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Abstract

We study the fields of values of the irreducible characters of a finite group of degree not divisible by a prime p. In
the case where p = 2, we fully characterise these fields. In order to accomplish this, we generalise the main result
of [ILNT] to higher irrationalities. We do the same for odd primes, except that in this case the analogous results
hold modulo a simple-to-state conjecture on the character values of quasi-simple groups.

Dedicated to Gunter Malle on the occasion of his 60th birthday

1. Introduction

It is of great interest to study the values of the complex irreducible characters of a finite group G. If y is
a character (not necessarily irreducible) of a finite group G, the field of values Q( ) of y is the smallest
field containing y(g) for all g € G. Since y(g) is a sum of 0(g)-th roots of unity, Q(y) is a subfield of
the cyclotomic field Q,, = Q(exp(27i/n)), where n = |G| and i = V—1. Among the numerical invariants
which we can associate to an arbitrary character y of a finite group, the two most important are the
degree x(1) and the conductor of y, which is the smallest positive integer f such that Q(y) S Qy
(that is, the absolute or global conductor of the field Q(y)). In general, there is nothing special about
the subfield Q(y) and the irrationalities admitted by y: it is not difficult to show that given any finite
abelian extension F of Q, there is a finite group G having some y € Irr(G) such that Q(y) = F.
(See Theorem 2.2.) Surprisingly, this situation changes drastically if we know that y (1) is not divisible
by some prime p. For instance, if y(1) is odd and Q(y) = Q(Vd) for a square-free integer d # —1,
then d = 1 (mod 4). This is a consequence of the recent main result of [ILNT], whose proof uses the
classification of finite simple groups: if y(1) is odd, then either Q(y) is contained in the cyclotomic
field Q,, for some odd integer m ori € Q(y).

We consider the following deep problem in representation theory: for a given prime p, what is the
set of abelian extensions

Fp ={Qx)/Q | x € Irr,y(G), G a finite group},

where Irr,, (G) is the set of complex irreducible characters of G of degree not divisible by p?

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http:/creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Downloaded from https://www.cambridge.org/core. IP address: 73.193.229.32, on 15 Feb 2021 at 15:35:59, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.1


doi:10.1017/fmp.2021.1
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/fmp.2021.1&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.1
https://www.cambridge.org/core

2 Gabriel Navarro and Pham Huu Tiep

In the first two main theorems in this paper, we solve this problem for p = 2. First, we need to vastly
generalise the main result in [ILNT] (which is the case a = 2 of the following theorem).

Theorem Al. Suppose that y € Irr(G) has odd degree and conductor 2“m, where m is odd and
a € Zsg. Then Qaa C Q(x).

Hence, if E/Q € 3, by Theorem A1 we have that Qy« C F, where 2¢ is the 2-part of the conductor of
the field F. (In this paper, we simply use conductor of F to denote the smallest f > 1 such that F C Qy,
whenever F/Q is an abelian extension in C.) To complete our work, we will show that these are all the
possible extensions in J,. This is not so easy to accomplish. In Section 2 we prove that many abelian
field extensions of Q — for instance, Q(V57) and Q(V65) — cannot be achieved in solvable groups.
However, we can prove that these extensions are attained in the realms of general finite (nonsolvable)
groups. The following result, together with Theorem A1, provides a complete determination of J:

Theorem A2. Let F/Q be an abelian extension of Q with conductor n = 2%m, where m is odd and
a € Zso. Suppose that Qxa C F. Then there exist a finite group G and y € Irry (G) such that F = Q(y).

In particular, if d # —1 is a square-free integer, then Q(y) = Q(Vd) for some finite group G and
some odd-degree irreducible character y € Irr(G) precisely when d = 1 (mod 4).

We are able to prove Theorem Al, using the classification of finite simple groups, only because we
prove something much stronger for quasi-simple groups. Recall that yp (or y|p) is the restriction of the
character y to the subgroup P.

Theorem A3. Suppose that G is a finite quasi-simple group, and y € Irr(G) has odd degree and
conductor 2%m, where m is odd and a € Z>. If a > 2, then there exists a 2-element g € G such that
X (&) € Qqa-1. Furthermore, for all a > 0, we have Q(yp) = Qqa for P € Syl,(G).

Theorem A3 shows something perhaps surprising: the field of values of Q(yp), if G is quasi-simple
and y (1) is odd, is a full cyclotomic field. (This is not true if y (1) is even, as shown by 2.A¢.) We will
comment more on this later.

Our second set of main results is the p-odd version of Theorems A1, A2 and A3. We characterise F),
modulo a natural question on the values of characters of quasi-simple groups (Conjecture B3). For many
quasi-simple groups we can answer this question (see Theorem 6. 1); for others we cannot: surprising as
it may seem, the character values of certain quasi-simple groups are far from understood.

Theorem B1. Let p be any prime and suppose that Conjecture B3 holds. Let G be any finite group and
let x € Irr, (G) have conductor p“m, where p does not divide m and a € Zx¢. Then p does not divide

[Qpa = (QLY) N Qpa)].

Notice that for p = 2, the conclusion of Theorem B1 is exactly Theorem Al. In order to prove the
p-odd analog of Theorem A2 — Theorem B2 — we will need a group-theoretic construction which is
also of independent interest (Theorem 3.3).

Theorem B2. Let F/Q be an abelian extension of Q with conductor n = p®m, where p does not divide
m and a € Zxg. Suppose that [Qpa : (FNQpa)] is not divisible by p. Then there exist a finite group G
and a character y € Irrp, (G) such that F = Q(y).

Conjecture B3. Let G be a finite quasi-simple group and p be an odd prime, and set y € Irr (G).
Suppose f = p%m is the conductor of y, where p does not divide m and a € Zs¢. Then there exists a
p-element g € G such that Q(x(g)) € Qpa and p does not divide [Qpa : Q(x(g))].

As mentioned already, if Conjecture B3 holds, then Theorems B1 and B2 completely determine the
set F, of fields of values of the p’-degree irreducible characters in finite groups for every odd prime p.

Some remarks are in order here. First, the conclusion of Conjecture B3 does not hold if p divides

x (1): for example, SL¢(2) for p = 3. More importantly, we do not know if the statement of Conjecture
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B3 holds true for every finite group; on the other hand, we have verified it for many quasi-simple groups,
as we have said, in Theorem 6.1. In fact, we have accumulated enough evidence for the following
conjecture, which would offer further new insights into the general problem of how the p’-degree
characters of a finite group G restrict to a Sylow p-subgroup P of G. This conjecture begins the last and
shortest part of this paper.

Conjecture C. Suppose that G is a finite group, p is a prime and x € Irr )y (G). Suppose that x has
conductor p®m, where p does not divide m and a € Zs(. Let P € Sylp(G). Then the degree of the
extension Qpa /Q(xp) is not divisible by p.

Note that Conjecture C implies, among other results, that if y € Irr(G) has odd degree and P €
Syl,(G), then y is 2-rational (i.e., has odd conductor) exactly when yp is rational-valued. This does
not seem to have been noticed before.

2. Solving the equation Q(y) = F

Before going into the main results of this paper, we prove in this section that given any abelian extension
F/Q, where F C C, there exist a finite group G and y € Irr(G) such that F = Q(y). We also answer the
question of what are exactly the fields of values of groups of odd order (therefore generalising a classical
result of W. Burnside), and we determine the field of values of odd-degree irreducible characters of
solvable groups. We also do some preliminaries which are necessary for the rest of the paper.

Our notation for characters follows [Is2] and [N2]. If F/Q is an abelian extension of Q, then the
conductor ¢(F) of F is the smallest integer n > 1 such that F C Q,,, where in this paper Q,, denotes the
n-th cyclotomic field. In particular, ¢(F) is odd or divisible by 4. Recall that the conductor ¢(y) of a
character ¢ of a group G is ¢(Q(¥)). If Q(y) C Q,, for some integer m > 1, then c(¢) divides m, by
elementary Galois theory. In particular, c¢(¢) divides the exponent of G. If p is a prime, a character y is
p-rational if p does not divide c(y). If K C C, we denote by K (i) the smallest field containing K and
the values of . A few times, if @ and S are characters, we write K(«, 8) to denote K(a)(8).If n > 1
is an integer and p is a prime, then 7, is the largest power of p dividing n. We remind the reader that
Gal(Q™/Q), where Q™ is the field in C generated by all roots of unity, acts on Irr(G) for every finite
group, as well as Aut(G), and that both actions commute (see [N2, Chapters 2 and 3], for instance).

Lemma 2.1. Let G be a finite group, and let N be a normal subgroup of G. Let xy € Irr(G), let
0 € Irr(N) be an irreducible constituent of xn, let T be the stabiliser of 6 in G and let € Irr(T|0) be
the Clifford correspondent of )y over 6.

(1) Wehave Q(x) € Q(¥), and therefore c(x) divides c (). Also, Q(xn) € Q(8) and Q(0, x) = Q(y).
(ii) Let o € Gal(Q(¥)/Q(x)). If o(0) and NG (T)/T| are coprime, then o is trivial.

Proof. Since y© = y, by the induction formula we notice that Q(y) € Q(). Thus Q(x) € Qe(y)
and therefore c(y) divides c(¥). Since ¥ is a multiple of 6, notice that Q(8) € Q(y). By Clifford’s
theorem, y v is a sum of G-conjugates of 6, and since Q(8) = Q(6%) for g € G, we have Q(yn) C Q(6).
For the final part of (i), notice that if oo € Gal(Q(y)/Q(6, x)), then 69 = 0, y“ = y and therefore
Y7 =y by the uniqueness in the Clifford correspondence.

For (ii), we have y = y“. Hence 87 = 68 for some element g € G, using Clifford’s theorem. Notice
then that g € NG (7). As we said, recall that the action of G on Irr(/N) and the Galois action commute.
Let g = o(0). Now 6 = 7 = 68”, s0 g € T. Since |[Ng(T)/T| and g are coprime, it follows that
geT,s0607 =08 =6. Then Y7 =y, by the uniqueness in the Clifford correspondence, and we deduce
that o is trivial. O

Theorem 2.2. Letm > 1 be aninteger, andletQ C F C Q,, be any subfield. Then there exists a solvable
finite group G of order m[Qy,, : F] having x € Irt(G), of degree [Qy, : F], such that Q(x) = F.

Proof. Let & be a primitive mth root of unity. Let C = (&), a cyclic group of order m. Let H =
Gal(Q,,/F). We have that H is naturally isomorphic to a subgroup of Aut(C). Now let G = CH be
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the semidirect product, and let A € Irr(C) be of order m. Notice that the stabiliser of A in H is trivial.
Therefore A¢ = y € Irr(G) by the Clifford correspondence. By Lemma 2.1(i), we have Q(y) C Q,,.
We claim that Q(y) = F. In order to prove this, it is enough to show that oo € Gal(Q,,/Q) fixes y if
and only if o € H. Of course, if o € H, we have that o fixes y, since o € G. Conversely, if o fixes y,
then we have that 4 and A7 lie under y. By Clifford’s theorem, we have 19 = A7 for some 7 € H. Then
o =1 € H, and the proof of the theorem is complete. O

(We thank B. Sambale for pointing out to us that a version of Theorem 2.2 appeared in [FG].)
In Theorem 2.2 we cannot replace ‘solvable’ with ‘nilpotent’. This easily follows from the following:

Theorem 2.3. Suppose that p is odd and G is a p-group. Let y € Irr(G). Then Q(x) = Qb for some
b > 0. Thus Q(x) = Qc(y)-

Proof. Leta > 1,and let Q C F C Qpa be a subfield. We notice that ' = Q,,» for some b > 1 if and
only if Q,, C F. Indeed, we have that Q,a /Q,, is a cyclic extension of degree p*~!, which contains the
subfields Qp,Q,2, . .., Qpa. Hence there are no subfields between Q,, and Q« other than the fields of
the form Q,,» for 1 < b < a.

In order to prove the theorem, we may assume that y is faithful. If G is trivial, the theorem is clear.
Let Z = Z(G) and let z € Z be of order p. Then x|,y = x(1)A for some A € Irr({z)), and hence
A(z) € Q(x). Thus Q, € Q(x), and we use the claim in the previous paragraph. m|

Notice that the conclusion of Theorem 2.3 does not hold for 2-groups, and that D¢ is a counterex-
ample. The question of whether, given an irreducible character y of a finite group G, there is always
some g € G such that Q(x) = Q(x(g)), is interesting. Although this does not always happen, we have
not found any example in which y (1) is odd or y is 2-rational. A different but related question that
is sometimes asked is if any algebraic integer in Q, is the value of an irreducible character of a finite
group, and again this is true: let @ and b be positive integers, and let G be the wreath product of C,
with Cp,, where C, is the cyclic group of order a. Then G has a faithful irreducible character of degree
b whose values on the base group of the wreath product are all possible sums of b roots of unity, all of
which have order dividing a.

Our next objective is to solve the following question: Which are exactly the fields of values of the
irreducible characters of groups of odd order? It is an old theorem of Burnside that these cannot be
real unless the character is trivial, but there is more. In order to answer this, we will need two general
elementary lemmas that we use in the rest of the paper, and, at the end of the section, some nontrivial
character theory of solvable groups.

Lemma 2.4. Let G be a finite group and p be a prime, and set P € Sylp(G). Suppose that y = af,
where « is a p-rational character of G of p’-degree and B is a linear character of G of order a power

of p. Then Q(yp) = Q(B), QW) = Q(a, B) and c(¥) = c(a)c(p).

Proof. Set x € P. Then 0 # a(x) € Q, using the facts that @ has p’-degree, x is a p-element and «
is p-rational (see [N2, Corollary 4.20].) Thus Q(¥p) = Q(Bp). Since the order of 8 is a power of p,
notice that Q(8) = Q(Bp). We conclude that Q(8) € Q(¥p) € Q(y), and therefore Q(y) = Q(e, B).
Now, since c¢(«@) and ¢(f) are coprime, we have that the conductor of the field Q(a, B) is c(a@)c(B), by
elementary Galois theory. O

Lemma 2.5. Let G be a finite group and suppose that P < G, where P € Syl ,(G). Set x € Irr;y (G)
and let A € Irr(P) be a linear irreducible constituent of yp. Let T = G, be the stabiliser of A in G, let
A € Irr(T) be the unique extension of A which has p-power order and let a € Irr(T/P) be such that
(Aa)% = y.

(i) We have that Q(x) S Qo) (a) and Q(2)/Q(xp) has p’-degree. In particular, c(xp) = o(d)

unless AP = 1.
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(ii) Let f be the conductor of x. If o(1) > p, then f, = 0(2). If AP =1, then f, < p.
(iii) If p =2, then Q(x) = Qo () (@), ¢(x) = c(Dc(a) and Qo(z) = Qlxp).

Proof. Write 0(1) = p”, with b > 0. We have that such A exists and o(1) = p?, by [N2, Corol-
lary 6.4]. First notice that the Clifford correspondent of y over A can be written as da by the
Gallagher correspondence [Is2, Corollary 6.17]. Write ¢ = la. By Lemmas 2.1 and 2.4, we have
Q(x) € Q%) = Qp»(@). Now write xyp = e ¥, 4%, and recall that Q(xp) S Q(4) by Lemma 2.1(i).
Now, if o € Gal(Q(1)/Q(xp)) has p-power order, then A7 is an irreducible constituent of yp, and
therefore 17 = A8 for some p’-element g. Since 0(1) has p-power, we conclude that 18 = A and o is
the identity. If p = 2, then Q,» /Q has degree a power of 2, and we conclude that Q, (1) = Q(xp) (Which
is part of (iii)).

Suppose now that p© is the conductor of yp. Then Q(xp) € Qpe € Q5. Then Q.6 /Qpe has degree
not divisible by p, and the proof of (i) easily follows.

Next we prove (ii). Write f,, = p, for some a > 0. Since Q(a) € Q|r/p|, we have Q(x) € Qb7 /p|>
and therefore f divides p?|T/P|. Hence p* < p”. Since Q(yp) C Q(x), we have that ¢(yp) divides f.
Hence if 0(1) > p, we have p® = p? by (i). The rest easily follows.

Finally, assume that p = 2. We know by (i) and (ii) that Q, () = Q(xpr) € Q(x) € Qo) (). Thus if
o € Gal(Qy (1) (@) /Q(x), then it fixes y and therefore y p. Hence o fixes 4 and A. By the uniqueness in
the Clifford correspondence, o also fixes a, so o is the identity. For the last part, Q, (1) (@) = QA @),
and we apply Lemma 2.4. O

We record the following useful fact:

Lemma 2.6. Suppose that E/K is a finite field extension, and F and L are subfields of E such that
E=(F,Lyand F N L = K. Assume that F /K is Galois.

(1) If K € J C Lisasubfieldand M = (F,J), then M N L =J.
(ii) If L/K is Galois and F € M C E is any subfield, then M = (F,M N L).

Proof. (i) LetJ’ = M N L.ThenJ C J’, and J' N F = K. By natural irrationalities [We, Corollary
345, [M :J] =[F:K].Now M = (F,J) C (F,J’y C M. Thus (F,J’)y = M, and again by natural
irrationalities, [M : J'] = [F : J'NF] = [F : K] =[M : J]. Since J C J’, the result follows.
(ii)Let/J=MnNnLand M’ =(F,J) C M.By (i)wehave M'NL =J.Now E =(M’,L)and L/J is
Galois, so [E : M’] = [L : J] by natural irrationalities. But we also have E = (M, L), which similarly
implies [E : M] =[L : J]. Thus [E : M] = [E : M’]. Since M’ C M, we have M = M'. o

Now we are ready to describe the fields of values of irreducible characters of groups of odd order and
the fields of values of the irreducible odd-degree characters of solvable groups. The next three results
will not be used in the rest of the paper.

In the next theorem, we use p-special characters. We refer the reader to [Is3] for their main properties.
We will use the fact that in a solvable group G, restriction defines an injection from the set X, (G) of
p-special characters of G into Irr(P), where P is a Sylow p-subgroup of G, and therefore that Q(y) =
Q(xp)- (Using the uniqueness of the restriction map, we easily prove that the group Gal(Q(x)/Q(xp))
is trivial, and hence the result.) In particular, c¢(y) = c¢(xp). Also, a quasi-primitive character y of a
solvable group is fully factorable — that is, it uniquely factors as a product [],,cp ¥, Where P is the set
of all prime numbers and y/, is p-special (see [Is3, Theorem 2.17] and [Is2, Berger’s Theorem 11.33]).
In this case, Q(x) = (Q(xp) | p € P) (by [Is3, Lemma 2.19]).

Theorem 2.7. Let F/Q be an abelian extension and assume that the conductor n of F is odd. Then
there exist a group of odd order G and y € Irr(G) such that Q(x) = F if and only if the extension Q,, | F
has odd degree.

Proof. If n = ¢(F) is odd and Q,,/F has odd degree, then Theorem 2.2 produces a solvable group G of
odd order, with a character y € Irr(G) such that Q(y) = F.

Downloaded from https://www.cambridge.org/core. IP address: 73.193.229.32, on 15 Feb 2021 at 15:35:59, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.1


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.1
https://www.cambridge.org/core

6 Gabriel Navarro and Pham Huu Tiep

Conversely, suppose that y € Irr(G), where G has odd order. We argue by induction on |G| that
Qc(y)/Q(x) has odd degree. Suppose that ¢ = y, where ¢ € Irr(T) is some Clifford correspondent
and T is the stabiliser of some normal irreducible constituent. Notice that [Q(¥) : Q(y)] is odd
by Lemma 2.1(ii). If T < G, then by induction, Q.(y)/Q(¥) has odd degree, and we conclude that
Qc(y)/Q(x) has odd degree. Thus Q.(,)/Q(x) has odd degree using Lemma 2.1(i). Hence, we may
assume that y is quasi-primitive, and therefore y is fully factorable. Then, using Theorem 2.3, we have

Q) = Qxp) [ P €P) =(Q((xp)lP) [ P €P) = (Qe(y,) | P €P) = Qe
by elementary Galois theory, and the result follows. O

Using Theorem 2.7 (and the main result of [Is1]), we can fully characterise the extensions Q(y)/Q
whenever y € Irry (G) and G is solvable:

Theorem 2.8. Let F/Q be an abelian extension and suppose that ¢(F) = n. Then there exist a finite
solvable group G and a character y € Irr(G) of odd degree such that Q(y) = F if and only if Q,/F
has odd degree.

Proof. 1fQ,,/F has odd degree, then Theorem 2.2 produces a solvable group with the desired conclusion.
Suppose now that G is solvable, y € Irry(G) and Q(y) = F. Write n = 2¢m, where m is odd and
a > 0. We want to show that Q, /F has odd degree. By the main result of [Is1], if P € Syl,(G), then
there is a natural correspondence * : Irrp (G) — Irry (NG (P)) that commutes with Galois action (as
can be checked). Thus Q(x) = Q(x*) = F, and we may assume that P < G. By Lemma 2.5(iii), we have
Q(x) = Qu (), where a is an irreducible character of a group of odd order, » > 0 and 2° = 0(2),
where A € Irr(P) lies below y. Also, c¢(x) = c(d)c(a) = 29m, and thus c(a) = m. Also, a = 0 if
0(d) =2and a = b ifa > 2. In any case, Qz« = Q,». Notice that Q,» (@) N Q,,;, = Q(), by Lemma 2.6.
We have that Q,/F and Q,,/Q. () have the same degree by natural irrationalities, and the proof of the
theorem is complete by Theorem 2.7. O

Corollary 2.9. Let G be a finite solvable group, set y € Irry(G) and let d # +1 be a square-free
integer. Assume that Q(y) = Q(Vd). Then d = —p, and p = 3 (mod 4) is a prime.

Proof. Write n for the conductor of the field Q(Vd). It is well known that n = |d| if d = 1 (mod 4),
and n = 4|d| otherwise. By Theorem 2.8, we have that ¢(n)/2 is odd, where ¢ is the Euler function.
Hence we deduce that n = |d| and d = 1 (mod 4), and hence rn is odd. As n is square free, we can write
n=pp--pg, Where 2 < p; < pp < --- < py are prime. Since 4 { ¢(n), we must have k = 1, and
n=p =3 (mod 4) is a prime. Thus d = —p. mi

Using quadratic Gauss sums, it is easy to prove that if p is a prime p = 3 (mod 4), then the semidirect
product of C), with Cp-1 is a group of odd order with an irreducible character y of (odd) degree "T_l
2

whose field of values is Q(+/=p).

3. Proofs of Theorems A2 and B2
We begin with a simple observation.

Lemma 3.1. Let G be a finite group, set y € Irr(G) and let F := Q(x). Let A be a subgroup of Gal(F/Q)
and let p := Y yep X Then Q(p) = FA is the fixed field by A.

Proof. Recall that F/Q is a finite abelian Galois extension. Clearly, Q(p) € Q(x) = F and p” =
S aea X =S aeax® =pforally € A, and so Q(p) C FA. Conversely, suppose that p# = p for some

B € Gal(F/Q). Then
DxF=pf=p=>" x

a€A a€A
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Since each x? is an irreducible character, it follows that y# = y@ for some @ € A, and so y* ot o x and
x is Ba~!-fixed. As Q(y) = F, we see that Sa~! acts trivially on F, whence 8 = @ € A. Thus the Galois
automorphisms of F 2 Q(p) are precisely the elements in A, and we conclude that Q(p) = FA. O

The next two theorems provide the key group-theoretic constructions to realise various abelian
extensions of Q.

Theorem 3.2. Let p be any prime, N € Z> be coprime to p, { € C be a primitive Nth root of unity
and F be any subfield of Q(Z). Then there exist a finite group G and an irreducible character x of G of
p’-degree with Q(y) =F.

Proof. Let A < Gal(Q(Z)/Q) be such that F = Q(¢)“ by Galois correspondence, and set n = |A| =
[Q(Z) : F]. Write

A={ow : ¢ N ki € (Z/NZ)*, 1 <i <n}.

As p t N, we can find a smallest m € Z5; such that N|(p™ — 1). Now let g := p" and G := GL,,(q).
Then we can identify the Langlands dual group G* with G. Let ¢ € F} be of order N. Consider the
semisimple element

s = diag(skl,skz, .. ,ak") eG” 3.1

and y = x, the semisimple character of G labelled by s, of degree |G : Cg(s)|, (compare [C, §8.4]).
We may assume that k1 = 1 (so that o7, is the trivial automorphism). Since |s| = || = N, the proof of
[NT1, Lemma 9.1] shows that

Q(x) € Q(9). (3.2)

Furthermore, for any element o : ¢ — ¢’ in Gal(Q(¢)/Q), the same proof shows that 7t = y:, the
semisimple character of G labelled by s’. In particular, if y is o%-fixed, then s is conjugate to s in G*.
In this case, the eigenvalue & of s’ (acting on Fy) is also an eigenvalue of s, whence g' = gki for some
1 <i < nby formula (3.1), and so

o () =¢" = =0, ()

(that is, o = oy, € A). Conversely, as A is a subgroup, for any o; € A the set {k1,k2,...,k,} of n
pairwise distinct elements in (Z/NZ)* is stable under multiplication by . Hence definition (3.1) of s
ensures that s’ is conjugate to s in G*, whence y°* = y, = y and y is o;-fixed.

We have shown that the Galois automorphisms of Gal(Q(¢)/Q) that stabilise y are precisely the
elements of A. By Galois correspondence, this implies that Q(y) = Q(£)“ = F, as desired. O

Theorem 3.3. Let F be a finite abelian extension of Q and suppose that F = Q(«) for some irreducible
character « of a finite group H. Then for any subfield E of F with F/E a cyclic extension of degree d,
there exist a finite group G and an irreducible character y of G of degree da(1)? with Q(y) = E.

Proof. View E as the fixed field F4 for a subgroup A = (a) < Gal(F/Q) of order d. Now we take G to
be the wreath product G = H? A = H? < A, where

H = {(x1,x2,....x4) | x; € H}

is a direct product of d = |A| copies of H. Furthermore, conjugation by any b € A cyclically permutes
the d entries xp, . .., x4 of any element x = (x1,x2,...,Xxg) € H?, sending x to (xg,X1,X2, ..., Xa-1).
Consider the irreducible character
2 d
f=a’xa% x---xa°
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8 Gabriel Navarro and Pham Huu Tiep

of H4, so that

d .
0((x1, %2, oxa) = | o (xo). (3.3)
i=1

The arguments in the proof of Lemma 3.1 show that the d irreducible characters a®, 1 < i < d, are
pairwise distinct. The described action of A on H? now implies that the stabiliser I (6) = H?. (Indeed,
any 1 # a’ € A sends @ to an outer tensor product, with the first factor now being ™ # a“, whence
0 £40.)

By Clifford’s theorem, y := 69 is irreducible, of degree da(1)?. Note that y vanishes outside of
H<. Next, any A-conjugate #” with b € A takes values in Q(a) = F, whence Q(y) C F. Moreover, the
described A-action on H¢ and equation (3.3) show that for any element x = (x1,...,x4) € H4,

0(x%) = 0((xa,x1,%2, - . ., Xa-1)) = @ (xg)a® (x1)a® (x2) - - @™ (xa-1) = (0(x))%,

whence 6(x®) = (6(x))* forall 1 <i < d. Thus y(x) = Zil 0(x*) = Zil(e(x))“l is a-fixed, and
soQ(y) CFA=E.

Now taking y = (z,1,1,...,1) € H? for any z € H, we have x(y) = a(1)? ! p(z), with p :=
2?:1 a® . In particular, Q(x) 2 Q(p). By Lemma 3.1, Q(p) = FA = E. Consequently, Q(y) =E. O

We note that an inductive argument allows one to remove the cyclic assumption in Theorem 3.3.
Now we are ready to prove Theorems A2 and B2.

Proofs of Theorems A2 and B2 Define E := Qpa,, and F := Qpa (with p = 2 in Theorem A2), and let
M C E be any subfield such that p t [F : M N F] - equivalently, M contains the unique subfield E a1
of F that has degree p“~! over Q. Then the subfield M := (M,Q,,) of E contains (Ea-1,Q,) = F.
First we show how to attain M as the value field of some p’-degree character. Note that E := (F, L)
for L := Q,,, and F N L = Q because p { m. By Lemma 2.6(ii), M = (F,J) = J({), where J := M N L
and ¢ = exp(2ni/p“). Applying Theorem 3.2, we can find a finite group H and an irreducible character
6 € Irr(H) of p’-degree such that Q(#) = J. Now we consider H = Cpa x H and the irreducible character
6 = Ax0 of H, where A € Irr(Cpa) is faithful. Then §(1) = 6(1) is coprime to p, and Q(f) = J({) = M.
Now, if p = 2, then Q@ = Q and M = M, and so we have completed the proof of Theorem A2.
Assume p > 2. Then FN'M 2 Epa (where E )« is the only extension of Q.+ of degree p“ over the
rationals), and so F/(F N M) is a cyclic Galois extension, of degree d|(p — 1). As M = (M, F), by
[We, Theorem 3.4.3] we have that M /M is a cyclic Galois extension of the same degree d. Applying
Theorem 3.3, we obtain a finite group G = H ¢ Cy4 and an irreducible character y € Irr(G) of degree
de(1)? with Q(y) = M. O

4. Proofs of Theorems Al and B1

As we have seen in the previous sections, it is not completely trivial to work with conductors of fields
of values. Although our results are on conductors, it is convenient to express them, and to work, using
certain Galois automorphisms which are fundamental when studying values of characters. We shall see
that these are the automorphisms that control the prime powers dividing the conductor of a character. As
usual, let us fix a prime p for the rest of the section. If ¢ > 1 is an integer, then we let o7, € Gal(Q*/Q)
be the automorphism that fixes roots of unity of order not divisible by p and sends any p-power root of
unity & to £1*P°. Hence, a p-power root of unity ¢ is fixed by o, if and only if its order o(&) divides
p¢. Thus Qe is contained in the fixed field of 0. If p is odd, in this paper we will denote by E e the
unique subfield E with [E : Q] = p* in the cyclotomic field Qe+, whenever e > 1.

In this section we prove Theorem Al (assuming a weaker version of Theorem A3 — Theorem 5.1
— whose proof is deferred until Section 5), and Theorem B1. We begin with the following elementary

result:

Downloaded from https://www.cambridge.org/core. IP address: 73.193.229.32, on 15 Feb 2021 at 15:35:59, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.1


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.1
https://www.cambridge.org/core

Forum of Mathematics, Pi 9

Lemma 4.1. Let p be a prime and let e > 1 be an integer. If p = 2, assume that e > 2.

() If f = e, then the restriction Ty of oe 10 Q5 has order pf ¢ and generates Gal(Q,s /Qpe). In
particular, ifn = pf m > 1 is an integer, with m not divisible by p, then the restriction of o to Q,
is the identity if f < e, and has order pf ~¢ and fixed field Qpem if f 2 e.

(ii) Let y € Irr(G), where G is a finite group. If x is o-invariant, then y is 4| -invariant.

(iii) Set y € Irr(G), where G is a finite group, and let ¢ be the conductor of y. Let p be a prime and
write ¢ = p“m, where m is not divisible by p and a > 1. If p > 2, then a is the smallest positive
integer e such that y is o.-invariant. If p = 2, then a is the smallest integer e > 2 such that y is
O.-invariant.

Proof. If m € Z is congruent to 1 mod p¢ but not to 1 mod p¢*!, using the binomial theorem we easily

have that m? is congruent to 1 mod pe” but not to 1 mod p”z. Therefore, for every s > 1, we have that
mP’ is congruent to 1 mod p** but not to 1 mod p*s*!. Hence, if f > e we have that the restriction
75 of o tO Qp # has order pf ~¢. In particular, 7 is a generator of Gal(Qp 7 /Qpe). This proves the first
part of (i). If n is any integer, then write n = p/ m, where m is not divisible by p and f > 0. Let T now
be the restriction of o, to Q,,. We have T € Gal(Q, /Q,,). If f < e, then 7 is the identity. Otherwise, T
has order p/ €. This easily concludes the proof of (i).

We prove (ii). Suppose that y € Irr(G) is o-invariant, and set d > e. We want to show that y is
og-invariant. We may assume that Q(y) € Q,, where p/ :=n p = p°. Notice that the restriction y of
o410 Qs fixes the p®-roots of unity, and therefore y € (7 ), where 7¢ is as in the previous paragraph.
Let yq be the restriction of o to Qp 7 m» and let 7 be the restriction of o to Qp 7 m- Using the notation
in the previous paragraph, we have yy € (7o), since 7y is a power of 7 and both fix p’-roots of unity.
Now, since y is tp-invariant, it is also yp-invariant. This proves (ii).

To prove (iii), notice that o7, fixes Qp« and Q,,, and therefore y is o, -fixed. Assume that y is o-
fixed for some 1 < e < a, and furthermore, e > 2 if p = 2. By (i), we have that the fixed field of the
restriction of o to Q. is exactly Qpe,,. Hence Q(x) € Qpe, wWhich contradicts the definition of the
conductor c. m]

Notice therefore that we can reformulate Theorems Al and A3 and Conjecture B3 in terms of the
Galois action of the automorphisms o, using Lemma 4.1.

Lemma 4.2. Let G be a finite group and N be a normal subgroup of G. Suppose that G /N has order
not divisible by p. Set y € Irr(G) and let 0 € Irr(N) be an irreducible constituent of yn .

(i) Suppose that e > 1. Then y is o.-fixed if and only if 6 is o -fixed.
(ii) Suppose that p* is the p-part of the conductor of x and that p® is the p-part of the conductor of 6.
Ifa,b>1o0orp=2thena=b.

Proof. Let t be the restriction of 0 to Q|g|. Then 7 has order a power of p, by Lemma 4.1(i). We have
that y (or 0) is o-invariant if and only if it is T-invariant.

If 0 is T-invariant, then y is T-invariant, by [NT4, Lemma 5.1]. If y is T-invariant, then 6 is T-invariant
by Lemma 2.1. This proves (i).

If p = 2, we claim that 6 is 2-rational if and only if y is 2-rational. Indeed, suppose that y is 2-
rational. Write |G| = 2/ m, where m is odd, and set o € Gal(Q|G/Qm). Then o has 2-power order and
therefore 87 = 6 by Lemma 2.1. If 8 is 2-rational, then y is 2-rational by [ILNT, Lemma 2.1]. Hence,
if p = 2, we may assume that a, b > 2. Now (ii) follows easily from (i) and Lemma 4.1(iii). ]

We remark that in Lemma 4.2(ii), we need a, b > 1, even if the characters have degree not divisible
by p. For instance, if @ = 0, then b can be 1, as shown by S3 with p =3,and N = A3. If b = 0, a can be
1, as shown by SmallGroup(24,4) [GAP], again with p = 3.

Lemma 4.3. Suppose that G is a finite group and N < G. Let A, 0 € Irr(N) be G-invariant, and assume
that A0 is irreducible and extends to G. If 6 extends to G, then A extends to G.
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Proof. This is [ILNT, Lemma 2.2]. O

Lemma 4.4. Let p be a prime. Suppose that G is a finite group and N <« G. Let 1,6 € Irt(N) be G-
invariant, and assume that A is linear and 10 extends to G. Suppose that y € Irr(G) has p’-degree and
lies over 6 € Irr(N). Let T € Gal(Q®/Q) fix p’-roots of unity.

() If p = Ay, then u6 extends to a character € Irr(G). Also, we can write y = Y&, where

£elr(Glu™).
(i) If G/N is perfect and 0 is T-invariant, then \ is T-invariant.

Proof. Part (i) is [ILNT, Lemma 2.3(i)].

(ii) By hypothesis, 6 is t-invariant, and since u = A, is also r-invariant, we see that ¢ = uf is
T-invariant. We are assuming that G/N is perfect, so by Gallagher’s theorem [Is2, Corollary 6.17] we
deduce that ¢ is the unique extension of ¢ to G. The Galois group Gal(Q(y)/Q(¢)) thus fixes ¢, so the
Galois group is trivial, and thus Q(¢¥) = Q(¢). We conclude that y is 7-fixed, as required. O

The next result is standard.

Theorem 4.5. Set N < G, where G is a finite group, and let § € Irr(N) be G-invariant. Then there is a
finite group H and a surjective homomorphism n : H — G such that Z = ker(x) € Z(H). Furthermore,
if K = n7'(N) and 0 e Irr(K/Z) corresponds to 8 via the induced isomorphism K /Z — N, then 0 is
H-invariant and there is a linear H-invariant character A € Irr(K) such that 20 extends to H.

Proof. This is the content, for instance, of [N2, Theorem 5.6]. m]
The following is a suitable modification of [ILNT, Theorem 2.6] for our present situation:

Theorem 4.6. Let p be a prime and G a finite group, set N < G and let 0 € Irrp, (N) be G-invariant
and o,-fixed. Suppose that G|/N is a nonabelian simple group, and let x € Irr(G|6) have p’-degree.
Suppose that y is not o.-fixed.

(a) If p is odd and Conjecture B3 holds, then there exists a p-element x € G such that Epe € Q(x(x)).
(b) Assume thatp =2, e 22, P € Syl,(G) and Qze € Q(xp). Then Q(xp) = Qaa for some a > e + 1.

Proof. (i) By Theorem 4.5, there is a finite group H with a central subgroup Z such that H/Z = G
(where we identify G with H/Z). Furthermore, if K/Z = N, then there is a linear H-invariant character
A € Irr(K) such that A0 extends to H, and @ is H-invariant. Notice that now we view 6 as an irreducible
character of K with Z in its kernel. Also, y € Irr(H) contains Z in its kernel. By Lemma 4.4, if u = 4,
we know that u6 extends to a o-invariant character € Irr(H). Furthermore, we can write y = ¢
for some character & € Irr(H|u~"). Notice that & and  have p’-degree, since y (1) is p’. Also, & is not
oe-invariant, since ¥ is o.-invariant and y is not.

Write L = ker(u~"), so K/L is a central p’-subgroup of H/L, because u~! is invariant in H and has
p’-order. Let W/L be the final term of the derived series of H/L, so W/L is perfect. Now KW = H,
because H/K is a nonabelian simple group, and since W/(K N W) = H/K is simple and (K N W)/L is
central in W/L, we see that W/L is quasi-simple.

Now &y is irreducible, because KW = H and K /L is central in W/L. Also, |[H : W| = |K : (KNW)|,
which divides |K : L|, so |[H : W|is p’. It follows that &y is not o-invariant, because otherwise &
would be o -invariant by Lemma 4.2, which is not the case.

(ii) Suppose first that p is odd and that Conjecture B3 holds. By Conjecture B3 applied to the
character £y of W/L, we deduce that there exists an element w € W such that w has p-power order
modulo L, and E,e € Q(£(w)). Also, observe that we can assume that w has p-power order p? . Since
Epe € Q(é(w)), wehave f > e+ 1. Now y(w) = ¢(w)é(w), and ¢ (w) € Qpe because w has p-power
order and i is o -invariant. Furthermore,  (w) # 0 by [N2, Lemma 4.19(ii)], because w is a p-element
and ¥ (1) is p’.

Since Q()((w)) Q,r, we can write [Q(x(w)) : Q] = p“t, where ¢ divides p — 1 and a < f.
Suppose that p€ divides [Q(x(w)) : Q. Then E,e € Q(x(w)), because E e is the only extension of Q
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inside Q,, that has degree p“ (using the fact that Q,, /Q is cyclic). Hence we may assume that p¢ does
not divide [Q(x(w)) : Q], and thus a < e. Then [Q(y(w)) : Q] divides p*~!(p — 1), and therefore
Q(x(w)) € Qpe, because Qe is the unique extension of its degree inside Q pr (again using the fact that
Q,s /Q) is cyclic). Then &(w) = x (w) /¥ (w) € Qpe, but this is a contradiction, since Epe € Q(&(w)).

(iii) Assume now that p = 2 and e > 2. Since &w is not o.-invariant, by Theorem 5.1 we can find
a 2-element w € W such that £&(w) ¢ L := Que. In particular, the order of w is 2/ for some f > e.
Next, y(w) = ¥ (w)é(w), and ¥ (w) € L because w has 2-power order and i is o-invariant (using
Lemma 4.1). Furthermore, y (w) # 0 by [N2, Lemma 4.19(ii)], because w is a 2-element and 2 t ¥ (1).
It follows that y(w) ¢ L.

We may assume that w € P. Since L € Q(yp) by hypothesis, we have

Q(xp) =L(xp) 2 L{x(w)).

Defining b := exp(P), we certainly have b > f > e. Now Q(yp) contains L properly and is contained
in Q. As e > 2, we also note that Q,» /Qse is a cyclic extension of degree 2°¢, with all intermediate
fields being Qe with e < ¢ < b. It follows that Q(yp) = Qy« for some a > e, as desired. m]

The following contains Theorems Al and B1 (by applying Lemma 4.1). Again, we use some of the
ideas in [ILNT].

Theorem 4.7. Let p be a prime and G a finite group, set x € Irt,(G) and let e € Z;.

(i) Assume that p is odd and that Conjecture B3 holds for all quasi-simple groups S such that S |Z.(S)
is involved in G. Then either y is o.-invariant or Epe C Q(x).
(ii) Suppose that p = 2. Then either y is oe-invariant or Qmes1 € Q(x).

Proof. If p is odd, let K = E e, and if p = 2, let K = Q,e+1. In both cases, we have |[K : Q| = p©. We
assume that y is not o-invariant and we prove that K € Q(y). If p is odd, then we argue by induction
on |G|. If p = 2, then we argue by induction on |G| + e. Write T = 0.

First we claim that if p = 2, then we may assume that ¢ > 2 and that Qe C Q(y). Indeed, if e = 1
or e = 2, since y is not o-invariant, then y is not 2-rational. Therefore Q(y) 2 Q(7) = Q2 by [ILNT,
Theorem C], and the claim is proved. If e > 3, then y is not o._;-invariant by Lemma 4.1, and therefore
Q(x) 2 Qe by induction. This proves the claim.

Let N be a normal subgroup of G. Let 6 be an irreducible constituent of y and let T be the stabiliser
of 8in G. Also, lety € Irr(T) be the Clifford correspondent of y over 6, so ¢ = y. Since Q(y) C Q(¥)
(by Lemma 2.1(i)), we know that ¢ is not 7-fixed. Notice that |G : T| is not divisible by p, because y has
p’-degree. We claim that [Q(y) : Q(y)] is not divisible by p. Otherwise, let o € Gal(Q(¥)/Q(x)) have
order p. Then y“ = y. Since NG (T')/T has order not divisible by p, we have o- = 1 by Lemma 2.1(ii).
This is a contradiction, and so [Q(¥) : Q(x)] is not divisible by p, as claimed.

Assume that T < G. In this case, K C Q(y) by the inductive hypothesis. Since [Q(¥) : Q(x)] is not
divisible by p, we deduce that K C Q(y), as wanted.

Thus, we may assume that if N is any normal subgroup of G, then yn = e6. In particular, Q(0) C
Q(x). Also, if N < G, we may assume that 6 is T-invariant, by the inductive hypothesis.

Suppose that N = O”(G) < G. Since y has p’-degree, we see that 6 has p’-degree. By [Is2,
Theorem 6.28], there is a unique extension § € Irr(G) of 6 to G with determinantal order not divisible
by p. By uniqueness, notice that 6 is T-invariant, because 6 is. By Gallagher [Is2, Corollary 6.17], it
follows that y = A6, where A € Irr(G/N) is linear (because G /N is a p-group and y (1) is not divisible
by p).

We want to show that K € Q(y). So it is enough to show that if o € Gal(Q®/Q) fixes Q( ), then it
fixes K. But if o fixes y, then it fixes 6. Therefore it fixes 6, because @ is uniquely determined by 6. By
the uniqueness in the Gallagher correspondence, it follows that o fixes 4. Hence Q(1) € Q(y). Now,
since y is not o-invariant, it follows that A is not o, -invariant. Therefore the order of A is at least pe”.
Thus Qe+t € Q(4). Then K € Qpent € Q(4) € Q(x), as desired.
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If G/N has p’ order, where N is proper in G, then since 6 is o-invariant, we can apply Lemma 4.2
to deduce that y is o.-invariant, contrary to hypothesis.

Thus, by taking a maximal normal subgroup N of G, we may assume that G/N is a nonabelian
simple group. Now we apply Theorem 4.6 to conclude that K € Q(y). O

We conclude this section by noting that [NT4, Conjecture A] implies that the conclusion of Theo-
rem B1 holds in the case where P/P’ is elementary abelian for P € Syl,(G).

5. Proof of Theorem A3: Quasi-simple groups

Throughout this section, o, is defined with respect to p = 2. In this section we prove Theorem A3. The
bulk of the proof is devoted to the following weaker version:

Theorem 5.1. Set e > 2 and let G be a finite quasi-simple group. If ¢ € Irry (G) is not o.-invariant,
then there is a 2-element g € G such that £(g) ¢ Qge.

5.1. Further reductions
First we prove some preliminary results, some of them extracted from [ILNTT].

Lemma 5.2. The following statements hold:

(i) It suffices to prove Theorem 5.1 in the case where Z(G) is of odd order and exp(P/P’) > 2°¢ for
(ii) Furthermore, Theorem 5.1 holds in the case where G |Z(G) = *F4(2)’.

Proof. (i) Modding out by Ker(¢), we may assume that y is faithful. Since £(1) is odd, we then have
that |Z(G)| is odd. Furthermore, since ¢ is not o,-invariant, exp(P/P’) > 2¢ by [M, Theorem 1].

(ii) Since 2F4(2)’ has trivial Schur multiplier, we have G = %F4(2)’. Now the statement can be
checked using [Atlas]. O

Proposition 5.3 ([ILNT], Proposition 4.3). Let G be a finite simple group and set P € Syl,(G). Then
exp(P/P’) <2 for P € Syl,(G) if one of the following conditions holds:

(i) G =A, for somen > 5.

(ii) G is one of the 26 sporadic simple groups.

(ili) G is a simple group of Lie type in characteristic 2 and G # *F4(2)’.

(iv) g is an odd prime power. Furthermore, G = PSp,,, (q) withm > 1, PQ(q) withn > 7, PSLym(q)
or PSUom (q) with m > 2, Ga2(q), G2(q) with q = 3°?*', 3D4(q), F4(q), Es(q) or the (simple)
group E7(q).

(V) € =1, q is any prime power such that 4|(q +€) and G = PSL;, (q) withn = 3, or G is the (simple)
group E¢ (q).

Corollary 5.4. It suffices to prove Theorem 5.1 in the case where q is an odd prime power, g = €( mod 4)
for some € = £1 and either G = SL, (q) with n > 3 not a 2-power or G = E§ (q)sc-

Proof. Let S = G/Z(G), so that S is simple. By Lemma 5.2, we may assume that |Z(G)| is odd,
S % 2F4(2)" and exp(P/P’) > 2¢ for P € Syl,(G). Hence, exp(Q/Q") > 2¢ for Q € Syl,(S). This
implies by Proposition 5.3 that there is some g = e(mod 4) such that either S = PSL; (¢) withn > 3
not a 2-power or S = E£(g) (the simple group). Inspecting the Schur multiplier of S in those cases,
we see that G is a quotient of SL} (g) or E£ (g)sc. Inflating y if necessary, we may thus assume that
G = SLE(q) or EE (q)s. 0
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5.2. Special linear and unitary groups

In this subsection we prove Theorem 5.1 for G = SL;(g). Set n € Z5; and consider the 2-adic
decomposition

n=2"M 42 4 5.1

with my > my > --- > m, > 0. In what follows, we will refer to the summands 2"* in equation (5.1) as
2-adic parts of n. A decomposition n = ny+ny+- - -+ny of n will be called a proper decomposition of n if

k>1,n€Z n >np>--->ng>1

and every 2-adic part of n is a 2-adic part of some summand n;, 1 < i < k. By [GKNT, Lemma 2.2],
the latter condition is equivalent to requiring that n!/ Hf;l n;! be odd.

For a fixed € € {x1}, let u,_ = ({) be the cyclic subgroup of order g — € of F;z and define
a = (97€)7 5o that (@) = 0, (f4-¢)- Fix a (¢ — €)th primitive root of unity { € C, and define
@ := (99 a(q — €)th root of unity in C. For s € Hg-e,let [s] € Z/(q — €)Z be such that s = sl
We will consider the map

=X
F:xe]FquqE.

We will also use the Dipper—James labelling for irreducible characters of GL,,(g), as in [GKNT, (2.2)],
and its analogue for a subset of Irr(GU,(g)) as explained in [GKNT, Lemma 5.2].
To handle groups of type A we will need the following two statements.

Lemma 5.5. Let g be an odd prime power, € = =1, e > 2, set n € Zx3 not a 2-power and define
G :=SL;(q) <GL; (q) =: G. Let y € Irr(G) be of odd degree. Then the following statements hold:

(i) x extends to y € Irr(G).
(ii) There exist a proper decomposition n = ny + ny + --- + n of n, k pairwise distinct elements
Si € fg—e, 1 <1 <k, and k partitions A; + n;, 1 <i < k, such that

X =8(s1,41) 0 S(s2,42) -+ 0 S(sk, Ak).

(iii) Suppose x is not o,-invariant. Then k > 2 in (ii), 2°*'|(q — €), and there exist 1 <i < j < k such
that (q — €)/2° does not divide [s;] — [s;].

Proof. Statement (i) follows from [ST, Lemma 10.2], and (ii) is proved in [GKNT, Theorem 2.5] for
€ = 1 and [GKNT, Lemma 5.2] for e = —1.

For (iii), note that for a suitable choice of 7, S(£%, (n)) is the linear character of G sending g € G
with det(g) = ¢? to £%?. Now suppose that y is not o-invariant but the conclusion of (iii) does not
hold. Define 2¢ := (g — €); and b := min(a, ¢). Multiplying v by S((sl‘l, (n)), we may assume that
24P divides [s;] for all i. Recall that S(1, A;) is a unipotent character of GL;, (¢) and so takes only
integer values. Since

S(si, Ai) = S(sq, (n:))S(1, 4;), (5.2)

(see, for example, [GT, Lemma 2.9] for the case where € = 1 and the displayed formula just before
[GKNT, Lemma 5.1] in general), the condition on [s;] now implies that S(s;, A;) takes values in
Q(Z(q_E)Z/Zb), and so it is o,-invariant (as b < e). Note that y = iR(L; (¥), where

Y =S(51,41) ® S(s2,2) ® - - - ® S(8¢, Ak); (5.3)
that is, y is Lusztig induced from the Levi subgroup

— € € €
L= GLnl (q) X Gan(Q) XX GLnk (q) (54)
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For future use, we also note that N (L) = L. Arguing as in the proof of [GKNT, Theorem 5.3], we see
that ¥ and y are o.-invariant — a contradiction. |

The next statement is extracted from [GLBST, Lemma 7.5] and its proof.

Lemma 5.6. Let G = GLE(q) withn > 1, € = +1, and let q be any odd prime power. Also fix the

generator a of Ox(iq—¢) as before. Then the following statements hold:

() If n = 2™ for some m € Zs, then there exists a regular 2-element g, (@) € G of determinant a,
. =n .
whose eigenvalues on F, form an F-orbit

(6,69¢,...,9@)" )

of some generator 0 of O, (]F;,,). In particular, all eigenvalues of g (@) lie in Fom \ qum—] .
(ii) For every 2-element § of py—e, there exists a regular 2-element h,, () € G of determinant § with
all eigenvalues on FZ belonging to F 2 if n is written in the form of equation (5.1).

Theorem 5.7. Let n € Z3 be not a 2-power, e > 2, € = x1, and let g be an odd prime power such that
(q — €)2 =2% > 4. Then Theorem 5.1 holds for G = SL;, (q).

Proof. Let y € Irr(G) be of odd degree and not o, -invariant. We define G := GL¢(q) and apply
Lemma 5.5 to get the character y as described in that lemma, and a > e+ 1. We will write ¥ = J_er W)
with ¢ given in equation (5.3). Also define V := Fy (or IF;Z), denote the natural module for G and define
V.=V ®Fq. Since n = ny +- - - +ny is a proper decomposition, the Levi subgroup L from equation (5.4)
acts semisimply with pairwise nonisomorphic simple submodules on V and on V. Also let /,,, denote
the identity m X m-matrix over F., and define

gom(a™h) = (gam (@)™,

with gom (@) as defined in Lemma 5.6.

(i) Case 1. There exist ip < jo such that 24771 4 ([s;,] = [s,])-

Case la. Suppose in addition that the smallest 2-adic part 2" of n — compare equation (5.1) — is not
a 2-adic part of either n;, or nj,.

Then we consider the following two elements in G using Lemma 5.6:

8= (g2m1 (a)’ -5 80™Mig (a)’ < oMl (a')’ 87y (a/_l)’ 8o+ (Cl), cees 82l (Cl), hzm’ (6))’
g, = (gZ'"l (a')’ s 8Mig-1 (a')’ 8oMig (a_l)’ 8oMip+ (a')’ <5 8™ (a')s cees 821 (a')’ h2'"r (6)),

each containing only one block gom; (a™!) with 1 < i < r — 1, and with § € Hg—e chosen so that
8,8 € SL; (¢). We will show that

exp(jji’;) € Qx(8) U QLx(8)). (5.5)

As shown in Case 1a of the proof of [ILNT, Theorem 4.7], each of g and g’ is contained in a unique G-
conjugate of the Levi subgroup L given in equation (5.4), and so without loss we may assume g, g’ € L;
furthermore,

Cs(g) =Cr(g). (5.6)

According to [DM, Proposition 9.6],

o _ .. pG _ G
Sts - ¥ = #Sts - RS (y) = +(Str, - ¥)©, (5.7)
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where Stz (resp., St ) denotes the Steinberg character of G (resp., of L). Applying this formula to g
and using the fact that L is the unique G-conjugate of L that contains g, we have

St (8)x (g) = £StL(g)y(8),

and similarly for g’. On the other hand, as g is semisimple, we have

St (8) = £|Cs()lp, StLlg) = =[CL(g)lp

(see [DM, Corollary 9.3]), and similarly for g’. It follows that

x(g) =« (g), x(g')=«'y(g") (5.8)

for some «, Kk’ € Q*.

Now we evaluate i on g and g’, using equation (5.3). Since 2  x (1), the degrees of ¢ and of S(s;, 4;)
are all odd, whence S(s;, 4;) evaluated at the GLj; (¢)-component of g is nonzero by [ILNT, Lemma
2.4]. Recalling the constructions of g and g’ and applying equation (5.2) to S(s;,, A;,) and S(s,, 4,),
we now have

w(g) _ ~2([sig1=[sj, 1) 5.9
wigh ' e

As |@| = 2% and 29771 & ([s4,] - [sj,]1), we see that y/(g) /¥ (g’) is a root of unity of order 2f > et
On the other hand, as the unipotent characters S(1, A;) take only integer values, equation (5.2) implies
that ¢ (g) is a Z-multiple of a 2-power root of unity. It follows from equation (5.9) that this root of unity
for at least one of g, g’ must have order > 2°*! — say for g. We conclude by equation (5.8) that y(g) is
a Q-multiple of a 2-power root of unity of order > 2°*!, and y(g) # 0 by [ILNT, Lemma 2.4]. Thus
exp(27i/2¢*1) € Q(x(g)), establishing formula (5.5).

Case 1b. Suppose we are in Case 1, but the smallest 2-adic part 2" of n is a 2-adic part of, say, n;,.

Then we consider the following two elements in G using Lemma 5.6:

8= (g2ml (CL’), 82m (a')’ cee s 82l (Cl), hZ’"V (6))’
g’ = (g2'n1 (@),..., 8y™ig-1 (@), &omig (a_l), 8y™Mig+1 (@), ..., gy (@), hymr (5&2)),

with 6 € u,_ chosen so that g, g” € SLf (g). Now the same arguments as in Case l1a show that each
of g and g’ is contained in a unique G-conjugate of L, say g,g’ € L, and moreover, equations (5.8)
and (5.9) hold. Hence we conclude as before that formula (5.5) holds, as desired.

(ii) Case 2. Forall 1 <i,j < k,297¢~! divides [s;] — [s;].

Multiplying ¢ by S(s7',(n)), we may assume that 2¢~¢~! divides [s;] for all 1 < i < k. By
Lemma 5.5(iii), there exist some iy < jo such that 297¢ { ([s;,] — [s},]). Keeping in mind that
n=mnp +---+ng is a proper decomposition, we partition

{my,....m.}y ={m},....m;} U{m{,....m;},

withs+t=r,m1 > ... >m;,mi’> ... > mj, such that

e each 2-adic part of any n; with 297¢ 4 [s;] is among 2", ..., 2", and vice versa, each 2™ s a
2-adic part of some n; with 297¢ ¢ [s;]; and

e cach 2-adic part of any n; with 2¢7¢ | [s;] is among 2my .. 2™ and vice versa, each 2™ is a
2-adic part of some n; with 247¢ | [s].

Now write L = L; X L,, where
L= [] oL@, o= [] oL@
i2a-¢f[s;] Jj29=¢|[s;]
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We claim that to prove the theorem in this case, it suffices to find a 2-element g € G such that whenever
a conjugate g~ of g is contained in L,

the projection of g* onto L has determinant = a(mod o). (5.10)

Indeed, suppose h1hy = g* € L, with h; the projection of g* onto L; fori = 1,2. As g is a 2-element,
the determinant of the projection of /; onto the direct factor GL;; (g) of Ly is a“ for some a; € Z, and
similarly the determinant of the projection of &, onto the direct factor GL;i (g) of L, is @ for some
b; € Z. Recalling equation (5.2) and the fact that unipotent characters S(1, 4;) take only integer values,
we see that there is an integer x(x) € Z such that

Y(g*) = k(x)am™,
with
m(x) = ( Z [si]a; + Z [sj]bj) = ga~e-l Z a; = 297" (mod 297°),
22974 [s; ] J297¢|[s;] 22974 [s;]
since by expression (5.10) we have
aZi2*<tlsil % = det(hy) = a(mod a?).
But |@| = 24, so we have ¥/ (g¥) = «’(x)3, where
B = exp(2mi/2¢h)
and «’(x) € Q(B?) = Qoe. It now follows from equation (5.7) that
x(g) =«'B

for some k” € Qye. Since «x # 0 by [ILNT, Lemma 2.4], we conclude that y(g) ¢ Qoe, as desired.

We will now follow Case 2 of the proof of [ILNT, Theorem 4.7] to construct a 2-element g = g1g2 €
G N L,with g; € Ly and g, € L,, that satisfies formula (5.10).

Case 2a. We are in Case 2, but s and ¢ are both odd.

Setting

81 = (8ym; (@), 8y (@), 8y (@), g, (1), 8t (@), g (@), gy (@),
82 = (gz”"n' (Clil )’ gz’”’z’ (a)s gzmg’ (071 )’ gzm:{ (Cl), CERE] gzm;'_z (CY71 )’ gzm;'_l (Cl), 8ymy (071 ))’
and arguing as in Case la, we see that L is the unique G-conjugate of L that contains g. Clearly,
det(g1) = @, and so we are done.
Case 2b. We are in Case 2,1 but s + ¢ is odd.
Multiplying ¢ by S(a>““", (n)) if necessary, we may assume that 2 s and 2|r. We set
81 = (8, (@), 8y, (@), 8 (@), gty (@), 8y, (@), & (@), g (@),
82 = (8ymy (@71, &y (@), gy (1), gy (@) s 8y (@71), g, (@) @ (@71), 85),

where

—_ t
827 (gymri (@), gy (@), ) < m)'.

. {Izm'/, my > m),
If mg > m; orif m{ > m but m;" # m; + 1 for all i, then arguing as in Case la we see that L is the

unique G-conjugate of L that contains g. As det(g;) = @, we are done in this case.
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Suppose that m/" = m’, + 1 for some j and g € L~ for some x € G. Again, we argue as in Case la and
see that each 2-adic part 2" with m; # m}’, m; is “filled up’ uniquely by the F-orbit of g-eigenvalues
within gom; (a*!) (that is, this F-orbit of g-eigenvalues is the only one of length 2). This leaves
three F-orbits of g-eigenvalues, of length 2™ each, and afforded by two blocks 8, (@) and one block
8 m) (@), to fill up the two remaining 2-adic parts 2" =2 - 2™ and 2. Clearly, all possible ways

of filling up the remaining 2-adic part 2™ for L7 have determinant & or a~!, and so formula (5.10) is

satisfied.
Case 2c. We are in Case 2,1 but s and ¢ are even.
Multiplying ¥ by S(a**™“", (n)) if necessary, we may assume that m’ > m,’. We set

81 = (8 (@), 8, (@), 8ty (@), 8oty (@71, s ot (@), g, (@71, 8 (@71), g},
82 = (8ymy (@71, gy (@), 8y (@71), gy (@), 8y (@71), g, (@), 8 (@71, 85),

where (g?“g;) is chosen to be

((gam1 (@), gyt (@) 1Ly ) mh>m) +1,
(diag(1,@?)[|11); mi=m/+1=1,
((gymy1 (@), gymy-1 (@), 81 (@), 8oy 1 (@) (81 (@), 8oy (@), mi=m) +1 22,

Suppose g € L* for some x € G. Again we argue as in Case 1a and see that each 2-adic part 2" > 2"s
is filled up uniquely by the F-orbit of g-eigenvalues of gom; (a*!).

Consider the case where m > m;’ + 1. The smallest 2-adic part 2" can only be filled up by the block
12,,,,;' , because all other eigenvalues of g have F-orbit of length > 2m7 If, moreover, my, — 1 is not equal
to any m/’, then the two blocks g,m;-1(a™") and g, -1 (@) can only fill up the 2-adic part 2. Thus
L is the unique G-conjugate of L that contains g, and det(g;) = @ as desired. Suppose mg — 1 = m’.
Then each 2-adic part 2™ with i < Jj < t must be filled up by the unique block 8 (a*!) in g,. Next,
the 2-adic part 2" can be filled up by an F-orbit of length 2% coming from the three remaining blocks
8o (a1, 8oy (a?) and 8ymy (a*!'). Any choice of such filling gives the same determinant modulo
. The two remaining F-orbits then fill up the remaining 2-adic part 2" of L7, thus giving the same
determinant modulo a? for the projection on g onto L*, as required in formula (5.10).

Suppose m; = m;’ + 1. In this case, all 2-adic parts but 2 = 2/' 2 and 2" are already filled up
uniquely by suitable blocks of g. If m;” = 0, then the 2-adic part 2" can be filled up by a g-eigenvalue
L ora?. If m)” > 1, then the 2-adic part 27 can be filled up by two F-orbits of g-eigenvalues of length
2mi =1 afforded by blocks 8omy-1 (@) OF gyt (a). Evidently, any choice of such filling gives the same
determinant modulo 2. The remaining F-orbits then fill up the remaining 2-adic part 2" of Ly and
thus give the same determinant modulo o for the projection on g onto L¥, as required in formula (5.10).

This completes the proof of Theorem 5.1 for G = SL;; (g). O

For future reference, we will need the following consequence of the foregoing analysis:

Proposition 5.8. Ler G = GL; (q) with 2 t q and € = +. Suppose
x =S5(s1,41) 0 S(s2,42) 0 -+ 0 S(85k, Ak)

is an odd-degree irreducible character of G as in Lemma 5.5(ii), and let 2¢ be the smallest 2-part of
[si], 1 <i <k IfP € Syl,(G) and 2% := (q — €)a, then Q(xp) = Qaa-c.

Proof. (i) Recall that unipotent characters S(1, 4;) and linear characters S(+1, (n;)) are rational-valued.

More generally, if 2 denotes the 2-part of [s;], then the linear character S(s;, (n;)) can take values at
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2-elements only in Q,«-;. Hence, using equation (5.2) and the arguments in the proof of Lemma 5.5,
we see that

Q(xp) € Qoa—e. (5.11)

In particular, if ¢ > a — 1, then y|p is rational and we are done. In what follows we may therefore
assume that ¢ > 2 and ¢ < a — 2. Furthermore, if k = 1, then ¢ = #; and again we are done by using
equation (5.2) and the preceding arguments. Thus we may assume that k > 2; in particular, n is not a
2-power (since n = ny + - - - + ny is a proper decomposition).

(i) Let 0 < b < a be the largest integer subject to the condition that 2? divides [s;] — [s ;] for all
1 <i < j<k.Notethath > c. (Assume that b < ¢ — 1. By the definition of b and ¢, we have [s;], = 2¢
for some i and 2¢ 1 ([s;] — [s;]) for some j # i, whence 2¢ { [s;] — a contradiction.) Next we fix an
index [ with [s;], = 2¢ and write

x =8(s1,(m)x', (5.12)

where y' = S(s1/s;, A1) o S(s2/s;,A2) o -+ 0 S(sk/s;, Ax). Then y and y’ have the same restriction,
call it ¢, to [G, G] = SL;; (¢). The arguments in the proof of Lemma 5.5 can then apply to show that ¢
is op-invariant for all b* > a — b and

Q(X’P) - QZ”_b, Q(XQ) - QZ“_b’ (513)
where O = PN [G, G] € Syl,([G, G]). We also note that
S(s1, (n))(u) is a primitive 2¢~-root of unity if u € P has det(u) = (17, (5.14)

Consider the case where b > a — 1. By formula (5.13), y’(#) € Q, and it is nonzero as 2 1 y(1).
Hence equation (5.12) and formula (5.14) show that Q(y(u#)) 2 Qaa-c, whence we have equality in
formula (5.11), as required.

(iii) From now on we may assume that b < a — 2. Note that ¢ = y|g g is irreducible, since s;,
1 <i < k, are pairwise distinct and n = n| + - - - + ny is a proper decomposition. Moreover,

¢ is not 04—_p—1-invariant. (5.15)

Assume the contrary. As ¢ extends to G, we have that y and o,-p-1(x) can differ only by a linear
character of G. Using the unique representation of y as in Lemma 5.5(ii) (see, for example, [GKNT,
Lemma 5.2] for the uniqueness in the case where e = —) and the action of Galois automorphisms of
Qg-¢ on these representations (see, for example, the last displayed formula in the proof of [GKNT,
Theorem 5.3]), we have

2(1—b—l 2(1—b—l 2u—b—l

= (5> == s

(s7)

where s/ is the 2-part of s;, and in fact (s;/s;)>"" = 1 for all i, j. This implies that 2°*! divides
[s:] = [s;] for all i, j, contradicting the choice of b.
In particular, ¢ is not oj-invariant, and so it is not 2-rational. By [ILNT, Theorem E], i € Q(¢p) C

Q(xp). Recalling formula (5.11) and the cyclic extension Qpa— /Q(%), it suffices now to show that

Q(xp) € Qua—c-1. (5.16)

@iv) If b > ¢, then formulas (5.13) and (5.14) show that y(u) ¢ Qja-c-1, and so formula (5.16)
holds. Finally, we consider the case where b = c¢. If ¢ = a — 2, then i € Q(yp) as noted already,
implying formula (5.16). If ¢ < a — 3, then as ¢ is not o,_._;-invariant, by formula (5.15), we have
Q(¢0) € Qpa-c-1 by Theorem 5.1, and so formula (5.16) holds again, completing the proof. O
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5.3. Groups of type E¢ and *E¢(q)

The rest of the section is devoted to proving Theorem 5.1 for G = E¢ (¢)sc. First we recall the following
result from [ILNT]:

Proposition 5.9 ([ILNT], Proposition 4.9). Let G = GF = E¢(q)sc, and suppose that g = €(mod 8).
Write (q — €), = 2¢. Then there exists an element t € G with the following properties:

(i) tis a 2-element;
(ii) Cg(1) is a maximal torus (¢g* — 1) x (¢> = 1);
(iii) t centralises a unique involution v that has centraliser of type DsT) in G;
(iv) if L = Cg(v) and D = L’ = DS(q), then the coset tD € L/D has order 2¢ and generates
02(L/D);
) t9nL=rL

Proof of Theorem 5.1 By Corollary 5.4 and Theorem 5.7, it suffices to prove Theorem 5.1 in the case
where G = G = E ¢ (@)sc, with € = =1 and 4|(g — €). Here G is a simple, simply connected algebraic
group of type Eg in characteristic p|qg and F : § — § is a suitable Steinberg endomorphism. Using
[Lu] one can see that G has exactly 8(g — €) irreducible characters of odd degree, eight of which are
unipotent and listed in [C, §13.9]. As shown in the proof of [M, Theorem 3.4], any unipotent character
of odd degree of G lies in the principal series and is 2-rational. So we may assume that y is one of
8(q — € — 1) nonunipotent characters of odd degree and y belongs to the rational series £(G, (s)),
labelled by a 2-central semisimple element s € G*. Here, G* = G*F" and (G*, F*) isdual to (G, F).

As mentioned in the proof of [M, Theorem 3.4], Cg-(s) is connected. In fact, as one can see using
[LSS, Table 5.1], there are g — € — 1 classes of such elements s € G*, with Cg-(s) = £*, an F*-stable
Levi subgroup of type D577, dual to an F-stable Levi subgroup £ of . Next, as mentioned in the proof
of [NT3, Lemma 4.13], L := £ and £*F" each have exactly eight unipotent characters of odd degree,
and furthermore their degrees are pairwise distinct. The latter immediately implies that these unipotent
characters are rational-valued (indeed, any Galois automorphism of Q acts on the set of unipotent
characters and hence fixes each of these eight characters).

Since Cg-(s) = L%, Lusztig’s classification of irreducible characters of G in the rational series
E(G, (s)) [DM, §13] yields

x = +RZ (¥ A), (5.17)

where € Irr(L) is unipotent of odd degree and A € Irr(L) has degree 1. (Indeed, as s € Z(L"), by
[DM, Proposition 13.30], there is a linear character 4 = § of L such that multiplication by A gives a
bijection between E(L, (1)) and E(L, (s)). Next, by [DM, Theorem 13.25], there are some signs £ and
&1, such that the map

gGeLRY : E(L, (5)) = E(G, ()

is a bijective isometry which sends true characters to true characters.) The formula for the Lusztig in-
duction functor Rf (see [DM, p. 90]) shows that it commutes with Galois actions on characters; see also
[GM, Corollary 3.3.14]. With the assumption that y is not o -invariant and the aforementioned rational-
ity of i, this implies that A is not o-invariant. Since L/D = C,_ for D := L’ as in Proposition 5.9(iv),
it follows that A is a character of L/D of order divisible by 2¢*!, and (g — €), = 2¢ > 2!

We now consider the regular 2-element ¢ € L constructed in Proposition 5.9. For any t' € t N L,
Cg (') is a maximal torus (of rank 6). At the same time, C (') contains a maximal torus of rank 6. It
follows that C (t") = Cg(t’), and so Cg (') < L forall ¢’ € t¢ n L. Thus we can apply [[LNT, Lemma
4.8] to t and obtain from equations (5.7) and (5.17) that

x(t) = £StG (1) x () = £(Stg - RY (W) (t) = (StLy ) (1) = £y (1) A(t) (5.18)

(noting that the Steinberg character takes values +1 at regular semisimple elements). Recall from

Proposition 5.9(iv) that the coset D generates Q> (L/D). Since A has order divisible by 2¢*!, it follows
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that A(¢) is a primitive root of unity & of order 2° > 2¢*!. Now equation (5.18) yields x(t) = +y(1)é,
and ¥ (¢) is an odd integer by [[LNT, Lemma 2.4]. Hence Q,.+1 € Q(x(¢)), as required. O

5.4. Completion of the proof of Theorem A3

Note that Theorem A3 obviously holds when a = 0. Since Q,,, = Q»,,, when m is odd, it remains to prove
Theorem A3 when a > 2; in particular, y is not 2-rational. By Lemma 4. 1(iii), a is the smallest integer
e > 2 such that y is o-invariant. The first statement of Theorem A3 now follows from [ILNT, Theorem
E] when a = 2, and it is just Theorem 5.1 when a > 3. For the second statement, define b := exp(P),
sothatL := Q(xp) € Qu. It follows from [ILNT, Theorem E] thati € L, and so Q> € L € Qp» and
b > 2. However, Q,» /Q, is a cyclic extension of degree 22, and all intermediate subfields are Qe
with 2 < ¢ < b. It follows that L = Q,a for some 2 < d < b. Applying Theorem 5.1, we have d > a.
On the other hand, d < a by the definition of ¢(y) = 2%m, and hence d = a, as stated. O

6. Evidence in support of Conjecture B3

Theorem 6.1. Let p > 2 be a prime and G a finite quasisimple group. Then Conjecture B3 holds for
G, unless possibly when S := G [Z(G) is a finite simple group of Lie type in characteristic # p.

Proof. (i) First we consider the ‘generic’ case, where G is a quotient of G for some simple, simply
connected algebraic group G over a field of characteristic p and F : § — G a Steinberg endomorphism,
and let K := Q({|G,, ), where ¢, := exp(2xi/n) forany n € Z,. Set x € Irr(G). Now if p =5 and § is
of type Eg, then Q(y) C K(¢},) by [TZ, Proposition 10.12]. In all other cases, Q(x) € K(+/p) € K({p)
by [TZ, Theorem 1.3]. It follows that y has conductor ¢(y) = p%m with p f mand 0 < a < 1. In this
case, if g € G is a p-element, then x(g) € Qp« and certainly [Qp« : Q] divides p — 1, and so we are
done.

(ii) Next we consider the case where S = A, with n > 8. Without any loss we may assume that
Z(G) = (3, and G is a normal subgroup of index 2 in H = 2S,,, a double cover of S,;; in particular,
Z(H) = Z(G) = (z). Define K := Q(Qc‘p,), and consider any p-element g € G and p’-element s € H
that commutes with g. With s projecting onto § € S,,, define C := Cg (s), C := Cpz(m)(5), and let D
be the full inverse image of C in H. Clearly, xsx™! = s or sz, and so [D : C] < 2. It is well known that
any complex character of S,; is rational and so has a field of values contained in K. By [TZ, Corollary
2.12], the latter implies that every p-element in S,, is strongly rational — that is, rational in the centraliser
of any p’-element of S,, that commutes with it. Hence, for any integer £ € Z coprime to p, there exists
an element y € D such that ygy~! € gfZ(H). But since |g| is odd and Z(H) = C», it follows that
ygy~' = g¢ —that is, g is rational in D. Since [D : C] < 2, it follows that the generators of (g) break
into at most two C-conjugacy classes. We have shown that g is strongly half-rational in the sense of
[TZ, Definition 2.4]. Hence, by [TZ, Lemma 2.8(ii)], Q(x) < K(4/p) for every y € Irr(H).

Consider any ¢ € Irr(G), and assume first that ¢ is faithful. By a classical result of Schur [HH,
Theorem 8.6], there is a strict partition A of n such that ¢ is an irreducible constituent of a faithful
irreducible character (1) of H labelled by A. Moreover, if A is odd, then ¢ = (1)G, whence Q(¢¥) C
K(+/p) as already shown. Suppose A is even. Then, again by Schur’s result [HH, Theorem 8.7(iv)], for
any x € G we have ¥(x) = ({(1)(x) = £)/2, where either & = 0 or x projects onto an element of cycle
type A = (4y,...,4;) in S, and

£=\ (DD .

Since ¢ € K(4/p), we conclude that Q(¢) € K(~/p). In the case where y is not faithful, the same
conclusion holds by [JK, Theorem 2.5.13].

We have shown that Q(y) € K(4/p) for all y € Irr(G), and the statement now follows as at the end
of (i).
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(iii) All the remaining cases — where S is either a sporadic simple group, A,, with 5 < n < 7 ora
simple group of Lie type with exceptional Schur multiplier — can be checked directly using [GAP]. O

7. Results on Conjecture C

In this last section, we prove some results on Conjecture C. In order to check our statement, a more
comprehensive understanding of the values of p’-degree characters on p-elements is needed.
We start with some elementary lemmas.

Lemma 7.1. Let G be a finite group and p a prime, and set P € Syl (G). Set x € Irr(G) and let
f = p®m be the conductor of x, where a > 0 and p does not divide m. Then the conductor of Q(xp)
divides p®. In particular, Q(xp) € Qpa.

Proof. If p? is the exponent of P, we have Q(yp) C Q,» - In particular, the conductor of Q(xp) is p©
for some ¢ < b. Now Q(xp) € Q(x) € Qpasm, and therefore Q(xp) € Qpe N Qpapm = Qued(pe, pam) =
Qmin(pe,pa)- By the definition of the conductor, we have p¢ < min(p®, p%), and therefore p¢ < p“, as
required. m

Next we show an elementary reformulation of Conjecture C for p odd, which also shows its equiva-
lence with the conclusion of Conjecture B3. Again, recall that if p is odd and a > 1, then E ,a-1 is the

unique subfield of Q,a« of degree p¢! over Q.

Lemma 7.2. Suppose that p is odd. Let x € Irr(G) have conductor p®m, where p does not divide m,
a > 2, and set P € Syl (G). Then the following are equivalent:

(i) There exists x € P such that E a1 € Q(x(x)).

(ii) p does not divide [Qpa : Q(xp)].
(iii) xp is not t-invariant, where v € Gal(Qp« /Q) is any Galois automorphism of order p.

Proof. We have that the extension Qpa /Q is cyclic and that E a1 is contained in every subfield K of
Qpa such that [Qp« : K] is not divisible by p, by elementary Galois theory. Let 7 € Gal(Q,«/Q)
be of order p, and let F = qu—l be the fixed field of 7, which is the unique subfield K such that
[Qpe : K] = p. Hence F contains every subfield K C Qp« such that [Q,« : K] is divisible by p. By
Lemma 7.1, we have Q(x(x)) € Q(xp) € Qpa for every x € P.

Now, if there exists x € P such that E,a-t € Q(x(x)) € Q(xp), then p does not divide [Qpa :
Q(xp)]. Hence (i) implies (ii). Assume (ii). If E a1 is not contained in Q(x(x)), where x € P,
then p divides the index of the cyclic extension Q,«/Q(x(x)), and therefore Q(x(x)) C F. If this
happens for all x € P, we have Q(yp) C F and therefore p divides [Qp« : Q(xp)]. Finally, p divides
[Qpa : Q(xp)] if and only if Q(xp) € Qa1 if and only if yp is 7-invariant. This shows that (ii) and
(iii) are equivalent. m]

Next we prove Conjecture C in the case where G has a normal Sylow p-subgroup.

Theorem 7.3. Let G be a finite group, and set P € Syl (G). Set x € Irr;(G) and assume P < G.
Suppose that the conductor of y is p“m, where a > 1 and p does not divide m. Then Qpa [Q(xp) has
degree not divisible by p.

Proof. By Lemma 7.1, we have Q(xp) C Qpa. We may assume that a > 2. Let A € Irr(P) be a linear
irreducible constituent of yp. By Lemma 2.5(ii), we have o(1) = p“. Now apply Lemma 2.5(i). )

Using Gajendragadkar—Isaacs theory, it is easy to prove Conjecture C for primitive characters of
p-solvable groups.

Theorem 7.4. Suppose that y is a primitive character of a p-solvable group, of degree not divisible
by p. If p® is the p-part of the conductor of x, and P € Syl ,(G), then Q(xp) = Qpa. In particular,
Conjecture C holds for y.
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Proof. Suppose that y = af3, where « is a p’-special character of G and S is p-special and linear.
We know that «@ is p-rational by [Is3, Corollary 2.13]. By Lemma 2.4, we have c¢(y) = c¢(a)c(B) and

c(B) =c(x)p = p“. Also, Q(xp) = Q(Bp) = Qpa. O

The following might be useful in the future:

Theorem 7.5. If G is a counterexample for Conjecture C minimising |G|, then O,(G) = 1 and G /G’
has order not divisible by p.

Proof. Set y € Irr(G) of p’-degree and suppose that the p-part of the conductor of y is p“. Set
P € Syl,(G). Assume that Qpa /Q(xp) has degree divisible by p but Conjecture C holds for every
finite group of order smaller than G. We have a > 2. We also may assume that ker(y) = 1 by minimality.

Let N = OP(G) and assume that N < G. We will now deduce a contradiction. Write y = 0 € Irr(N)
and y = 61, where @ is the canonical extension of § and A € Irr(G/N) is linear. In particular,
c(8) = c(f). (See [N2, Corollaries 6.2 and 6.4].) Suppose that @ is p-rational. Then 6 is p-rational, and
then Q(yp) = Q(1) by Lemma 2.4. Since p* = c(x), = c(1) by Lemma 2.4, we get a contradiction.
We assume that 6 is not p-rational.

If e > 1, notice that

(627 =62

if and only if #9¢ = 6 and A7¢ = A, using the uniqueness in the Gallagher correspondence. This shows
that c(y), = max(c(1), c(0),), using Lemma 4.1(iii).

Write c(6), = p?, where d > 1, 0o(1) = p”, and let Q = P N N. By induction, we have that
Q,4/Q(xo) has degree not divisible by p.

Assume first that p? < p?. Then c(x)p = p“and a = d. Since Qpa /Q(x o) has degree not divisible
by p and Q(yp) € Q(xp) € Qp«, we are done in this case.

Assume now that p? > p9. Therefore c(y), = 0(1) = p® and a = b. Let t € Gal(Q,p1,/ Q)
be of order p, where m is the p’-part of the order of |G|, fixing yp = OpAp. Then 7 fixes § and thus,
using the fact that 8(x) # 0 on every p-element x, we have A7 = A, which is impossible. This shows
that G /G’ has order not divisible by p.

Assume that O, (G) > 1. Notice that O, (G) < G’, by the previous part. Let L be a minimal normal
subgroup of G inside O, (G). Therefore, L is an elementary abelian p-subgroup. Now, let € € Irr(P) be
a linear irreducible constituent of y p, and let A = €. Notice that 4 # 1, because y is faithful. Thus, if
T = G, is the stabiliser of A in G, we have P < T. Also, let y € Irr(T|2) be the Clifford correspondent
of y over A. Thus ¢ = y and yr = ¢ + A, where no irreducible constituent of A lies over A (using
the Clifford correspondence). By the induction formula and the fact that the p-elements of T are inside
some T-conjugate of P, we easily deduce that Q(yp) € Q(¥p). In particular, p¢ < p€©, where c is
the conductor of  p. We claim that Q,(yp) = Q(¢ p), where Q, = Q(A) is the pth cyclotomic field.
Since ¢ is a multiple of A, we have Q,(xp) € Q(¢p). Set o € Gal(Q(¢¥p)/Qp (xp)). Notice that we
have yp = ¥ p + Ap, where no irreducible constituent of A p lies over 4. Now let p be an irreducible
constituent of ¢ p. Since o fixes yp, it follows that p“ is an irreducible constituent of either ¢ p or Ap.
Since p lies over A and o fixes A, it follows that p is an irreducible constituent of ¢ p. Then

[vp.pl = [xp.pl =[(xp)7. 071 = xp. P71 = [¥p.p7],

and we easily deduce that (¥ p)? = ¢ p. This proves the claim.
By elementary Galois theory, we have that Gal(Q(y¥p)/Q(xp)) is isomorphic to Gal(Q,/(Q, N
Q(xp))), and therefore has order not divisible by p. Thus Q(¢p)/Q(xp) has degree not divisible by p.
Now, by [N2, Lemma 5.11], we have that A extends to some v € Irr(T). If T = G, then G’ < ker(v),
and therefore 4 = 1, which is not possible. We conclude that 7 < G. By minimality, we have that
Qpe/Q(yp) has degree not divisible by p. Since p® < p©, a > 2, and Q(¢¥ p)/Q(xp) has degree not
divisible by p, we deduce that Q(¢p) € Qpa. Then a = ¢, and Q,a /Q(xp) has degree not divisible by

p. This is a contradiction. O

Downloaded from https://www.cambridge.org/core. IP address: 73.193.229.32, on 15 Feb 2021 at 15:35:59, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2021.1


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2021.1
https://www.cambridge.org/core

Forum of Mathematics, Pi 23

Theorem A3 immediately shows the following:
Corollary 7.6. Conjecture C holds in the case where p = 2 and G is quasi-simple.
Another case of Conjecture C that we can handle is the following:

Theorem 7.7. Suppose that G has p-length 1. Then Conjecture C holds for G. In particular, Conjec-
ture C holds for p-solvable groups with abelian Sylow p-subgroups.

Proof. Suppose that G has a normal p’-subgroup K and a Sylow p-subgroup P such that L = KP <« G.
Suppose that y € Irr, (G), and let p“ be the p-part of the conductor of y. We may assume that a > 2.

Letn € Irr(L) be under y, so that yy, is a rational multiple of ., N, (p) 7°- Now 1 has p’-degree, so
nk =0 € Irr(K). Thus = §A for some A € Irr(P) linear, where @ € Irr(L) is the canonical extension
of 6. (We identify the characters of L/K with the characters of P.) By the first paragraph in the proof
of Theorem 7.4, we have that the p-part of the conductor of 7 is 0(1) = p? (using the facts that 8 is
p’-special and A is p-special).

We claim that 7 is not p-rational. Otherwise, if p = 2, y is p-rational by Lemma 4.2(ii), which is
not possible. If p is odd, then 4 = 1 and 7 is p’-special. Since G/L is a p’-group, y is p’-special by
[Is3, Theorem 2.4(i)], and in this case a = 0 (by [Is3, Corollary 2.13]) — a contradiction. This proves
the claim. Hence, b > 1. By Lemma 4.2(ii), we conclude that a = b.

We want to study the field of values of the character

A= Z (0p)~.

xeNgG (P)

We claim that

Qa)y=a( Y, ).

xeNgG (P)

Set y € P. Then 8(y) = €,0,(1), where €, is a sign and 0, € Irr(Cg(y)) is the (y)-Glauberman
correspondent of 6 (by [Is2, Theorems 13.6 and 13.14]). Notice that (6,)* = 6,x and €, = €,~ fory € P
and x € Ng (P) (by the uniqueness in [Is2, Theorem 13.6]). Also, (6%) = 6~ for x € Ng (P), this time
by the uniqueness of canonical extensions.

Thus,

QA =Q( Y MO ) |yep) =

xeNg (P)

Qeby() > M IyeP)=QC Y, ),

xeNg (P) xeNg (P)

as claimed. Now, if ¢ € Irr(Ng(P)) lies over A, we have Q(¢p) = Q(A) = Q(xp) and we apply
Theorem 7.3. ]

Next we make a few remarks concerning the Galois—McKay conjecture. As formulated in [N2,
Conjecture 9.8] (or at the end of [N1]), this proposes that if G is a finite group of order n, P € Syl,(G)
and X is the subgroup of Gal(Q,,/Q) that sends p’-roots of unity to some arbitrary p-power, then there
should exist a bijection

* It (G) = It (NG (P))

that commutes with the action of J{. Now let F be the fixed field in Q, by J{. (Notice that if m = n,/,
then F is the fixed field in Q,,, of the subgroup generated by the Frobenius automorphism & — &P, where
& is any m-root of unity.) Since Gal(Q,, /F) = X, by elementary Galois theory it easily follows that the
Galois—-McKay conjecture is equivalent to showing that F(y) = F(x*) for all y € Irr,/(G). (If Q,, is
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the field of p-adic numbers, it can be proved that this is equivalent to showing that Q,(x) = Q, (x™)
for all y € Irr,/ (G).)

We find it interesting to study the class of finite groups for which the bijection * in the Galois—McKay
conjecture can be strengthened in the following way:

Condition D. Let G be a finite group and p a prime, and set P € Syl ,(G). Then there exists a bijection
* i Irrp (G) — Irrp (NG (P)) such that Q(xp) = Q(x*|p) and Q,(x) = Qp (x7) for all y € Irry (G).

Suppose that Condition D holds for G and consider any y € Irr,/(G). Since Gal(Q,/Qn) < K,
we easily deduce that the Galois—McKay conjecture implies that y is p-rational if and only if y* is
p-rational. (More than that, it implies that c(y) and c(x*) have the same p-part.) In the case where y
is p-rational, notice that yp (and x*|p) is rational-valued, so Condition D, for p-rational characters,
follows from the Galois—McKay conjecture. Once y is not p-rational, Condition D is new territory. We
remark that the restriction y*|p is well understood: it is a sum of N (P)-conjugate linear characters of
P. However, in general, notice that y p might contain irreducible characters of P of degree divisible by
p, and constituents with different multiplicities. We believe that studying the character y p is of interest.

We caution the reader that Condition D does not always hold. We thank B. Sambale for communicating
to us that G = PrimitiveGroup(64, 38) (in the notation of [GAP]) for p = 3 is an example. (This group
is not a counterexample to Conjecture C.) On the other hand, as we will show, Condition D does hold
for many interesting classes of finite groups, so it might be worth exploring further.

We show now that Condition D implies Conjecture C.
Theorem 7.8. Condition D implies Conjecture C.

Proof. Let G be a finite group of order n and p a prime, set P € Syl ,(G) and let N = NG (P). Let
G = Gal(Q,/Q). Let H be the subgroup of Galois automorphisms that send every p’-root of unity in
Q,, to some fixed but arbitrary p-power. Let FF be the fixed field of H{. Assume that there is a bijection

" Irrp (G) — Ity (N)

such that F(y) = F(x*) — or equivalently, that commutes with the action of . Since o, € H for every
e, we have that the p-parts of the conductors of y and y* are the same, say p“, where y € Irr),, (G). Now

it Q(xp) = Q(x*|p), then [Qpa : Q(xp)] = [Qpe : Q(x*|p)]. By Theorem 7.3, this latter number is
not divisible by p. O

Next we present several classes of finite groups which satisfy Condition D.
Theorem 7.9. Condition D holds in the following cases:

(i) G has a cyclic Sylow p-subgroup P.
(i) G has a self-normalising Sylow p-subgroup P, and either p is odd or G is solvable.
(iii) G has a normal p-complement.
(iv) G is a sporadic simple group.
(v) p =2, P € Syl,(G) is self-normalising and P[P’ is elementary abelian.
(vi) p=2and G =S, or G = A, withn > 5.
(vii) p is any prime and G = S,,.
(viii) p=21qand G =GL,(q) or G = GU,(q).

Proof. (i) We have that Irr,,/(G) is a union of Irr,,/(B) for p-blocks B of G of maximal defect. Let us
fix a block B of maximal defect of G, and let b be the Brauer first main correspondent in Ng (P). Write
|P| = p¢. By [N1, Theorem 3.4], there is a bijection * : Irr,/(B) — Irr,/ (b) that commutes with o for
all o € Hp. (Here H is the subgroup of Galois automorphisms of Gal(Q);|/Q) that send p’-roots of
unity to a fixed but arbitrary p-power, and J{p the stabiliser in J{ of B.) This naturally defines an -
equivariant bijection * : Irrj,» (G) — Irr,r (N (P)). We only need to check that Q(xp) = Q(x*|p). Now

let us use the notation given in the paragraph preceding [N1, Theorem 3.4]. Suppose first that |A| = 1.
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Thena =1 and e = p — 1. By the formulas in [D 1, Corollary 1.9], we have that y p is rational-valued for
every y € Irr(B) (and for the same reason, so is y*|p). Hence, (i) is proved. Assume that |A| > 1, and
divide Irr(B) into nonexceptional and exceptional characters. The bijection * sends exceptional (resp.,
nonexceptional) characters of Irr(B) onto exceptionals (resp., nonexceptionals) of Irr(b). Now if y is
nonexceptional, then Q(yp) = Q (again by [D1, Corollary 1.9]), and there is nothing else to prove. The
arguments in [N 1, Theorem 3.4] (together with [D3]) show that we may label the exceptional characters
in B as {ya | 4 € A}, and the exceptional characters in b as {¥, | 4 € A} such that (y,)* = ¥, and
both satisfy the formulas in [D1, Corollary 1.9]. In particular, we have that y,(x) is a rational multiple
of ya(x) for every x € P. Therefore Q(xp) = Q(x*|p) for all y € Irr(B).

(ii) When NG (P) = P, by [NTV, Corollary B] in the case where p is odd and by [N2, Theorem 9.4]
in the case where G is solvable, there is a natural bijection y — x* between Irr,/(G) and the set of
linear characters of P; in fact, y* is the unique l_inear constituent of yp. Such a map commutes with
the action of any Galois automorphism in Gal(Q/Q), and hence Q(x) = Q(x*). Next, suppose that
v € Gal(Q/Q) fixes xy*. Then y* is the (unique) linear constituent of (y?)p, whence y* = (y?)* and
so x = x7”. This implies that

Q(xp) € Q(x) € Qx").

Now assume that y € Gal(Q/Q) fixes yp. Then (y*)? is the (unique) linear constituent of yp, whence
(x*)” = x*. Thus Q(x™) € Q(xp), and so Q(xp) = Q(x"), as stated.

(iii) Suppose that G has a normal p -complement K and a Sylow p-subgroup P. By [N2, Theorem 9.2],
there exists a canonical bijection * : Irr (G) — Irrp (NG(P)) such that Q(y) = Q(x*) for every
x € Irrp (G). Furthermore, if yx = 6, then y = A, where @ is the canonical extension of 6 to G
[N2, Corollary 6.4] and A € Irr(G/K) is linear. Now Q(6) = Q(), and we deduce that 8 is p-rational.
Therefore A(x) € Q for all x € P. Also f(x) # 0, by [N2, Corollary 4.20]. Now Q((62)|p) = Q(A).
Since y* = (6*x 1), where 6 is the P-Glauberman correspondent of 6, we deduce that Q(x*|p) = Q(2),
as desired.

(iv) Most of the character tables of the Sylow normalisers of the sporadic simple groups are given
in [GAP], but not all. The Galois—McKay conjecture was proved for the sporadic groups in [Tu,
Theorem 3.1]. As remarked before, Condition D is equivalent to Galois—McKay for p-rational characters.
The only case of a Sylow normaliser N (P) of a sporadic group possessing non-p-rational characters
and whose Sylow normaliser is not given in [GAP] is Th for p = 3. The group NG (P)/P’, as described
in [Wi], is SmallGroup(108,40), and we check that Condition D holds in this case using [GAP].

(v) By [ILNT, Theorem D], since P/P’ is elementary abelian, all odd-degree irreducible characters
of G are 2-rational, and the same holds for N (P) = P. Hence, by the main result of [SF], all odd-
degree irreducible characters of G are JH{-invariant, and again the same holds for P. It remains to apply
the main result of [MS] guaranteeing the existence of a McKay bijection.

(vi) Since the statement is obvious for n = 5, we may assume that n > 6. Hence P € Syl,(G) is self-
normalising (see, for example, [Ko, Theorem 2]. Furthermore, P/P’ is elementary abelian by [NT2,
Lemma 3.3]. Hence we are done, by using (v).

(vii) Let ¢ denote the Galois automorphism of Gal(Q‘Gb}, /Q) that sends any p’-root of unity to its
p-power. Since the McKay conjecture holds for G [O] and since G is rational, it suffices to show that
any € Irry (NG (P)) is rational on P € Syl ,(G), and moreover is p-rational and ¢-invariant. We will
do it in steps. First, if n = p, then Ny := Ng,(C)) = Cp, = C),_1; in particular, every element of C), is
rational in N and any ¢ € Irr(N}) is p-rational and ¢-invariant, whence the claim follows. Next, in the
case where n = pX, we have Ny := NS,,k (P)/P’ = (N)¥ by [O, Proposition (1.5)] using induction on

k > 1, and so the claim follows from the case n = p. Now, if n = apk with 1 <a < p and k > 1, then
P = Q% Ng(P) = NS,

for a suitable Q € Syl ,(S,«). By the previous case (and the representation theory of wreath products

[JK, §4.4]), every irreducible constituent of ¥|(n,)« is rational on P, and ¢ is again p-rational and
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¢-invariant. Finally, if n = Z§=0 a;p' is the p-adic decomposition of n, then

P= l_[ P;, Ng(P) = I—[ Nsa”,,-,(Pi)

i:a;#0 i:a;#0

for suitable P; € Syl,(S,, i) (and after suitably conjugating P). Hence the claim follows from the
preceding case.

(viii) We will use the canonical McKay bijection y +— x¥ between Irry (G) and Irry (Ng(P))
for P € Syl,(G) constructed in [GKNT, Theorem 5.3]. As mentioned in [GKNT, Theorem E], this
bijection commutes with Galois automorphisms, and so Q(y) = Q(x#), hence it remains to show that
Qlxp) = Q( Xﬁ |p) for any y € Irro(G). To unify the notation, we will again write GL€ for GL when
€ = +1 and for GU when € = —1. Also decompose

n=2" 42" 4. 42"

with m; > my > --- > m, > 0 as in equation (5.1). Then we can choose P; € Syl,(G;), where
G; = GL3,, (q),and embed G X Gy X - - - X G, in G such that we can identify P with P; X Py X -+ X P,
and then have

Ng(P) = Ng,(P1) X Ng,(P2) X -+ xNg, (Pr) (7.1

(see [GKNT, (5.5)]).
On the global side, we can write

X =S(S|,/11) OS(SQ,/lz) (S OS(sk,/lk),

as in Lemma 5.5(ii). Recall that s; € uy_ for 1 < i < k; let 2¢ denote the smallest 2-part of [s;],
1 <i < k. Then Q(yp) = Qaa-c by Proposition 5.8. Rephrasing it, we have Q(xp) = Q,a, where 2¢ is
the largest 2-part of the orders of s;, 1 < i < k. In terms of the a-map in the proof of [GKNT, Theorem
5.3], we note that 2¢ is the largest 2-part of the orders of §; € Hg-e, 1 <@ <r,if

a(/\/) = (§1,V1’§2,V2,--~s§r,yr)-

On the local side, in accordance with equation (7.1), we consider 6 = 61 ® 6, ® - - - ® 6,, where
0; € Irry(Ng, (P;)). Note by [GKNT, (5.3)] that

Ng,(P;) =Z; x P;, (7.2)

where Z; is a central 2’-group. Now the B-map in the proof of [GKNT, Theorem 5.3] is constructed
such that

B(e) = (f],,ul,fZ»/JZ»”'afraﬂr)

if B(6;) = (f;, u;) and #; € py—e. We also note that Q((6;)p,) = Qpa; , where 24 is the 2-part of the order
of 7;. (Indeed, this is the case if ¢ = —e(mod 4), since the map 8 commutes with Galois automorphisms
by [GKNT, Lemma 5.1]. Assume now that 4|(q — €). Analyzing the proof of [GKNT, Lemma 5.1]
in this case, we see that Q((6;)p,) = Q(y) for some linear character y of O3 (uy-e), whose order is
precisely 24i ) Tt now follows from equations (7.1) and (7.2) that

Q(GP) = sz'ﬂxlgiy di s

and 2™ isisr di g certainly the largest 2-part of the orders of 7;, 1 <i < r.
Since x* = B~ 'a(x) by [GKNT, Theorem E], we conclude that Q(yp) = Q(x#|p), as desired. O

We also mention that E. Giannelli [Gi] has proved that Condition D (and a blockwise version of it)

holds for A,, for any odd prime p.
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In the next result, we will show that Condition D holds for certain finite groups of Lie type in defining
characteristic. Let G be a simple, simply connected algebraic group over an algebraically closed field of
characteristic p, and let F : § — G be a Steinberg endomorphism. Consider the regular embedding of
(G,F) in (g”;, F), as discussed in [R, §4.1]. Then GF embeds in 9". Note that the latter groups include
the general linear group GL,(g), the general unitary group GU,(q), the conformal symplectic group
CSp,,,(¢) when 2 t g and Sp,,,(g) when 2|q, the conformal spin groups CSpin; (¢) when 2 t g and
furthermore € # + when 2|n, the orthogonal groups Q3 (¢) when 2|q and G2(q), %F4(q) with g = 22¢+1,
Fy(q) and Eg(q).

Proposition 7.10. In the introduced notation, Condition D holds for (G, p).

Proof. 1f GF = G»(3), F4(2) or %F4(2), this claim can be checked using [GAP]. Henceforth, we
may assume that GF # G2(3), F4(2), 2F4(2). Under this extra assumption, [R, Theorem 5.2] yields
an H-equivariant McKay bijection y +— x* for (G¥, p) in all the cases already listed. Hence, as we
discussed before Theorem 7.8, to verify Condition D it suffices to prove that all y € Irrp/(gF ) are
p-rational. This follows from [TZ, Theorem 1.9(i)(i)] if p is a good prime and ¢ is a square, where
q = q(F) denotes the common absolute value of eigenvalues of F on the character group of an F-stable
maximally split maximal torus of G. If ¢ = 2 and G is of type A,, BC, or D,,, then G¥ = GL>,, (9),
Spa,(q), €5, (q) or 3D4(q), and we can apply [TZ, Theorem 1.9(i)(ii)] — or we can argue directly when
G¥ € {B2(2) = S6,?B2(2) = C5 > Cy}. 3

Thus we may assume furthermore that ¢ > 2 if G is classical and p = 2. Now let (§*, F*) be
dual to (Q,F ). Since G has connected centre, every semisimple element s € (9*)F " has connected
centraliser. Then by [M, Theorem 6.8], the only p’-degree unipotent character of C(g*) r+(s) is the

principal character. The Lusztig classification of irreducible characters of G* implies that the p’-degree
characters y € Irrp/(gF ) are precisely the semisimple characters, one for each semisimple class in
(9*)F " The claim now follows, since it is well known that semisimple characters are p-rational (see,
for example, [C, Theorem 7.2.8 and Proposition 8.4.6] and use the fact that the Green functions are
integer-valued [C, p. 237]). ]

Added in proof. Conjecture C for p-solvable groups has now been proved by M. Isaacs and the first
author (work in progress). It looks plausible that Condition D, with Q replaced by Q,, might hold true
for arbitrary finite groups.
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