dz

1
πi
fχ1,χ2(z) = E2,χ1,χ2(z).

Therefore the Eichler–Shimura map applied to E2,χ1,χ2 is precisely τ(χ1)Sχ1,χ2 .
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